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Abstract Most density-based clustering methods have difficulties detecting clusters of
hugely different densities in a dataset. A recent density-based clustering CFSFDP appears
to have mitigated the issue. However, through formalising the condition under which it fails,
we reveal that CFSFDP still has the same issue. To address this issue, we propose a new
measure called Local Contrast, as an alternative to density, to find cluster centers and detect
clusters. We then apply Local Contrast to CFSFDP, and create a new clustering method called
LC-CFSFDP which is robust in the presence of varying densities. Our empirical evaluation
shows that LC-CFSFDP outperforms CFSFDP and three other state-of-the-art variants of
CFSFDP.
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1 Introduction

Data clustering is a technique to group a dataset into a number of subsets based on a “nat-
ural” hidden data sturcture (Cherkassky and Mulier 2007). To capture the underlying data
structures, traditional clustering techniques such as the Expectation-Maximization (EM)
algorithm (Dempster et al. 1977) assumes specific probability distributions as the source
from which the dataset is generated. In comparison, density-based methods are attractive
due to their non-parametric characteristic which enables them to deal with arbitrary shaped
clusters (Jain 2010). They rely on spatially varying densities for the detection of clusters.
High density regions are identified as clusters which are separated by regions of low density
(Han and Kamber 2011).

However, most density-based methods have difficulties to detect all clusters when the
clusters have large variations of densities (Ertoz et al. 2003a; Zhu et al. 2016). For example,
DBSCAN (Ester et al. 1996), which uses a global density threshold to discriminate cluster
core points from noise, fails to identify all clusters in the presence of greatly varying densities
(Zhu et al. 2016).

Many efforts have been devoted to solve the varying densities problem in DBSCAN-like
algorithms. Shared-Nearest-Neighbours (SNN) (Jarvis and Patrick 1973; Ertoz et al. 2003a)
is an effective technique to this end. It uses the number of shared nearest neighbours between
two points as a similarity measure to replace distance in the clustering procedure. Yet, the
performance of SNN is sensitive to the number of nearest neighbours used in its similarity
calculations (Brito et al. 1997; Ertoz et al. 2003; Tan and Wang 2013). ReScale (Zhu et al.
2016) is a recently proposed approach to tackle the same problem. It rescales a dataset
such that the estimated density of a rescaled data point approximates the density ratio of
the correspond point in the original dataset. However, ReScale does not perform well when
clusters overlap significantly on some attributes (Zhu et al. 2016).

A more recent density-based clustering method called Clustering by Fast Search and Find
of Density Peaks (CFSFDP) (Rodriguez and Laio 2014) employs a density-based approach
different from DBSCAN for clustering. Instead of finding core points using a global threshold
in the first step, it finds the density peak of every cluster and then links the neighboring points
of each peak to form a cluster. CFSFDP overcomes some issues of varying densities of earlier
density-based clustering algorithms (e.g., DBSCAN).

While the condition under which DBSCAN fails to detect all clusters has been formalised
recently (Zhu et al. 2016), whether such a condition exists in the more recent density-based
method CFSFDP s still unknown. We formalise a necessary condition for CFSFDP to identify
all clusters in a dataset, and show that large variation of densities is still problematic for
CFSFDP.

We propose a new measure called Local Contrast (LC), as an alternative to density, to
make density-based clustering algorithms robust against varying densities. The proposed LC
is not too sensitive to its parameter setting, and is able to achieve high clustering performance
with a default setting.

Though the proposed LC is built on top of a density estimator, it has the following unique
theoretical properties:

— The local modes and local minima of the LC distribution are also the local modes and
local minima of the density distribution of the same dataset.

— The local modes of LC have the same constant LC value, irrespective of the density
values of the local modes.
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— The local minima of LC have zero LC value, irrespective of their density values of the
local minima.

We utilise LC to create a new version of CFSFDP, named LC-CFSFDP. We show that the
new clustering method LC-CFSFDP is more robust against varying densities than CFSFDP.

To benchmark the proposed LC-CESFDP, we apply SNN and ReScale (which are existing
remedies for the density variation issue) to CFSFDP, creating two improved variants called
SNN-CFSFDP and ReScale-CFSFDP. Together with the original CFSFDP and its latest
improvement called FKNN-DPC (Xie et al. 2016), the four methods are used as contestants
against LC-CFSFDP in our experiments. Our empirical evaluation shows that LC-CFSFDP
outperforms all four contestants in 18 benchmark datasets.

The rest of the paper is organised as follows. Section 2 presents the related work. Section 3
discusses the weakness of CFSFDP and how to use existing remedies to improve it. Section 4
proposes Local Contrast and shows its properties. Section 5 presents LC-CFSFDP. The
empirical evaluation, discussion and conclusions are provided in the last three sections.

2 Related work

Density-based clustering methods such as DBSCAN (Ester et al. 1996) identify high density
(core) points using a global threshold and then link all neighbouring core points to form
clusters. However, these methods are known to have one key issue, i.e., they have difficulties
detecting all clusters when the clusters have large density variations (Ertdz et al. 2003a).
Recent research has formalised a necessary condition for DBSCAN to detect all clusters
in a dataset (Zhu et al. 2016): if the peak of some cluster has a density lower than that of
a low-density region between clusters, then DBSCAN will fail to find all clusters. Many
density-based clustering algorithms (Hinneburg and Gabriel 2007; Ram et al. 2009; Borah
and Bhattacharyya 2008), like DBSCAN, use a global density threshold to define core points
and links them to form clusters. All these algorithms have the same issue. The exact condition
under which these density-based algorithms fail (Zhu et al. 2016) is provided in Appendix
A for ease of reference.

Researchers have attempted to address the issue of density-based clustering using different
approaches. For instance, Shared-Nearest-Neighbours (SNN) (Jarvis and Patrick 1973; Ert6z
et al. 2003a) employs an alternative similarity measure to replace the distance measure in
the clustering procedure. The similarity between two data points is either the number of their
shared K -nearest-neighbours (if they have each other in their K -nearest-neighbour lists) or
0 otherwise. Since the SNN similarity measure takes into account the local distribution of
the data points, it is less affected by varying densities of different clusters. It has been shown
that DBSCAN which uses SNN improves the clustering results of DBSCAN which uses the
distance measure (Ertoz et al. 2003a). However, its performance is sensitive to the setting
of parameter K and its time complexity is O(K>N?), instead of O(N?) for many other
density-based clustering methods such as DBSCAN, because of an additional KNN process
is required (Zhu et al. 2016).

