Mach Learn (2018) 107:79-108 @ CrossMark
https://doi.org/10.1007/510994-017-5687-8

Speeding up algorithm selection using average ranking
and active testing by introducing runtime

Salisu Mamman Abdulrahman!2 . Pavel Brazdil>3 -

Jan N. van Rijn*® . Joaquin Vanschoren®

Received: 10 May 2016 / Accepted: 4 October 2017 / Published online: 14 November 2017
© The Author(s) 2017

Abstract Algorithm selection methods can be speeded-up substantially by incorporating
multi-objective measures that give preference to algorithms that are both promising and
fast to evaluate. In this paper, we introduce such a measure, A3R, and incorporate it into
two algorithm selection techniques: average ranking and active testing. Average ranking
combines algorithm rankings observed on prior datasets to identify the best algorithms for
a new dataset. The aim of the second method is to iteratively select algorithms to be tested
on the new dataset, learning from each new evaluation to intelligently select the next best
candidate. We show how both methods can be upgraded to incorporate a multi-objective
measure A3R that combines accuracy and runtime. It is necessary to establish the correct
balance between accuracy and runtime, as otherwise time will be wasted by conducting less
informative tests. The correct balance can be set by an appropriate parameter setting within
function A3R that trades off accuracy and runtime. Our results demonstrate that the upgraded

Editor: Christophe Giraud-Carrier.

B Salisu Mamman Abdulrahman
salisu.abdul @ gmail.com

Pavel Brazdil
pbrazdil@inesctec.pt

Jan N. van Rijn
vanrijn @informatik.uni-freiburg.de

Joaquin Vanschoren
j-vanschoren@tue.nl

Kano University of Science and Technology, Wudil, Kano State, Nigeria

2 LIAAD, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3 Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
University of Freiburg, Freiburg, Germany

Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

Eindhoven University of Technology, Eindhoven, Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5687-8&domain=pdf

80 Mach Learn (2018) 107:79-108

versions of Average Ranking and Active Testing lead to much better mean interval loss values
than their accuracy-based counterparts.

Keywords Algorithm selection - Meta-learning - Ranking of algorithms - Average ranking -
Active testing - Loss curves - Mean interval loss

1 Introduction

A large number of data mining algorithms exist, rooted in the fields of machine learning,
statistics, pattern recognition, artificial intelligence, and database systems, which are used
to perform different data analysis tasks on large volumes of data. The task to recommend
the most suitable algorithms has thus become rather challenging. Moreover, the problem is
exacerbated by the fact that it is necessary to consider different combinations of parameter
settings, or the constituents of composite methods such as ensembles.

The algorithm selection problem, originally described by Rice (1976), has attracted a
great deal of attention, as it endeavours to select and apply the best algorithm(s) for a given
task (Brazdil et al. 2008; Smith-Miles 2008). The algorithm selection problem can be cast
as a learning problem: the aim is to learn a model that captures the relationship between the
properties of the datasets, or meta-data, and the algorithms, in particular their performance.
This model can then be used to predict the most suitable algorithm for a given new dataset.

This paper presents two new methods, which build on ranking approaches for algorithm
selection (Brazdil and Soares 2000; Brazdil et al. 2003) in that it exploits meta-level infor-
mation acquired in past experiments.

The first method is known as average ranking (AR), which calculates an average ranking
for all algorithms over all prior datasets. The upgrade here consists of using A3R, a multi-
objective measure that combines accuracy and runtime (the time needed to evaluate a model).
Many earlier approaches used only accuracy.

The second method uses an algorithm selection strategy known as active testing (AT) (Leite
and Brazdil 2010; Leite et al. 2012). The aim of active testing is to iteratively select and
evaluate a candidate algorithm whose performance will most likely exceed the performance
of previously tested algorithms. Here again, function A3R is used in the estimates of the
performance gain, instead of accuracy, as used in previous versions.

Itis necessary to establish the correct balance between accuracy and runtime, as otherwise
time will be wasted by conducting less informative and slow tests. In this work, the correct
balance can be set by a parameter setting within the A3R function. We have identified a
suitable value using empirical evaluation.

The experimental results are presented in the form of loss-time curves, where time is
represented on a log scale. This representation is very useful for the evaluation of rankings
representing schedules, as was shown earlier (Brazdil et al. 2003; van Rijn et al. 2015). The
results presented in this paper show that the upgraded versions of AR and AT lead to much
better mean interval loss values (MIL) than their solely accuracy-based counterparts.

Our contributions are as follows. We introduce A3R, a measure that can be incorporated in
multiple meta-learning methods to boost the performance in loss-time space. We show how
this can be done with the AR and AT methods and establish experimentally that performance
indeed increases drastically. As A3R requires one parameter to be set, we also experimentally
explore the optimal value of this parameter.

@ Springer

Mach Learn (2018) 107:79-108 81

The remainder of this paper is organized as follows. In Sect. 2 we present an overview of
existing work in related areas.

Section 3 describes the average ranking method with a focus on how it was upgraded
to incorporate both accuracy and runtime. As the method includes a parameter, this section
describes also how we searched for the best setting. Finally, this section presents an empirical
evaluation of the new method.

Section 4 provides details about the active testing method. We explain how this method
relates to the earlier proposals and how it was upgraded to incorporate both accuracy and
runtime. This section includes also experimental results and a comparison of both upgraded
methods and their accuracy-based counterparts.

Section 5 is concerned with the issue of how robust the average ranking method is to omis-
sions in the meta-dataset. This issue is relevant because meta-datasets gathered by researchers
are very often incomplete. The final section presents conclusions and future work.

2 Related work

In this paper we are addressing a particular case of the algorithm selection problem (Rice
1976), oriented towards the selection of classification algorithms. Various researchers
addressed this problem in the course of the last 25 years.

2.1 Meta-learning approaches to algorithm selection

One very common approach, that could now be considered as the classical approach, uses
a set of measures to characterize datasets and establish their relationship to algorithm per-
formance. This information is often referred to as meta-data and the dataset containing this
information as meta-dataset.

The meta-data typically includes a set of simple measures, statistical measures,
information-theoretic measures and/or the performance of simple algorithms referred to as
landmarkers (Pfahringer et al. 2000; Brazdil et al. 2008; Smith-Miles 2008). The aim is
to obtain a model that characterizes the relationship between the given meta-data and the
performance of algorithms evaluated on these datasets. This model can then be used to pre-
dict the most suitable algorithm for a given new dataset, or alternatively, provide a ranking
of algorithms, ordered by their suitability for the task at hand. Many studies conclude that
ranking is in fact better, as it enables the user to iterative test the top candidates to identify
the algorithms most suitable in practice. This strategy is sometimes referred to as the Top-N
strategy (Brazdil et al. 2008).

2.2 Active testing

The Top-N strategy has the disadvantage that it is unable to exploit the information acquired
in previous tests. For instance, if the top algorithm performs worse than expected, this may
tell us something about the given dataset which can be exploited to update the ranking.
Indeed, very similar algorithms are now also likely to perform worse than expected. This led
researchers to investigate an alternative testing strategy, known as active testing (Leite et al.
2012). This strategy intelligently selects the most useful tests using the concept of estimates
of performance gain.! These estimates the relative probability that a particular algorithm

1 we prefer to use this term here, instead of the term relative landmarkers which was used in previous
work (Fiirnkranz and Petrak 2001) in a slightly different way.

@ Springer

82 Mach Learn (2018) 107:79-108

will outperform the current best candidate. In this paper we attribute particular importance
to the tests on the new dataset. Our aim is to propose a way that minimizes the time before
the best (or near best) algorithm is identified.

2.3 Active learning

Active Learning is briefly discussed here to eliminate a possible confusion with active testing.
The two concepts are quite different. Some authors have also used active learning for algo-
rithm selection (Long et al. 2010), and exploited the notion of Expected Loss Optimization
(ELO). Another notable active learning approach to meta-learning was presented by Prudén-
cio and Ludermir (2007), where the authors used active learning to support the selection on
informative meta-examples (i.e. datasets). Active learning is somewhat related to experiment
design (Fedorov 1972).

2.4 Combining accuracy and runtime

Different proposals were made in the past regarding how to combine accuracy and runtime.
One early proposal involved function ARR (adjusted ratio of ratios) (Brazdil et al. 2003),
which has the form:

SRS
d.
SR,
di _ Aref
ARRam/.’aj = d; d; (1)
14+ AceD xlog(Tq; [Ta,,)

Here, SRZ",. and SRZief represent the success rates (accuracies) of algorithms a; and a,.r on
dataset d;, where a,f represents a given reference algorithm. Instead of accuracy, AUC or

another measure can be used as well. Similarly, Ta‘ii and Tadr ., represent the run times of the
algorithms, in seconds.

AccD is a parameter that needs to be set and represents the amount of accuracy he/she is
willing to trade for a 10 times speed-up or slowdown. For example, AccD = 10% means that
the user is willing to trade 10% of accuracy for 10 times speed-up/slowdown.

The ARR function should ideally be monotonically increasing. Higher success rate ratios
should lead to higher values of ARR. Higher time ratios should lead to lower values of ARR.
The overall effect of combining the two should again be monotonic. In one earlier work
(Abdulrahman and Brazdil 2014) the authors have decided to verify whether this property
can be verified on data. This study is briefly reproduced in the following paragraphs.

