
Mach Learn (2018) 107:1069–1094
https://doi.org/10.1007/s10994-018-5711-7

Improved maximum inner product search with better
theoretical guarantee using randomized partition trees

Omid Keivani1 · Kaushik Sinha1 · Parikshit Ram2

Received: 12 May 2017 / Accepted: 5 April 2018 / Published online: 23 April 2018
© The Author(s) 2018

Abstract Recent interest in the problem of maximum inner product search (MIPS) has
sparked the development of new solutions. The solutions (usually) reduce MIPS to the well-
studied problem of nearest-neighbour search (NNS). To escape the curse of dimensionality,
the problem is relaxed to accept approximate solutions (that is, accept anything that is approxi-
matelymaximum), and locality sensitive hashing is the approximateNNSalgorithmof choice.
While being extremely resourceful, these existing solutions have a couple of aspects that can
be improved upon—(i) MIPS can be reduced to NNS in multiple ways and there is lack of
understanding (mostly theoretical but also empirical) when to choose which reduction for
best accuracy or efficiency, and (ii) when MIPS is solved via approximate NNS, translating
this approximation to the MIPS solution is not straightforward. To overcome these usabil-
ity issues, we propose the use of randomized partition trees (RPTs) for solving MIPS. We
still reduce MIPS to NNS but utilize RPTs to solve the NNS problem. RPTs find the exact
NNS solution, hence the exact MIPS solution (with high probability), avoiding the need for
any translation of approximation. The theoretical properties of RPTs allow us to definitively
choose the bestMIPS-to-NNS reduction. The empirical properties of RPTs allow us to signif-
icantly outperform the state-of-the-art while providing unique fine-grained control over the
accuracy–efficiency trade-off. For example, at 80% accuracy, RPTs are 2–5× more efficient
than the state-of-the-art. Superiority of RPT comes at the cost of high space complexity over-
head which can be a severe limitation of our proposed method. To address this limitation we

Editor: Tapio Elomaa.

B Kaushik Sinha
kaushik.sinha@wichita.edu

Omid Keivani
oxkeivani@shockers.wichita.edu

Parikshit Ram
p.ram@gatech.edu

1 Department of Electrical Engineering and Computer Science, Wichita State University, Wichita,
KS 67260, USA

2 Skytree Inc., Atlanta, GA 30332, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5711-7&domain=pdf
http://orcid.org/0000-0002-0025-5754

1070 Mach Learn (2018) 107:1069–1094

introduce two space efficient versions of RPTs which enjoy the same superior performance
of RPT while requiring a significantly reduced space complexity overhead.

Keywords Maximum inner product search · Nearest neighbor search · Random projection
trees · Locality sensitive hashing

1 Introduction

The problem of maximum inner product search (MIPS) has received considerable attention
in recent years due to its wide usage in problem domains such as matrix factorization based
recommender systems (Koren et al. 2009; Srebro et al. 2005; Cremonesi et al. 2010), multi-
class prediction with large number of classes (Dean et al. 2013; Jain and Kapoor 2009),
large scale object detection (Dean et al. 2013; Felzenszwalb et al. 2010) and structural SVMs
(Joachims 2006; Joachims et al. 2009). The problem of MIPS is as follows: given a set
S ⊂ R

d of d-dimensional points and a query point q ∈ R
d , the task is to find a p ∈ S such

that,

p = argmax
x∈S q�x . (1)

A naive way to solve this problem is to perform a linear search over S, which often becomes
impractical as the size of S increases. The goal is to develop sub-linear algorithms to solve
MIPS. Towards this end, recent work (Shrivasatava and Li 2014, 2015; Bachrach et al. 2014;
Neyshabur and Srebro 2015) proposed the solution of MIPS with algorithms for nearest-
neighbour search (NNS) by presenting transformations to all points x ∈ S and the query q
which reduce the problem of MIPS to a problem of NNS.1 The sublinear approximate NNS
algorithm used forMIPS is locality sensitive hashing (LSH) (Andoni and Indyk 2008; Gionis
et al. 1999; Datar et al. 2004). While LSH is widely used for approximate NNS (and now for
approximate MIPS), it is known to not provide a good control over the accuracy–efficiency
trade-off for approximate NNS or approximate MIPS. Moreover, specific to the problem of
MIPS, it is not clear which of the multiple proposed reductions (Shrivasatava and Li 2014,
2015; Bachrach et al. 2014; Neyshabur and Srebro 2015) would provide the best accuracy or
efficiency (or the best trade-off of the two). We will discuss both these issues in more detail
in the following section. These issues raise two questions that we address here:

– Can we develop a MIPS solution which provides fine-grained control over the accuracy–
efficiency trade-off?

– Can we definitively choose the best MIPS-to-NNS reduction in terms of the accuracy–
efficiency trade-off?

To this end, we propose the use of an ensemble of randomized partition trees (RPTs) (Das-
gupta and Sinha 2013, 2015) for MIPS. RPTs have been shown to demonstrate favorable
accuracy–efficiency trade-off for NNS relative to LSH while providing fine-grained control
on the trade-off spectrum (Sinha 2014).Wedemonstrate that this usability ofRPTs seamlessly
transfers over to the problem ofMIPS, thereby addressing the first question. Moreover, RPTs
theoretically bound the probability of failing to find the exact nearest-neighbor as opposed
to the failure probability guarantees of LSH which only apply to the approximate nearest-
neighbor.2 We build upon this theoretical property of RPTs to address the second question

1 More precisely, a true nearest neighbor of transformed q in transformed S is the transformed form of p,
where p is a solution of the MIPS problem defined in Eq. 1.
2 We will further discuss these points in the next section.

123

Mach Learn (2018) 107:1069–1094 1071

by providing a theoretical ordering of the existing MIPS-to-NNS reductions with respect to
the performance of RPTs.

Note that, bothLSHandRPTperforms sub-linear timenearest neighbor search by adopting
a simple strategy: given a query point, it restrict its search only to a small subset of the data
points that lie in an appropriate hash bucket (in case of LSH) or a leaf node (in case of RPT).
As mentioned earlier, ensuring fine-grained control over accuracy efficiency trade-off is a
problem in case of LSH as it is not easy to specify number of data points that might lie in any
hash bucket, resulting in either inefficient search by retrieving too many data points when a
hash bucket is overcrowded or inaccurate search by retrieving too few data points when hash
bucket is either empty or contains too few data points. On the other hand, in case of RPT,
maximum number of data points that any leaf node of an RPT might contain (and thereby
the number of retrieved points) is specified upfront during the tree construction resulting in a
fine-grained control on the accuracy efficiency trade-off spectrum and therefore RPT is often
preferredoverLSHfor solvingNNSproblem (Sinha2014).However, this fine-grained control
over accuracy efficiency trade-off spectrum comes at a cost of expensive storage requirement
as each internal node of an RPT needs to store a d dimensional random projection direction
and scalar split point pair. For high dimensional data (d is large) this results in a larger space
complexity for an RPT data structure as compared to LSH data structure. To address this
issue, we present two space saving strategies that results in reduced space complexity for RPT
data structure without compromising its favorable accuracy–efficiecy trade-off. Combining
this with the best MIPS-to-NNS reduction as per our our theoretical findings, we present
an efficient way to solve MIPS problem with better theoretical guarantees and lower space
complexity.

Rest of the paper3 is organized as follows. In Sect. 2, we provide some background on the
existing solutions for the MIPS problem and clearly present their shortcomings. We provide
the details regarding RPTs and their properties in the same section. In Sect. 3, we present our
proposed solution for MIPS along with our main theoretical results. We present two space
efficient strategies to reduce space complexity of RPT data structure in Sect. 4. In Sect. 5, we
empirically validate our theoretical results and demonstrate the superiority of our solution
for MIPS to existing solutions. We reiterate our contributions and conclude with limitations
of our proposed work and some open questions in Sect. 6.

2 Background and related work

In this section, we discuss the existing solutions to exact and approximate MIPS and present
their limitations. We continue on to introduce RPTs for NNS and motivate their use for MIPS
by demonstrating how RPTs overcome the limitations of existing solutions for MIPS.

2.1 Existing solutions for MIPS

MIPS has received a lot of recent attention. Linear search over the set S scales as O(d|S|) per
query, becoming prohibitively high for moderately large sets. There was an attempt to solve
exact MIPS using a space-partitioning tree and a branch-and-bound algorithm in the original
input space (Ram and Gray 2012; Curtin et al. 2013; Curtin and Ram 2014). These branch-
and-bound algorithms were shown to have a logarithmic scaling on |S| but the dependence

3 A shorter version of this paper appeared in the proceedings of the International Joint Conference on Neural
Networks (IJCNN), 2017 (Keivani et al. 2017).