ReScale (Zhu et al. 2016) is another technique that is recently proposed to overcome the
density variation problem in clustering. This technique is a pre-processing technique and
is originally designed for a density-based clustering algorithm which uses a global density
threshold to identify clusters. ReScale enables existing density-based clustering algorithms
to perform density-ratio-based clustering, i.e., clusters are defined as regions of locally high
density separated by regions of locally low density. The aim is to rescale the data such that
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the estimated density of each rescaled point is approximately the estimated density-ratio of
the corresponding point in the original space, where density-ratio is defined as a ratio of the
density of a point and the average density over its n-neighbourhood. A point located at a
maximum local density area has higher density-ratio value than that of a point located at a
minimum local density area. Thus, a density-based clustering algorithm can be applied with-
out modification to the rescaled data which uses a single threshold to identify all clusters of
locally high densities. Two additional parameters are introduced—rn is used to define the local
neighbourhood; and ¥ is used to control the precision of n-neighbourhood density estimation.

A recent density-based clustering algorithm, CFSFDP (Rodriguez and Laio 2014), takes
a different approach to reduce the effect of the above-mentioned issue. The idea is to find
cluster centres which have higher density than their neighbours and are relatively distant from
each other. CFSFDP mitigates the problem of varying densities in some situations because it
finds cluster centres not only by high densities, but also by taking into account their distances
from other centres. It can detect low-density cluster centre if it is far from other clusters.

The Fuzzy weighted K-Nearest-Neighbors Density Peak Clustering (FKNN-DPC) (Xie
etal. 2016) is a recent effort to improve CFSFDP (Rodriguez and Laio 2014). It uses a similar
procedure as CFSFDP, except the density estimation phase and the cluster assignation phase.
FKNN-DPC uses a KNN kernel estimator, instead of a e-neighbourhood estimator. The key
difference lies in the cluster assignation phase: FKNN-DPC uses a complex assignation
scheme consists of 2 strategies based on a series of KNN searches. The heavy use of KNN
searches makes the algorithm very sensitive to the K parameter. It does not overcome the
problem in clusters having hugely varying densities from the root cause because its operation
is still based on density, as mentioned in the last paragraph.

It is important to point out that the above improvement over CESFDP (Xie et al. 2016)
was done on procedural steps only (which use a different density estimator and a different
scheme to assign points to a cluster), without knowing the root cause.

In this paper, we focus on CFSFDP (Rodriguez and Laio 2014) because it is a powerful
and state-of-the-art core method of density-based clustering (Xu and Tian 2015); and we
want to identify the key weakness of CFSFDP and its root cause. To achieve this aim, we
first formalise the condition under which CFSFDP fails to detect all clusters in a dataset;
and reveal that large density variations in a dataset can still harm CFSFDP’s clustering
performance significantly under some situations. Then, we propose a new measure called
Local Contrast, in place of density, as the primary means to find clusters. We show that
this can be easily done using almost the same procedure as CFSFDP; and this overcomes
CFSFDP’s weakness from the root cause.

3 Weakness of CFSFDP and current remedies

Here we first provide a necessary condition for CFSFDP to detect all clusters in a dataset
in Sect. 3.1. Its violation will result in CFSFDP failing to detect all clusters. In Sect. 3.2,
we create two variants of CFSFDP with existing remedies in tackling the problem of cluster
density variations: SNN and ReScale. We show the limitations of these remedies for CFSFDP
in the last subsection.

3.1 A necessary condition for CFSFDP
Like most density-based methods, CFSFDP (Rodriguez and Laio 2014) employs a density

estimator f(x) to estimate densities for all x in a dataset D. The density estimator is defined
as follows:
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Table 1 CFSFDP versus LC-CFSFDP: key steps

Step CFSFDP LC-CFSFDP

1 Estimate density f(x) and distance Estimate density f(x), Local Contrast
dr(x), Vx € D LC(x) and distance 6 ¢ (x), Vx € D

2 Select the top M points with the largest Select the top M points with the largest
f(X) x 8 ¢(x) and and label them as cluster LC(x) x 87,c(x) points and label them as
centres of Clusters 1, ..., M cluster centres of Clusters 1, ..., M

3 Order all points in descending order of f(x). Order all points in descending order of
Following the order, assign each LC(x). Following the order, assign each
unlabelled point to the same cluster of its unlabelled point to the same cluster of its
nearest neighbour with higher f(x) nearest neighbour with higher LC (x)

JX) =y e D[dx,y) <€},

where d (-, -) is a distance measure and € is a cut-off distance; and | Q] is the cardinality of
set Q.

Let X = arg max,.p, f (x) denote the point with the global maximum density. CFSFDP
(Rodriguez and Laio 2014) defines a distance function of X, 6 r(x), as follows:

min d(x,y), Vxe D\{x"}
) (X) — fy)>f(x)
f maxd(X,y), if x=x".
yeD

In other words, 67 (x) is the distance between X and its nearest neighbour with a higher
density; except that for the point with the global maximum density, § s (x) is the greatest
distance between any point and itself. This is to make sure that for the point with the global
maximum density, it will always be ranked first in the ranked list of f(x)é(x) sorted in
descending order.

The user then selects the top M points from the ranked list of f(x)d ¢(x), and label them
from 1 to M, as the centres for M clusters.

All points are then sorted in descending order of f(x). One by one from top to bottom of
the sorted list, each unlabeled point is assigned to the same cluster of its nearest neighbour
with a higher density. The first column in Table 1 provides a summary of the key steps in the
CFSFDP procedure.

CFSFDP requires that these cluster modes must be ranked at the top in the sorted list of
f(x)87(x) if they are to be selected as cluster centres.

We now state the necessary condition for CFSFDP to identify all clusters of a dataset.

Theorem 1 Given a dataset D of M actual clusters, let C = {¢,,, m = 1, ..., M} denote
the M cluster modes, i.e., the points with the maximum density in each cluster with respect to
a density estimator f(X). A necessary condition for CESFDP to correctly identify all clusters
is given as follows:
min f(x)d r(X) > max $ . 1
Xech( )8 (X) yeD\(Cf(Y) r ()

Proof A violation of Eq. (1) means that at least one point z € C is not among the top M
points in the sorted list of f(x)é 7 (x). Then, one of the following three situations will occur:

(i) If less than M points are selected as cluster representatives, then not all clusters are
identified.

(i) If more than M points are selected as cluster representatives, then some cluster will be
divided.
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Fig. 1 The clustering result of CFSFDP on the synthetic dataset. Note that the brown square marker in ¢
denotes the density peak of the middle cluster, which is ranked 7th in the Decision Graph shown in b. It is
not selected in the final result shown in d because selecting 6 representatives produces the best F-measure.
a Density distribution, b CFSFDP decision graph, ¢ density peaks, d clustering result, F = 0.84821 (Color
figure online)

(iii) If exactly M points are selected as cluster representatives, then point z € C is not
selected as a representative. As a result, z will be assigned a label from a point with
a higher density. Since z is the density maximum in its own cluster, the point that z
links to can not be from the same cluster. Hence, z and its neighbouring points will be
mislabelled as belonging to a different cluster.

In all the above cases, CFSFDP can not correctly identify all clusters having violated
Eq. (1). o

Note that the condition provided in Theorem 1 is independent of the density estimator
used.

