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Abstract When differentiating between strong and weak relationships using information
theoreticmeasures, the variance plays an important role: the higher the variance, the lower the
chance to correctly rank the relationships.We propose the randomized information coefficient
(RIC), a mutual information based measure with low variance, to quantify the dependency
between two sets of numerical variables.We first formally establish the importance of achiev-
ing low variance when comparing relationships using the mutual information estimated with
grids. Second, we experimentally demonstrate the effectiveness of RIC for (i) detecting noisy
dependencies and (ii) ranking dependencies for the applications of genetic network inference
and feature selection for regression. Across these tasks, RIC is very competitive over other
16 state-of-the-art measures. Other prominent features of RIC include its simplicity and
efficiency, making it a promising new method for dependency assessment.
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1 Introduction

There are many possible ways to quantify the dependency between two numerical variables
X and Y . If the user is interested in linear dependencies, Pearson’s correlation coefficient
r(X, Y ) can be used. For non-linear cases, information theory provides a well-established
measure, the mutual information between X and Y (Cover and Thomas 2012). More recently,
a number of novel information theoretic based measures have been proposed (Reshef et al.
2011; Sugiyama and Borgwardt 2013). In the last few years, distance based measures have
also become popular (Székely and Rizzo 2009; Lopez-Paz et al. 2013) as well as methods that
employ kernels to measure dependency (Gretton et al. 2005, 2012). Some of these measures,
but not all of them, can also be used to quantify the dependency between two sets of numerical
variablesX andY. Table 1 sketches the difference between dependency measures applicable
to variables and sets of variables. All such measures are estimated on samples of X and
Y, and a measure with high variance can encounter problems in discriminating between a
strong and aweaker relationship. For example, when testing for independence betweenX and
Y, their relationship on a sample is compared to their relationship under the independence
assumption (Simon and Tibshirani 2011). In the case of mutual information, the importance
of reducing variance while minimizing the impact on the bias is implied by the statements
in Kraskov et al. (2004), Margolin et al. (2006) and Schaffernicht et al. (2010), which can
be summarized as: when comparing dependencies, systematic estimation biases cancel each
other out. Therefore smaller variance for mutual information yields a more accurate ranking
of relationships. In this paper, we investigate the role of bias and variance of the estimator of
mutual information based on grids to compare relationships. Ranking dependencies between
variables or set of variables is fundamental for a number of important applications, such as
feature selection (Guyon and Elisseeff 2003) and network inference (Villaverde et al. 2013).

To quantify the dependency between two sets of numerical variables, we propose a
low-variance measure based on information and ensemble theory that can capture many
relationship types. Our measure, named the randomized information coefficient (RIC), is
computed by randomly generating K discretization grids Gk and averaging the normalized
mutual information (NI) (Kvalseth 1987) over all the grids as:

RIC(X,Y) � 1

K

K∑

k=1

NI
(
(X,Y)|Gk

)
(1)

Normalization enables us to consider gridswith different cardinalities. Thenormalizedmutual
information on a grid G is defined as

NI
(
(X,Y)|G)

�
I
(
(X,Y)|G)

max {H(X|G), H(Y|G)} (2)

Table 1 Differences between dependency measures for variables and set of variables

Variables Sets of variables

Symbol: D(X, Y ) where X and Y are one
dimensional variables

D(X,Y) where X and Y are resp. a set of p
and q variables

Example D(weight,height) D({weight,height},BMI)

Application Feature filtering for regression, Genetic
network inference

Feature selection for regression

123



Mach Learn (2018) 107:509–549 511

where I and H are respectively the mutual information and the entropy function for discrete
variables. We choose to normalize by max {H(X), H(Y)} as it is the tightest upper bound
that still preserves the metric properties of NI (Vinh et al. 2010).

The intuition behind this measure is that on average a random grid can encapsulate the
relationship between X and Y. Both random discretization and ensembles of classifiers have
been shown to be effective in machine learning, for example, in random forests (Breiman
2001). Substantial randomization has been shown to be even more effective in reducing the
variance of predictions (Geurts et al. 2006). Our aim is to exploit this powerful approach
to develop an efficient, effective and easy-to-compute statistic for quantifying dependency
between two set variables.