The value of SRR was fixed to 1 and the authors varied the time ratio from very small
values 2729 to very high ones 2% and calculated the ARR for three different values of AccD
(0.2, 0.3 and 0.7). The result can be seen in Fig. 1. The horizontal axis shows the log of the
time ratio (log RT). The vertical axis shows the ARR value.

As can be seen, the resulting ARR function is not monotonic and even approaching infinity
at some point. Obviously, this can lead to incorrect rankings provided by the meta-learner.

This problem could be avoided by imposing certain constraints on the values of the ratio,
but here we prefer to adopt a different function, A3R, that also combines accuracy and runtime
and exhibits a monotonic behaviour. It is described in Sect. 3.3.

@ Springer

Mach Learn (2018) 107:79-108 83

100
AccD=02 —
80 AccD=03 ——

AccD=0.7 —
60

40

ARR
(=}

3 20 2-15 2-10 > 20 25 210 215 220

Ratio of Runtimes

Fig. 1 ARR with three different values for AccD (0.2,0.3 and 0.7)

2.5 Hyperparameter optimization

This area is clearly relevant to algorithm selection, since most learning algorithms have
parameters that can be adjusted and whose values may affect the performance of the
learner. The aim is to identify a set of hyperparameters for a learning algorithm, usu-
ally with the goal of obtaining good generalization and consequently low loss Xu et al.
(2011). The choice of algorithm can also be seen as a hyperparameter, in which case
one can optimize the choice of algorithm and hyperparameters at the same time. How-
ever, these methods can be computationally very expensive and typically start from
scratch for every new dataset (Feurer et al. 2015). In this work, we aim to maximally
learn from evaluations on prior datasets to find the (near) best algorithms in a shorter
amount of time. Our method can also be extended to recommend both algorithms and
parameter settings (Leite et al. 2012), which we aim to explore in more depth in future
work.

2.6 Aggregation of rankings

The method of aggregation depends on whether we are dealing with complete or incomplete
rankings. Complete rankings are those in which N items are ranked M times and no value in
this set is missing. Aggregation of such rankings is briefly reviewed in Sect. 3.1.
Incomplete rankings arise when only some ranks are known in some of the M rankings.
Many diverse methods exist. According to Lin (2010), these can be divided into three cat-
egories: Heuristic algorithms, Markov chain methods and stochastic optimization methods.
The last category includes, for instance, Cross Entropy Monte Carlo, (CEMC) methods. Merg-
ing incomplete rankings typically involve rankings of different ranks and some approaches
require that these rankings are completed before aggregation. Let us consider a simple exam-
ple. Suppose ranking R| represents 4 elements, namely (a1, a3, as, az), while R, represents
a of just two elements (a2, aj). Some approaches would require that the missing elements
in R; (i.e. a3, as) be attributed a concrete rank (e.g. rank 3). This does not seem to be cor-

@ Springer

84 Mach Learn (2018) 107:79-108

rect: we should not be forced to assume that some information exists when in fact we have
none.’

In Sect. 5.1 we address the problem of robustness against incomplete rankings. This arises
when we have incomplete test results in the meta-dataset. We have investigated how much the
performance of our methods degrades under such circumstances. Here we have developed
a simple heuristic method based on Borda’s method reviewed in Lin (2010). In the studies
conducted by this author, simple methods often compete quite well with other more complex

approaches.

2.7 Multi-armed bandits

The multi-armed bandit problem involves a gambler whose aim is to decide which arm of
a K-slot machine to pull to maximize his total reward in a series of trials. Many real-world
learning and optimization problems can be modeled in this way and algorithm selection is
one of them. Different algorithms can be compared to different arms. Gathering knowledge
about different arms can be compared to the process of gathering meta-data which involves
conducting tests with the given set of algorithms on given datasets. This phase is often referred
to as exploration.

Many meta-learning approaches assume that tests have been done off-line without any cost,
prior to determining which is the best algorithm for the new dataset. This phase exploits the
meta-knowledge acquired and hence can be regarded as exploration. However, the distinction
between the two phases is sometimes not so easy to define. For instance, in the active testing
approach discussed in Sect. 4, tests are conducted both off-line and online, while the new
dataset is being used. Previous tests condition which tests are done next.

Several strategies or algorithms have been proposed as a solution to the multi-armed bandit
problem in the last two decades. Some researchers have introduced so called contextual-bandit
problem, where different arms are characterized by features. For example, some authors (Li
et al. 2010) have applied this approach to personalized recommendation of news articles.
In this approach a learning algorithm sequentially selects articles to serve users based on
contextual information about the users and articles, while simultaneously adapting its article-
selection strategy based on user-click feedback. Contextual approaches can be compared to
meta-learning approaches that exploit dataset features.

Many articles on multi-armed bandits are based on the notion of reward which is received
after an arm has been pulled. The difference to the optimal is often referred to as regret or loss.
Typically, the aim is to maximize the accumulated reward, which is equivalent to minimizing
the accumulated loss, as different arms are pulled. Although initial studies were done on this
issue (e.g. Jankowski (2013)), this area has, so far, been rather under-explored. To the best of
our knowledge there is no work that would provide an algorithmic solution to the problem
of which arm to pull when pulling different arms can take different amounts of time. So one
novelty of this paper is that it takes the time of tests into account with an adequate solution.

3 Upgrading the average ranking method by incorporating runtime

The aim of this paper is to determine whether the following hypotheses can be accepted:

2 We have considered using a package of R RankAggreg (Pihur et al. 2009), but unfortunately we would have
to attribute a concrete rank (e.g. k+ 1) to all missing elements.

@ Springer

Mach Learn (2018) 107:79-108 85

Hypl: The incorporation of a function that combines accuracy and runtime is useful for the
construction of the average ranking, as it leads to better results than just accuracy
when carrying out evaluation on loss-time curves.

Hyp2: The incorporation of a function that combines accuracy and runtime for the active
testing method leads to better results than only using accuracy when carrying out
evaluation on loss-time curves.

The rest of this section is dedicated to the average ranking method. First, we present a
brief overview of the method and show how the average ranking can be constructed on
the basis of prior test results. This is followed by the description of the function A3R that
combines accuracy and runtime, and how the average ranking method can be upgraded with
this function. Furthermore, we empirically evaluate this method by comparing the ranking
obtained with the ranking representing the golden standard. Here we also introduce loss-time
curves, a novel representation that is useful in comparisons of rankings.

As our A3R function includes a parameter that determines the weight attributed to either
accuracy or time, we have studied the effects of varying this parameter on the overall perfor-
mance. As a result of this study, we identify the range of values that led to the best results.

3.1 Overview of the average ranking method

This section presents a brief review of the average ranking method that is often used in
comparative studies in the machine learning literature. This method can be regarded as a
variant of Borda’s method (Lin 2010).

For each dataset, the algorithms are ordered according to the performance measure chosen
(e.g., predictive accuracy) and ranks are assigned accordingly. Among many popular ranking
criteria we find, for instance, success rates, AUC, and significant wins (Brazdil et al. 2003;
Demsar 2006; Leite and Brazdil 2010). The best algorithm is assigned rank 1, the runner-up
is assigned rank 2, and so on. Should two or more algorithms achieve the same performance,
the attribution of ranks is done in two steps. In the first step, the algorithms that are tied are
attributed successive ranks (e.g. ranks 3 and 4). Then all tied algorithms are assigned the
mean rank of the occupied positions (i.e. 3.5).

Let rij be the rank of algorithm i on dataset j. In this work we use average ranks, inspired by
Friedman’s M statistic (Neave and Worthington 1988). The average rank for each algorithm

is obtained using
D

= |Y_rl|+D)

j=1

where D is the number of datasets. The final ranking is obtained by ordering the average
ranks and assigning ranks to the individual algorithms accordingly.
The average ranking represents a quite useful method for deciding which algorithm should
be used. Also, it can be used as a baseline against which other methods can be compared.
The average ranking would normally be followed on the new dataset: first the algorithm
with rank 1 is evaluated, then the one with rank 2 and so on. In this context, the average
ranking can be referred to as the recommended ranking.

3.1.1 Evaluation of rankings

The quality of aranking is typically established through comparison with the golden standard,
that is, the ideal ranking on the new (test) dataset(s). This is often done using a leave-one-out

@ Springer

86 Mach Learn (2018) 107:79-108

X R
[}
%) .

§ 0.8 8 0.8
> 0.6 -1 06
8 Iy
§ 0.4 g 0.4
O 02 b Q 0 e] Q
g 02 8 0.2

0 0

0 2 46 8 10121416 1820 0 1000 2000 3000 4000 5000 6000 051 152 253 354
Number of Tests Time Log of Time
(a) (b) (c)

Fig. 2 Loss curves for accuracy-based average ranking. a Loss-curve. b Loss-time Curve. ¢ Loss-time curve
(log)

cross-validation (CV) strategy (or in general k-fold CV) on all datasets: in each leave-one-out
cycle the recommended ranking is compared against the ideal ranking on the left-out dataset,
and then the results are averaged for all cycles.

Different evaluation measures can be used to evaluate how close the recommended ranking
is to the ideal one. Often, this is a type of correlation coefficient. Here we have opted for
Spearman’s rank correlation (Neave and Worthington 1988), but Kendall’s Tau correlation
could have been used as well. Obviously, we want to obtain rankings that are highly correlated
with the ideal ranking.