123

1072 Mach Learn (2018) 107:1069–1094

on the dimensionality was exponential, limiting their usability to small or moderate number
of dimensions. To improve upon this, the problem of MIPS was approximated, reduced to
the problem of NNS and solved using an approximate NNS algorithm.
Approximate MIPS. The problem of MIPS is approximated in the following way: given the
set S ⊂ R

d , a query q ∈ R
d and an approximation parameter ε, the task is to find any p′ ∈ S

such that

q� p′ ≥ (1 − ε)max
x∈S q�x . (2)

Connecting MIPS to NNS. Recent work (Shrivasatava and Li 2014, 2015; Bachrach et al.
2014; Neyshabur and Srebro 2015) pointed out that MIPS and NNS are closely related and
a MIPS problem can be reduced to an NNS problem by applying appropriate transformation
to the points in the set S and the query q . We list four such transformations below. Typically
these transformations add extra dimensions to the points in S aswell to query q so that solving
MIPS in original space is equivalent to solving NNS in the transformed higher dimensional
space. We use Pi (·) and Qi (·) to denote the i th transformations applied to data points and
query point respectively.

– Transformation 1 (T1): P1 : Rd → R
d+1 and Q1 : Rd → R

d+1 are defined as follows:

P1(x) =
⎛
⎝ x

β
,

√
1 − ‖x‖22

β2

⎞
⎠ , Q1(x) =

(
x

‖x‖2 , 0

)
,

with β = maxx∈S ‖x‖2 is the maximum norm among all data points in S (Neyshabur
and Srebro 2015).

– Transformation 2 (T2): P2 : Rd → R
d+2 and Q2 : Rd → R

d+2 are defined as follows:

P2(x) =
(

x

β1
,

√
1 − ‖x‖22

β2
1

, 0

)
, Q2(x) =

(
x

β1
, 0,

√
1 − ‖x‖22

β2
1

)
.

Here β1 = max
{
maxx∈S ‖x‖2,maxq ‖q‖2

}
is maximum norm among all data points in

S as well as all possible query points4 (Neyshabur and Srebro 2015).
– Transformation 3 (T3): P3 : Rd → R

d+1 and Q3 : Rd → R
d+1 are defined as follows:

P3(x) =
(
x,

√
β2 − ‖x‖22

)
, Q3(x) = (x, 0) ,

where β = maxx∈S ‖x‖2 is maximum norm among all data points in S (Bachrach et al.
2014).

– Transformation 4 (T4): P4 : R
d → R

d+m and Q4 : R
d → R

d+m are defined as
follows:

P4(x) =
(
x

α
,
‖x‖22
α2 , . . . ,

‖x‖2m2
α2m

)
, Q4(x) =

(
x

‖x‖2 ,
1

2
, . . . ,

1

2

)
.

Here β = maxx∈S ‖x‖2 is maximum norm among all data points in S and α = cβ for
some c > 1 (Shrivasatava and Li 2015).

Each of the above transformations satisfy the following:

4 Note that for this transformation, the maximum norm over all possible queries is needed in advance.

123

Mach Learn (2018) 107:1069–1094 1073

Theorem 1 Suppose S ⊂ R
d is a set of data points and q ∈ R

d is a query point. Then the
following holds:

argmax
x∈S q�x = argmin

x∈S ‖P1(x) − Q1(q)‖2
= argmin

x∈S ‖P2(x) − Q2(q)‖2
= argmin

x∈S ‖P3(x) − Q3(q)‖2
= argmin

x∈S

(
lim

m→∞ ‖P4(x) − Q4(q)‖2
)

.

Proof For different transformations, the theorem have already been proven in different
literature. For the sake of completeness, we provide the proof below. Note that for any
transformation Tj, j = 1, . . . , 4, we have,‖Q j (q) − Pj (x)‖2 = ‖Q j (q)‖2 + ‖Pj (x)‖2 −
2Q(q)�Pj (x). after doing simple algebraic calculations, for different transformations this
yields to:

‖Q1(q) − P1(x)‖2 = 2

(
1 − q�x

‖q‖β
)

(3)

‖Q2(q) − P2(x)‖2 = 2

(
1 − q�x

β2
1

)
(4)

‖Q3(q) − P3(x)‖2 = β2 + ‖q‖2 − 2q�x (5)

‖Q4(q) − P4(x)‖2 = (1 + m/4) − (2/α)
q�x
‖q‖ +

(‖x‖2
α

)2m+1

(6)

It is easy to see fromEqs. 3, 4, 5 thatmaximizing q�x is same asminimizing ‖Q j (q)−Pj (x)‖
for j = 1, 2, 3 which corresponds to transformations T1 , T2 , T3 . Since the last term of
Eq. 6 tends to zero as m → 0, the same holds for Transformation T4 as well.
�
Theabove theorem5 simply says that eachof the four transformations reduces aMIPSproblem
to an NNS problem and the solution to the exact NNS problem in the transformed space is
the solution to the exactMIPS problem.

2.2 Approximating MIPS via LSH

LSH approximates the NNS problem in the following manner: exact NNS tries to find the
p ∈ S such that p = argminx∈S ‖q − x‖2; LSH solves the approximate version of the
problem with an approximation parameter ε to find any p′ ∈ S such that ‖q − p′‖2 ≤
(1 + ε)minx∈S ‖q − x‖2.

LSH is known to scale sub-linearly to |S| and polynomially to the dimensionality d under
favorable conditions. However, LSH comes with some known shortcomings for NNS. LSH
parameters (hash code length and number of hash tables) do not allow the user to have fine-
grained control over the accuracy–efficiency trade-off. For example, specifying a particular
hash code length and number of hash tables does not provide any information on themaximum
number of points that might be retrieved. This is due to the fact that LSH builds hash tables on
a grid irrespective of the data density, and hence can have buckets with no points or with large
number of points for the same data set. These issues directly transfer over to the problem of
approximateMIPS. However, a lot of research has been done to improve the performance and

5 We provide the proof in the supplementary material for ease of readability and due to space limitation.

123

1074 Mach Learn (2018) 107:1069–1094

the accuracy–efficiency trade-off of LSH. But many of these improvements either require a
deep understanding of LSH which is limited to LSH experts or are based on computationally
intensive data-dependent indexing schemes without any theoretical guarantees.

In addition to this, there are some issues with LSHwhich apply only to theMIPS problem.
Firstly, with multiple ways of reducing MIPS to NNS, it is not (theoretically) clear which
transformation is best for solving approximate MIPS via LSH.6 Secondly, after transforming
the data with functions P and Q, if LSH is solving the (1 + ε)-approximate NNS in the
transformed space, it translates to a (1 − f (ε, P, Q, β))-approximate MIPS solution where
f is some function. For an user to control the approximation in the MIPS problem, they have
to carefully translate the approximation desired with LSH, adversely affecting the usability
of LSH for approximate MIPS.

We propose the use of randomized partition trees (RPTs) (Dasgupta and Sinha 2013,
2015) for MIPS. We will provide details regarding RPTs in the following subsection. We
believe that RPTs avoid the aforementioned shortcomings of LSH for MIPS as follows:

– NNSwith RPTs allows the user to have fine-grained control over the accuracy–efficiency
tradeoff—the user just needs to set two paramters, the maximum leaf size n0 (for each
tree) and the number of trees L , and the maximum number of retrieved points is upper
bounded by L · n0. We will show how this property will seamlessly transfer to the task
of MIPS.

– RPTs provide guarantees of the following form for NNS with a given set S and a query
q—the probability of finding the exact nearest neighbors of q with each RPT is at least
some ρ ∈ (0, 1) where ρ depends on q and S. Using L trees boosts this probability of
finding the exact neighbors to at least 1− (1−ρ)L . With Theorem 1, for a set S, a query
q and transformations (P, Q), we know that the exact NNS solution in the transformed
space is the exact MIPS solution. The only change for MIPS is that ρ now depends on
q , S and (P, Q). Unlike LSH, we no longer need to translate the approximation ε in the
NNS solution to a different approximation f (ε, P, Q, β) for the MIPS solution.

– The quantity ρ for RPTs is (theoretically) controlled by an intuitive potential function
(Dasgupta and Sinha 2013). Since, for MIPS, ρ depends on q , S and (P, Q), we will be
able to present a theoretical ordering of the values of ρ for the aforementioned transfor-
mations (Pi , Qi) ∀i = 1, . . . , 4, thereby, definitively answering the question “which is
the best transformation for solving MIPS via RPTs?”, and relinquishing the user from
having to choose a transformation (unlike in MIPS with LSH where the user needs to
make such a choice and then translate the approximation guarantee).

