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Abstract Interaction data are characterized by two sets of objects, each described by their
own set of features. They are often modeled as networks and the values of interest are
the possible interactions between two instances, represented usually as a matrix. Here, a
novel global decision tree learning method is proposed, where multi-output decision trees
are constructed over the global interaction setting, addressing the problem of interaction
prediction as a multi-label classification task. More specifically, the tree is constructed by
splitting the interaction matrix both row-wise and column-wise, incorporating this way both
interaction dataset features in the learning procedure. Experiments are conducted across
several heterogeneous interaction datasets from the biomedical domain. The experimental
results indicate the superiority of the proposed method against other decision tree approaches
in terms of predictive accuracy, model size and computational efficiency. The performance
is boosted by fully exploiting the multi-output structure of the model. We conclude that
the proposed method should be considered in interaction prediction tasks, especially where
interpretable models are desired.

Keywords Decision tree · Interaction data · Heterogeneous networks · Multi-output
learning

Editors: Kurt Driessens, Dragi Kocev, Marko Robnik-Šikonja, and Myra Spiliopoulou.

B Konstantinos Pliakos
konstantinos.pliakos@kuleuven.be

Pierre Geurts
p.geurts@ulg.ac.be

Celine Vens
celine.vens@kuleuven.be

1 Department of Public Health and Primary Care, KU Leuven, Campus KULAK, Etienne Sabbelaan
53, 8500 Kortrijk, Belgium

2 Department of Electrical Engineering and Computer Science, Montefiore Institute, University of
Liège, 4000 Liège, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5700-x&domain=pdf
http://orcid.org/0000-0002-1989-357X


1258 Mach Learn (2018) 107:1257–1281

1 Introduction

Due to recent technological advances, the amount of data that are captured and stored in
different areas of science is exponentially increasing. This vast volume of data poses several
new challenges to the scientific community, stimulating new lines of research (Yin et al.
2015;Mayer-Schönberger andCukier 2014). Fromamachine learningperspective, traditional
methods need to adapt to this new order so as to cope with modern problems that arise (Fan
andBifet 2013; Jordan andMitchell 2015).Afirst challenge is posed by the increasing scale of
the data, at the level of both the number of objects stored (cardinality) and the characteristics
or features that describe these objects (dimensionality). A second challenge deals with the
representation structure of the objects. In traditional machine learning problems the instances
are represented as single vectors of features. However, more complex representations, further
referred to as structured data types (Sun and Han 2013), are evermore often agitating the
current standards and altering existing methodologies.

One example of structured data that is often encountered is interaction data, where instead
of one set of instances one has two sets, each described by its own set of features. Interaction
data are ubiquitous: in social network analysis, recommender systems, bioinformatics (gene
expression analysis, drug response analysis, drug-target reactions), technology-enhanced
education, etc. The interaction framework is often represented as a network (or graph) and
the actual interactions between instances are represented as a matrix containing binary or
numeric items (Sun and Han 2012, 2013). In Fig. 1, an example of an interaction network
is displayed. The values of interest are usually the interactions between instances. More
precisely, in interaction prediction the goal is to predict if a possible connection between
two instances exists. Despite the effort made, issues such as efficiency or predictive accuracy
still remain open. Modern technological advances amplify these problems as they lead to
an exponential increase of the available data which are also composed of more complex
patterns. Moreover, the predictions made by machine learning methods should be preferably
interpretable in order to lead to rational deductions and valuable insights. Properties such
as the interpretability or the visualization of the learning procedure and the obtained results
are crucial especially in fields such as biology, or medicine (Geurts et al. 2009). To this end,
novel scalable machine learning methods that can cope with the aforementioned issues are
of paramount importance.

In machine learning, supervised learning is among the most studied fields (Jordan and
Mitchell 2015). In traditional supervised learning, a prediction function is built over a set of
instances (training set) in order to predict a target value (Witten et al. 2016). Each instance

Fig. 1 Illustration of an (bi-partite) interaction network
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is represented by a feature vector and associated with a target. This target can be binary
(classification task) or numerical (regression task). Single target prediction tasks adopt the
assumption that an instance is associated with only one class out of two or more classes
(binary classification, multi-class classification). However, the aforementioned assumption
is abolished in many real-life problems as instances may belong to more than one class at
the same time. For example, a document can be associated with many topics simultaneously.
Such data are called multi-label data and the corresponding methods multi-label methods.
Nowadays, multi-label methods captivate ever increasing interest, performing predictions
in a more complex target space where a single instance can be associated with multiple
labels simultaneously (Tsoumakas et al. 2010, 2012). These methods improve prediction,
exploiting the structure of the target space (labels), being at the same time computationally
efficient.

Here, the interaction prediction task is formulated as a supervised learning problem and
more precisely as a multi-label classification task. A classifier is trained over the two inter-
action datasets, addressing the existence or not of an interaction between two instances as
a binary classification problem on pairs of instances, a task often referred to as dyadic pre-
diction (Menon and Elkan 2010) or pairwise learning (Stock et al. 2016). There are mainly
two approaches to apply a learning technique in the aforementioned framework: the local
approach (Bleakley et al. 2007) and the global one (Ben-Hur and Noble 2005). Following
the local approach one should first decompose the data into separate (traditional) feature
vector representations, solve each representation’s learning task independently, and combine
the results. In the global approach, the learning technique is adapted so that it can handle
the structured representation directly. A discussion of the two aforementioned approaches
is given in Vert (2010). The method proposed in this paper is a global approach extending
multi-output decision tree learning to the interaction data (network) framework.We propose a
new algorithm that incorporates both interaction feature sets in the same learning procedure.
The tree grows considering split candidates in both row and column features and thereby
splits the target space (interaction matrix) row-wise or column-wise, accordingly. Our work
is motivated by efficient approaches in the literature that address interaction prediction as
a classification or regression problem using trees or tree-ensembles (Schrynemackers et al.
2015).We employ decision trees instead of ensembles in order to demonstrate the algorithmic
contribution of our work at a fundamental level. Moreover, we performed a thorough com-
parison study, including the two traditional approaches (global and local). Properties such as
computational efficiency and interpretability are also investigated apart from predictive accu-
racy. Furthermore, two different labeling strategies are compared, investigating the particular
contribution of the multi-label structure to the learning procedure. For evaluation purposes,
several heterogeneous interaction datasets from the field of biomedicine were used and the
obtained results demonstrate the superiority of the proposed method over the compared ones.