The basic assumptions of CFSFDP are that (i) each cluster centre has the maximum density
among all points within the cluster, and (ii) all cluster centres are well separated. While these
two assumptions are usually true, the maximum densities of different clusters can not be
guaranteed to be the same, or even similar.

Because density can not provide such a guarantee, the use of density becomes the root
cause of CFSFDP’s weakness in detecting all clusters having hugely different densities. When
clusters have significantly different densities, low density centres which have no sufficient
long distance & 7 (-) will be ranked low in the sorted list of f (x)d s (x). As aresult, the algorithm
fails to correctly identify all clusters. An example is shown in Fig. 1. The top dense cluster
has multiple peaks; and the centre of the sparse cluster has significantly lower density than
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these peaks. CFSFDP fails to detect the 4 clusters correctly because the mode of the sparse
cluster has density which is too low for the mode to be ranked in the top four in the sorted
list of f(x)é s (x), shown in Fig. 1b.

To overcome this weakness, we provide an alternative to density which has the necessary
properties to detect all clusters of different densities using the exactly the same CFSFDP
procedure. This alternative measure will be introduced in Sect. 4; and our analysis in Sect. 5
shows that the alternative measure is more robust than density in a dataset having clusters of
different densities using the same CFSFDP procedure.

3.2 Improving CFSFDP using existing methods of improving DBSCAN

SNN (Jarvis and Patrick 1973; Ertoz et al. 2003a) and ReScale (Zhu et al. 2016) are two exist-
ing methods designed to address the issue of DBSCAN-like clustering methods in datasets
having huge density variations.

One can use either of these existing methods to improve CESFDP. These can be applied
straightforwardly. The following two subsections provide the details of two modified versions
of CFSFDP: SNN-CFSFDP and ReScale-CFSFDP.

3.2.1 SNN-CFSFDP

SNN-CFSFDP has the same procedure of CFSFDP except that the distance measure used
in both f(-) and §(-) is replaced with the shared nearest neighbour dissimilarity measure
(Ertoz et al. 2003a).

Let Nk (x) denote the K nearest neighbours of x in a dataset D, with respect to Euclidean
distance. The shared nearest neighbour dissimilarity (SNN) of two points x and y is defined
as
1 =[Nk (x) N Ng(y)I/K, ify € Ng(x) andx € Nk (y)

SNN(x,y) = { 1, otherwise.

SNN-CFSFDP then calculates both the density fsyy(x) and the nearest distance to a
higher density point § 7, (x) in terms of SNN dissimilarity as follows:

Jsnv(x) = [{y € D | SNN(x,y) < €}|,

and
min SNN(x,y), Vxe D\{x"}
) (X) — Ssnw (¥)> fsnn (X)
fsnn max SNN(x,y), if x=xv,
yeD
where € is the cut-off SNN dissimilarity and X" = arg max,. p fsyn (X).

Given fsyn(x) and 8 g, (X), the rest of the procedure is the same as CFSFDP. The sum-
mary of the key steps is given in the second column of Table 2. Note that if the procedure
is implemented with an input of a dissimilarity matrix, the SNN dissimilarity matrix can be
computed in a pre-processing step. This is shown in step O in Table 2.

3.2.2 ReScale-CFSFDP

ReScale-CFSFDP pre-processes the dataset before utilizing the exact same procedure of
CFSFDP. ReScale first estimates the density distribution on each dimension of the dataset D,
with an n-neighbourhood estimator and a resolution of . It then scales the dataset D along
each dimension based on the cumulative distribution, to yield a new dataset D’.
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Table 2 SNN-CFSFDP versus ReScale-CFSFDP: key steps of the two algorithms

Step SNN-CFSFDP ReScale-CFSFDP

0 Calculate pairwise dissimilarity Pre-process D — D’ with the ReScale
SNN(x,y),Vx,y € D approach

1 Estimate density fgyy (x) and distance Estimate density f(x’) and distance
8ty X, Vx € D Ef(x’), vx' e D'

2 Select the top M points with the largest Select the top M points with the largest
fonn(x) X § FsN (x) points and label them f(x)x$ f(x/ ) and label them as cluster
as cluster centres of Clusters 1, ..., M centres of Clusters 1, ..., M

3 Order all points in descending order of Order all points in descending order of

fsnn (x). Following the order, assign each
unlabelled point to the same cluster of its
nearest neighbour with higher foyy (x)

f(x). Following the order, assign each
unlabelled point to the same cluster of its
nearest neighbour with higher f(x’)

Let D;, x; denote the i-th attribute of dataset D and data point x, respectively. For each
attribute i, ReScale divides the range of D; into i equal segments, yielding v + 1 grid points
sj,j={l,...,¢¥ + 1} and s, > s;, forall ¢ > j. It then estimates the densities of s; by
following,

fGj))={xeD][(sj —n) <xi =(sj +m}.
The value of the i-th attribute of a transformed point X’ is then given by

Y+l
X; = Z f(sj)I{X[ZSj}’

j=1
which is the cumulative marginal probability of x on attribute i. After procesing each attribute,
ReScale normalises the transformed dataset D’ to be in [0, 1]. The detailed algorithm can be
found in Zhu et al. (2016).

Using D/, the rest of the procedure is the same as CFSFDP. The key steps of ReScale-

CFSFDP are given in the last column of Table 2.

3.2.3 Limitations of SNN-CFSFDP and ReScale-CFSFDP

We apply SNN-CFSFDP and ReScale-CFSFDP on the synthetic dataset as shown in Fig. 1,
and their clustering results are given in Figs. 2 and 3, respectively. Though both methods
improve the F-measure compared to the original CFSFDP, they still fail to correctly identify
all clusters: SNN-CFSFDP splits the two dense clusters at the bottom into four clusters;
ReScale-CFSFDP splits the top cluster into two clusters.

SNN has two weaknesses. First, it is sensitive the K parameter (Brito et al. 1997; Ertoz
et al. 2003; Tan and Wang 2013). Second, with a time complexity of O (K>N?), it is compu-
tationally expensive. In this example, the default setting of K = +/N leads to an undesirable
result as shown in Fig. 2, in which the true peaks #5 and #6 in Fig. 2¢ can not out-rank false
peak #2, because the distance § based on SNN dissimilarity is not large enough. A proper
K needs to be carefully tuned in order to produce the desired clustering outcome. We will
provide further analysis of this issue in Sect. 6.