2.3 Randomized partition trees

A randomized partition tree is a binary space partitioning tree data structure, whose root
node represents (a subset of) the space containing the complete set S of n objects. The tree
is constructed recursively from the root node by splitting each node in a randomized fashion
to create left and right child nodes until each node contains at most a pre-specified number
of points n0. At each internal node of the tree, randomized splitting is achieved by choosing
a random projection direction and a random split point.

A nearest neighbor (NN) query is answered by routing the query to a leaf node in a RPT,
following the path from root to leaf using the aforementioned splitting rules, and returning

6 Recent work has identified transformations which preserve locality sensitive property better (Shrivasatava
and Li 2015; Neyshabur and Srebro 2015). But there is no clear understanding (to the best of our knowledge)
of how that translates to the final MIPS performance.

123

Mach Learn (2018) 107:1069–1094 1075

the NN from within that leaf node. A RPT fails to find a query’s NN if, at any of the internal
nodes along the path from the root to a leaf node, the query and its NN lie on opposite sides of
the split. At an internal node containing n′ of the n data points from set S = {x1, . . . , xn} and
a query q , probability of such an event can be bounded by a quantity�n′(q, S) log

(
2

�n′ (q,S)

)
,

where �n′(q, S) is called the potential function and is defined as

�n′(q, S) = 1

n′
n′∑
i=2

(‖x(1) − q‖2
‖x(i) − q‖2

)
, (7)

where x(1), x(2), . . . denotes an ordering of the xi by increasing �2 distance from q (Dasgupta
and Sinha 2013, 2015). By design,�n′(q, S) ∈ [0, 1]. Intuitively, the smaller the the potential
function value, the easier the NNS problem and higher the chance that a particular RPT will
return the true NN of q .

3 Maximum inner product search with RPTs

Given transformations (P, Q), we can solve MIPS with RPTs by first preprocessing S as
follows:

– Choose RPT parameters n0 and L ,
– Generate set P(S) = {P(x)∀x ∈ S},
– Build L RPTs τ1, . . . , τL on P(S) with leaf size n0.

For a query q , let Sl(q) ⊂ S be the points in the leaf of τl containing7 Q(q). The MIPS
solution for q is obtained by:

– Generate Q(q) and initialize candidate set R = ∅,
– For l = 1, . . . , L , R = R ∪ Sl(q),
– return argmaxx∈R q�x
The RPT construction is detailed in Algorithm 1. The routine ChooseRule presented

in Algorithm 2 generates the randomized splits at each internal node of the tree. A projection
direction is chosen uniformly at random from surface of a unit sphere Sd−1 and a split point
is chosen randomly to create left and right child nodes. Note that to solve MIPS problem,
these trees are used in the transformed space after applying appropriate transformation that
ensures MIPS-to-NNS reduction.

By construction, RPTs are balanced and require O (n0 + log(n/n0)) time per tree which
is O(L log n) for a small constant n0 � n and L trees.8 The probability of success depends
on the value of the potential function (Eq. 7). The following corollary of Theorem 1 defines
this potential function for the MIPS problem:

Corollary 1 Givena set S ⊂ R
d of n datapoints andaqueryq ∈ R

d , let (x(1), x(2), . . . , x(n))

be an ordering, satisfying q�x(i) ≥ q�x(i+1) for i = 1, . . . , n − 1. For any j = 1, . . . , 4,
suppose transformation (Pj , Q j) is applied to (S, q). Then the following hold.

7 Here we have slightly abused the notation. Note that an RPT does not store the actual d dimensional data
points but store only their indices (row numbers of given data matrix, where each row represents a data point)
at the leaf nodes. Since after applying transformation (P, Q), transformed data points and query live in a
higher dimensional space, subset of transformed data points P(Sl (q)) will lie in the leaf node containing
Q(q), where indices of Sl (q) and P(Sl (q)) are identical.
8 O(log(n/n0)) time is required to route a query to its corresponding leaf. Then, at most n0 points are
processed at this leaf.

123

1076 Mach Learn (2018) 107:1069–1094

Algorithm 1 Randomized Partitioning Tree

Input : data S = {x1, . . . , xn} ⊂ R
d , maximum number of data points in leaf node n0, depth of the tree so

far dl
Initialize : tree depth dl = 0
Output : tree data structure
function MakeTree(S, n0, dl)

1: if |S| ≤ n0 then
2: return leaf containing S
3: else
4: dl = dl + 1
5: Rule = ChooseRule(S, dl)
6: LeftTree = MakeTree({x ∈ S : Rule = true}, n0, dl)
7: RightTree = MakeTree({x ∈ S : Rule = false}, n0, dl)
8: return (Rule, LeftTree, RightTree)
9: end if

Algorithm 2 Function ChooseRule for RPT
Input : data S, depth of the current node from root dl
Output : rule
function ChooseRule(S, dl)

1: Pick U uniformly at random from the unit sphere by choosing each of its coordinate independently at
random from a standard Normal distribution

2: Pick β uniformly at random from [1/4, 3/4]
3: Let v be the β-fractile point on the projection of S onto U
4: Rule(x) = (x ·U ≤ v)

5: return (Rule)

(i) (Pj (x(1)), Pj (x(2)), . . . , Pj (x(n))) is an ordering satisfying, ‖Pj (x(i)) − Q j (q)‖2 ≤
‖Pj (x(i+1)) − Q j (q)‖2, for i = 1, . . . , n − 1.

(ii) For any subset S′
j of S j = {Pj (x(1)), . . . , Pj (x(n))}, the potential function�|S′

j |(Q j (q),

S j) is defined as:

�|S′
j |(Q j (q), S j) = 1

|S′
j |

|S′
j |∑

i=2

(‖Pj (x(1)) − Q j (q)‖2
‖Pj (x(i)) − Q j (q)‖2

)
(8)

Proof Consider any pair (x(i), x(i+1)) such that q�x(i) ≥ q�x(i+1). From Eqs. 3, 4, 5, it
is easy to see that ‖Q j (q) − Pj (x(i+1))‖ − ‖Q j (q) − Pj (x(i))‖ ≥ 0 for any j = 1, 2, 3.
Moreover, as can be seen from Eq. 6 that the same holds for j = 4 as m → 0. Considering
all the pairs for i = 1, 2, . . . , (n − 1), it is easy to see that ‖Q j (q) − Pj (x(1))‖ ≤ ‖Q j (q) −
Pj (x(2))‖ ≤ · · · ≤ ‖Q j (q) − Pj (x(n))‖. Combining this fact with the definition of potential
function from Eqs. 7, 8 follows.
�

Lower values of this potential function imply higher probabilities of success in finding
the exact MIPS solution. This puts us in a unique position—finding the transformation T∗ =
(P∗, Q∗) which achieves the lowest potential value among all transformations T1 –T4 is
sufficient to pick the best transformation in terms of the MIPS accuracy for fixed efficiency.
To this end, we consider each term in the right hand side of Eq. 8, which corresponds to
relative placement of any two data points x, y ∈ R

d and query point q ∈ R
d such that

q�y ≥ q�x . Applying any of the four transformations (Pj , Q j) (j = 1, . . . , 4) ensures that

the ratio
‖Pj (y)−Q j (q)‖
‖Pj (x)−Q j (q)‖ ≤ 1. The following theorem shows that T1 = (P1, Q1) achieves the

smallest (among the four considered) ratio for any q, x and y:

123

Mach Learn (2018) 107:1069–1094 1077

Theorem 2 Let x, y ∈ R
d be any two data points and let q ∈ R

d be a query point such that
q�y ≥ q�x. Suppose transformation T4 uses c > 1 and m satisfying m ≥ 4

(2
c − 1

)
. Then,

‖Q1(q)−P1(y)‖
‖Q1(q)−P1(x)‖ ≤ γ , where, γ = min

{ ‖Q2(q)−P2(y)‖
‖Q2(q)−P2(x)‖ ,

‖Q3(q)−P3(y)‖
‖Q3(q)−P3(x)‖ ,

‖Q4(q)−P4(y)‖
‖Q4(q)−P4(x)‖

}
.

Proof First, we prove a simple Lemma that will be used in our proof.

Lemma 1 Let a, b two positive scalars such that a
b ≤ 1. For positive scalars x, y such that

x ≤ y, the following holds:

a

b
≤ a + x

b + x
≤ a + y

b + y

Proof Thefirst inequality followsbyobserving thata ≤ b ⇒ ax ≤ bx ⇒ ab+ax ≤ ab+bx
and then rearranging terms. Since (y − x) ≥ 0, the second inequality follows in similar way.