The outline of the paper is as follows. Related studies are mentioned in Sect. 2. In Sect. 3,
the proposed approach is presented and described in detail. The experimental evaluation is
presented in Sect. 4. Conclusions are drawn and topics of future research are discussed in
Sect. 5.

2 Related work

Here, studies related to ours are reported and connections with prior work are drawn.
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2.1 Multi-label learning

During the last years, several well-known classification algorithms, such as kNN, SVM, neu-
ral networks, decision trees, or tree-ensembles, were extended towards multi-label learning
(Tsoumakas et al. 2010; Zhang and Zhou 2014). They have been applied to various problems,
such as multimedia automatic annotation (Boutell et al. 2004; Qi et al. 2007), web mining
(Tang et al. 2009), or bioinformatics (Guo et al. 2016). The mentioned methods jointly pre-
dict membership to all class labels, thereby exploiting possible label correlations. They are
contrasted to the so-called Binary Relevance method (Tsoumakas et al. 2010), which breaks
the multi-label task into multiple binary classification tasks, assuming independent labels.
These approaches in fact represent two extremes. In a more realistic setting, one can expect
to have correlations within subsets of labels, but not necessarily within all labels together.
Recently, there has been some interest in methods that are situated in between the two afore-
mentioned extremes. The method that we will propose in the next section can also be placed
in this category.

In Dembczynski et al. (2012), a study on label dependency for multi-label classification
was performed. Two types of label dependencewere demonstrated for predictive performance
boosting and connections with minimization loss were drawn. In Read et al. (2011), a com-
putationally efficient classifier chains method was proposed exploiting label correlations.
Papagiannopoulou et al. (2015) use an Apriori-like algorithm to extract label dependen-
cies and then improve a Binary Relevance model by encoding the label correlations into a
Bayesian network. Tsoumakas et al. (2011) randomly break the label set into a number of
small-sized (disjoint or overlapping) label subsets, and for each of them train a multi-label
classifier using the Label Powerset (Tsoumakas et al. 2010) method. For the classification
of an unseen instance, the predictions of all classifiers are gathered and combined. Joly
et al. (2014) take a similar approach by employing a multi-label tree ensemble method that
uses a random projection of the label space to compute the splits. However, each individ-
ual model makes predictions for all labels. Furthermore, some studies focus on an explicit
label structure, for instance exploiting a given hierarchical taxonomy defined over the labels
(Barutcuoglu et al. 2006; Vens et al. 2008; Kocev et al. 2013).

2.2 Interaction prediction

Although there are many methods that have been developed for interaction data, most of
them are applicable in a transductive setting based mainly on kernel-learning (Lanckriet and
Cristianini 2004). In Li and Chen (2013), user-item interactions were modeled as a bipar-
tite graph (Berge and Minieka 1973), addressing the problem of interaction prediction as a
recommendation problem. A kernel-based recommendation approach was proposed, com-
puting user-item similarities using random walk paths. In Huang et al. (2016), information
from multiple data sources represented in kernel format was integrated. The incorporated
information was distilled by computing weights for each specific data source. These weights
were computed by applying random walk over partial networks. The problem of interaction
prediction was also addressed as a link prediction task on heterogeneous drug-target interac-
tion networks in Seal et al. (2015), Nascimento et al. (2016). More specifically, random walk
with restart was employed in Seal et al. (2015), while multiple-kernel learning was employed
in Nascimento et al. (2016). Moreover, there are works addressing interaction prediction
using matrix factorization or multi-view learning methods (Pratanwanich et al. 2016).

Despite their performance, transductive learning methods are difficult to be applied on
modern tasks as they need the test instances during the training phase. A number of induc-
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tive approaches have been proposed. In Zhang et al. (2015), a method based on multi-label
k-nearest neighbor (ML-kNN) (Zhang and Zhou 2007) was proposed for drug side effect
prediction. In order to maximally exploit the information from multiple types of features,
they constructed individual feature-based predictors. A kernel ridge regression approach was
proposed for pairwise learning in Stock et al. (2016). A regression tree approach was devel-
oped modeling gene expression regulation in Ruan and Zhang (2006). In Schrynemackers
et al. (2015), the potential of tree-ensembles as interaction predictors was demonstrated.
The extremely randomized tree setting (Geurts et al. 2006), an extension of random forests
(Breiman 2001), was used and three different approaches were compared in a thorough study
over several interaction datasets. Finally, predictive clustering trees (PCTs) (Blockeel et al.
1998)—onwhich our proposedmethodology is based -were used in a networkmining context
before (Stojanova et al. 2012). In this work, regression models on the network nodes (rather
than edges) were learned, exploiting existing autocorrelation. Only homogeneous networks
were considered.

3 Method

In this section, first the theoretical background of the proposedmethod is presented. Next, the
interaction prediction framework is analyzed. The way interaction prediction is modeled as a
classification task is demonstrated and two traditional decision tree approaches are detailed.
Finally, the proposed method is presented.