A disadvantage of this approach is that it does not show directly what the user is gaining
or losing when following the ranking. As such, many researchers have adopted a second
approach which simulates the sequential evaluation of algorithms on the new dataset (using
cross-validation) as we go down the ranking. The measure that is used is the performance
loss, defined as the difference in accuracy between ap.s; and ax, where ap.s; represents the
best algorithm identified by the system at a particular time and a* the truly best algorithm
that is known to us (Leite et al. 2012).

As tests proceed following the ranking, the loss either maintains its value, or decreases
when the newly selected algorithm improved upon the previously selected algorithms, yield-
ing a loss curve. Many typical loss curves used in the literature show how the loss depends
on the number of tests carried out. An example of such curve is shown in Fig. 2a. Evaluation
is again carried out in a leave-one-out fashion. In each cycle of the leave-one-out cross-
validation (LOO-CV) one loss curve is generated. In order to obtain an overall picture, the
individual loss-time curves are aggregated into a mean loss curve. An alternative to using
LOO-CV would be to use k-fold CV (with e.g. k=10). This issue is briefly discussed in
Sect. 6.1.

3.1.2 Loss-time curves

A disadvantage of loss curves it that they only show how loss depends on the number of tests.
However, some algorithms are much slower learners than others—sometimes by several
orders of magnitude, and these simple loss curves do not capture this.

This is why, in this article, we follow Brazdil et al. (2003) and van Rijn et al. (2015) and
take into account the actual time required to evaluate each algorithm and use this information
when generating the loss curve. We refer to this type of curve as a loss versus time curve, or
loss-time curve for short. Figure 2b shows an example of a loss-time curve, corresponding
to the loss curve in Fig. 2a.

As train/test times include both very small and very large numbers, it is natural to use the
logarithm of the time (/0g10), instead of the actual time. This has the effect that the same time

@ Springer

Mach Learn (2018) 107:79-108 87

intervals appear to be shorter as we shift further on along the time axis. As normally the user
would not carry out exhaustive testing, but rather focus on the first few items in the ranking,
this representation makes the losses at the beginning of the curve more apparent. Figure 2¢
shows the arrangement of the previous loss-time curve on a log scale.

Each loss time curve can be characterized by a number representing the mean loss in
a given interval, an area under the loss-time curve. The individual loss-time curves can be
aggregated into a mean loss-time curve. We want this mean interval loss (MIL) to be as low
as possible. This characteristic is similar to AUC, but there is one important difference. When
talking about AUCs, the x-axis values spans between 0 and 1, while our loss-time curves span
between some Ty, and T}, defined by the user. Typically the user searching for a suitable
algorithm would not worry about very short times where the loss could still be rather high.
In the experiments here we have set 7,,;, to 10s. In an on-line setting, however, we might
need a much smaller value. The value of T,,,, needs also to be set. In the experiments here
it has been set to 10*s corresponding to about 2.78 h. We assume that most users would be
willing to wait a few hours, but not days, for the answer. Also, many of our loss curves reach
0, or values very near O at this time. Note that this is an arbitrary setting that can be changed,
but here it enables us to compare loss-time curves.

3.2 Data used in the experiments

This section describes the dataset used in the experiments described in this article. The meta-
dataset was constructed from evaluation results retrieved from OpenML (Vanschoren et al.
2014), a collaborative science platform for machine learning. This dataset contains the results
of 53 parameterized classification algorithms from the Weka workbench (Hall et al. 2009) on
39 classification datasets.’ More details about the 53 classification algorithms can be found
in the Appendix.

3.3 Combining accuracy and runtime

In many situations, we have a preference for algorithms that are fast and also achieve high
accuracy. However, the question is whether such a preference would lead to better loss-time
curves. To investigate this, we have adopted a multi-objective evaluation measure, A3R,
described in Abdulrahman and Brazdil (2014), that combines both accuracy and runtime.
Here we use a slightly different formulation to describe this measure:

S,

d.
SR%
VK7 o p— — 3)
b T)P

Aref

Here SRZ; and SRZ"Vef represent the success rates (accuracies) of algorithms a; and a,.r on
dataset d;, where a,f represents a given reference algorithm. Instead of accuracy, AUC or
another measure can be used as well. Similarly, Ta‘;" and T, ;
algorithms, in seconds.

To trade off the importance of time, the denominator is raised to the power of P, while
P is usually some small number, such as 1/64, representing in effect, the 64/ root. This
is motivated by the observation that run times vary much more than accuracies. It is not
uncommon that one particular algorithm is three orders of magnitude slower (or faster) than

represent the run times of the

3 Full details: http://www.openml.org/s/37.

@ Springer

http://www.openml.org/s/37

88 Mach Learn (2018) 107:79-108

tTi;be"r’alﬁoEffw ofvaying Pon . p_y5C jgp0F c p=12¢ 10007
0o 1 1000.000 6 1/64 1.114
1 1/2 31.623 7 1/128 1.055
2 14 5.623 8 1/256 1.027
318 2371 9 1/512 1.013
4 116 1539 10 1/1024 1.006
5 1R 1241 © 0 1.000

another. Obviously, we do not want the time ratios to completely dominate the equation. If
we take the N™ root of the ratios, we will get a number that goes to 1 in the limit, when N
is approaching infinity (i.e. if P is approaching 0).

For instance, if we used P = 1/256, an algorithm that is 1000 times slower would yield a
denominator of 1.027. It would thus be equivalent to the faster reference algorithm only if its
accuracy was 2.7% higher than the reference algorithm. Table 1 shows how a ratio of 1000
(one algorithm is 1000 times slower than the reference algorithm) is reduced for decreasing
values of P. As P gets lower, the time is given less and less importance.

A simplified version of A3R introduced in van Rijn et al. (2015) assumes that both the
success rate of the reference algorithm SRZ’;(- and the corresponding time Ta‘i‘;f have a fixed
value. Here the values are set to 1. The simplified version, A3R’, which can be shown to
yield the same ranking, is defined as follows:

d;
: d;
A3R = — "L

- @
(T’

We note that if P is set to 0, the value of the denominator will be 1. So in this case, only
accuracy will be taken into account. In the experiments described further on we used A3R
(not A3R').

3.3.1 Upgrading the average ranking method using A3R

The performance measure A3R can be used to rank a given set of algorithms on a particular
dataset in a similar way as accuracy. Hence, the average rank method described earlier was
upgraded to generate a time-aware average ranking, referred to as the A3R-based average
ranking.

Obviously, we can expect somewhat different results for each particular choice of param-
eter P that determines the relative importance of accuracy and runtime, thus it is important
to determine which value of P will lead to the best results in loss-time space. Moreover, we
wish to know whether the use of A3R (with the best setting for P) achieves better results
when compared to the approach that only uses accuracy. The answers to these issues are
addressed in the next sections.

3.3.2 Searching for the best parameter setting
Our first aim was to generate different variants of the A3R-based average ranking resulting

from different settings of P within A3R and identify the best setting. We have used a grid
search and considered settings of P ranging from P=1/4 until P=1/256, shown in Table 2.

@ Springer

Mach Learn (2018) 107:79-108 89

Table 2 Mean interval loss of AR-A3R associated with the loss-time curves for different values of P

P= 1/4 1/16 1/64 1/128 1/256 0

MIL 0.752 0.626 0.531 0.535 0.945 22.11

The bold value indicates the best value corresponding to the lowest MIL loss

2

AR-A3R-1/4 = = =
AR* ——

18 ARO - - -
16
14
12

1+

0.8 |

Accuracy Loss (%)

06 |

04

0.2 -

0 ! !
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6

Time (seconds)

Fig. 3 Loss-time curves for A3R-based and accuracy-based average ranking

The last value shown is P=0. If this value is used in (Tad]." / Ta‘f Lf)P the result would be 1. The
last option corresponds to a variant when only accuracy matters.

All comparisons were made in terms of mean interval loss (MIL) associated with the
mean loss-time curves. As we have explained earlier, different loss-time curves obtained in
different cycles of leave-one-out method are aggregated into a single mean loss-time curve,
shown also in Fig. 3. For each one we calculated MIL, resulting in Table 2.

The MIL values in this table represent mean values for different cycles of the leave-one-out
mode. In each cycle the method is applied to one particular dataset.

The results show that the setting of P=1/64 leads to better results than other values, while
the setting P=1/128 is not too far off. Both settings are better than, for instance, P=1/4, which
attributes a much higher importance to time. They are also better than, for instance, P=1/256
which attributes much less importance to time, or to P=0 when only accuracy matters.

The boxplots in Fig. 4 show how the MIL values vary for different datasets. The boxplots
are in agreement with the values shown in Table 2. The variations are lowest for the settings
P=1/16,P=1/64 and P=1/128, although for each one we note various outliers. The variations
are much higher for all the other settings. The worst case is P=0 when only accuracy matters.

For simplicity, the best version identified, that is AR-A3R-1/64, is identified by the short
name AR* in the rest of this article. Similarly, the version AR-A3R-0 corresponding to the
case when only accuracy matters is referred to as ARO.

As AR* produces better results than ARO we have provided evidence in favor of hypothesis
Hypl presented earlier.

An interesting question arises why ARO has such a bad performance. Using AR with
accuracy-based ranking leads to disastrous results (MIL=22.11) and should be avoided at
all costs! This issue is addressed further on in Sect. 5.2.2.