�
Now, we will express ‖Q1(q)−P1(y)‖2

‖Q1(q)−P1(x)‖2 as a
b and then show that same ratio for other trans-

formation functions can be represented as
(
a+x
b+x

)
for some positive x . Invoking Lemma 1

then will yield the desired result. Note that, ‖Q1(q) − P1(y)‖2 = 2
(
1 − q�y

β‖q‖
)
. Therefore,

‖Q1(q) − P1(y)‖2
‖Q1(q) − P1(x)‖2 = (β‖q‖ − q�y)

(β‖q‖ − q�x)
(9)

Now, ‖Q2(q) − P2(y)‖2 = 2
(
1 − q�y

β2

)
. Therefore,

‖Q2(q) − P2(y)‖2
‖Q2(q) − P2(x)‖2 = (β2

1 − q�y)

(β2
1 − q�x)

= (β‖q‖ − q�y) + (β2
1 − β‖q‖)

(β‖q‖ − q�x) + (β2
1 − β‖q‖) (10)

CombiningLemma1, Eq. 9 and the fact thatβ‖q‖ ≤ β1 ·β1 = β2
1 , we get,

‖Q1(q)−P1(y)‖
‖Q1(q)−P1(x)‖ ≤

‖Q2(q)−P2(y)‖
‖Q2(q)−P2(x)‖ . Next,

‖Q3(q) − P3(y)‖2
‖Q3(q) − P3(x)‖2 = (‖q‖2 + β2 − 2q�y)

(‖q‖2 + β2 − 2q�x)

=
(‖q‖2+β2

2 − q�y
)

(‖q‖2+β2

2 − q�x
)

= (β‖q‖ − q�y) + (
‖q‖2+β2

2 − β‖q‖)
(β‖q‖ − q�x) + (

‖q‖2+β2

2 − β‖q‖)
(11)

Note that (‖q‖2+β2)/2 ≥ β‖q‖. This follows from the fact that (‖q‖−β)2 ≥ 0 for any value
of ‖q‖ and β. Therefore, combining this with Eq. 9 and Lemma 1 we get, ‖Q1(q)−P1(y)‖

‖Q1(q)−P1(x)‖ ≤
‖Q3(q)−P3(y)‖
‖Q3(q)−P3(x)‖ . Now,

‖Q4(q) − P4(x)‖2 =
(
1 + m

4

)
− 2q�x

α‖q‖ +
(‖x‖

α

)2m+1

= 2 − 2q�x
α‖q‖ +

(m
4

− 1
)

+
(‖x‖

α

)2m+1

123

1078 Mach Learn (2018) 107:1069–1094

= 2(α‖q‖ − q�x) + α‖q‖ (m
4 − 1

) + α‖q‖ f (x,m)

α‖q‖

=
2

(
(α‖q‖ − q�x) + α‖q‖

2

(m
4 − 1

) + α‖q‖
2 f (x,m)

)

α‖q‖
= 2

(
(β‖q‖ − q�x) + β‖q‖ (c

2 (1 + m
4) − 1

))

α‖q‖

+
2

(
α‖q‖
2 f (x,m)

)

α‖q‖ (12)

where, f (x,m) =
(‖x‖

α

)2m+1

. Therefore,

‖Q4(q) − P4(y)‖2
‖Q4(q) − P4(x)‖2 = (β‖q‖ − q�y) + β‖q‖ (c

2 (1 + m
4) − 1

) + α‖q‖
2 f (y,m)

(β‖q‖ − q�x) + β‖q‖ (c
2 (1 + m

4) − 1
) + α‖q‖

2 f (x,m)

Form is large enough (m is at least 4
(2
c − 1

)
so that the second term is non-negative) f (·,m)

tends to zero doubly exponentially fast, and therefore, combining this with Eq. 9 and Lemma
1 we get, ‖Q1(q)−P1(y)‖

‖Q1(q)−P1(x)‖ ≤ ‖Q4(q)−P4(y)‖
‖Q4(q)−P4(x)‖ .
�

The above theorem implies that T1 will achieve the lowest potential value (as defined
in Eq. 8), and will have the highest success probability in finding the exact MIPS solution.
Under mild conditions, we provide a total ordering of all the transformations with respect to

the ratio
‖Pj (y)−Q j (q)‖
‖Pj (x)−Q j (q)‖ in the following theorem:

Theorem 3 Let x, y ∈ R
d be any two data points and let q ∈ R

d be a query point such

that q�y ≥ q�x. Suppose T4 uses c > 1 and m satisfying m ≥ 8
c max

{ ‖q‖
β

,
β

‖q‖
}
. Then the

following holds: ‖Q1(q)−P1(y)‖
‖Q1(q)−P1(x)‖ ≤ ‖Q3(q)−P3(y)‖

‖Q3(q)−P3(x)‖ ≤ ‖Q2(q)−P2(y)‖
‖Q2(q)−P2(x)‖ ≤ ‖Q4(q)−P4(y)‖

‖Q4(q)−P4(x)‖ .

Proof We have shown in Theorem 2 that the following four ratios ‖Q1(q)−P1(y)‖2
‖Q1(q)−P1(x)‖2 ,

‖Q2(q)−P2(y)‖2
‖Q2(q)−P2(x)‖2 ,

‖Q3(q)−P3(y)‖2
‖Q3(q)−P3(x)‖2 and ‖Q4(q)−P4(y)‖2

‖Q4(q)−P4(x)‖2 can be expressed as a
b ,

a+δ1
b+δ1

, a+δ2
b+δ2

and a+δ3(y)
b+δ3(x)

respectively (see Eqs. 9, 10, 11, 12). Note that in δ3(·) differs in
the numerator and denominator as it contains terms f (y,m) and f (x,m) respectively. How-
ever, since f decreases doubly exponentially fast in m, for large enough m both f (x,m)

and f (y,m) approach zero and δ3(y) becomes equal to δ3(x). We will show δ1 ≥ δ2 and
for large enough m, δ3 ≥ δ1, then invoking Lemma 1 will yield the desired result. Note

that δ1 = β2
1 − β‖q‖ and δ2 = ‖q‖2+β2

2 − β‖q‖. Since ‖q‖ ≤ β1 and β ≤ β1, we have

δ2 = ‖q‖2+β2

2 − β‖q‖ ≤ β2
1+β2

1
2 − β‖q‖ = δ1. Next, note that,

δ3 = β‖q‖
(c
2

(
1 + m

4

)
− 1

)
+ α‖q‖

2
f (x,m)

≥ β‖q‖c
2

(
1 + m

4

)
− β‖q‖ a≥ δ1

Inequality a holds as long as, β‖q‖c
2

(
1 + m

4

) ≥ β2
1 �⇒ m ≥ 4

(
2
c

(
β2
1

β‖q
)

− 1

)
or for any

m ≥ 8β2
1

cβ‖q‖ . Note that when ‖q‖ ≥ β, β1 = max{β, ‖q‖} = ‖q‖, and therefore, β2
1

β‖q‖ = ‖q‖
β
.

123

Mach Learn (2018) 107:1069–1094 1079

Alternatively,whenβ ≥ ‖q‖,β1 = max{β, ‖q‖} = β, and therefore,
β2
1

β‖q‖ = β
‖q‖ . Therefore,

as long asm is large enough (at least 8c max
{ ‖q‖

β
,

β
‖q‖

}
) the statement of the theorem holds.
�

This implies a total ordering among the four transformations in increasing order of the
resulting potential values:

Corollary 2 Given a set S ⊂ R
d of data points and a query q ∈ R

d , let Ti � Tj indicate
that applying Ti = (Pi , Qi) to (S, q) yields a lower potential value as compared to applying

Tj to the same. Suppose T4 uses c and m satisfying m ≥ 8
c max

{ ‖q‖
β

,
β

‖q‖
}
. Then T1 � T3

� T2 � T4 holds.

Proof The corollary follows imemdiately fromTheorem 3, definition of transformationsT1 ,
T2 , T3 , T4 and Eq. 8.
�
This result suggests that, for RPTs, we can expect the MIPS accuracy of each of the four
transformations to follow the same ordering. Note that, T1 � T3 � T2 always holds. If the
query norm is either too large or too small relative to the maximum point norm in S,m needs
to be large enough to maintain relative position of T4 in the above ordering. This result
theoretically suggests that T1 is the best (among the existing) transformation for solving
MIPS with RPTs.