Our contributions in this paper are three-fold:

– We propose a low-variance statistic (RIC) based on information and ensemble theory,
which is efficient and easy to compute;

– Via theoretical analysis and extensive experimental evaluation, we link our measure’s
strong performance on (i) discrimination between strong and weak noisy relationships,
and (ii) ranking of relationships, to its low variance estimation of mutual information;

– We extensively demonstrate the competitive performance of RIC versus 16 state-of-the-
art dependency measures using both simulated and real scenarios.

2 Related work

We first present a brief review of the many available dependency measures and their connec-
tions with RIC.

2.1 Correlation and kernel based measures

When the user is only interested in linear dependencies between two variables, the sample
Pearson’s correlation coefficient r is powerful. Thiswas extended inSzékely andRizzo (2009)
to handle non-linear dependencies between two sets of variables using distance correlation
(dCorr). More recently, random projections have been employed to achieve speed improve-
ments (Lopez-Paz et al. 2013), yielding the randomized dependency coefficient (RDC). RDC
might be seen as a randomized way to identify the maximal correlation between sets of vari-
ables and thus can alsobe seen as an extensionof the alternative conditional expectation (ACE)
algorithm proposed in Breiman and Friedman (1985). In our work, the random discretization
grids used in RIC can be seen as random projections. However, we do not use a linearmeasure
of dependency such as r because this would require optimization across projections to return
a meaningful result. Instead, we compute the normalized mutual information that quantifies
non-linear dependencies for each possible projection (grid). This approach allows us to take
into account every single grid and each of them contributes to the computation of the average
value of NI across grids. No optimization is required.

The correlation between two sets of variables can also be measured employing the joint
distribution of the studied variables under kernel embeddings. The Hilbert–Schmidt inde-
pendence criterion (HSIC) (Gretton et al. 2005) is an example of such measures that has
been shown to be competitive in feature selection tasks (Song et al. 2007). RIC measures
the dependency between two sets of variables employing their distribution without kernel
embeddings: the distribution is efficiently estimated making use of the random grid and no
kernels are used because the distribution estimated with the grid can be straightforwardly
plugged in the normalized mutual information formula.
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2.2 Mutual information

The mutual information (MI) between two sets of random variables I (X,Y) is a powerful
and well established dependency measure (Cover and Thomas 2012). A number of different
estimators have been proposed for mutual information (Steuer et al. 2002; Kraskov et al.
2004). The standard approach however consists of discretizing the space of possible values
that X and Y can take and then estimating the probability mass function using the frequency
of occurrence. There are many possible approaches to discretization of random variables.
For example, a single random variable can be easily discretized according to equal-width
or equal-frequency binning, or according to more complex principles such as the minimum
description length (Fayyad and Irani 1993). We note that there is no universally accepted
optimal discretization technique. Even though, for sets of variables few sensible discretization
have been proposed (Dougherty et al. 1995; Garcia et al. 2013), to our knowledge, there
is no extensive survey about the estimation of mutual information with multiple variable
discretization approaches.

Mutual information estimators based on discretization in equal width intervals have been
discussed in Steuer et al. (2002). Particularly crucial is the choice of the number of bins used
to discretize X and Y : too big values lead to overestimation of mutual information due to a
finite-sample effect. To mitigate this problem, adaptive partitioning of the discretization grid
on the joint distribution (X, Y ) has been proposed (Fraser and Swinney 1986) and optimized
for speed (Cellucci et al. 2005). Other competitive mutual information estimators used in
practice are Kraskov’s k nearest neighbors estimator (Kraskov et al. 2004) and the kernel
density estimator (Moon et al. 1995). An extensive comparison of these estimators can be
found in Khan et al. (2007). Mutual information has been successfully employed for a variety
of applications, such as feature selection (Nguyen et al. 2014b) and reverse engineering
genetic networks (Villaverde et al. 2013). Given the evident number of application scenarios
of mutual information and its undeniable efficacy, we choose to use the discretization-based
MI estimator as the main building block of RIC. We further make use of normalization
because it helps to deflate mutual information on finite samples, bounding the output values
in [0, 1] (Romano et al. 2014).