@ Springer

90 Mach Learn (2018) 107:79-108

Fig. 4 Boxplots showing the __
distribution of MIL values for the
settings of P :
© — '
° [e]
»n ©— ° ©
o
=
g ° e o
= <
= !
o] o] 3
[} 8 . o \
N — '
. ° °© -
ol = — = =

T T T T T
1/4 1/16 1/64 1/128 1/256 0
AR-A3R variants

3.3.3 Discussion

Parameter P could be used as a user-defined parameter to determine his/her relative interest
on accuracy or time. In other words, this parameter could be used to establish the trade-off
between accuracy and runtime, depending on the operation condition required by the user
(e.g. a particular value of T, determining the time budget).

However, one very important result of our work is that there is an optimum for which the
user will obtain the best result in terms of MIL.

The values of T,,;,, and T}, define an interval of interest in which we wish to minimize
MIL. It is assumed that all times in this interval are equally important. We assume that the
user could interrupt the process at any time T lying in this interval and request the name of
apest , the best algorithm identified.

4 Active testing using accuracy and runtime

The method of A3R-based average ranking described in the previous section has an important
shortcoming: if the given set of algorithms includes many similar variants, these will be close
to each other in the ranking, and hence their performance will be similar on the new dataset. In
these circumstances it would be beneficial to try to use other algorithms that could hopefully
yield better results. The AR method, however, passively follows the ranking, and hence is
unable to skip very similar algorithms.

This problem is quite common, as similar variants can arise for many reasons. One reason
is that many machine learning algorithms include various parameters which may be set to
different values, yet have limited impact. Even if we used a grid of values and selected only
some of possible alternative settings, we would end up with a large number of variants. Many
of them will exhibit rather similar performance.

Clearly, it is desirable to have a more intelligent way to choose algorithms from the
ranking. One very successful way to do this is active testing (Leite et al. 2012). This method
starts with a current best algorithm, ap.s;, which is initialized to the topmost algorithm in the
average ranking. It then selects new algorithms in an iterative fashion, searching in each step

@ Springer

Mach Learn (2018) 107:79-108 91

for the best competitor, a.. This best competitor is identified by calculating the estimated
performance gain of each untested algorithm with respect to ap.s; and selecting the algorithm
that maximizes this value. In Leite et al. (2012) the performance gain was estimated by finding
the most similar datasets, looking up the performance of every algorithm, and comparing that
to the performance of ap,g; on those datasets. If another algorithm outperforms ap.s; on many
similar datasets, it is a good competitor.

In this paper we have decided to use a simpler approach without focusing on the most
similar datasets, but correct one major shortcoming, which is that it does not take runtime
into account. As a result, this method can spend a lot of time evaluating slow algorithms even
if they are expected to be even marginally better. Hence, our aim is to upgrade the active
testing method by incorporating A3R as the performance measure and analyzing the benefits
of this change. Moreover, as A3R includes a parameter P, it is necessary to determine the
best value for this setting.

4.1 Upgrading active testing with A3R

In this section we describe the upgraded active testing method in more detail. The main algo-
rithm is presented in Algorithm 1 (AT-A3R), which shows how the datasets are used in a leave-
one-out evaluation. In step 5 the method constructs the A R* average ranking, A. This ranking
is used to identify the topmost algorithm, which is used to initialize the value of ap,s;. Then
Algorithm 2 (AT-A3R’) containing the actual active testing procedure is invoked. Its main aim
is to construct the loss curve L; for one particular dataset d; and add it to the other loss curves

Ls. The final step involves aggregating all loss curves and returning the mean loss curve Ly,.

Algorithm 1 AT-A3R - Active testing with A3R

Require: algorithms A, datasets Dy, parameter P

1: Ls < () (Initialize the list of loss-time curves to an empty list)
2: Leave-one-out cycle (d; represents dyew):

3: for all d; in Ds do

4: Dy < Ds —d;
5: Construct A R+ average ranking, A, of algorithms A on Dy
6: apess <— A[1] (the topmost element)
T: A< A—apey ~
8 (Lj, apes) < ATA3R’(d;, Dy, apes;, A, P) (Algorithin 2)
9: Add the new loss curve L; to the list:
Ls < Ls+L;
10: end for

11: Construct the mean loss curve L, by aggregating all loss cuves in Ls
Return: Mean loss curve L,

4.1.1 Active testing with A3R on one dataset

The main active testing method in Algorithm 2 includes several steps:

Step 1: It is used to initialize certain variables.

Step 2: The performance of the current best algorithm apes; on dyeyy is Obtained using a
cross-validation (CV) test.

Steps 3—12 (overview): These steps include a while loop, which at each iteration identifies
the best competitor (step 4), removes it from the ranking A (step 5) and obtains its performance
(step 6). If its performance exceeds the performance of ape;, it replaces it. This process is
repeated until all algorithms have been processed. More details about the individual steps are
given in the following paragraphs.

@ Springer

92 Mach Learn (2018) 107:79-108

Algorithm 2 ATA3R’ - Active testing with A3R on one dataset

Require: d;, Dy, apes:» A, P
1: Initialize ranking dpey and loss curve L;:
dpew < dj, Lj < ()

2: Obtain the performance of ap,s on dataset dpey using a CV test:
(Tdnew SRdI‘lEu!) <« CV (abg_y[s dngyv)

Apest ° Apest

3: while |A| > 0 do
4: Find the most promising competitor a. of ap.s using estimates of performance gain:
ac = argmax Zd,-eDs APf(ay, apest, di)

ag

5. A < A—a. (Remove a, from A)

6: Obtain the performance of a. on dataset dyey using a CV test:
(TG SRI) < CV (ac. dnew)
Li < Lj + (Tgnew | sgdnew)

7: Compare the accuracy performance of a. with ap.s and carry out updates:
. 1 dneu: dneu:
8 if SR, > SRal;; ., then
new
Tahe.rt

<« Tgé‘lew’ SRdﬂew (_SRd’lew

9: Apest <= dc, Apest dc

10: endif
11: end while
12: return Loss-time curve L; and ap,g;

Step 4: This step is used to identify the best competitor. This is done by considering all
past tests and calculating the sum of estimated performance gains APf for different datasets.
This is repeated for all different algorithms and the one with the maximum sum of APf is
used as the best competitor a., as shown in Eq. 5:

a. = argmax Z APf (ak, apest, d;) ®)
Ak diED

The estimate of performance gain, APf, is reformulated in terms of A3R:

d; d;
SR, SR
APf(aj, @pest, di) =7 | —— 20— —1 > 0 | % | 2L —] (6)
(Taj | Tap)* (Ta) | Tap,,)*

where a; is an algorithm and d; a dataset. The function r(test) returns 1 if the test is true
and O otherwise.

An illustrative example is presented in Fig. 5, showing different values of APf of one
potential competitor with respect to ap.s; on all datasets.

Table 3 shows the estimates of potential performance gains for 5 potential competitors.
The competitor with the highest value (a») is chosen, expecting that it will improve the
accuracy on the new dataset.

Step 6: After the best competitor has been identified, the method proceeds with a cross-
validation (CV) test on the new dataset to obtain the actual performance of the best competitor.
After this the loss curve L; is updated with the new information.

Step 7-10: A test is carried to determine whether the best competitor is indeed better than
the current best algorithm. If it is, the new competitor is used as the new best algorithm.

@ Springer

Mach Learn (2018) 107:79-108 93

0.12
0.1
0.08
&
< 0.06
0.04
0.02 H H
0 —INWRUNON 000 = — — e 1 T R N B I B 1 I 19 59 L0 19 0 49 L0 L) L) L)
CRRRRNRAIAXOCS—RNREOAARES—ORREORIR

Remaining datasets

Fig. 5 Values of APf of a potential competitor with respect to ap.,; on all datasets

Table 3 Determining the best

Algorithi AP
competitor among different sonhm 2 AR
alternatives a 0.587

ap 3.017

az 0.143
The bold value indicates the as 0.247
highest estimated performance as 1.280

gain

Table 4 MIL values of AT-A3R for different parameter setting of P

P 1 172 1/4 1/8 1/16 1/32 1/64 1/128 0

MIL 0.846 0.809 0.799 0.809 0.736 0.905 1.03 1.864 3.108

The bold value indicates the best value

Step 12: In this step the loss-time curve L; is returned together with the final best algorithm
apest 1dentified.

4.2 Optimizing the parameter settings for AT-A3R

To use AT-A3R in practice we need to determine a good setting of parameter P in A3R used
within AT-A3R. We have considered different values shown in Table 4. The last value shown,
P=0, represents a situation when only accuracy matters.

The empirical results presented in this table indicate that the optimal parameter setting
for P is 1/16 for the datasets used in our experiments. We will refer to this variant of active
testing as AT-A3R-1/16, or AT* for simplicity. We note, however, that the MIL values do not
vary much when the values of P are larger than 1/16 (i.e. 1/4 etc.). For all these setting time
is given a high importance.

When time is ignored, which corresponds to the setting of P=0 and the version is AT-
A3R-0. For simplicity, this version will be referred to as ATO in the rest of this article.

The MIL values in this table represent mean interval values obtained in different cycles
of the leave-one-out mode. Individual values vary quite a lot for different datasets, as can be
seen in the boxplots in Fig. 6. The loss-time curves for some of the variants are shown in
Fig. 7.