The ReScale approach aims to transform the dataset to be uniformly distributed along each
attribute. However, when clusters overlap significantly on some attribute(s), it becomes prob-
lematic as exemplified in Fig. 3: when projected onto the x-axis, because of the overlapping
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Fig. 2 The clustering result of SNN-CFSFDP on the synthetic dataset. The parameter K is fixed to +/N. €
and M are searched for the best F-measure. a Density distribution, b SNN-CFSFDP decision graph, ¢ density
peaks, d clustering result, F = 0.88197

of clusters along x-axis, there are abundant data points in the middle and fewer data points
at each end. The ReScale approach therefore shifts data points from the middle to both ends,
causing the upper cluster to have two dense regions at both ends after the transformation. A
rotation of the dataset is proposed in Zhu et al. (2016) to remedy this weakness. However,
without prior knowledge of the dataset, it is difficult to find an orientation that works well, if
such an orientation exists.

4 Local contrast

We propose Local Contrast as a new remedy for the density variation problem in clustering.
Unlike SNN or ReScale, it is not sensitive to the parameter K, nor does it need to rescale the
dataset.

Here we provide the definition of Local Contrast and describe its properties which
empower clustering algorithms to be more robust against varying densities.

Given a dataset D and a density estimator f(-), we define Local Contrast as follows:

Definition 1 Local Contrast of an instance X is defined as the number of times that x has
higher density than its K nearest neighbours:
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Fig. 3 The clustering result of ReScale-CFSFDP on the synthetic dataset. The distribution shown is for the
ReScaled dataset D’. v and 7 are fixed to 100 and 0.2 respectively while € and M are searched for the best
F-measure. a Density distribution, b ReScale-CFSFDP decision graph, ¢ density peaks, d clustering result,
F =0.92721

LCX) = Y Lifw=ru)
yeNk (x)

where N (X) is the set of K nearest neighbours of x and /. is an indicator.
Local Contrast has three properties.

Property 1 The local modes and the local minima of LC (X) are also the local modes and
the local minima of f (x), with a proper choice of K.

Property 2 The local modes of LC(x) that correspond to the local modes of f(x) have
LC(x) = K, irrespective of the density of f(X).

Property 3 The local minima of LC (X) that correspond to the local minima of f(X) have
LC(x) = 0, irrespective of the density of f(X).

Proof of Properties 1, 2 and 3. Let p and q be the local density maxima and minima,
respectively. Assuming a proper choice of K exists such thatforallx € Nx (p), f(p) > f(x);
and for all x € Nx(q), f(q) < f(x).

Let G € Nk (p) be the maximal subset of Nk (p) such that for all x € G, p € Nk (x). In
other words, p is one of the K -nearest-neighbours of each member of G. Since G is a subset
of Nk (p), p is also a local density maxima in the neighbourhood defined by G.
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Fig. 4 A dataset of size N = 2700 is drawn from a mixture of three univariate Gaussian sources. The
distributions of density and LC (with different K values) are shown

By Definition 1, we have
LC@= Y Ijp-ron =K,
XeNk (p)
and for all x € G, we have

LCX = Y Lfw=ro)
YENk (X)

2

YE(Nk (X)\p)
K—-—1+0
< K =LC(p).

> fron | + Iireo>rm)

IA

Thus, p is also a local mode of LC(x) in the neighbourhood defined by G.

Similarly, let V. € Ng(q) be the maximal subset of Nk (q) such that for all x € V,
q € Nk (x). In other words, q is one of the K -nearest-neighbours of each member of V. q is
also the local density minima in the neighbourhood defined by V.

The same argument follows that LC(q) =0 < LC(x),Vx € V. ]

The properties of Local Contrast listed above depend on a proper choice of K for a given
dataset. The range of K that can be used is usually large. In other words, Local Contrast is
not too sensitive to the setting of K.

Figure 4 provides an illustration of the properties of LC. Note that K can be set within
the range of 25 and 500, Properties 2 and 3 still hold true; and Property 1 holds true for all
settings of K shown.

Throughout this paper, all experiments are done with the default setting K = +/N, the
square root of the dataset size, as suggested by some researchers for K nearest neighbour
procedures (Ferilli et al. 2008; Zitzler et al. 2004; Fukunaga 1990).
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S Improving CFSFDP with local contrast

We create a version of CFSFDP, called LC-CFSFDP, by replacing density with LC in the
clustering procedure. Given a dataset D and a density estimator f(-), LC(x) is calculated as
defined in Definition 1 for all x in D.

Given LC(-), 8¢ (x) is defined as follows:

3 w
N Lc(yr)nngc(x) d(x,y), YX € D\{x”}
max d(X,y), if x =x%
yeD
where x” = arg max,, p LC(x) denotes the point with the global maximum LC; and d(-, -)
is the Euclidean distance.

In other words, é;,¢ (x) is defined to be the distance between x and its nearest neighbour
with a higher LC, except when X is the point with the maximum LC. In that case, §1¢ (X) is
defined to be the maximum distance between x and any point in D.

Here distance 7 ¢ (x) is analogous to the distance from a point’s nearest neighbour with a
higher density 6  (x) used in CFSFDP (Rodriguez and Laio 2014). Given LC(x) and 61¢ (X),
cluster centres are then chosen from a decision graph where all points are sorted in descending
order of LC(x) X 8p¢c(X).

Definition 2 Cluster centres are defined to be the top M points with the highest LC(x) x
81 (x) values, where M is a user input parameter.

After selecting M cluster centres, all unlabeled data points are then assigned one by one
in descending order of LC, with the same cluster label as its nearest neighbour with a higher
LC. A contrast between the LC-CFSFDP and CFSFDP procedures is given in Table 1.

As shown in Table 1, LC-CFSFDP follows the same procedure of CFSFDP. The key dif-
ference between the two is that LC-CFSFDP replaces density with LC. As a result, analogous
to the condition stated in Eq. (1), a necessary condition for LC-CFSFDP to detect all clusters
correctly can be written as

in L L
min C(X)(SLC(X)>YIEHD3<((C C(Y)dLc(y),

where C here denotes the set of points with maximum LC in each cluster.
Let X = arg min ¢ LC(X)81c(x) and § = arg maxyeD\CLC(y)8Lc(y). The above con-
dition can be rewritten as
LC(X) - Sc @)

- = (@)
LCy)  drc®)
The corresponding rewritten condition for the density-based Eq. (1) is given as follows:
f& 8
s 3

— > .
f@ 8

where X = arg miny ¢ f(X)8 7 (x) and y = arg maxyep\c f (¥ 7 (y).