4 RPT with reduced space complexity

In spite of having nice theoretical guarantee in terms of finding exact nearest neighbors, RPTs
are not memory efficient. Note that each internal node of RPT needs to store a pair consisting
of a d dimensional random projection vector and a scalar random split point. Space required
to store these projections directions is

∑ln(n/n0)
i=0 2i · d = O(dn) for constant n0 for a single

RPT. Moreover, if L independent such RPTs are used, total memory requirement for storing
all the projection directions is O(Ldn). This leads to total space complexity of L RPTs to
be O(nd + Lnd + Ln), where the first term is to store the dataset (nd-dimensioanl data
points), the second term is to store the random projection directions and the third term is
to store random split points. In comparison, space complexity of LSH, which is a random
projection based method, is O(nd + nρd log n + n1+ρ). The first term above is to store n
d-dimensional data points. The second terms corresponds to space required to store random
projection directions for computing the random hash functions. For a single hash table the
random hash function has the form h : Rd → {0, 1}k and one needs to store k d-dimensional
random projection vectors to store this. To ensure constant failure probability in solving
approximate nearest neighbor search, it is recommended to use k = log n and use L = nρ

hash tables, where the value of ρ is 1/c if LSH needs to return a c-approximate nearest
neighbor solution9 (Indyk and Motwani 1998; Datar et al. 2004; Andoni and Indyk 2008).
Finally the third term n1+ρ corresponds to space required to store nρ hash tables each of
which takes O(n) space. In practice however, practitioners use different values of k and L
and the space complexity of LSH reduces to O(nd + Lkd + Ln).

As can be seen from the above discussion, the dominating term appearing in the space
complexity expression of RPTs is the term O(Lnd) (compared to the corresponding O(Lkd)

term for LSH), i.e. the space required to store the random projection directions. In the fol-
lowing, we discuss two strategies that reduces this term significantly.

9 For a query q ∈ R
d , let p∗ be its exact nearest neighbor in S ⊂ R

d , i.e., p∗ = argminp∈S‖q − p‖. An
c-approximate nearest neighbor of q is any p ∈ S, that satisfies ‖q − p‖ ≤ (1 + c)‖q − p∗‖.

123

1080 Mach Learn (2018) 107:1069–1094

4.1 Space complexity reduction strategy 1: RPTS

Our first strategy is to reduce the space complexity for individual RPTs. Here, instead of
storing separate random projection direction at each internal node, we keep a single common
random projection direction for all internal nodes located at any fixed tree depth (level). We
call this space reduction strategy as RPTS and provide its pseudo code in Algorithm 3.

Algorithm 3 Function ChooseRule for RPTS
Input : data S, depth of the current node from root dl
Output : rule
function ChooseRule(S, dl)

1: if no projection direction have been chosen for this level dl yet then
2: Pick U uniformly at random from the unit sphere by choosing each of its coordinate independently at

random from a standard Normal distribution
3: Pick β uniformly at random from [1/4, 3/4]
4: else
5: Use same U and β already chosen for this level.
6: end if
7: Let v be the β-fractile point on the projection of S onto U
8: Rule(x) = (x ·U ≤ v)

9: return (Rule)

Since RPTS tree depth is at most O(log n), each RPTS requires O(d log n) space to store
all the projection directions for that tree. Consequently, if there are L such trees, total space
requirement is O(Ld log n). Performance guarantee of RPTS is immediate as projection
directions at different levels are independent to each other and we can simply use an union
bound of the failure probabilities over the path that conveys query q from root to leaf node
of an RPTS and is given in the following lemma.

Lemma 2 Given any query point q, probability that a RPTS fails in finding true nearest
neighbor of q is same as that of a RPT.

Proof As projection directions at intermediate nodes at different levels are independent of
each other along any path from root to any leaf node, using union bound, the failure probability
analysis is essentially the same as in Dasgupta and Sinha (2013, 2015).
�
Note that a similar strategy was also introduced in Hyvönen et al. (2016).

4.2 Space complexity reduction strategy 2: RPTB

While RPTS has reduced space complexity as compared to RPT, space required to store the
projection directions still increases linearly with L , the number of trees. We now present
a second strategy, for which, memory required to store all the projection directions of L
trees is independent of L . To achieve this, we keep a fixed number of independent projection
directions, chosen uniformly at random from the unit sphere in a bucket. Projection directions
from this bucket is used to construct all L randomized partition trees. Using this strategy,
while constructing a randomized partition tree, we still use a single projection direction for all
nodes located at a fixed level as in RPTS, but the difference now is that projection directions
at each level are chosen uniformly at random without replacement from the bucket. Since all
projection directions stored in the bucket are independent to each other, this strategy ensures

123

Mach Learn (2018) 107:1069–1094 1081

that projection directions at different level of the tree thus constructed are still independent
to each other. We call this space reduction strategy as RPTB and provide its pseudo code in
Algorithm 4. Number of projection directions stored in a bucket is typically a constant times
log n, as a consequence, space required for storing all the projections directions of L RPTBs
is O(d log n) and is independent of L . As before, it is easy to see that,

Lemma 3 Given any query point q, probability that a RPTB fails in finding true nearest
neighbor of q is same as that of a RPT.

The reason for keeping the bucket size to be a constant times log n is appearnat from the
following lemma which states that with high probability no two RPTBs have same sequence
of projection directions at every level from root to leaf node.

Lemma 4 For any c ≥ 3, suppose the bucket in RPTB contains c · log n distinct projection
directions uniformly chosen at random from a unit sphere, where n is the number of data
points in S. If the number of RPTBs is limited to at most

√
n, then with probability at least(

1 − 1
2
√
n

)
, no two RPTBs will have same sequence of projection directions at each level

along the path from root to leaf node.

Proof An RPTB is constructed by choosing a projection direction for each level of the RPT
uniformly at random without replacement from the bucket. Let m be the depth of such an
RPTB. Consider any two instantiations of RPTBs, namely, τi and τ j . Let Ai j be the event
that τi and τ j has same sequence of projection directions at every level along the path from
root to leaf node. Then Pr(Ai j) = 1

N · 1
N−1 · · · 1

N−(m−1) ≤ 1
(N−m+1)m ≤ 1

(N−m)m
. Note

that because of the choice random split, depth m of any RPTB can be at most log4/3 n =
(log4/3 2) · log n ≤ (5/2) · log n, and at least log4 n = 1

2 log n. Suppose the bucket contains
N = cm = c · log n projection directions for some c ≥ 3. If we have L RPTBs, then the
probability that any pair of RPTBs have same sequence of projection directions at every level
along the path from root to leaf node is:

Pr
(∃(i, j) such that Ai j happens

) ≤
(
L

2

)
Pr(Ai j)

≤ L2

2

(
1

(N − m)m

)

≤ L2

2

(
1

((c − 1) · m)
1
2 log n

)

≤ L2

2

⎛
⎜⎜⎝

1
(

(c−1)
2 log n

) 1
2 log n

⎞
⎟⎟⎠

≤ L2

2

⎛
⎜⎜⎝

1
(

(c−1)
2

) 1
2 log n

(log n)
1
2 log n

⎞
⎟⎟⎠

a≤ L2

2

(
1

(log n)
1
2 log n

)

b≤ L2

2

(
1

n
1
2 log log n

)

123

1082 Mach Learn (2018) 107:1069–1094

Algorithm 4 Function ChooseRule for RPTB
Input : data S, depth of the current node from root dl , constant c
Output : rule
function ChooseRule(S, dl)

1: if no projection direction have been chosen for this level dl yet then
2: PickU uniformly at randomwithout replacement from a bucket containing c · log n projection directions.
3: Pick β uniformly at random from [1/4, 3/4]
4: else
5: Use same U and β already chosen for this level.
6: end if
7: Let v be the β-fractile point on the projection of S onto U
8: Rule(x) = (x ·U ≤ v)

9: return (Rule)

c≤ L2

2

(
1

n
3
2

)
≤ 1

2
√
n

(
L2

n

)
d≤ 1

2
√
n

Inequality a is due to choice of c while inequality b follows from the following observation.

Suppose log n = 2β for some β > 0. This implies β = log log n. Clearly, (log n)
1
2 log n =

2
β
2 log n = (2log n)

β
2 = n

β
2 = n

1
2 log log n . Inequality c holds as long as n ≥ 256 and inequality

d follows from the restriction on L .
�
Note that, extreme tree depths, i.e., (5/2) · log n or 1

2 log n happens very rarely. For all our
experiments tree depth was very close to log n and a bucket containing 2 · log n distinct
projection directions preformed very well.