This study has provided an evidence that the AT method too works quite well when time
is taken into consideration. When time is ignored (version ATO), the results are quite poor

@ Springer

94 Mach Learn (2018) 107:79-108

Fig. 6 Boxplot showing the ©
distribution of MIL values for the
methods in Table 4

MIL values
4
|

T T T T T I
1/4 1/8 1/16 1/32 1/64 0
AT-A3R Variants

*

A
= AT-A3R-1/4
AT

18 | " . I

1.6 - 1 R
14 | . 1
12 "y ‘e, g
L :

08 . - il

Accuracy Loss (%)

0.6 K -
04 e

02 B

F e »

0
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7

Time (seconds)

Fig. 7 Mean loss-time curves for AT-A3R with different settings for P

(MIL=3.108). But if we compare ATO and ARO approaches, the ATO result is not so bad in
comparison.

The fact that ATO achieved much better value that ARO can be explained by the initial-
ization step used in Algorithm 1. We note that the AR* has been used to initialize the value
of apess. This version takes runtime into account. If ARO were used instead, the MIL of ATO
would increase to 21.89%, that is a value comparable to ARO.

The values shown in Table 4 and the accompanying boxplot indicate that the MIL scores
for the AT method have relatively high variance. One plausible explanation for this is the
following. The method selects the best competitor on the basis of the estimate of the highest
performance gain. Here the topmost element is used in an ordered list. However, there may
be other choices with rather similar value, albeit a bit smaller, which are ignored. If the
conditions are changed slightly, the order in the list changes and this affects the choice of the
best competitor and all subsequent steps.

@ Springer

Mach Learn (2018) 107:79-108 95

Table 5 MIL values of the AR and AT variants described above

Method AR* AT* ARO ATO

MIL 0.531 0.736 22.11 3.108

The bold value indicates that the AR* method achieves the lowest loss

2

AR* ——
- AT ——
18 . ARO - - =]

=" ATO = = =
16 [I 4

14 | o ,
12 F .

1+

0.8

Accuracy Loss (%)

06 - - 1
04 .

0.2

0 L L L | I} L
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7

Time (seconds)

Fig. 8 Mean loss-time curves of the AR and AT variants described above

4.3 Comparison of average rank and active testing method

In this section we present a comparison of the two upgraded methods discussed in this article,
the average ranking method and the active testing method (the hybrid variant) with optimized
parameter settings. Both are also compared to the original versions based on accuracy. To be
more precise, the comparison involves:

— AR*: Upgraded average ranking method, described in Sect. 3;

AT*: Upgraded active testing method, described in the preceding section;
ARO: Average ranking method based on accuracy alone;

— ATO: Active testing method based on accuracy alone;

The MIL values for the four variants above are presented in Table 5. The corresponding loss
curves are shown in Fig. 8. Note that the curve for AR* is the same curve shown earlier in
Fig. 3.

The results show that the upgraded versions of AR and AT that incorporate both accuracy
and runtime lead to much better loss values (MIL) than their accuracy-based counterparts.
The corresponding loss curves are shown in Fig. 8.

Statistical tests were used to compare the variants of algorithm selection methods presented
above. Following (DemSar 2006) the Friedman test was used first to determine whether the
methods were significantly different. As the result of this test was positive, we have carried
out Nemenyi test to determine which of the methods are (or are not) statistically different.
The data used for this test is shown in Table 6. For each of the four selection methods the
table shows the individual MIL values for the 39 datasets used in the experiment.

@ Springer

96

Mach Learn (2018) 107:79-108

Table 6 MIL values for the four meta-learners mentioned in Fig. 8 on different datasets

Dataset AR* ARO AT* ATO
MIL Rank MIL Rank MIL Rank MIL Rank

Anneal.ORIG 0.00 1.0 4.50 4.0 0.05 2.0 0.95 3.0
Kr-vs-kp 0.01 1.0 10.77 4.0 0.03 2.0 4.67 3.0
Letter 1.07 1.0 83.94 4.0 2.60 2.0 5.26 3.0
Balance-scale 0.34 1.0 0.49 3.0 0.47 2.0 0.70 4.0
Mfeat-factors 0.70 3.0 45.58 4.0 0.70 2.0 0.67 1.0
Mfeat-fourier 0.76 2.0 31.39 4.0 0.43 1.0 1.79 3.0
Breast-w 0.00 1.5 1.10 4.0 0.00 1.5 0.08 3.0
Mfeat-karhunen 0.21 2.0 30.81 4.0 0.08 1.0 0.43 3.0
Mfeat-morphol. 0.37 1.0 13.01 4.0 0.65 2.0 3.49 3.0
Mfeat-pixel 0.00 2.0 73.88 4.0 0.00 2.0 0.00 2.0
Car 0.53 1.0 3.82 4.0 0.98 2.0 3.04 3.0
Mfeat-zernike 2.02 2.0 28.82 4.0 1.980 1.0 5.75 3.0
Cmc 0.24 1.0 4.11 4.0 0.36 2.0 1.98 3.0
Mushroom 0.00 1.5 30.97 4.0 0.00 1.5 0.02 3.0
Nursery 0.27 1.0 28.45 4.0 0.28 2.0 5.34 3.0
Optdigits 0.56 1.0 57.70 4.0 0.71 2.0 1.43 3.0
Credit-a 0.01 1.0 0.56 4.0 0.01 2.0 0.41 3.0
Page-blocks 0.03 1.0 3.11 4.0 0.09 2.0 0.54 3.0
Credit-g 0.00 1.0 0.53 4.0 0.00 2.0 0.05 3.0
Pendigits 0.29 1.0 55.04 4.0 0.41 2.0 1.21 3.0
Cylinder-bands 0.00 1.5 8.17 4.0 0.00 1.5 1.18 3.0
Segment 0.00 1.0 25.05 4.0 0.03 2.0 1.21 3.0
Diabetes 0.00 2.0 0.83 4.0 0.00 2.0 0.00 2.0
Soybean 0.00 1.0 47.29 4.0 0.00 2.0 0.01 3.0
Spambase 0.06 1.0 17.25 4.0 0.19 2.0 1.79 3.0
Splice 0.41 2.0 34.46 4.0 0.31 1.0 0.44 3.0
Tic-tac-toe 0.07 2.0 2.45 3.0 0.00 1.0 9.84 4.0
Vehicle 1.34 1.0 5.76 4.0 1.85 2.0 5.12 3.0
Vowel 0.68 1.0 17.89 4.0 1.05 2.0 10.50 3.0
Waveform-5000 0.96 2.0 32.62 4.0 0.71 1.0 1.81 3.0
Electricity 3.12 2.0 23.18 4.0 2.71 1.0 14.09 3.0
Solar-flare 0.00 1.5 0.01 3.0 0.00 1.5 0.14 4.0
Adult 0.76 2.0 9.61 4.0 0.72 1.0 1.84 3.0
Yeast 0.00 1.0 4.25 4.0 0.23 2.0 222 3.0
Satimage 0.27 1.0 36.29 4.0 0.90 2.0 2.51 3.0
Abalone 0.42 1.0 9.01 4.0 0.59 2.0 1.01 3.0
Kropt 5.07 1.0 58.64 4.0 9.22 2.0 21.35 3.0
Baseball 0.12 1.0 1.57 3.0 0.21 2.0 4.90 4.0
Eucalyptus 0.03 1.0 19.30 4.0 0.16 2.0 3.47 3.0
Mean 0.53 14 22.11 39 0.74 1.7 3.11 3.0

@ Springer

Mach Learn (2018) 107:79-108 97

1 2 3 4

AR¥ —— L ARO

AT* ATO

Fig. 9 Results of Nemenyi test. Variants that are connected by a horizontal line are statistically equivalent

Statistical tests require that the MIL values be transformed into ranks. We have done
that and the resulting ranks are also shown in this table. The mean values are shown at the
bottom of the table. If we compare the mean values of AR* and AT*, we note that AR* is
slightly better than AT* when considering MILs, but the ordering is the other way round
when considering ranks.

Figure 9 shows the result of the statistical test discussed earlier. The two best variants
are A3R-based Average Ranking (AR*) and the active testing method AT*. Although AR*
has achieved better performance (MIL), the statistical test indicates that the difference is not
statistically significant. In other words, the two variants are statistically equivalent.

Both of these methods outperform their accuracy based counterparts, namely ATO and
ARO. The reasons for this were already explained earlier. This is due to the fact that the
accuracy based variants tend to select slow algorithms in the initial stages of the testing. This
is clearly a wrong strategy, if the aim is to identify algorithms with reasonable performance
relatively fast.

An interesting question is whether the AT* method could ever beat AR and, if so, under
which circumstances. We believe this could happen if much larger number of algorithms were
used. As we have mentioned earlier, in this study we have used 53 algorithms, which is a rela-
tively modest number by current standards. If we were to consider variants of algorithms with
different parameter settings, the number of algorithm configurations would easily increase by
1-2 orders of magnitude. We expect that under such circumstances the active testing method
would have an advantage over AR. AR would tend to spend a lot of time evaluating very
similar algorithms rather than identifying which candidates represent good competitors.

5 Effect of incomplete meta-data on average ranking

Our aim is to investigate the issue of how the generation of the average ranking is affected
by incomplete test results in the meta-dataset available. The work presented here focuses on
the AR* ranking discussed earlier in Sect. 3. We wish to see how robust the method is to
omissions in the meta-dataset. This issue is relevant because meta-datasets that have been
gathered by researchers are very often incomplete. Here we consider two different ways in
which the meta-dataset can be incomplete: First, the test results on some datasets may be
completely missing. Second, there may be certain proportion of omissions in the test results
of some algorithms on each dataset.