3.1 Background

One of the most popular methods in classification is decision tree learning, mainly because
of its scalability, interpretability and visualization properties. In a Predictive Clustering Tree
(PCT) framework (Blockeel et al. 1998), decision trees are typically constructed with a top-
down inductionmethodwhere every node is considered to be a cluster of the data (S). Starting
from the root nodewhich represents a cluster containing all the data, the nodes are recursively
split by applying a test to one of the features. In order to find the best split, all features and
their corresponding split points are considered and a split quality criterion (h) is evaluated. In
supervised learning tasks, this criterion is often based on information gain (classification), or
variance reduction (regression). When the data contained in a node is pure w.r.t. the target, or
when some other stopping criterion holds, the node becomes a leaf node and a prediction is
assigned to it based on a prototype function. This function takes the majority class assigned
to the training instances in the leaf for classification, or the average of their target values for
regression. The prediction for test instances is obtained by sorting them through the tree into
a leaf node. The aforementioned learning method is presented in detail in Algorithm 1. PCTs
that are able to predict multiple targets at the same time are calledmulti-output or multi-target
decision trees (Kocev et al. 2013). The prediction task is called multi-target prediction and it
can be considered as a generalization of multi-label classification or multi-target regression.
The variance V ar is then calculated as the sum of the variances of the target variables, i.e.,
V ar(S) = ∑T

i=1 V ar(Yi ). The prototype function returns the average target vector of the
training instances reaching the leaf. In the case of multi-label classification (or, equivalently,
binary multi-target regression) this corresponds to a vector with the estimated probabilities
that an instance belongs to each of the labels (Vens et al. 2008).
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Algorithm 1 Decision Tree in a PCT framework
Input: A dataset S.
Output: A decision tree.

1: procedure PCT(S) returns tree
2: (t�,P�) = BestTest(S)
3: if t� �= none then
4: for each node Sk ∈ P� do
5: treek = PCT (Sk )

6: end for
7: return node(t�,

⋃
k {treek })

8: else
9: return leaf(Prototype(S))
10: end if
11: end procedure

12: procedure BestTest(S)
13: (t�,h�,P�) = (none, 0, ∅)
14: for each possible test t do
15: P =partition induced by t on S

16: h = V ar(S) − ∑
Sk∈P

|Sk |
|S| V ar(Sk )

17: if h > h� then
18: (t�, h�, P�) = (t, h, P)

19: end if
20: end for
21: return (t�, P�)
22: end procedure

Fig. 2 The 3 sub-settings of the
interaction prediction framework

3.2 Interaction prediction as a classification task

Asmentioned before, the relations between two entities that interact with each other are often
represented as a bi-partite graph or network. Let G define such a network with two finite
sets of nodes Vr = {vr1, . . . , vr |Vr |} and Vc = {vc1, . . . , vc|Vc|}, corresponding to rows and
columns of the interaction data matrix, respectively. Each node of the network is described
by a feature vector, x. The interactions between Vr and Vc are modeled as edges connecting
the nodes and are represented in the adjacency matrixY ∈ �|Vr |×|Vc|. Every item y(i, j) ∈ Y
is equal to 1 if an interaction between items vri and vcj exists and 0 otherwise. Hereafter,
the adjacency matrix Y is referred to as interaction matrix. Homogeneous graphs defined on
only one type of nodes can be obtained as a particular case of the aforementioned general
framework by considering two identical sets of nodes (i.e., Vr = Vc). In general terms,
interaction prediction can be cast as a classification problem on pairs of nodes as follows.

Given the labels y(i, j) ∈ Y and the corresponding feature representations xri and xcj of
the nodes Vri and Vc j respectively, the task is to find a function f : Vr × Vc → {0, 1}. In
other words, given a learning set of pairs of nodes represented as feature vectors, and labeled
as interacting or non-interacting, the goal is to get a prediction for unseen pairs.

Interaction predictions can be divided in 2 main types (Park and Marcotte 2012;
Schrynemackers et al. 2013): predictions of a pair of totally unseen instances and predictions
of a pair where one of the two instances is included in the learning procedure. Normally, the
prediction of a pair of totally unseen instances is a substantially more difficult task. In partic-
ular, the prediction setting of our framework is displayed in Fig. 2. Considering supervised
learning, it can be divided into 3 sub-settings.
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– Learned rows—Test columns (Lr × Tc): predicting interactions between row instances
that have been included in the learning procedure and unseen (test) column instances.

– Test rows—Learned columns (Tr × Lc): predicting interactions between unseen (test)
row instances and column instances that have been included in the learning procedure.

– Test rows—Test columns (Tr × Tc): predicting interactions between unseen (test) row
instances and unseen (test) column instances.

Following the inductive setup, here we do not consider the semi-supervised problem of pre-
dicting interactions between pairs of samples that are both included in the learning procedure
(Lr × Lc).

As mentioned in the introduction, there are two approaches to address interaction pre-
diction in a supervised setting, the global approach and the local one. The global approach
applies a single classifier to solve the entire interaction prediction task. This can be achieved
by the adaptation of a traditional technique or of the data representation to the interaction
framework. On the other hand, the local approach proposes solving each interaction entity’s
(i.e., the instances corresponding to rows or those corresponding to columns) task indepen-
dently and then cumulate the results. These two traditional strategies are first discussed in
more detail and then the proposed method is presented.

3.2.1 Global single output approach

A first approach to deal with the problem defined in Sect. 3.2 is to apply a classification
algorithm on the total learning sample Lr × Lc. More precisely, the Cartesian product of
the two input spaces (i.e., the concatenation of the two feature vectors of the nodes of each
pair) is formed, as displayed in Fig. 3a. Next, a function fglob is learned over the formed
feature spaceXg ∈ �||Vr |∗|Vc||×|n+m|, where xgi = {xr1 , xr2 , . . . , xrn , xc1 , xc2 , . . . , xcm }with
xr (xc) corresponding to the feature vector of the row (column) associated with pair i . The
target values are modeled as a single column Yg of size |Vr | ∗ |Vc|. Predictions can then
be computed directly for any new unseen pair of instances (i.e., (Lr × Tc), (Tr × Lc), or
(Tr × Tc)).