5 Empirical evaluations

In this section, we present empirical results in the form of three experiments. The first
experiment validates the ordering of the transformations T1 –T4 presented in Corollary
2. The second experiment demonstrates that the ordering of the potential function values
agrees with the actual performance of RPTs for MIPS—that is, the transformation with the
lowest potential function value provides the best accuracy–efficiency trade-off for MIPS.
The final experiment compares our proposed MIPS solution, including space complexity
reduction strategies, with the state-of-the-art approximate MIPS solution with LSH. For all
our empirical evaluations we consider eight real world datasets varied dimensionality and
size as shown in Table 1. The SIFT dataset contains SIFT image descriptors introduced in
Jégou et al. (2011). The original dataset contains 1million image descriptors.We used 60,000
image descriptors from this dataset for our experiments. TheAERIALdataset contains texture
information of large areal photographs (Manjunath and Ma 1996). The COREL dataset is
available at the UCI repository (Bache and Lichman 2013). MNIST and USPS are datasets
of handwritten digits. REUTERS is a common text dataset used in machine learning and
is available in Matlab format in Cai (2009). After removing the missing data, the dataset
contained 8293 documents. Netflix andMovielens are datasets usually used in recommender
systems. We used exactly the same pre-processing step described in Neyshabur and Srebro
(2015) for these two datasets. For SIFT, Aerial, Corel andMNIST dataset we randomly chose
50,000 points as database points that were used to construct appropriate data structure (RPT
or hash tables) and 10,000 points as queries. For Movielense and Netflix dataset (Neyshabur
andSrebro 2015), number of database pointswere fixed to 10,677 and 17,770 respectively.We

123

Mach Learn (2018) 107:1069–1094 1083

Table 1 Dataset description Dataset # Points in S # Queries # Dimensionsd

SIFT 50,000 10,000 128

Aerial 50,000 10,000 60

Corel 50,000 10,000 89

MNIST 50,000 10,000 784

Reuters 6000 2293 18,933

Netflix 17,770 10,000 300

Movielens 10,677 10,000 150

USPS 7000 2298 256

Fig. 1 Potential function differences (y-axis) versus query index (x-axis) plot: (please view in colour): the
green line indicates the sorted differences PF3− PF1, while the red dots indicate the differences PF2 − PF1
against the sorted index of PF3 − PF1. The blue line indicates the sorted differences PF4 − PF1, while the
purple dots indicate the differences PF5 − PF1 against the sorted index of PF4 − PF1 (Color figure online)

chose the first 10,000 points as query points in each case. For Reuters dataset, we randomly
chose 6000 data points as database points and the remaining 2293 points as query points. The
USPS dataset contains only 9298 points and we randomly chose 7000 points to construct
various data structures and the rest as query points.

5.1 Experiment I: potential function evaluation

In this experiment, we compute the potential function values for each query after applying
each of the four transformations. For every dataset, we use PFi, i = 1, 2 and 3 to denote
the vector of potential function values for all queries upon applying transformation Ti. Since
transformation T4 depends on the choice of m, we choose two values—at one extreme, we
choose a smallm = 3 (as suggested in Shrivasatava and Li 2015), and at the other extreme,we
choose a large m = 100. The corresponding vectors of potential function values are denoted
by PF4 and PF5 respectively. We visualize the relative ordering of the transformations for
each dataset in Fig. 1. The left panel for each dataset compares T1 to T2 and T3 , while the
right panel compares T1 to T4 with two different values of m.

123

1084 Mach Learn (2018) 107:1069–1094

To create the visualization in the left panel, we first compute the differences PF3 − PF1,
sort it in the increasing order and generate the green line.We generate the red dots by plotting
the differences PF2 − PF1 against the sorted index of PF3 − PF1. The green line is always
positive for all datasets, indicating that T1 produces lower potential function values than
T3 . The red dots values are always on or above the green line, indicating that T3 produces
lower potential function values than T2 (and T1 produces lower values than both). This
demonstrates that T1 � T3 � T2 holds in practice. The visualization in the right panel of
each sub-figure in Fig. 1 is generated in a similar manner. We use the sorted differences
PF4− PF1 to generate the blue line. We generate the purple dots by plotting the differences
PF5 − PF1 against the sorted index of PF4 − PF1. The results indicate that T1 � T4 for
different values of m.

We do not present a direct comparison of T2 and T3with T4 because their relative order-
ing depends on the parameters chosen for T4 and the dataset characteristics (Corollary 2).
However,wewould like to note thatT4 ensures that the exactNNS solution in the transformed
space is the exact MIPS solution in the original space only as m → ∞ (Theorem 1). Since
RPTs provide guarantees on the exact NNS solution (and hence, the exact MIPS solution),
T4 only makes sense for RPTs with large m. However, our empirical results indicate that, as
m grows, the potential function value grows, making NNS (and subsequently MIPS) harder,
and T4 undesirable for MIPS with RPTs. Hence, we will not consider T4 any further in our
evaluations.10

Note that, Fig. 1 provides only a qualitative view of the relative ordering of various
transformation by plotting the potential function values. To present a quantitative view, we
first plot histograms (we used 50 bins to plot these histograms) of PF1,PF2 and PF3 for all
eight datasets in Fig. 2. To draw these histograms, first the range of potential function, which
is [0, 1], is discretized in to 50 disjoint bins, where each bin corresponds to a range of potential
function values and then number of queries whose potential function values lie in that range
are plotted. Shape of these histograms agree with the ordering of the transformations T1 ,
T2 and T3 in the sense that histograms of PF1 (that corresponds to T1) is concentrated
more towards the left as compared to the histograms of PF2 and PF3 for almost all datasets.
This indicates that transformation T1 results in more queries to have lower potential function
values as compared to transformationT2 and T3 . To quantify this, we convert the histograms
into a discrete probability distribution in a straight forward manner by dividing number of
query points in each bin by the total number of query points. Let us call these probability
distributions PD1,PD2 and PD3, each of which is a vector of size 50. To quantify the different
between these distributions, we compute the well known Hellinger distance between these
probability distributions using Eq. 13 for each dataset and present in Table 2.

H(PDi,PDj) = 1√
2

√√√√ K∑
k=1

(
√
PDik − √

PDjk)
2 (13)

Hellinger distance H(PDi,PDj) between any two discrete probability distribution PDi
and PDj, as given in Eq. 13, is symmetric and is always bounded between 0 and 1. Hellinger
distribution 0 implies that two probability distributions are exactly same while Hellinger

10 T4 for smallm will direct RPTs to find the exact NN in the transformed space which could be significantly
different from the exact MIPS solution in the original space. Since the rest of the transformations will direct
RPTs to find the exactMIPS solution, the relative comparison forMIPSwithT4 can be unstable and unintuitive.
T4with largem will direct RPTs to find the exact MIPS solution and produce more intuitive results. However,
T4 with large m is undesirable because the transformed space dimensionality as well as the potential function
value will have increased significantly (as observed in the right panels of Fig. 1).

123

Mach Learn (2018) 107:1069–1094 1085

Fig. 2 Histgoram for the potential function with different transformations on eight different datasets. First,
second and third columns in the above figure represents histogram of potential function values obtained by
applying transformation T1 , T2 and T3 respectively

Table 2 Hellinger distance
between PD1,PD2 and PD3

Dataset H(PD1,PD2) H(PD1,PD3) H(PD2,PD3)

Aerial 0.96 0.84 0.31

Corel 0.81 0.66 0.22

MNIST 0.74 0.34 0.45

Movielens 0.98 0.89 0.23

Netflix 0.95 0.75 0.28

Reuters 0.35 0.27 0.11

SIFT 0.08 0.003 0.08

USPS 0.15 0.01 0.15

distance 1 implies they are very very different. In general, higher that Hellinger distance
between two probability distributions, more different the two distributions are. Note that a
popular measure to compare two probability distribution is Kullback-Leibler divergence or
KL-divergence for short. Unlike Hellinger distance, KL-divergence is not symmetric (thus
not a distance metric) and is unbounded and therefore we choose Hellinger distance to
represent the difference between these probability distributions. Please note that, Helinger
distance and KL divergence are related as follows: for any two distributions P and Q,

H(P, Q) ≤ (1
2DKL(P||Q)

) 1
4 . This follows from the fact that Hellinger distance H(P, Q)

and total variation distance δ(P, Q) are related by the following inequality H2(P, Q) ≤
δ(P, Q) ≤ √

2H(P, Q) and Pinsker’s inequality relates total variation distance and KL

divergence via δ(P, Q) ≤
√

1
2DKL (P||Q).

As can be seen from Table 2, H(PD1,PD2) ≥ H(PD1,PD3) for all eight datasets, indi-
cating that PD1 is more similar to PD3 than to PD2. This agrees with visual inspection of
histogram plots in Fig. 2. In particular, the value of H(PD1,PD3) sheds some light on the
relative position of the green line (PF3 − PF1) in Fig. 1. For example, in case of SIFT and

123

1086 Mach Learn (2018) 107:1069–1094

Fig. 3 Precision recall curves for MIPS with RPTs: (please view in colour): The first, second, third and fourth
row correspond to n0 = 10, 20, 40 and 50 respectively (Color figure online)

and USPS dataset H(PD1,PD3) ≈ 0, and this explains why the green line representing
(PF3 − PF1) lies very close to zero in Fig. 1, whereas in case of, say Aerial dataset value
of H(PD1,PD3) is very high and explains why the green line representing (PF3−PF1) lies
far away from the x-axis in Fig. 1.