The expectation is that the performance of the average ranking method would degrade
when less information is available. However, an interesting question is how grave the degra-
dation is. The answer to this issue is not straightforward, as it depends greatly on how diverse
the datasets are and how this affects the rankings of algorithms. If the rankings are very sim-
ilar, then we expect that the omissions would not make much difference. So the issue of the
effects of omissions needs to be relativized. To do this we will investigate the following issues:

@ Springer

98 Mach Learn (2018) 107:79-108

Table 7 Missing test results on

certain percentage of datasets Algorithms D1 D> D3 D4 Ds Ds
(MTD) a 0.85 0.77 098 0.82
a 0.95 0.67 0.68 0.72
a 0.63 0.55 0.89 0.46
as 0.45 034 058 0.63
as 0.78 061 034 0.97
ag 0.67 070 0.89 0.22
certain percentane of dgortns Algorithms DI D2 Dy Ds D5 Ds
(MTA) a 085 077 0.98 0.82
a 055 0.67 0.68 0.66
a3 0.63 0.55 0.89 0.46
as 045 052 034 044 0.63
as 078 087 061 034 042
a6 0.99 0.89 0.22

— Effects of missing test results on X% of datasets (alternative MTD);
— Effects of missing X% of test results of algorithms on each dataset (alternative MTA).

If the performance drop of alternative MTA were not too different from the drop of alternative
MTPD, then we could conclude that X% of omissions is not unduly degrading the performance
and hence the method of average ranking is relatively robust. Each of these alternatives is
discussed in more detail below.

Missing all test results on some datasets (alternative MTD): This strategy involves ran-
domly omitting all test results on a given proportion of datasets from our meta-dataset. An
example of this scenario is depicted in Table 7. In this example the test results on datasets D,
and D5 are completely missing. The aim is to show how much the average ranking degrades
due to these missing results.

Missing some algorithm test results on each dataset (alternative MTA): Here the aim is to
drop a certain proportion of test results on each dataset. The omissions are simply distributed
uniformly across all datasets. That is, the probability that the test result of algorithm a; is
missing is the same irrespective of which algorithm is chosen. An example of this scenario
is depicted in Table 8.

The proportion of test results on datasets/algorithms omitted is a parameter of the method.
Here we use the values shown in Table 9. We use the same meta-dataset described earlier
in this article. This dataset was used to obtain a new one in which the test results of some
datasets, chosen at random, would be obliterated. The resulting dataset was used to construct
the average ranking. Each ranking was then used to construct a loss-time curve. The whole
process was repeated 10 times. This way we would obtain 10 loss-time curves, which would
be aggregated into a single loss-time curve. Our aim is to upgrade the average ranking
method to be able to deal with incomplete rankings. The enhanced method (AR*-MTA-H) is
described in the next section. It can be characterized as a heuristic method of aggregation of
incomplete rankings that uses weights of ranks. Later it is compared to the classical approach
(AR*-MTA-B), that serves as a baseline here. This method is based on the original Borda’s
method (Lin 2010) and is commonly used by many researchers.

@ Springer

Mach Learn (2018) 107:79-108 99

Table 9 Percentages of Omissions % 0 5 10 20 50 90 95
omissions and the numbers of
datasets and algorithms used No of datasets used in MTD 38 36 34 30 19

No of tests per dataset in MTA 53 50 48 43 26 5 3

Table 10 An example of two

rankings Ry and Ry and the Ry Rank R Rank RA Rank Weight
aggregated ranking RA a1 1 ay 1 a 1.67 12

a3 2 ay 2 as 2 1

ay 3 as 3 1

a 4 ay 3.5 1.2

ag 5 ag 5 1

as 6 as 6 1

5.1 Aggregation method for incomplete rankings (AR*-MTA-H)

Before describing the method, let us consider a motivating example (see Table 10), illustrating
why we cannot simply use the usual average ranking method (Lin 2010), often used in
comparative studies in machine learning literature.

Let us compare the rankings R| and R, (Table 10). We note that algorithm a5 is ranked 4
in ranking R, but has rank 1 in ranking R». If we used the usual method, the final ranking of
a» would be the mean of the two ranks, i.e. (4+1)/2=2.5. This seems intuitively not right, as
the information in ranking R; is incomplete. If we carry out just one test and obtain ranking
R; as a result, this information is obviously inferior to having conducted more tests leading
to ranking R;. So these observations suggest that the number of tests should be taken into
account to set the weight to of the individual elements of the ranking.

In our method the weight is calculated using the expression (N —1) /(Nmax —1), where N
represents the number of filled-in elements in the ranking and Nmax the maximum number
of elements that could be filled-in. So, for instance, in the ranking Ry, N = 6 and Nmax = 6.
Therefore, the weight of each element in the ranking is 5/5 = 1. We note that N — 1 (i.e. 5),
represents the number of non-transitive relations in the ranking, namely a; > a3, a3 > aa, ..,
ae > as. Here a; > a; is used to indicate that a; is preferred to a;.

Let us consider the incomplete ranking R>. Suppose we know a priori that the ranking
could include 6 elements and so Nmax = 6, as in the previous case. Then the weight of
each element will be (N — 1)/(Nmax — 1) = 1/5 = 0.2. The notion of weight captures the
fact that ranking R; provides less information than ranking R;. We need this concept in the
process of calculating the average ranking.

Our upgraded version of the aggregation method for incomplete rankings involves the
initialization step, which consists of fetching the first ranking and using it to initialize the
average ranking R“. Then in each subsequent step a new ranking is read-in and aggregated
with the average ranking, producing a new average ranking. The aggregation is done by going
through all elements in the ranking, one by one. If the element appears in both the aggregated
ranking and the read-in ranking, its rank is recalculated as a weighted average of the two
ranks: ' ' _ _

A :=rA>!<wlA/(wiA—|—wl./)+rl:’*wiJ/(wlA—l—wiJ) (7)

i i

@ Springer

100 Mach Learn (2018) 107:79-108

Fig. 10 Spearman’s rank Histogram of correlation
correlation coefficient between —
rankings for pairs of datasets

Frequency
100 150 200
I I |

50
|

M T T]
-0.5 0.0 0.5 1.0
correlation

where riA represents the rank of element i in the aggregated ranking and rij the rank of the

element i in the ranking j and wf‘ and wij represent the corresponding weights. The weight
is updated as follows:

wi = wl + wij 8)

If the element appears in the aggregated ranking, but not in the new read-in ranking, both the
rank and the weight are kept unchanged.

Suppose the aim is to aggregate the rankings R; and R, shown before. The new rank of
ap will be r2A =4*1/1.2 + 1*0.2/1.2 = 3.5. The weight will be w? =1+0.2=1.2. The final
aggregated ranking of rankings R; and R; is R? as shown in Table 10.

5.2 Results on the effects of omissions in the meta-dataset
5.2.1 Characterization of the meta-dataset

We were interested in analyzing different rankings of classification algorithms on different
datasets used in this work and, in particular, how these differ for different pairs of datasets. If
two datasets are very similar, the algorithm rankings will also be similar and, consequently,
the correlation coefficient will be near 1. On the other hand, if the two datasets are quite
different, the correlation will be low. In the extreme case, the correlation coefficient will be
— 1 (i.e. one ranking is the inverse of the other). So the distribution of pairwise correlation
coefficients provides an estimate of how difficult the meta-learning task is.

Figure 10 shows a histogram of correlation values. The histogram is accompanied by
expected value, standard deviation and coefficient of variation calculated as the ratio of
standard deviation to the expected value (mean) (Witten and Frank 2005). These measures
are shown in Table 11.

5.2.2 Study of accuracy-based rankings and one paradox

Ranking methods use a particular performance measure to construct an ordering of algo-
rithms. Some commonly used measures of performance are accuracy, AUC or A3R that

@ Springer

Mach Learn (2018) 107:79-108 101

Table 11 Measures characterizing the histogram of correlations in Fig. 10

Measure % Expected value SD Coefficient of variation
Value 0.5134 0.2663 51.86%
Table 12 Mean interval loss Lo
Method % O
(MIL) values for different etho o Lmissions
percentage of omissions 0 5 10 20 50 90 95

AR*-MTD 22.11 21.09 20.66 20.12 19 17.92 15.15

combines accuracy and runtime discussed in Sect. 3.3. In the first study we have focused
solely on the average ranking based on accuracy. When studying how omissions of tests on
datasets affect rankings and the corresponding loss time curves, we became aware of one
paradox that can arise under certain conditions. This paradox can be formulated as follows:

Suppose we use tests of a given set of algorithms on a set of M (N) datasets leading to
M (N) accuracy-based rankings. Suppose the M (N) rankings are aggregated to construct the
average ranking. Suppose that M > N (for instance, consider M=10 and N=1). Let ARy
represent the average ranking elaborated on the basis M rankings obtained on the respective
M datasets. We can then expect that MIL of the variant AR, would be lower (better) than
the MIL of ARy . However, we have observed that this was exactly the other way round.

Table 12 provides evidence for the observation above. When all datasets are used to
construct the average ranking (omissions are 0%) the MIL is 22.11. When only 5% are
used (omissions are 95%), the MIL value is lower, i.e. 15.15. In other words, using more
information leads to worse results!