In decision tree learning, the global approach consists of building a tree from the learning
sample of all pairs Lr × Lc. Each split of the resulting tree is based on one of the input fea-
tures associated with either a row-instance vector or a column-instance vector (i.e., xr

⋃
xc)

targeting at maximum variance reduction on the label space Yg. Each leaf of the resulting
tree is thus associated with a subset of the matrix Y. The resulting pairs in a leaf are ideally
all connected or disconnected.

3.2.2 Local multiple output approach

The ability of decision trees to handle multiple labels simultaneously is exploited and two
separate models are built based on Lr and Lc respectively, as displayed in Fig. 3b. The
first tree-model is built on Lr predicting values for unseen row-instances (Tr × Lc) and the
second is built on Lc predicting values for unseen column-instances (Lr × Tc). In order to
make predictions of totally unseen pairs of nodes (Tr × Tc) a two step approach is applied
(Schrynemackers et al. 2015; Stock et al. 2016). A demonstration of the approach is presented
in Fig. 4. First, a model is trained over the row-instances of the Lr space predicting values
in the Tr space. Next, a new learning set L̃r is formed composed of the former learning
set Lr and the newly predicted set Tr . This extended learning space is then used to train
a second model. More specifically, the second model is built on the column-instances of
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Fig. 3 The three supervised interaction prediction approaches. a The global single-output method. b The
local multiple-output method. c The proposed global multiple-output method

Fig. 4 The local multiple output
approach in order to handle
Tr × Tc predictions

L̃r predicting values of unseen column-instances Tc. Symmetrically, the same strategy can
be applied starting from the other direction. The final Tr × Tc predictions are performed
by numerically averaging the prediction probabilities returned by the two complementary
approaches.

3.3 Global multiple output approach

We propose to adapt the predictive clustering tree algorithm so that it yields a multi-output
decision tree that is directly applicable to interaction data. Thus, compared to the global single
output approach, it has the advantage that (1) it does not require any transformation of the
data (i.e., no Cartesian product needs to be formed) and (2) it takes into account correlations
between rows and columns of the interaction matrix, rather than viewing the matrix cells as
independent. Compared to the local multi-output approach, it has the advantage that a single
model is learned, thereby increasing interpretability.

The interaction framework that we consider is illustrated in Fig. 3c. The traditional context
of decision trees is extended to an interaction network setting where instead of one set of
features Xr one has two sets Xr and Xc. The goal is to predict the interactions between
these two sets, represented here as binary labels in a matrix Y. The decision function is then
f : Xr × Xc → {0, 1}.
The proposed approach is described in Algorithm 2 and illustrated in Fig. 5. In particular,

a decision tree is learned by incorporating simultaneously both Xr and Xc feature spaces in
the learning process. The label space of Xr corresponds to the rows of the matrix Y and the
label space ofXc to the columns. Each node in the tree contains instances that belong to both
interaction sets, partitioning therefore the matrixY horizontally and vertically as displayed in
Fig. 5. In every split, all the features from both instance sets are considered as split candidates.
Let φr be the features inXr and φc be the features inXc. The best split is selected with respect
to maximum impurity (V ar ) reduction on Y. A strong point of the proposed method is that
we exploit the multi-label structure of the interaction matrix. More specifically, in every split
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Fig. 5 Illustration of the proposed approach. Left, the decision tree is shown. Right, the corresponding
interaction matrix partitioned by that tree. This is an oversimplified illustration approach, as the partitions of
the interaction matrix are not necessarily ordered as continuous rectangular submatrices

the impurity reduction is computed by cumulating the impurity reduction in every label (i.e.,
row or column) of the matrixY, as in the multi-label classification setting. In particular, when
the split test is on φr then V ar(S) = ∑M

j V ar(Y j ) and when the split test is on φc then

V ar(S) = ∑N
i V ar(YT

i ), with M (N ) the number of columns (rows) and YT the transpose

matrix of Y. The term |S|
|Sroot | shown in step 9 of the BestT est procedure of Algorithm 2 is

a weight which contributes to avoid a bias towards always splitting in the same direction.
|Sroot | is the total number of samples (rows or columns) and |S| is the number of samples
(rows or columns) at the current node.

Algorithm 2 Global Multi-Output Tree
Input: A dataset S that consists of Xr , Xc , and Y.
Output: A global multi-output tree.

1: procedure GMOT(S) returns tree
2: (t�,P�) = BestTest(S)
3: if t� �= none then
4: for each node Sk ∈ P� do
5: treek = G M OT (Sk )

6: end for
7: return node(t�,

⋃
k {treek })

8: else
9: return leaf(Prototype(S))
10: end if
11: end procedure

1: procedure BestTest(S)
2: (t�,h�,P�) = (none, 0, ∅)
3: for each possible test t = tr

⋃
tc do

4: if t ∈ tr then
5: P= horizontal partitioning of S by t
6: else
7: P= vertical partitioning of S by t
8: end if
9: h =

[
V ar(S) − ∑

Sk∈P
|Sk |
|S| V ar(Sk )

] |S|
|Sroot |

10: if h > h� then
11: (t�, h�, P�) = (t, h, P)

12: end if
13: end for
14: return (t�, P�)
15: end procedure

1: procedure Prototype(S)
2: pt1 = columnwise average vector of leaf partition S
3: pt2 = rowwise average vector of leaf partition S
4: pt3 = setwise average of leaf partition S
5: return (pt1,pt2,pt3)
6: end procedure
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Fig. 6 Illustration of the
proposed labeling approach.
Prediction of an interaction
between an unseen row item and
a column item included in the
learning procedure