Equation (2) is much easier to satisfy than Eq. (3) because the properties of LC ensures
that every member of C has the maximum LC value (i.e., Property 2 stated in Sect. 4),
irrespectively of the density distribution. This makes the left side of Eq. (2) not less than 1.
Thus Eq. (2) is harder to violate. In contrast, in a data distribution which has greatly varying
densities between clusters, the left side of Eq. (3) could easily be smaller than 1, if X is from
a cluster of low density, which makes a violation of Eq. (3) a lot easier.
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Fig. 5 Top seven points as determined by CFSFDP is shown in a. b Shows that the densities of these top
points vary hugely while their LCs (with K = /N = +/1250) have similar values close to the maximum, due
to Properties 1 and 2 of LC. ¢ Compares the rankings of these points based on LC(x) x §7 ¢ (x) with those
based on f(x) x 8 ¢ (x). Note the huge change in rank positions of the seventh point, from rank #7 to rank #2.
a Top 7 points in decision graph, b density versus LC graph, ¢ f x §¢ versus LC x ¢

To demonstrate this, we apply LC-CFSFDP on the same example dataset shown in Fig. 1.
Figure 5 shows the result that CESFDP has ranked the centre of the sparse cluster (rank #7)
lower than the multiple peaks in the elongated cluster (ranks #2, 4, 5 and 6) in the decision
graph. By simply replacing density f(-) with LC(-), LC-CFSFDP allows the centre of the
sparse cluster to be ranked in the top four. This difference in ranking is the key of improving
the algorithm because all peaks now have about the same LC values, by virtue of Properties 1
and 2, stated in the last section. As a result, the ranking of peaks due to LC (x) X dp¢c(X) is
mainly influenced by 8, ¢ (x). Since multiple peaks in one cluster tend to have smaller §7 ¢ (x),
the algorithm is more likely to select one peak from each cluster, which makes the algorithm
more robust against significant density differences in the presence of multiple peaks in one
cluster.

Figure 5a shows that the top seven points on the synthetic dataset, as determined by
CFSFDP using density. Figure 5b shows that the normalised density and LC of these seven
points. Figure 5c shows the ranking due to LC(x) x §y¢(x) and f(x) x & 7(x). This change
has enabled the centre of the sparse cluster to move from rank #7 to rank #2.

The complete clustering result of the LC version of CFSFDP is shown in Fig. 6. Compared
to the clustering result of CFSFDP shown in Fig. 1, LC-CFSFDP has much stronger detecting
power, in the presence of varying densities and multiple density peaks in one cluster (as shown
in the top cluster in Fig. 5a), which improves the F-measure from 0.85 to 0.98 with the four
correct clusters.

6 Experiments

To show the power of Local Contrast, we conduct experiments using 18 benchmark datasets
which have been used in the literature (Chang and Yeung 2008; Gionis et al. 2007; Jain and
Law 2005; Lichman 2013; Miiller et al. 2009).1 Table 3 provides the characteristics of the
datasets.

I Datasets “vowel”, “shape” are from Miiller et al. (2009). “aggregation” is from Gionis et al. (2007). “path-
based” is from Chang and Yeung (2008). “jain” is from Jain and Law (2005). The remaining datasets are from
UCI Repository (Lichman 2013).

@ Springer



1634 Mach Learn (2018) 107:1621-1645

(b)
1 —e
*
0.8 2[4
3
©w 0.6 ]
° . * 4
S 04 * ]
*
+*
0.2 . ]
““'“m
D 1 1 1 1 1
0 10 20 30 40 &0
(c) (d)
1 * + + 1
osf e v 0.8
. TN * o
DB ‘?”0 o :‘ ¢“0 ‘3’: DB 2
"o, * ’?"‘i“£0‘0:"' g 3
0.4 AR s 0.4
RN S SAA B . M
0.2 . R 0.2 o« Shge. sdatne
)’ (L )’0 * LR
0 X % e N oL R RO SEN )
0 02 04 06 08 1 0 02 04 06 08 1

Fig. 6 The clustering result of LC-CESFDP on the synthetic dataset. For clarity of presentation, we plot the
top 50 points only in the Decision Graph in Plot b. The clustering result is the optimal result in terms of
F-measure, obtained by conducting a grid search of parameter € and M. a LC distribution, b LC-CFSFDP
decision graph, ¢ LC peaks, d clustering result, F = 0.98478

Table 3 Characteristics of

. X Dataset N d M Dataset N d M
datasets used in the experiments,
where N is the dataset size, dis  Agoregation 788 2 7 Libras 360 90 15
the number of features and M is
the number of classes Banknote 1372 2 Pathbased 300 2 3
Breast-d 569 30 2 Pendig 10,992 16 10
Breast-o 699 9 2 Seeds 210 7 3
Control 600 60 6 Segment 2310 19 7
Diabetes 768 8§ 2 Shape 160 17 9
Haberman 306 32 Thyroid 215 5 3
Iris 150 4 3 Vowel 990 10 11
Jain 373 2 2 Wine 178 13 3

In all experiments, the performance is measured in terms of F-measure. Given a clustering
result, we calculate the precision score p,, and the recall score r,, for each cluster C,, based
on the confusion matrix. F-measure of Cj, is the harmonic mean of p,, and r,,,. We then use
the Hungarian algorithm (Kuhn 1955) to search the optimal match for all clusters. The overall
F-measure is the weighted average over all clusters: F-measure = an‘le % Z”"%,
where N is the dataset size. In the calculations of F-measure, points labeled as noise are
not removed from the dataset, but they are not regarded as a cluster. In addition, we also

@ Springer



Mach Learn (2018) 107:1621-1645 1635

Table 4 Parameters and their

search ranges Parameter Search range or setting

All versions of CFSFDP € {0.1,0.2, ..., 10%}

M {2,3,...,20}
LC-CFSFDP K VN
SNN-CFSFDP K VN
ReScale-CFSFDP v 100

n 0.2
FKNN-DPC K VN

evaluate the performance in terms of Adjusted Rand Index (ARI) (Hubert and Arabie 1985).
The outcome is similar to that of using F-measure. For clarity of presentation, we provide
the results based on ARI in Appendix B.

All methods are searched in their parameter spaces and the best F'-measure achieved is
recorded. For all versions of CFSFDP, the value of the cut-off distance/dissimilarity € is set
to be the average distance between each point and its certain percentile nearest neighbour.
This percentile is searched within [0.1, 10%], with a step increment of 0.1%. All methods
automatically select M points, which rank at the top in their respective decision graph, to be
the cluster centres, where M is searched within {2, 3, ..., 20}. For the K -Nearest-Neighbour
search involved in LC-CFSFDP, SNN-CFSFDP and FKNN-DPC, the parameter K is set
to the nearest integer of VN, the square root of the dataset size. For ReScale-CFSFDP, the
parameter v is set 100 as suggested by Zhu et al. (2016), and 1 is determined in the following
way: we searched n within {0.05, 0.1, ..., 0.5}, and find the value that yields the best average
F-measure of the 18 datasets, which is 0.2. We set 1) to 0.2 for all the experiments. As a result,
ReScale-CFSFDP has been given an additional advantage compared with other methods. A
summary of the parameter settings is provided in Table 4.