5.2 Experiment II: precision-recall curve

In this experiment, we generate precision recall (p–r) curves for finding the 20 highest inner
products for each query using RPTs and present the relative performance when using one
of T1 - T3 as the MIPS-to-NNS reduction. We generate the p–r curves using the tech-
nique presented by Shrivasatava and Li (2015), followed by a TREC interpolation (Trec
interpolation 2016). We consider four different values of n0 and present the results in
Fig. 3.

The results indicate that the p–r curves for T1 usually dominate the other p–r curves
by a significant margin for most datasets and values of n0. Moreover, the T3 performance
dominates theT2 performance. This demonstrates that theMIPS performance of RPTs for the
different transformations agrees with the ordering of the potential function values presented
in Corollary 2. However, if potential function values obtained from all three transformations
(T1 , T2 , T3) are very similar, as is the case in case of SIFT dataset (see Fig. 1, and
corresponding histogram and Hellinger distances in Fig. 2 and Table 2 respectively) then p–r
curves for all three transformations are also very similar and there is no clear advantage of
one transformation over another. We would also like to point out that the RPT guarantees
are probabilistic and there are times when the ordering is violated. For example, T3 achieves
higher precision than T1 at low recall values for Reuters and Corel data set with n0 = 50 or
T2 performing slightly better than T3 for Aerial with n0 = 50 and Reuters with n0 = 20 at
low recall values.

123

Mach Learn (2018) 107:1069–1094 1087

Fig. 4 Accuracy versus inverse Speed Up for Aerial dataset. First plot shows the sensitivity of RPT toward n0
value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT, RPTS
and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with LSH
with different transformations. Plots 1–4 are from left to right, top row and plots 5–8 are from left to right
bottom row

5.3 Experiment III: accuracy versus inverse speed-up

In Sects. 5.1 and 5.2 we have demonstrated that T1 is the best transformation, compared
to T2 and T3 , to be used with RPT for solving MIPS. In this experiment, we com-
pare the accuracy–efficiency trade-off of RPTs and two of its space complexity reduction
strategies, namely RPTS and RPTB, with T1 for MIPS to existing baselines. In particu-
lar, we present our exhaustive experimental results for different choices of n0 in case of
RPT and RPTS, different bucket sizes for RPTB and compare their accuracy–efficiency
trade-off with MIPS solution using LSH using all possible transformations (Figs. 4–
11).

We consider the task of finding the 10 highest inner products for each query. We choose
the hash code lengths of 4, 8, 16 for all LSH variants as they reportedly produce the best
performance. We choose leaf sizes n0 of 10, 30, 50, 100 for RPTs. The accuracy of a method
is defined as the recall of the 10 highest inner products averaged over all the queries. The
efficiency of a method is defined by the inverse speed up over linear search and computed as

Inverse speed up = (Total # inner products)/|S|
with any set S for a MIPS query.11 The number of RPTs and LSH hash tables are chosen
from the set {4, 8, 16, 32, 64, 128, 256} to obtain 7 (accuracy, inverse speed up) pairs for

11 Precision-recall curves make sense when the underlying method/parameters are the same, and imply the
same amount of computation to retrieve the candidate set. We consider the total number of inner products μ

required for a MIPS query to provide a fair comparison between different kinds of methods/parameters. For
each RPT, this corresponds to the number of inner products needed to route a query to a leaf and process
the points in that leaf. For each LSH hash table, this corresponds to the number of inner products needed
to generate a hash code of a length k and process the points in that hash bucket. Let R be the size of the
candidate set retrieved by each method. For RPTs with L trees, μ = R + L log |S|. For LSH with H hash
tables, μ = R + Hk. Note that, in case of RPTB, μ can be at most R + c log |S|, where c specifies the bucket
size and can be considerable less compared to L .

123

1088 Mach Learn (2018) 107:1069–1094

Fig. 5 Accuracy versus inverse Speed Up for Corel dataset. First plot shows the sensitivity of RPT toward n0
value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT, RPTS
and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with LSH
with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to right
in bottom row

each method-parameter combination. These are used to generate the accuracy–efficiency
trade-off curves in Figs. 4–11. Moving from left to right on each curve implies increased
computation (hence lower efficiency). On each curve, the first marker (from the left) in
Figs. 4–11 corresponds to 4 RP-trees (or hash tables), the second marker corresponds to 8
RP-trees (or hash tables) and so on. We continue this way to generate 7 markers for each
curve. This way, Figs. 4–11 allows us to compactly represent the interaction between the
number of trees (each marker), number of retrieved points by each method (represented by
inverse speedup on the x-axis) and the accuracy of the approximate MIPS obtained by LSH
and RP-trees (on the y-axis).

In each Figs. 4–11, the left most plot on top row shows the accuracy–efficiency trade-
off of RPT for different choices of n0 values. Observe that unless n0 is very small, say
when n0 = 10, performance of RPT with different n0 values are very similar. Therefore,
in subsequent comparisons we use the choice of n0 = 50. The second plot from the left
on top row shows accuracy–efficiency trade-off of RPTB for three different bucket sizes,
namely 2 log n, 5 log n and 10 log n (C = 2, 5 and 10 respectively). Observe that for most
datasets their performances are very similar, occasionally C = 5 or C = 10 performing little
better compared to C = 2, which provides less randomness. Since the purpose of RPTB
is to reduce space complexity and lower the C the better, for subsequent comparisons we
use C = 2 and C = 5 only. The third plot from the left on top row shows the accuracy–
efficiency trade-off of RPTS with n0 = 50 along with RPT with n0 = 50 and RPTB with
C = 2 and C = 5. Again, performances of RPT and RPTS are very similar and are not
too different from that of the RPTBs except in case of Netflix and Reuters dataset (Figs.
8, 9) where RPTB seems to perform better compared to RPT and RPTS. Note that for all
three plots from the left on top row, the x axis ranges from 0 to 0.3 (except Movielens,
Netflix, Reuters and USPS dataset i.e., Figs. 7, 8, 9, 11) to show the difference between the
accuracy–efficiency trde-offs of RPT, RPTS and RPTB more closely. In subsequent plots,
the x-axis ranges from 0 to 1 and thus their accuracy–efficiency trade-off curves look even

123

Mach Learn (2018) 107:1069–1094 1089

Fig. 6 Accuracy versus inverse Speed Up for MNIST dataset. First plot shows the sensitivity of RPT toward
n0 value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT,
RPTS and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with
LSH with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to
right in bottom row

Fig. 7 Accuracy versus inverse Speed Up for Movielens dataset. First plot shows the sensitivity of RPT
toward n0 value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares
RPT, RPTS and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper
with LSH with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left
to right in bottom row

more similar. Also note that in case of Movielens, Netflix and Reuters datasets, histograms
of potential function values (after applying transformation T1) are concentrated heavily
towards right as compared to the remaining 5 datasets (see Fig. 2). This indicates that in
the transformed space, the corresponding NNS problem for these three datasets are harder
compared to the rest of the datasets and yield higher inverse speed as compared to other
datasets to achieve the same level of accuracy. Finally, the remaining five plots in each

123

1090 Mach Learn (2018) 107:1069–1094

Fig. 8 Accuracy versus inverse Speed Up for Netflix dataset. First plot shows the sensitivity of RPT toward
n0 value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT,
RPTS and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with
LSH with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to
right in bottom row

Fig. 9 Accuracy versus inverse Speed Up for Reuters dataset. First plot shows the sensitivity of RPT toward
n0 value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT,
RPTS and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with
LSH with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to
right in bottom row

Figs. 4–11 show the accuracy–efficient trade-offs of all possible baseline methods, namely
LSH with all transformations(with three different hashcode lengths), for solving MIPS. In
these plots, LSH1, LSH2 and LSH3 corresponds to LSH after applying transformations
T1 , T2 and T3 respectively, while LSH4 and LSH5 corresponds to LSH after applying
transformation T4 with m = 3 and m = 100 respectively.