Algorithm 3 Predictions with a Global Multi-Output Tree
Input: A global multi-output tree T ree and an unseen pair T est Pair .
Output: A prediction for an unseen pair T est Pair .
1: procedure Predict(T ree, T est Pair )
2: L = leaf node associated with T est Pair
3: (pt1,pt2,pt3) = Prototype(L)
4: if TestPair ∈ Lr × Tc then
5: j = row index of T est Pair in pt1
6: return pt1[ j]
7: else if T est Pair ∈ Tr × Lc then
8: j = column index of T est Pair in pt2
9: return pt2[ j]
10: else
11: return pt3
12: end if
13: end procedure

The Prototype function that appears in step 9 of Algorithm 2 differentiates the prediction
returned in the leaves based on the prediction context. As mentioned in Sect. 3.2, there are
3 interaction prediction settings, namely the Tr × Lc, the Lr × Tc, and the Tr × Tc setting.
For Tr × Tc, the common approach of averaging all target values in a leaf is followed. In
case of Tr × Lc or Lr × Tc the strategy presented in Algorithm 3 is proposed. Here, we take
into account the multi-output structure of the interaction matrix. More precisely, two vectors
lh and lv are generated for each leaf by averaging the corresponding matrix values (i.e.,
the submatrix corresponding to the leaf) horizontally and vertically. In Fig. 6, the strategy
described above is demonstrated. For example, in a drug-protein interaction network an
unseen pair can be composed of an unseen drug D (row) and a protein P (column) included
in the learning procedure (i.e., Tr × Lc). One can be certain that the unseen pair will end up
in a leaf (partition of the interaction matrix) that is associated with the specific protein P that
is present in the unseen pair. Next, the label assigned to the pair is the component of the lh
label vector that corresponds to P .

3.4 Computational complexity

Let D be the number of features and N the number of samples of a dataset. In general, the com-
plexity to construct a balanced binary tree is O(DN ) for each node split and O(DN log N )

in total for the whole tree as the depth of the tree is order of log N , i.e., O(log N ). For GSO ,
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Table 1 The datasets used in the evaluation procedure are presented

Dataset Rows × columns Nb of Features Nb of interactions

ERN 1164 × 154 445 − 445 3293/179256 (1.8%)

SRN 1821 × 113 1685 − 1685 3663/205773 (1.7%)

DPI-E 664 × 445 664 − 445 2926/295480 (1%)

DPI-I 204 × 210 204 − 210 1476/42840 (3.4%)

DPI-G 95 × 223 95 − 223 635/21185 (3%)

DPI-N 26 × 54 26 − 54 90/1404 (6.4%)

CPI 176 × 104 176 − 104 7960/18304 (43.4%)

the complexity is O([Dr + Dc]Nr Nc) for each node split and O([Dr + Dc]Nr Nc log Nr Nc)

in total. In themulti-output approaches each split complexity has to bemultiplied by the num-
ber of target variables. For G M O the complexity for each node split is O([Dr + Dc]Nr Nc)

and for the whole tree O([Dr + Dc]Nr Nc log Nr Nc), the same as for GSO . L M O consists
of 2 multi-output models, one built on the row instances and one on the column instances.
The complexities of each node split in these two models are O(Dr Nr Nc) and O(Dc Nc Nr ),
respectively. The total complexity is O(Dr Nr Nc log Nr ) + O(Dc Nc Nr log Nc). The query-
ing complexities are O(log Nr Nc), the same for all GSO , G M O and L M O . At this point,
it has to be mentioned that with L M O in the Tr × Tc setting, two extra models have to be
trained every time a new unseen pair of instances arrives. This is an impediment to the on-line
application of the L M O method.

4 Experiments

In this section, we present the comparison study of our approach. First, we describe the
interaction datasets that were used. Next, we present the experimental procedure that was
followed. Finally, we present and discuss the obtained results.

4.1 Datasets

We used 7 datasets (Schrynemackers et al. 2015; Kuhn et al. 2007) that represent heteroge-
neous interaction datasets from the field of biomedicine. The summarization of the datasets
and their characteristics is shown in Table 1. It contains the number of rows, columns, and
their corresponding features. Information about the number and percentage of existing inter-
actions in each network is also disclosed.

In particular:

– Escherichia coli regulatory network (ERN) (Faith et al. 2007). This heterogeneous net-
work consists of 179,256 pairs of 154 transcription factors (TF) and 1164 genes of E.
coli (154 × 1164 = 179,256). The feature vectors that represent the two sets consist of
445 expression values.

– Saccharomyces cerevisiae regulatory network (SRN) (MacIsaac et al. 2006). This hetero-
geneous network is composed of interactions between TFs and their target S. cerevisiae
genes. It is composed of 205773 pairs of 1821 genes and 113 TFs. The input features are
1685 expression values.
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– Drug–protein interaction networks (DPIs) (Yamanishi et al. 2008). These datasets are 4
drug-protein interaction networks in which proteins belong to four pharmaceutically use-
ful classes: enzymes (DPI-E), ion channels (DPI-I), G-protein-coupled receptors (DPI-G)
and nuclear receptors (DPI-N). The input feature vectors for proteins represent the sim-
ilarity with all proteins in terms of sequence and the input feature vectors for drugs the
similarity with all drugs in terms of chemical structure.

– Chemical–protein interaction network (CPI). This dataset is a chemical-protein interac-
tion network extracted from the STITCH database (Kuhn et al. 2007). The input feature
vectors for proteins represent the similarity with all proteins in terms of sequence and
the input feature vectors for chemicals the similarity with all chemicals in terms of their
structure. This dataset was extracted manually enforcing it to be relatively dense (i.e.,
class balanced) in order to enable the comparison of the decision tree approaches in such
a setting as well. However, as we used filtering criteria on the original dataset making it
artificially dense, it is used separately from the other six ones.