6.1 Comparing L.C to SNN and ReScale

The results in Table 5 show that LC-CFSFDP has the best clustering performance among the
four approaches with average rank 1.61, followed by ReScale-CFSFDP with rank 2.39,
SNN-CFSFDP with rank 2.83 and CFSFDP with rank 3.00. In term of win/draw/loss
counts with respect to base algorithm CFSFDP, LC-CFSFDP has 15 wins, 1 loss and 2
draws; SNN-CFSFDP has 11 wins and 7 losses; and ReScale-CFSFDP has 10 wins and 8
losses. The Friedman test results in Table 6 show that LC-CFSFDP outperforms CFSFDP
and SNN-CFSFDP significantly at p-values < 0.02. When comparing LC-CFSFDP with
ReScale-CFSFDP, LC-CFSFDP has 11 wins, 1 tie, and 6 losses, although the difference is
not significant. Note that ReScale-CFSFDP has an unfair advantage because the parame-
ter n is set to one which gives the best average F-measure over the 18 datasets; whereas
SNN-CFSFDP and LC-CFSFDP have no such advantage.

In a nutshell, Local Contrast significantly improves the CFSFDP algorithm, and its
resultant LC-CFSFDP is the best density-based clustering method, among the current state-
of-the-art.

6.2 Comparing LC-CFSFDP to FKNN-DPC

As shown in Table 7, the performance of FKNN-DPC is poor with K being fixed to VN,
due to its sensitivity to K. Therefore, we also compare LC-CFSFDP to FKNN-DPC with
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Table 5 Comparison of original and improved versions of CESFDP in terms of F-measures

Dataset CFSFDP  LC-CFSFDP  SNN-CFSFDP  ReScale-CFSFDP
Aggregation 0.996 0.996 0.983 0.993
Banknote 0.991 0.975 0.782 0.972
Breast-d 0.830 0.940 0.877 0.945
Breast-o 0.917 0.966 0.704 0.967
Control 0.708 0.720 0.717 0.732
Diabetes 0.602 0.655 0.635 0.649
Haberman 0.616 0.671 0.641 0.605
Iris 0.967 0.967 0.892 0.960
Jain 0.972 1.000 0.975 1.000
Libras 0.480 0.535 0.519 0.500
Pathbased 0.828 0.832 0.891 0.775
Pendig 0.794 0.826 0.664 0.771
Seeds 0.909 0.919 0.866 0.904
Segment 0.785 0.791 0.522 0.763
Shape 0.699 0.751 0.802 0.798
Thyroid 0.707 0.850 0.917 0.900
Vowel 0.317 0.322 0.334 0.345
Wine 0.931 0.949 0.932 0.931
Average rank 3.00 1.61 2.83 2.39
Win/draw/loss against CEFSFDP 15/2/1 11/0/7 10/0/8
Win/draw/loss against LC-CESFDP 1/2/15 4/0/14 6/1/11
Table 6 Pairwise Friedman tests: p-values

Friedman p-values LC-CFSFDP SNN-CFSFDP ReScale-CFSFDP
CFSFDP 0.0005 0.3458 0.8084
LC-CFSFDP 0.0184 0.2253
SNN-CFSFDP 0.1573

the paramter K being searched for an optimal result. When K is searched, FKNN-DPC
improves significantly in terms of F-measure. Nevertheless, LC-CFSFDP still outperforms
FKNN-DPC with 12 wins, 1 draw and 5 losses.

6.3 Runtime

The time complexities for all methods are O (N 2) in terms of dataset size N. However, for
those involving K -nearest-neighbour search, the time complexities are provided in terms of
N and K. Table 8 gives the runtimes of all methods on all datasets. SNN-CFSFDP runs at
least an order of magnitude slower than the others.
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Table 7 Comparison of LC-CFSFDP and FKNN-DPC in terms of F-measures

Dataset K is searched K=+N
LC-CFSFDP FKNN-DPC LC-CFSFDP FKNN-DPC

Aggregation 1.000 0.999 0.996 0.998
Banknote 0.981 0.969 0.975 0.486
Breast-d 0.941 0.919 0.940 0.711
Breast-o 0.972 0.921 0.966 0.804
Control 0.745 0.722 0.720 0.446
Diabetes 0.674 0.657 0.655 0.577
Haberman 0.692 0.692 0.671 0.683
Iris 0.967 0.973 0.967 0.854
Jain 1.000 0.982 1.000 0.963
Libras 0.547 0.500 0.535 0.425
Pathbased 0.906 0.990 0.832 0.548
Pendig 0.830 0.883 0.826 0.656
Seeds 0.933 0.923 0.919 0.631
Segment 0.804 0.768 0.791 0.573
Shape 0.760 0.717 0.751 0.633
Thyroid 0.894 0.909 0.850 0.848
Vowel 0.325 0.290 0.322 0.220
Wine 0.949 0.955 0.949 0.694
Average rank 1.28 1.67 1.11 1.89
Win/draw/loss against LC-CESFDP 5/1/12 2/0/16

The search range of K is [3, ..., max(50, 1.2\/ﬁ)]

6.4 K sensitivity test

A K sensitivity test is shown in Fig. 7. In this experiment, the K parameter for the K-
nearest-neighbours search used in LC-CFSFDP, SNN-CFSFDP and FKNN-DPC is set to
different values ranging from 5 to 80, while their corresponding best F'-measure is recorded.
Three datasets with low, medium, and high dimensionalities are used for the test. In all three
cases, LC-CFSFDP exhibits more stable clustering performance than SNN-CFSFDP and
FKNN-DPC while K changes.

7 Discussion

Local Contrast can be applied using any density estimators, not limited to the e-
neighbourhood density estimator which has been employed in CFSFDP (Rodriguez and Laio
2014). For example, Local Contrast can be applied to DENCLUE (Hinneburg and Gabriel
2007) which employs kernel density estimator in its operation.

We chose CFSFDP over other density-based methods such as DBSCAN, to be the base
algorithm, because the former is a more advanced method. This is confirmed by comparing
DBSCAN with CFSFDP in clustering the 18 datasets. The result is provided in Appendix
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Table 8 Runtime in seconds
Dataset CFSFDP  LC-CFSFDP SNN-CFSFDP  ReScale-CFSFDP  FKNN-DPC
Aggregation 0.07 0.1 1.97 0.15 0.2
Banknote 0.24 0.34 4.78 0.41 0.51
Breast-d 0.05 0.06 0.98 0.2 0.18
Breast-o 0.05 0.09 1.34 0.18 0.15
Control 0.06 0.07 1.06 0.26 0.16
Diabetes 0.08 0.1 1.81 0.19 0.19
Haberman 0.02 0.02 0.38 0.1 0.05
Iris 0.01 0.01 0.19 0.09 0.02
Jain 0.02 0.03 0.55 0.09 0.07
Libras 0.03 0.04 0.46 0.23 0.12
Pathbased 0.02 0.02 0.4 0.09 0.04
Pendig 21.69 30.04 345.17 22.53 44.27
Seeds 0.01 0.01 0.32 0.01 0.02
Segment 0.82 1.13 16.59 0.96 1.5
Shape 0.01 0.01 0.26 0.02 0.02
Thyroid 0.01 0.01 0.28 0.02 0.03
Vowel 0.13 0.19 3.04 0.17 0.33
Wine 0.01 0.01 0.27 0.02 0.02
Time complexity O (N2) O(N?+KN) O(K?N?) O(N?) O(N? + K2N)
aggregation segment libras
1 roeeRoees 09 085
—&—LC-CFSFDP
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Fig. 7 K sensitivity test on 3 datasets of different dimensionality: aggregation has 2 attributes; segment has
19; and libras has 90. LC-CFSFDP demonstrates better stability than SNN-CFSFDP and FKNN-DPC while

K changes

C, which shows that CFSFDP outperforms DBSCAN in all but 1 dataset. To be fair and
complete, we also compare LC-CFSFDP to the original SNN and ReScale approaches. The
result is provided in Appendix D, which shows that LC-CFSFDP outperforms both methods.