Our explanation for this paradox is as follows. The accuracy-based average ranking orders
the algorithms by accuracy. If we use several such rankings constructed on different datasets,
we can expect that we get an ordering where the algorithms with high accuracy on many
datasets will appear in the initial positions of the ranking. These algorithms tend to be slower
than the ones that require less time to train. So if we use this ranking and use loss time
curves in the evaluation, we need to wait a long time before the high-accuracy algorithms
get executed. This does not happen so much if use a ranking constructed on fewer datasets.

We have carried out additional experiments that support this explanation. First, if we use
just test curves, where each test lasts one unit of time, the paradox disappears. Also, if we
use A3R to rank the algorithms, again the problem disappears. In these situations we can see
that if we use more information, the result is normally better.

In conclusion, to avoid the paradox, it is necessary to use a similar criterion both in the
construction of rankings and in the process of loss curve construction.

5.2.3 Study of AR* ranking methods and the results

In the second study we have focused on AR*. Table 13 presents the results for the alternatives
AR*-MTD, AR*-MTA-H and AR*-MTA-B in terms of mean interval loss (MIL). All loss-
time curves start from the initial loss of the default classification. This loss is calculated
as the difference in performance between the best algorithm and the default accuracy for
each dataset. The default accuracy is calculated in the usual way, by simply predicting the

@ Springer

102 Mach Learn (2018) 107:79-108

Table 13 Mean interval loss (MIL) values for different percentage of omissions

Method Omission%
0 5 10 20 50 90 95
AR*-MTD 0.531 0.535 0.535 0.536 0.550 1.175 1.633
AR*-MTA-H 0.531 0.534 0.537 0.542 0.590 1.665 2.042
AR*-MTA-B 0.531 0.536 0.537 0.544 0.593 2.970 3.402
AR*-MTA-H/AR*-MTD 1.00 1.00 1.00 1.01 1.07 1.42 1.25
25

AR*-MTD-90% =——
AR*-MTA-B-90%
AR*-MTA-H-90% ——

Accuracy Loss (%)

0 L . .
1e+0 1e+1 1e+2 1e+3 1et+4 1et5 1et+6
Time (seconds)

Fig. 11 Comparison of AR*-MTA-H with AR*-MTD and the baseline method AR*-MTA-B for 90% of omis-
sions

CD

AR*-MTD
AR*-MTA-H

AR*-MTA-B

Fig. 12 Results of Nemenyi test, variants of the meta-learners that are connected by a horizontal line are
statistically equivalent

majority class for the dataset in question. The values for the ordinary average ranking method,
AR*-MTA-B, are also shown, as this method serves as a baseline.

Figure 11 shows the loss-time curves for the three alternatives when the number of omis-
sions is 90%. Not all loss-time curves are shown, as the figure would be rather cluttered.

Our results show that the proposed average ranking method AR*-MTA-H achieves better
results than the baseline method AR *-MTA-B. We note also that although the proposed method
AR*-MTA-H achieves comparable results to AR*-MTD for many values of the percentage
drop (all values up to about 50%). Only when we get to rather extreme values, such as 90%,
the difference is noticeable. Still, the differences between our proposed variant AR *-MTA-H
and AR*-MTD are smaller than the differences between AR*-MTA-B and AR*-MTD.

@ Springer

Mach Learn (2018) 107:79-108 103

These above observations are supported also by the results of a statistical test. The val-
ues shown in Table 13 were used to conduct a Nemenyi test and the result is shown in
Fig. 12. These results indicate that the proposed average ranking method is relatively robust
to omissions.

6 Conclusions

Upgrading AT and AR methods to be more effective

In this paper we addressed an approach for algorithm selection where the recommendation
is presented in the form of a ranking. The work described here extends two existing methods
described earlier in the literature. The first one was average ranking (AR) and the second
active testing (AT).

The first method (AR) is a rather simple one. It calculates an average ranking for all
algorithms over all datasets. We have shown how to upgrade this method to incorporate
the measure A3R that combines accuracy and run time. The novelty here lies in the use of
A3R, instead of just accuracy. The second method (AT) employs tests to identify the most
promising candidates, as its aim is to intelligently select the next algorithm to test on the new
dataset. We have also shown how this method can be to upgraded to incorporate the measure
A3R that combines accuracy and runtime.

Establishing the correct balance between accuracy and runtime

We have also investigated the issue of how to establish the correct balance between accu-
racy and runtime. Giving too much weight to time would promote rather poor algorithms
and hence time could be wasted. Giving too little weight to time would work in the opposite
direction. It would promote tests on algorithms which exhibit good performance in general,
but may occasionally fail. Unfortunately, such algorithms tend to be rather slow and so their
incorporation early in the testing process may actually delay the process of identifying good
algorithms early.

It is thus necessary to establish the correct balance between the weight given to accuracy
and the weight given to time. As we have shown in Sect. 3.3.2, this can be done by determining
an appropriate setting for parameter P used within function A3R that combines accuracy and
runtime. One rather surprising consequence of this is the following: if the user wished to
impose his preference regards the relative importance of accuracy and runtime, he/she would
probably end up with a worse result than the one obtained with our setting.

Evaluation methodology using loss-time curves

The experimental results were presented in the form of loss-time curves. This represen-
tation, where time is represented on a logarithmic scale, has the following advantages. First,
it stresses the losses at the beginning of the curve, corresponding to the initial tests. This
is justified by the fact that users would normally prefer to obtain good recommendations as
quickly as possible.

We note that testing without a cut-off on time (budget) is not really practicable, as users are
not prepared to wait beyond a given limit. On the other hand, many applications may allow
that results come only after some small amount of time. This is why here we focused on the
selection process within a given time interval. Having a fixed time interval has advantages,
as it is possible to compare different variants just by comparing the mean interval loss (MIL).

The results presented earlier, see Sect. 4.3, show that the upgraded versions of AR* and
AT#* lead to much better results in terms of mean loss values (MIL) than their accuracy-based

@ Springer

104 Mach Learn (2018) 107:79-108

counterparts. In other words, the incorporation of both accuracy and runtime into the methods
pays off.

Disastrous results of ARO and a paradox identified

We have shown that if we do not incorporate both accuracy and runtime, the variant
ARO that uses only accuracy leads to disastrous results in terms of MIL. We have provided
an explanation for this phenomenon and drawn attention to an apparent paradox, as more
information seems to lead to worse results.

Comparison of AT* and AR* methods

When comparing the AT* and AR* methods, we note that both methods lead to comparable
results. We must keep in mind, however, that our meta-dataset included test results on 53
algorithms only. If more candidate algorithms were used, we expect that AT* method would
lead to better results that AR*.

The effects of incomplete test results on AR* method

We have also investigated the problem of how the process of generating the average ranking
is affected by incomplete test results by describing a relatively simple method, AR*-MTA-H,
that permits to aggregate incomplete rankings. We have also proposed a methodology that is
useful in the process of evaluating our aggregation method. This involves using a standard
aggregation method AR *-MTD on a set of complete rankings, but whose number is decreased
following the proportion of omissions in the incomplete rankings. As we have shown, the
proposed aggregation method achieves quite comparable results and is relatively robust to
omissions in test results in the test data. We have shown that a percentage drop of up to 50%
does not make much difference. As the incomplete meta-dataset does not affect much the final
ranking and the corresponding loss, this could be explored in future design of experiments,
when gathering new test results.

6.1 Discussion and future work

In this section we present some suggestions on what could be done in future work.

Verifying the conjecture regarding AT*

In Sect. 4.3 we have compared the two best variants - AT* and AR*. We have shown
that the results obtained with the AT* variant are slightly worse than those obtained using
AR*. However, the two results are statistically equivalent and it is conceivable that if the
number of algorithms or their variants were increased, the AT* method could win over AR*.
Experiments should be carried out to verify whether this conjecture holds. Also, we plan to
re-examine the AT method to see if it could be further improved.

Would the best setting of P transfer to other datasets?

An interesting question is how stable the best setting for the parameter P (parameter used
within A3R) is. This could be investigated in the following manner. First we can gather a
large set of datasets and draw samples of datasets of fixed size at random. We would establish
the optimum P; for sample i and then determine what we would be the loss on sample j if
P; were used, rather than the optimized value P;.

How does P vary for different budgets?

Another question is whether the optimum value of P varies much if the budget (7,4) is
altered. A more general question involves the interval T,,;;, - Tjn4y . Further studies should be
carried out, so that these questions could be answered.

@ Springer

Mach Learn (2018) 107:79-108 105

Applying AT both to algorithm selection and hyper-parameter tuning

We should investigate whether the AT method can be extended to handle both the selection
of learning algorithms and parameter settings. This line of work may require the incorporation
of techniques used in the area of parameter settings (e.g. [?], among others).

Combining AT with classical approaches to meta-learning

Another interesting issue is whether the AT approach could be extended to incorporate the
classical dataset characteristics and whether this would be beneficial. Earlier work (Leite and
Brazdil 2008) found that the AT approach achieves better results than classical meta-models
based on dataset characteristics. More recently, it was shown (Sun and Pfahringer 2013)
that pairwise meta-rules were more effective than the other ranking approaches. Hence, it
is likely that the AT algorithm could be extended by incorporation information of dataset
characteristics and pairwise meta-rules.

Leave-one-out CV versus k-fold cross-validation

All methods discussed in this paper were evaluated using the leave-one-out cross-
validation (LOO-CV). All datasets except one were used to refine our model (e.g. AR).
The model was then applied to the dataset that was left out and evaluated by observing the
loss curve. We have opted for this method, as our meta-dataset included test results on a
modest number of datasets (39). As LOO-CV may suffer from high variance, 10-fold CV
could be used in future studies.