4.2 Experimental set-up

The evaluationmeasures thatwere employed are the area under precision recall curve (AUPR)
and the area under the receiver operating characteristic curve (AUROC).APRcurve is defined
as the Precision ( T P

T P+F P ) against the Recall (
T P

T P+F N ) at various thresholds. A ROC curve is

defined as the true positive rate ( T P
T P+F N ) against the false positive rate ( F P

F P+T N ) at various
thresholds. The true-positive rate is the same as recall, and is also known as sensitivity;
the false-positive rate is also known as (1-specificity). The aforementioned measures were
employed in amicro-average setup.As shown inTable 1 (toppart), the addressed classification
problem is heavily imbalanced: the dataset density (i.e., the fraction of non-zero elements)
averages around 3%. This means that only 3% of the labels are equal to 1 and the other 97%
are equal to 0. AUPR is known to give a more informative picture of the performance of
an algorithm than AUROC in highly skewed classification problems (Davis and Goadrich
2006). The reason is that AUROC rewards true negative predictions (giving rise to a low false
positive rate), which are easy to obtain in highly sparse datasets, whereas AUPR focuses on
recognizing the positive labels. The difference betweenAUPRandAUROCwas also analyzed
in Schrynemackers et al. (2013).

The three decision tree based methods discussed in this paper were compared in terms of
predictive power and computational efficiency of the predictions. As the study is focused on
inductive approaches and more precisely on interpretable decision tree models, methodolo-
gies with a different theoretical background (such as graph learning or matrix factorization
methods)were not included. The proposedGlobalMulti-Output approach is coined asG M O .
The other two compared approaches, Global Single-Output and Local Multiple-Output are
referred to as GSO and L M O , respectively. In Schrynemackers et al. (2015), a single-output
version of L M O was also studied, showing nevertheless inferior performance than L M O .
Therefore, it was excluded from the study performed here. The methods are compared in all
three prediction settings described in Sect. 3.2 (i.e., Tr × Lc, Lr × Tc, and Tr × Tc). The
comparison was performed separately for every setting.

In Tr × Lc and Lr ×Tc a ten-fold cross validation (CV ) setting on nodes (i.e., CV on rows
and CV on columns of the interaction matrix, respectively) was applied. In Tr × Tc, a CV
setting on both rows and columns was applied, excluding one row fold and one column fold
from the learning set, and using their combined interactions as test set. Due to the sparsity
of the data, ten-fold CV in Tr × Tc was difficult as there were folds containing only zeros
and therefore a five-fold CV setting was applied.
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4.3 Results

Here the obtained results are demonstrated and discussed.

4.3.1 Predictive performance comparison of GMO, GSO and LMO

The compared methods, G M O , GSO and L M O , were first evaluated without imposing any
other stopping criterion besides low impurity boundary (i.e., V ar = 10−7). The obtained
results are shown in Tables 2 and 3. In these tables, and later also in Tables 4, 5, 8, 9 and 10,
for each dataset and prediction setting, the best result is indicated in bold. A * denotes a result
that is statistically significantly different (p value < 0.05) from the best result, according to
a Wilcoxon signed-rank test on the cross validation folds. Standard deviations are shown in
parentheses. In Table 2, we observe that G M O is always superior to the other approaches,
except for E RN in the Tr × Lc and Lr × Tc settings and S RN in the Lr × TC setting, where
the results are lower but only by less than 1% and not statistically significantly different. In
Table 3, a similar picture is shown. G M O is still obtaining the best ranking, although now
2 results in the Tr × Tc setting are in favor of LMO.

Next, the compared methods were also evaluated adding another stopping criterion based
on the minimum samples that have to be present in a leaf. This number was set equal to 3; a
minimum value of 5 and a percentage of 2% of the training samples (row instances, column
instances) were also tested. This criterion was applied for all the datasets, methods and
evaluation settings. The obtained results are demonstrated in Tables 4 and 5. Two observations
can bemade here. First, when applying the stopping criterion, all AUROC results consistently
increase, while all AUPR results (except for the DPI-N dataset) consistently decrease. The
reason for this is that when a stopping criterion is applied, the leaves become less pure,
and given the sparsity of the data, there are less leaves with high predicted values. This
makes it more difficult to recognize the positive labels and more easy to obtain true negative
predictions. Second, the best results are more scattered over the different methods, although
G M O still obtains the best averaged results, except for AUROC in the Tr × Lc setting.
As noted earlier, AUPR is typically preferred over AUROC in highly skewed classification
problems.

In the Tr × Tc setting the AUROC results are generally low. In order to investigate if these
results are significantly different from random predictions, a one sample Wilcoxon signed-
rank test was applied on the Tr × Tc results of Table 3. For GMO the results are statistically
significantly different (p value < 0.05) from 0.5, while for GSO and LMO this does not
hold (p values of 0.031, 0.074 and 0.094, respectively). This means that when considering
AUROC as an evaluation measure, GSO and LMO are not performing better than random
classifiers in the Tr ×Tc setting.When it comes to AUPR (given that the default AUPR equals
the class frequency for each dataset, see Vens et al. 2008) all methods perform better than a
random classifier.

4.3.2 Computational efficiency comparison of GMO, GSO and LMO

Experiments were also conducted in order to measure the size of the generated models and
the induction time. The three compared approaches, GSO , G M O , and L M O , were applied
on the Tr × Tc setting in a 5 CV setup and the average sizes and induction times of the fully
grown trees that were generated were measured. In Table 6, the model sizes are presented. As
indicated, the proposed method G M O always yields smaller trees than GSO . In comparison
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Table 6 Model size comparison
in fully grown trees

Data Nb. of nodes

G M O GSO L M O

DPI-N 67 81 115

DPI-G 528 733 678

DPI-I 717 858 751

DPI-E 1204 1505 1628

ERN 3183 3931 2635

SRN 5559 7198 4337The best values are indicated in
bold

Table 7 Induction times (s) in
fully grown trees

Data Induction times

G M O GSO L M O

DPI-N 0.01 0.003 0.001

DPI-G 0.742 1.91 0.466

DPI-I 1.57 11.18 1.2

DPI-E 38.02 479.94 49.524

ERN 23.37 74.99 14.44

SRN 292.5 1321.84 102.96The best values are indicated in
bold

with L M O it yields smaller trees in 4 out of the 6 employed datasets. The induction times
are demonstrated in Table 7. It has to be noted that induction times always depend on the
implementation. The measurements were carried out on a computer with 4-core 2.4 GHz
processor. When it comes to global models, G M O clearly outperforms GSO . L M O is
generally faster than the two global approaches. However, as pointed out in Sect. 3.4, every
time an unseen pair of instances arrives (i.e., Tr × Tc) L M O has to train two new models,
posing a serious disadvantage to the on-line application of the L M O method.