The choice of parameter K in KNN based methods is usually time-consuming since they
are often sensitive to K. However, we have shown that LC is not as sensitive to K as SNN
or FKNN-DPC. As a rule of thumb, setting K = /N has been empirically verified to be
effective for LC.
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As to the choice of parameter M (the number of clusters), both LC-CFSFDP and the
original CFSFDP have the same requirement. For a specific dataset, the proper choice of M
is a user decision that could be made based on domain knowledge, visual inspection, or other
means. In our experiments, M is simply searched to show the best capability of each method.

The original CFSFDP does not explicitly identify any data point to be noise. Instead,
after the clustering procedure, it takes an extra step to produce cluster halos, which can be
considered as noise. In our experiments, no noise points are produced because all variants of
CFSFDP, as well as FKNN-DPC, are able to cluster the whole dataset without producing any
noise. However, while handling noisy datasets, LC-CFSFDP can also produce cluster halos
in the same way as CFSFDP.

Grid-based clustering approaches partition the space into a number of cells and use the
cell density to identify clusters. For example, GRIDCLUS (Schikuta 1996) and NSGC (Ma
and Chow 2004) rely on the cell density to identify core cells and link neighbouring core
cells together to form clusters. Instead of the current point-based definition, it is possible that
Local Contrast can be redefined using cell densities of neighbouring cells; and employ Local
Contrast in these algorithms to improve their performance.

Another possible application of LC is density-based subspace clustering, such as SUBCLU
(Kailing et al. 2004) and DUSC (Assent et al. 2007). These methods use a density threshold
to differentiate between cluster points and noise in different subspaces. Because density
is dimensionality-biased, i.e., when estimated using distance-based density estimators, the
densities of a data cloud tend to be lower in higher-dimensional spaces. Hence these methods
suffer from density variation across subspaces with different dimensionalities: low thresholds
detect high-dimensional clusters but have difficulty filtering out noise in low-dimensional
subspaces; while high thresholds screen out noise well in low-dimensional subspaces but
tend to overlook high-dimensional clusters (Zimek and Vreeken 2015). LC can possibly be
an effective remedy for this issue in subspace clustering since LC is not dimensionality-biased.

However, not all density-based methods can utilise Local Contrast readily because some
do not employ density directly in their operations. For example, instead of density, OPTICS
(Ankerst et al. 1999) employs “core distance” and “reachability distance” to rank points in
order to identify clusters. The “reachability distance” reflects the density such that points
with a lower density normally have higher “reachability distance”. It is interesting to explore
whether Local Contrast can be redefined using these distances rather than density.

8 Conclusions

In this paper, we identify the root cause of CFSFDP’s failure to detect all clusters in a dataset
having hugely varying densities. This is the first work, as far as we know, that overcomes
CFSFDP’s weakness from its root cause.

We make the following three contributions:

First, we formalise a necessary condition for CFSFDP to correctly identify all clusters.
We show that a violation of this condition leads to poor clustering performance. This explains
the reason why a density-based clustering algorithm such as CFSFDP is unable to correctly
identify all clusters in datasets having large density variations.

Second, we propose a new measure called Local Contrast, as an alternative to density,
to improve the capability of density-based clustering methods to detect clusters of hugely
different densities in a dataset. We show that it has two unique properties that are critical
in improving the above-mentioned capability, i.e., all cluster centres in the Local Contrast
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distribution have the same constant value, so as all local minima of Local Contrast which cor-
respond to the local minima of density distribution, regardless of the densities of these cluster
centres and local minima. We show that these properties make density-based algorithms much
more robust in the presence of large density variations.

Third, by incorporating Local Contrast into CFSFDP, we create a powerful method LC-
CFSFDP which has much better detecting power than the original method. Our empirical eval-
uation shows that LC-CFSFDP is the best performer compared to two state-of-the-art meth-
ods, SNN and ReScale, as well as FKNN-DPC which is a recent improvement of CFSFDP.

Acknowledgements Bo Chen is supported by Monash Data61 Postgraduate Research Scholarship and Fac-
ulty of IT Tuition Fee Scholarship, Monash University.

Appendix A: Condition under which DBSCAN-like clustering algorithms
fail

This section provides a necessary condition for DBSCAN-like clustering algorithms, which
employ a global threshold to identify core points, to successfully identify all clusters (Zhu
et al. 2016).

Let D = {x1,X2,...,X,}, X; € RY,x; ~ F denote a dataset of n points each sampled
independently from a distribution F. Let f(x) denote the density estimate at point X used
(either explicitly or implicitly) by a particular density-based clustering algorithm. A set of
clusters {Cy, ..., C.} is defined as non-empty and non-intersecting subsets: C; C D, C; #
B,Vixj C;NCj = . Let ¢; = argmaxxec; f(x) denote the mode (point of the highest
estimated density) for cluster C; and p; = f(c;) denote the corresponding peak density value.

In addition, let N.(x) be the e-neighbourhood of x, N.(x) = {y € D | d(x,y) < €},
where d(-, -) is the dissimilarity function (d : R? x RY — R) used by the density-based
clustering algorithm.

A non-cyclic path linking points x; and x;, path(x;,X;), is defined as a sequence of
unique points starting with x; and ending with x; where adjacent points lie in each other’s
neighbourhood: (X (1), Xz (2), - - - » Xz (k). Here w () isamapping 7 : {1, ..., k} — {1,...,n}
such that Vyzse(1,.. k) (T(s) #Z (@) A(w(1) =) A (k) = j) A Moel,. k—1) Xz(w+1) €
Ne(Xz)))-

Let Pij = {(Xz (1), Xz (2)s - - - » Xn (k) | Xz (1) = ¢i A Xz(r) = ¢} denote the set of all non-

cyclic paths linking the modes of clusters C; and C;, and then let g;; = max  min f(x)
path€P;; xepath

be the largest of the minimum values along any paths in P;;.