Study of the effects of incomplete meta-datasets

In most work on meta-learning it is assumed that the evaluations to construct the meta-
dataset can be carried out off-line and hence the cost (time) of gathering this data is ignored.
In future work we could investigate approaches that permit to consider also the costs (time)
of off-line tests. Their cost (time) could be set to some fraction of the cost of on-line test (i.e.
tests on a new dataset), but not really ignored altogether. The approaches discussed in this
paper could be upgraded so that they would minimize the overall costs.

Acknowledgements The authors wish to express our gratitude to the following institutions which have pro-
vided funding to support this work: Federal Government of Nigeria Tertiary Education Trust Fund under
the TETFund 2012 AST$D Intervention for Kano University of Science and Technology, Wudil, Kano
State, Nigeria for PhD Overseas Training; FCT/MEC through PIDDAC and ERDF/ON2 within project
NORTE-07-0124-FEDER-000059 and through the COMPETE Programme (operational programme for com-
petitiveness) and by National Funds through the FCT Portuguese Foundation for Science and Technology
within project FCOMP-01-0124-FEDER-037281; Grant 612:001:206 from the Netherlands Organisation for
Scientific Research (NWO). We wish to express our gratitude to all anonymous referees for their detailed
comments which led to various improvements of this paper. Also, our thanks to Miguel Cachada for reading
through the paper and his comments and in particular one very useful observation regarding the AT method.

@ Springer

106 Mach Learn (2018) 107:79-108

A Algorithm ranks

See Table 14.

Table 14 Algorithms used in the experiment and their ranks ordered using AR*. All classifiers as implemented
in Weka 3.7.12. For full details, see https: //www.openml .org/s/37

Algorithm Rank-AR* Rank-ARO
A1DE 1 8
Bagging(RandomTree) 2 14
NaiveBayes 3 35
RandomCommittee(RandomTree) 4 15
NaiveBayesUpdateable 5 36
BayesNet(K2) 6 32
END(ND(J48)) 7 13
Bagging(J48) 8 9
LogitBoost(DecisionStump) 9 17
RandomForest 10 3
J48 11 28
RandomSubSpace(REPTree) 12 21
MultiBoostAB(J48) 13 10
SMO(PolyKernel) 14 11
AdaBoostM1(REPTree) 15 18
Bagging(REPTree) 16 22
REPTree 17 37
MultiBoostAB(REPTree) 18 19
SimpleLogistic 19 4
Bagging(NaiveBayes) 20 34
AdaBoostM1(J48) 21 16
PART 22 30
HoeffdingTree 23 33
ClassificationViaRegression(M5P) 24 12
LMT 25 1
JRip 26 31
AdaBoostM1(RandomTree) 27 40
AdaBoostM1(NaiveBayes) 28 26
AdaBoostM1(IBk) 29 24
RandomTree 30 41
Bagging(JRip) 31 6
MultiBoostAB(RandomTree) 32 38
MultiBoostAB(JRip) 33 7
IterativeClassifierOptimizer(LogitBoost(DecisionStump)) 34 20
MultiBoostAB(NaiveBayes) 35 29

@ Springer

Mach Learn (2018) 107:79-108 107

Table 14 continued

Algorithm Rank-AR* Rank-ARO
LADTree 36 25
Bagging(LMT) 37 2
Dagging(DecisionStump) 38 42
OneR 39 45
NBTree 40 23
AdaBoostM1(LMT) 41 5
DTNB 42 27
DecisionStump 43 50
AdaBoostM1(DecisionStump) 44 43
Bagging(OneR) 45 44
SMO(RBFKernel) 46 39
AdaBoostM1(OneR) 47 47
MultiBoostAB(OneR) 48 46
MultiBoostAB(DecisionStump) 49 48
Bagging(DecisionStump) 50 49
ZeroR 51 52
CVParameterSelection(ZeroR) 52 53
RacedIncremental LogitBoost(DecisionStump) 53 51
References

Abdulrahman, S. M., & Brazdil, P. (2014). Measures for combining accuracy and time for meta-learning.
Meta-Learning and Algorithm Selection Workshop at ECAI, 2014, 49-50.

Brazdil, P. & Soares, C. (2000). A Comparison of ranking methods for classification algorithm selection. In
Machine Learning: ECML 2000, pp. 63-75. Springer.

Brazdil, P., Soares, C., & da Costa, J. P. (2003). Ranking learning algorithms: Using IBL and meta-learning
on accuracy and time results. Machine Learning, 50(3), 251-277.

Brazdil, P, Carrier, C . G., Soares, C., & Vilalta, R. (2008). Metalearning: Applications to data mining. Berlin:
Springer.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7, 1-30.

Fedorov, V . V. (1972). Theory of optimal experiments. Cambridge: Academic Press.

Feurer, M., Springenberg, T. & Hutter, F. (2015). Initializing bayesian hyperparameter optimization via meta-
learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 2015.

Fiirnkranz, J. & Petrak, J. (2001). An evaluation of landmarking variants. In Working Notes of the ECML/PKDD
2000 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning, pp. 57-68.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining
software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

Jankowski, N. (2013). Complexity measures for meta-learning and their optimality. In Algorithmic Probability
and Friends. Bayesian Prediction and Artificial Intelligence., pp. 198-210.

Leite, R. & Brazdil, P. (2008). Selecting classifiers using meta-learning with sampling landmarks and data
characterization. In Proceedings of the 2nd Planning to Learn Workshop (PlanLearn) at ICML/COLT/UAI
2008, pp. 35-41.

Leite, R. & Brazdil, P. (2010). Active testing strategy to predict the best classification algorithm via sampling
and metalearning. In ECAI, pp. 309-314.

Leite, R., Brazdil, P. & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In Machine
Learning and Data Mining in Pattern Recognition, pp. 117-131. Springer.

@ Springer

108 Mach Learn (2018) 107:79-108

Li, L., Chu, W., Langford, J. & Schapire, R. E. (2010). A contextual-bandit approach to personalized news
article recommendation. In Proceedings of 19th WWW, pp. 661-670. ACM.

Lin, S. (2010). Rank aggregation methods. WIREs Computational Statistics, 2, 555-570.

Long, B., Chapelle, O., Zhang, Y., Chang, Y., Zheng, Z. & Tseng, B. (2010). Active learning for ranking
through expected loss optimization. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 267-274. ACM.

Neave, H. R., & Worthington, P. L. (1988). Distribution-free Tests. London: Unwin Hyman.

Pfahringer, B., Bensusan, H. & Giraud-Carrier, C. (2000). Tell me who can learn you and I can tell you who
you are: Landmarking various learning algorithms. In Proceedings of the 17th International Conference
on Machine Learning, pp. 743-750.

Pihur, V., Datta, S., & Datta, S. (2009). RankAggreg, an R package for weighted rank aggregation. BMC
Bioinformatics, 10(1), 62.

Prudéncio, R. B. & Ludermir, T. B. (2007). Active selection of training examples for meta-learning. In 7zh
International Conference on Hybrid Intelligent Systems, 2007. HIS 2007., pp. 126-131. IEEE.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65-118.

Smith-Miles, K . A. (2008). Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM
Computing Surveys (CSUR), 41(1), 6:1-6:25.

Sun, Quan, & Pfahringer, B. (2013). Pairwise meta-rules for better meta-learning-based algorithm ranking.
Machine Learning, 93(1), 141-161.

van Rijn, J. N., Abdulrahman, S. M., Brazdil, P. & Vanschoren, J. (2015). Fast algorithm selection using
learning curves. In Advances in Intelligent Data Analysis XIV, pp. 298-309. Springer.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: Networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 15(2), 49-60.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. Burlington:
Morgan Kaufmann.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Hydra-MIP: Automated algorithm configuration and
selection for mixed integer programming. In RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IICAI)

@ Springer

	Speeding up algorithm selection using average ranking and active testing by introducing runtime
	Abstract
	1 Introduction
	2 Related work
	2.1 Meta-learning approaches to algorithm selection
	2.2 Active testing
	2.3 Active learning
	2.4 Combining accuracy and runtime
	2.5 Hyperparameter optimization
	2.6 Aggregation of rankings
	2.7 Multi-armed bandits

	3 Upgrading the average ranking method by incorporating runtime
	3.1 Overview of the average ranking method
	3.1.1 Evaluation of rankings
	3.1.2 Loss-time curves

	3.2 Data used in the experiments
	3.3 Combining accuracy and runtime
	3.3.1 Upgrading the average ranking method using A3R
	3.3.2 Searching for the best parameter setting
	3.3.3 Discussion

	4 Active testing using accuracy and runtime
	4.1 Upgrading active testing with A3R
	4.1.1 Active testing with A3R on one dataset

	4.2 Optimizing the parameter settings for AT-A3R
	4.3 Comparison of average rank and active testing method

	5 Effect of incomplete meta-data on average ranking
	5.1 Aggregation method for incomplete rankings (AR*-MTA-H)
	5.2 Results on the effects of omissions in the meta-dataset
	5.2.1 Characterization of the meta-dataset
	5.2.2 Study of accuracy-based rankings and one paradox
	5.2.3 Study of AR* ranking methods and the results

	6 Conclusions
	6.1 Discussion and future work

	Acknowledgements
	A Algorithm ranks
	References