4.3.3 Evaluation of specific GMO design elements

As explained in Sect. 3, to make predictions with GMO in the Tr × Lc and Lr × Tc settings,
we propose to use a multi-label prediction strategy. Here, we investigate the effect of this
labeling approach, by comparing it to a standard labeling approach that averages all the values
in a leaf, the latter coined as Global Multi-Output tree with Single-label Average (G M OS A).
In Tables 8 and 9, the obtained results comparing these two strategies are demonstrated. The
stopping criterion (minimum leaf occupancy) was set equal to 3 for both approaches. We
observe that the multi-label labeling substantially improves the results in terms of AUPR.
In the case of AUROC, having a single predicted value per leaf will again favor negative
predictions in a sparse setting, improving the false positive rate.

Furthermore, experiments were conducted investigating the effect of the multiplier used
in Step 9 in the BestT est () procedure of Algorithm 2. The specific multiplier is not crucial
for the quality of the predictions of our method, as the difference in the results is less than
1%. However, it is helpful for the balanced splitting of the interaction matrix and thereby for
the interpretability of the results. In particular, we conducted experiments in the two more
heavily skewed datasets (i.e., the number of rows is much higher than the number of columns)
included in our study, ERN and SRN. For ERN, without the multiplier the splits are 93% on
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Table 8 Comparison between 2 labeling strategies in terms of AUPR

Data Tr × Lc Lr × Tc

G M O G M OS A G M O G M OS A

DPI-N 0.359 (± 0.32) 0.259 (± 0.254) 0.42 (± 0.24) 0.298 (± 0.145)

DPI-G 0.174 (± 0.117) 0.109 (± 0.052) 0.263 (± 0.064) *0.203 (± 0.061)

DPI-I 0.45 (± 0.151) *0.271 (± 0.132) 0.3 (± 0.112) *0.269 (± 0.112)

DPI-E 0.586 (± 0.113) *0.426 (± 0.131) 0.204 (± 0.145) *0.16 (± 0.138)

ERN 0.279 (± 0.044) *0.162 (± 0.042) 0.051 (± 0.066) 0.049 (± 0.065)

SRN 0.097 (± 0.015) *0.052 (± 0.008) 0.022 (± 0.008) 0.02 (± 0.006)

Average 0.324 0.213 0.21 0.167

Table 9 Comparison between 2 labeling strategies in terms of AUROC

Data Tr × Lc Lr × Tc

G M O G M OS A G M O G M OS A

DPI-N 0.645 (± 0.195) 0.629 (± 0.2) 0.733 (± 0.12) 0.742 (± 0.12)

DPI-G 0.611 (± 0.064) 0.62 (± 0.068) 0.678 (± 0.035) 0.701 (± 0.048)

DPI-I 0.733 (± 0.085) 0.733 (± 0.088) *0.705 (± 0.092) 0.711(± 0.092)

DPI-E *0.785 (± 0.042) 0.793 (± 0.044) 0.645(± 0.088) 0.65 (± 0.089)

ERN *0.672 (± 0.027) 0.71 (± 0.028) 0.56 (± 0.084) 0.566 (± 0.088)

SRN *0.565 (± 0.012) 0.589 (± 0.013) 0.509 (± 0.011) 0.511 (± 0.012)

Average 0.668 0.679 0.638 0.647

the rows and only 7% on the columns. With the multiplier 81% of the splits are on the rows
and 19% on the columns. For SRN, without the multiplier the splits are 97% on the rows and
only 3% on the columns. With the multiplier 78.5% of the splits are on the rows and 21.5%
on the columns. We assume that for even more skewed datasets (e.g., millions of rows and
only a few hundred columns) this phenomenon will be enlarged and therefore a multiplier
such as the one we propose is useful.

4.3.4 Results for dense interaction dataset

In Table 10, the obtained results using the class balanced CPI dataset are demonstrated. This
way, we investigate the performance of the proposed approach in more dense networks. As
it is shown, the proposed method is also efficient for dense networks: it obtains the best
performance in 8 of the 12 comparisons. In the other 4, it is not statistically significantly
different from the best result.

4.3.5 Comparison with other approaches

Finally, the proposed method G M O is compared to other approaches from the literature and
the obtained (averaged) results are shown in Table 11. In particular, we used the regression
tree approach from Ruan and Zhang (2006), the MLkNN classifier (Zhang and Zhou 2007)
in a local multi-output setting, and support vector machines (SVM) in a global single-output
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Table 11 AUPR and AUROC results between the proposed method and prior work

Methods Tr × Lc Lr × Tc Tr × Tc

AUROC AUPR AUROC AUPR AUROC AUPR

GMO 0.65 0.34 0.62 0.27 0.53 0.14

(± 0.076) (± 0.169) (± 0.066) (± 0.151) (± 0.025) (± 0.067)

GMO(3) 0.668 0.324 0.638 0.21 0.558 0.08

(± 0.073) (± 0.164) (± 0.08) (± 0.139) (± 0.033) (± 0.042)

Ruan and Zhang (2006) 0.677 0.207 0.651 0.169 0.556 0.075

(± 0.07) (± 0.113) (± 0.087) (± 0.107) (± 0.036) (± 0.037)