Let each cluster C; be represented by its mode c¢; in order for a density-based clus-
tering algorithm to be able to (reliably) identify and separate all clusters in a dataset
D = {xq,...,X,}. The condition that the estimated density at the mode of any cluster is
greater than the maximum of the minimum estimated density along any path linking any two
modes is given as

min  pr > max  gjj “4)
kell s} i#jell g

This condition implies that there must exist a threshold 7 that can be used to break all paths
between the modes by assigning regions with estimated density less than t to noise, i.e.,

ArVrizjell,..c) Pk = T > &ij
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If a density-based clustering algorithm uses a global threshold on the estimated density
to identify core points and links neighbouring core points together to form clusters (e.g.,
DBSCAN (Ester et al. 1996)), then the requirement given in Eq. (4) on the density esti-
mates and cluster definitions provides a necessary condition for the algorithm to successfully
identify all clusters.

Therefore, the density-based clustering algorithm will fail to identify all clusters in a data
distribution which violates the inequality in Eq. (4).

Appendix B: Performance evaluation in terms of ARI

Table 9 provides the comparison of four variants of CFSFDP in terms of ARI. Table 10
provides the comparison between LC-CFSFDP and FKNN-DPC in terms of ARI. The results
are similar to those using F-measures in terms of average rank and win/draw/loss counts (as
shown in Tables 5 and 7).

Table 9 Comparison of original and improved versions of CFSFDP in terms of ARI

Dataset CFSFDP  LC-CFSFDP  SNN-CFSFDP  ReScale-CFSFDP
Aggregation 0.996 0.996 0.961 0.994
Banknote 0.994 0914 0.599 0.892
Breast-d 0.428 0.773 0.693 0.792
Breast-o 0.640 0.866 0.344 0.872
Control 0.584 0.633 0.673 0.619
Diabetes 0.110 0.148 0.118 0.106
Haberman 0.052 0.064 0.059 0.032
Iris 0.904 0.904 0.784 0.886
Jain 0.747 1.000 0.811 1.000
Libras 0.356 0.386 0.402 0.336
Pathbased 0.624 0.740 0.668 0.519
Pendig 0.664 0.721 0.499 0.696
Seeds 0.756 0.775 0.640 0.742
Segment 0.681 0.680 0.338 0.631
Shape 0.632 0.618 0.634 0.664
Thyroid 0.224 0.756 0.594 0.688
Vowel 0.181 0.137 0.169 0.191
Wine 0.803 0.847 0.540 0.800
Average rank 2.61 1.67 3.00 2.56
Win/draw/loss against CFSFDP 12/2/4 9/0/9 8/0/10
Win/draw/loss against LC-CFSFDP  4/2/12 4/0/14 4/1/13
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Table 10 Comparison of LC-CFSFDP and FKNN-DPC in terms of ARI

Dataset K is searched K=+N
LC-CFSFDP FKNN-DPC LC-CFSFDP FKNN-DPC

Aggregation 1.000 0.997 0.996 0.995
Banknote 0.933 0.883 0914 0.053
Breast-d 0.818 0.705 0.773 0.412
Breast-o 0.904 0.834 0.866 0.622
Control 0.652 0.682 0.633 0.247
Diabetes 0.156 0.139 0.148 0.079
Haberman 0.100 0.197 0.064 0.112
Iris 0.904 0.922 0.904 0.674
Jain 1.000 0.903 1.000 0.811
Libras 0.414 0.346 0.386 0.267
Pathbased 0.785 0.970 0.740 0.289
Pendig 0.723 0.794 0.721 0.588
Seeds 0.812 0.776 0.775 0.406
Segment 0.686 0.602 0.680 0.334
Shape 0.662 0.594 0.618 0.506
Thyroid 0.784 0.753 0.756 0.649
Vowel 0.182 0.154 0.137 0.056
Wine 0.847 0.869 0.847 0.461
Average rank 1.33 1.67 1.06 1.94
Win/draw/loss against LC-CESFDP 6/0/12 1/0/17

Appendix C: DBSCAN versus CFSFDP

A comparison between DBSCAN and CFSFDP is provided in Table 11. The result shows
that CFSFDP performs significantly better than DBSCAN.
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Table 11 Comparison between DBSCAN and CFSFDP

Dataset Best F-measures
DBSCAN CFSFDP

Aggregation 0.991 0.996
Banknote 0.952 0.991
Breast-d 0.609 0.830
Breast-o 0.867 0.917
Control 0.536 0.708
Diabetes 0.538 0.602
Haberman 0.630 0.616
Iris 0.834 0.967
Jain 0.964 0.972
Libras 0.407 0.481
Pathbased 0.770 0.828
Pendig 0.709 0.794
Seeds 0.750 0.909
Segment 0.586 0.785
Shape 0.642 0.699
Thyroid 0.584 0.707
Vowel 0.252 0.317
Wine 0.667 0.931
Win/draw/loss against DBSCAN 17/0/1

For DBSCAN, parameter € is search from 0.01 to the maximum distance between two points in a dataset, with
a step increment of 0.01. The Min Pts parameter is searched in {1, 2, ..., L«/ﬁj}

Appendix D: LC-CFSFDP versus SNN-DBSCAN and ReScale-DBSCAN

A comparison of LC-CFSFDP, SNN-DBSCAN 2 (Ertoz et al. 2003a) and ReScale-DBSCAN
(Zhu et al. 2016) is provided in Table 12. The result shows that LC-CFESFDP performs
significantly better than SNN-DBSCAN and ReScale-DBSCAN.

2 In this paper, we refer SNN as a dissimilarity measure. To avoid confusion, here we refer the original SNN
clustering method in Ert6z et al. (2003a) as SNN-DBSCAN, since it is based on the DBSCAN procedure.

@ Springer



1644 Mach Learn (2018) 107:1621-1645

Table 12 Comparison of LC-CFSFDP, SNN-DBSCAN and ReScale-DBSCAN

Dataset Best F-measures [
LC-CFSFDP SNN-DBSCAN ReScale-DBSCAN

Aggregation 0.996 1.000 0.916

Banknote 0.975 0.960 0.990

Breast-d 0.940 0.734 0.795

Breast-o 0.966 0.885 0.957

Control 0.720 0.773 0.659

Diabetes 0.655 0.584 0.558

Haberman 0.671 0.673 0.727

Iris 0.967 0.958 0.845

Jain 1.000 1.000 0.996

Libras 0.535 0.425 0.442

Pathbased 0.832 0.944 0.621

Pendig 0.826 0.856 0.738

Seeds 0.919 0.890 0.854

Segment 0.791 0.662 0.565

Shape 0.751 0.729 0.685

Thyroid 0.850 0.904 0.860

Vowel 0.322 0.320 0.295

Wine 0.949 0.918 0.851

Win/draw/loss against LC-CFSFDP 6/1/11 3/0/15

For the DBSCAN based procedure, parameter € is search from 0.01 to the maximum distance between two

points in a dataset, with a step increment of 0.01. The Min Pts parameter is searched in {1, 2, ..., L\/ﬁ 1}
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