123

Mach Learn (2018) 107:1069–1094 1091

Fig. 10 Accuracy versus inverse Speed Up for SIFT dataset. First plot shows the sensitivity of RPT toward n0
value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT, RPTS
and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with LSH
with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to right
in bottom row

Fig. 11 Accuracy versus inverse Speed Up for USPS dataset. First plot shows the sensitivity of RPT toward
n0 value. Second plot investigate the sensitivity of RPTB toward parameter C . Third plot compares RPT,
RPTS and RPTB. Finally, plot 4–8 compares all RPT versions which has been mentioned in this paper with
LSH with different transformations. Plots 1–4 are from left to right in top row and plots 5–8 are from left to
right in bottom row

As can be seen from Figs. 4–11, as inverse speedup → 1 accuracy gets close to 100%.
When this happens for anymethod, the correspondingmethod is no better than a simple linear
scan over the entire dataset. It is easy to observe from Figs. 4–11 that RPT/RPTS/RPTB
with T1 requires much less computations (small inverse speed up value) to reach higher
accuracy compared to LSH (with any transformation). The results indicate that RPT and two
of its space complexity reduction strategies (RPTS and TPTB) achieve a particular level of

123

1092 Mach Learn (2018) 107:1069–1094

accuracy much more efficiently (at smaller values of inverse speed up) than LSH no matter
which transformation we use for LSH. Moreover, the performance of RPTs does not appear
to be significantly affected by the choice of n0 (as long as n0 � |S|) and RPT/RPTS/RPTB
provide easy access to the full accuracy–efficiency trade-off spectrum. On the other hand,
regardless of the transformation, performance of LSH is quite sensitive to its parameters. For
large hash code lengths (16 or bigger), the probability of generating hash buckets with very
low density increases significantly and small (or even empty) candidate sets are generated,
leading to low accuracy (recall). For small hash code lengths (say, 4), most hash buckets
become very dense, leading to large candidate sets, which produce high accuracy but also
high values of inverse speed up (low efficiency). Almost all curves for LSH with K = 4
needs linear time (inverse speed up close to 1) to achieve high accuracy (90% or higher).
Note that using third transformation for LSH with k = 8 has almost the best performance
among all other LSH settings (different transformations and different K values).

We end this section noting that various non-LSH approximate nearest neighbor search
methods such as randomized kd-tree, k-means tree etc., have superior empirical NNS perfor-
mance compared to LSH (Muja and Lowe 2014). After applying appropriate transformation
that reduces a MIPS problem to an equivalent NNS problem, these methods can be used to
solve the reduced NNS problem as well. However, unlike RPT which uses defeatist query
processing strategy and retrieves data points from a single leaf node of an RPT, thesemethods
retrieve data points from multiple leaf nodes of a single tree by maintaining a priority queue.
Also, unlike RPT, these methods provide no theoretical guarantee as far as nearest neighbor
search performance is concerned. Therefor, we do not compare these methods in this paper.

6 Conclusions

In this paper we proposed the use of RPTs for the solution ofMIPS for twomain reasons—(i)
to obtain a MIPS solution that allows simple but fine-grained control over the accuracy–
efficiency trade-off, and (ii) to theoretically determine the best (among the set of existing)
MIPS-to-NNS reduction in terms of the accuracy (for fixed efficiency). Our empirical results
on eight real world datasets validate our theoretical claims and also demonstrate our superior-
ity to the current state-of-the-art. For example, at 80% accuracy, our proposedMIPS solution
produced results 2-5 times more efficiently than the state-of-the-art. This favorable perfor-
mance comes at the cost of increased space complexity. Firstly, a single RPT has a memory
requirement of O(dn). Hence, the complete ensemble of L RPTs would require a memory
overhead of O(Lnd) which can be severely limiting. To address this limitation, we have
proposed two space efficient version of RPTs, namely, RPTS and RPTB. Space complexity
of RPTS is O(Ld log n) while space complexity of RPTB is O(cd log n), where c is typi-
cally set to c = 2 or c = 5 and is independent of L . Empirical evaluations show that RPTS
and RPTB enjoy the same level of accuracy–efficiency trade-off as that RPT eliminating the
limitations of RPT.

While we are able to achieve state-of-the-art performance for MIPS, we are not taking
advantage of the fact that, after using T1 to reduce MIPS to NNS, the norms P1(x) =
Q1(q) = constant ∀x ∈ S & ∀q . Is it possible to use this fact to design better algorithms for
MIPS? Finally, there is also the unanswered question of whether (and how) we can develop a
better, or even optimal, MIPS-to-NNS reduction in terms of the potential function. While we
did not address this question here, we presented a precise notion (the potential function in the

123

Mach Learn (2018) 107:1069–1094 1093

transformed space) which can be used to answer questions such as “how is a MIPS-to-NNS
reduction better?” or “how is a MIPS-to-NNS reduction optimal?”.

References

Andoni, A., & Indyk, P. (2008). Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Communications of the ACM, 51(1), 117–122.

Bache, K., & Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml.
Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir, L., Koeningstein, N., Nice, N., & Paquet, U. (2014).

Speeding up the xbox recommender system using a euclidean transformation for inner-product spaces.
In 8th ACM Conference on Recommender Systems.

Cai, D. (2009). Text datasets inMatlab format. http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms on top-n recommen-

dation tasks. In 4th ACM Conference on Recommender Systems.
Curtin, R. R., & Ram, P. (2014). Dual-tree fast exact max-kernel search. Statistical Analysis and Data Mining,

7(4), 229–253.
Curtin, R. R., Ram, P., & Gray, A. G. (2013). Fast exact max-kernel search. In Proceedings of SIAM data

mining.
Dasgupta, S., & Sinha, K. (2013). Randomized partition trees for exact nearest neighbor search. In The 26th

Annual Conference on Learning Theory.
Dasgupta, S., & Sinha, K. (2015). Randomized partition trees for nearest neighbor search. Algorithmica, 72(1),

237–263.
Datar, M., Immorlica, N., Indyk, P., & Mirrokni, C. S. (2004). Locality-sensitive hashing based on p-stable

distributions. In The 20th ACM symposium on computational geometry.
Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., & Yagnik, J. (2013). Fast accurate detection

of 100,000 object classes on a single machine. In IEEE Conference on Computer Vision and Pattern
Recognition.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discrim-
inatively trained part-based models. IEEE Transactions on pattern Analysis and Machine Intelligence,
32(9), 1627–1645.

Gionis, A., Indyk, P., & Motwan, R. (1999). Similarity search in high dimensions via hashing. In 25th Inter-
national Conference on Very Large Databases.

Hyvönen, V., Pitkänen, T., Tasoulis, S. K., Jaasaari, E., Tuomainen, R., Wang, L., Corander, J., & Roos, T.
(2016). Fast nearest neighbor search through sparse randomprojections and voting. In IEEE International
Conference on BigData.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimension-
ality. In ACM symposium on theory of computing.

Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problem. In IEEE Conference on Computer
Vision and Pattern Recognition.

Jégou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Joachims, T. (2006). Training linear SVM in linear time. In 12th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining.

Joachims, T., Finley, T., & Yu, C.-N. J. (2009). Cutting plane training of structural SVMs.Machine Learning,
77(1), 27–59.

Keivani, O., Sinha, K., & Ram, P. (2017). Improved inner product search with better theoretical guarantees.
In International Joint Conference on Neural Network.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Com-
puter, 42(8), 30–37.

Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieving of large image data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2227–2240.

Neyshabur, B., & Srebro, N. (2015). On symmetric and asymmetric LSHs for inner product search. In 32nd
International Conference on Machine Learning.

Ram, P., & Gray, A. G. (2012). Maximum inner-product search using cone trees. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

123

http://archive.ics.uci.edu/ml
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

1094 Mach Learn (2018) 107:1069–1094

Shrivasatava, A., & Li, P. (2014). Asymmetric LSH (ALSH) for sublinear time maximum inner product search
(MIPS). In 28th Annual Conference on Neural Information Processing Systems.

Shrivasatava, A., & Li, P. (2015). Improved asymmetric locality sensitive hashing (ALSH) for maximum inner
product search (MIPS). In 31st Conference on Uncertainty in Artificial Intelligence.

Sinha, K. (2014). LSH versus randomized partition trees: Which one to use for nearest neighbor search? In
13th International Conference on Machine Learning and Applications.

Srebro, N., Rennie, J., & Jaaakkola, T. (2005). Maximum margin matrix factorization. In 19th Annual Con-
ference on Neural Information Processing Systems.

Trec interpolation. http://trec.nist.gov/pubs/trec16/appendices/measures.pdf. Accessed 14 Sept 2016.

123

http://trec.nist.gov/pubs/trec16/appendices/measures.pdf

	Improved maximum inner product search with better theoretical guarantee using randomized partition trees
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Existing solutions for MIPS
	2.2 Approximating MIPS via LSH
	2.3 Randomized partition trees

	3 Maximum inner product search with RPTs
	4 RPT with reduced space complexity
	4.1 Space complexity reduction strategy 1: RPTS
	4.2 Space complexity reduction strategy 2: RPTB

	5 Empirical evaluations
	5.1 Experiment I: potential function evaluation
	5.2 Experiment II: precision-recall curve
	5.3 Experiment III: accuracy versus inverse speed-up

	6 Conclusions
	References