M Lk N N 0.71 0.365 0.701 0.226 0.516 0.069

(± 0.142) (± 0.178) (± 0.132) (± 0.158) (± 0.051) (± 0.043)

G M O� 0.64 0.337 0.667 0.389 0.518 0.157

(± 0.062) (± 0.128) (± 0.03) (± 0.075) (± 0.012) (± 0.061)

SV M� 0.671 0.445 0.664 0.378 0.537 0.228

(± 0.125) (± 0.085) (± 0.096) (± 0.049) (± 0.064) (± 0.203)

setting.MLkNNandSVMwere used in a similar context in Zhang et al. (2015) andYamanishi
et al. (2008), respectively. We report the results for SVM as SV M�, since for computational
reasons it was applied only to the 3 smaller datasets (i.e., DPI-N, DPI-G and DPI-I). These
averaged results are compared to the corresponding results usingG M O (coinedG M O�). For
M Lk N N , the number of nearest neighbors was set equal to 5. Other values (i.e., 10, 15) were
tested without any major differences. For SV M�, the rbf kernel was employed and the values
of the parametersC and γ were optimized from a range of {0.001, 0.01, 0.1, 1, 10, 100}. The
tuning was performed internally in a grid search setup. For the regression tree used in Ruan
and Zhang (2006), the minimum samples per leaf stopping criterion was used. It was set
equal to 3 as in our method, denoted in the table as G M O(3). It is shown that G M O (with
or without a stopping criterion) clearly outperforms the regression tree method presented in
Ruan and Zhang (2006) for AUPR. For AUROC, Ruan and Zhang (2006) performs slightly
better than G M O . We also observe that although G M O is based on a single tree it can
compete with other approaches based on more powerful classifiers. In other words, not much
accuracy is lost in order to obtain an interpretable model.

4.4 Discussion

The datasets used for evaluation show different characteristics. In particular, we tested our
method in both small datasets (DPI-N, DPI-G) and bigger ones (DPI-I, DPI-E, ERN, SRN).
In addition to that, in ERN and SRN the number of row-instances is much higher than the
number of column-instances, yielding very skewed interactionmatrices. Nevertheless,G M O
proved able to cope with such issues.

When applying the L M O method in a Tr × Lc or Lr × Tc setting, it basically boils
down to a regular multi-label setting. Our results demonstrate that in multi-label prediction,
a method that jointly predicts all labels (i.e., LMO) can be improved by clustering the labels
(i.e., comparing LMO to GMO), thereby exploiting correlations that exist between subsets
of labels, rather than over the whole label set. Our method allows to achieve this clustering,
and even to adapt this clustering in different parts of the instance space, provided that a set
of features can be defined over the label space. In the context of hierarchical multi-label
classification, for example, the label taxonomy could be modeled as feature vectors.
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Fig. 7 Illustration of the DPI-N (bi-partite) network and its interaction matrix. The interactions are shown in
white

Fig. 8 On the left, a global multi-output decision tree. On the right, the corresponding interaction matrix
partitioned by the leaves of the tree. Different colors correspond to different bi-clusters (leaves)

In this article we have focused on interaction prediction. However, as a side effect, the
proposed method provides a complete bi-clustering (Henriques et al. 2015) of the interaction
matrix. Thus, our models can be interpreted as predictive bi-clustering trees. Bi-clustering
is a well-established domain, especially in the context of gene expression analysis, however,
few methods exist that can exploit background information (features) to define bi-clusters.
The evaluation of our method as a conceptual bi-clustering approach, including a comparison
to state-of-the-art methods used in the bi-clustering domain is left as future work.

Herewehave focusedon single decision trees, althoughundoubtedly the extension towards
tree based ensemble methods would boost predictive performance. Being a single decision
tree, the proposed method offers interpretability. It specifically offers interpretability over the
whole interaction framework as it consists of one global tree that is built on both row-instance
and column-instance feature sets. By imposing a stringent stopping criterion, a high-level,
interpretable, prediction or bi-clustering can be obtained. In Fig. 7, the bi-partite network and
the interaction matrix that correspond to the DPI-N dataset are displayed. This dataset was
selected as it is the smallest of the ones employed in this study and it is also a dataset with
a relatively high percentage of interactions. The whole dataset was considered as a learning
set. The bi-clustering imposed by the proposed approach G M O and the first steps of the
corresponding tree structure are demonstrated in Fig. 8. The number of defined partitions
(bi-clusters, tree leaves) of the interaction matrix is 16. Moreover, the prototype values (i.e.,
labels in the leaves) provided by G M O , G M OS A, GSO , and L M O are demonstrated in
Fig. 9. An interesting point reflected in Fig. 9 is the difference between G M O and G M OS A.
It is shown that despite the same partitioning of the interaction matrix one can distinguish the
labels in a partition (leaf) and assign different values to them by fully exploiting the multi-
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Fig. 9 Illustration of the interaction matrix partitioned by the 4 studied approaches

label structure of the label space. More specifically, here the labels in a leaf were averaged
rowwise, like in a Tr × Lc setting.

5 Conclusion and future work

We have proposed a global multi-output decision tree induction algorithm to address the
problem of interaction prediction. The proposed approach exploits themulti-label structure of
the label space both in the tree-building process aswell as in the labeling process. Experiments
on heterogeneous interaction datasets demonstrate the efficiency of the proposed method as
it obtains an improved predictive performance compared to its direct competitor decision tree
models.We conclude that the proposedmethod should be considered in interaction prediction
tasks, especially where interpretable models are desired.

Several topics for future work emerge from this study. First, the performance boost attain-
able by employing themethod in an ensemble setting could be studied. Second, the application
of weights to differentiate the contribution of the two feature sets in the learning process could
be investigated. Third, the usefulness of the method in bi-clustering tasks could be studied.
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