2.3 Other information theoretic measures

More recently, new measures based on information theory, such as the maximal information
coefficient (MIC) presented in Reshef et al. (2011) and the mutual information dimension
(MID) (Sugiyama and Borgwardt 2013), have been proposed. MID is based on discretization
and it aims to outperform other measures in white noise scenarios. In particular, it outper-
forms MIC under white noise. Other prominent features of MID include its efficiency with
an average running timeO(n log n), and the ability to characterize multi-functional relation-
ships with a score of 1. MIC is another successful measure of dependence whose value is
interpretable in various settings. Its value is obtained by performing discretization using grids
over the joint distribution (X, Y ). MIC satisfies a useful property called equitability, which
allows it to act as a proxy for the coefficient of determination R2 of a functional relationship
(Reshef et al. 2015b).

Reshef et al. (2015b) also proposed two new statistics based on grids in this recent preprint:
MICe which is an improved estimator of the population value of MIC; and the total infor-
mation coefficient (TICe) to achieve high power when testing for independence between
variables. In a thorough study, Reshef et al. (2015a) compared many different dependency
measures between variables and demonstrated that MICe and TICe are the state-of-the-art to
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obtain high equitability and high power respectively. MICe optimizes the normalized mutual
information over all grid cardinalities and grid cut-offs. TICe still optimizes the possible
cut-offs for a grid, but returns the sum over grid cardinalities instead. Independently, another
statistic based on grids and normalized mutual information has been suggested in the attempt
tomaximize power: the generalizedmean information coefficient (GMIC) (Luedtke and Tran
2013). Nonetheless, only TICe has been shown to be asymptotically consistent and to be the
state-of-the-art to achieve power when testing for independence.

In this paper we introduce RIC. RIC is a dependency measure to compare sets of random
variables based on normalized mutual information which is efficient and easy to compute.
Table 2 shows a list of dependency measures currently available in literature. Not all of them
is applicable to set of variables and some show high computational complexitywith regards to
the number of points n. Some complexities can be obtained with particular parameter choices
or clever implementation techniques.We refer to the respective papers for a detailed analysis.
Moreover, recent advances in this area have delivered faster computational techniques for the
most recently proposed measures of dependence. For example, the approximated estimator
for the population value of MIC can be sped up (Tang et al. 2014; Zhang et al. 2014), and the
new exact estimator MICe provides very competitive computational complexity. Moreover,
very recently a new technique for fast computation of distance correlation has been proposed
(Huo and Szekely 2014).

3 The randomized information coefficient

The Randomized Information Coefficient (RIC) between the set X of p variables and the set
Y of q variables is defined as the expected normalized mutual information (NMI) across all
possible discretization grids that encapsulate the joint probability distribution for (X,Y):

RIC(X,Y) �
∫

G
NMI(X,Y|G)P(G)dG =

∫

G

I(X,Y|G)

max {H(X|G),H(Y|G)} P(G)dG (3)

A grid G for the sets of variables X and Y is the Cartesian product of the two partitions
GX and GY : i.e., G = GX × GY . GX is a partition of the domain of the variables in X in
r disjoint sets SX

u . GY is a partition of the domain of the variables in Y in c disjoint sets
SYv . There are infinitely many partitions GX and GY , therefore there exists a continuum of
discretization gridsG. The probability distribution of the gridsG is defined via the probability
distribution of the partitionsGX andGY . Both partitionsGX andGY are defined via a number
of discretization cut-offs chosen independently. The probability density function (pdf) of a
cut-off defined on X is the pdf of X, and the pdf of a cut-off defined on Y is the pdf of Y. We
limit the total number of cut-offs for X and for Y to Dmax. Being G the Cartesian product
of the two partitions, the probability distribution of the grids G is defined by the probability
distribution of the list of cut-offs γ1, . . . , γD2

max
. Therefore, P(G) = P(γ1, . . . , γD2

max
) =

P(γ1) · · · P(γD2
max

).
The grids GX , GY , and G discretize the domain of X, Y, and (X,Y) respectively so that

the true mutual information I and the true entropy H can be computed with the following
well know formulas:

I(X,Y|G) �
r∑

u=1

c∑

v=1

P(X ∈ SX
u ,Y ∈ SYv ) log

P(X ∈ SX
u ,Y ∈ SYv )

P(X ∈ SX
u ) · P(Y ∈ SYv )

(4)
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H(X|G) � −
r∑

u=1

P(X ∈ SX
u ) log P(X ∈ SX

u ) (5)

H(Y|G) � −
c∑

v=1

P(Y ∈ SYv ) log P(Y ∈ SYv ) (6)

RIC(X,Y) is a measure of dependence between the set of variablesX and the set of variables
Y. Being based on mutual information, the true value of RIC is always non-negative and it
is equal to 0 under independence of X and Y.

Theorem 1 It holds true that:

(i) RIC(X,Y) = 0 if and only if X and Y are independent;
(ii) RIC(X,Y) ≤ 1.

Proof (i) (X and Y are independent ⇒ RIC(X,Y) = 0)
If the variables in X and independent from the variables in Y, for any randomization
gridG it holds true that I(X,Y|G) = 0. Therefore,RIC(X,Y) = 0. (RIC(X,Y) = 0
⇒ X and Y are independent)
For any randomization grid G, the mutual information is always non-negative:
I(X,Y|G) ≥ 0. Thus, the normalized mutual information is also non-negative:
NMI(X,Y|G) ≥ 0. Therefore being RIC the expected value of a non-negative quan-
tity, RIC(X,Y) = ∫

G NMI(X,Y|G)P(G)dG = 0 implies that NMI(X,Y|G) is
equal to 0 for any possibleG. If the normalizedmutual information is equal to 0 also the
mutual information is equal to 0: I(X,Y|G) = 0. This implies that X and Y are inde-
pendent according to the discretization imposed by G (Cover and Thomas 2012). This
is true for every possible discretization grid G, therefore alsoX andY are independent.

(ii) For any grid G, NMI(X,Y|G) ≤ 1 because I(X,Y|G) ≤ max {H(X|G),H(Y|G)}.
Thus,

RIC(X,Y) =
∫

G
NMI(X,Y|G)P(G)dG

≤
∫

G
P(G)dG =

∫ ∞

−∞
· · ·

∫ ∞

−∞
P(γ1, . . . , γD2

max
)dγ1, . . . , dγD2

max

=
∫ ∞

−∞
P(γ1)dγ1 · · ·

∫ ∞

−∞
P(γD2

max
)dγD2

max
= 1.

��
Mind that RIC is equal to 0 when variables inX are independent from the variables inY even
if the variables in either the set X or the set Y are dependent to each others.

RIC is computed on a data set {(Xi ,Yi )}i=0...,n−1 of n data points according to Eq. (1)
making use of a finite set of K randomization grids G. When a grid G is applied to a data
set, we denote with (X,Y)|G the contingency table between X and Y. A contingency table
counts the occurrences of the data points of the studied data set in the portions of the domain
defined by SX

u , S
Y
v , and SX

u ∩ SYv with 1 ≤ u ≤ r and 1 ≤ v ≤ c. Let au and bv be the count
of data points in the portion of the domain defined by SX

u and SYv respectively. Let nuv be
the number of data points in the portion of the domain defined by SX

u ∩ SYv . Table 3 shows
an example of contingency table. The mutual information I (X,Y|G), the entropy H(X|G),
and the entropy H(Y|G) are estimated a data set of n points as follows:

I (X,Y|G) �
r∑

u=1

c∑

v=1

nuv

n
log

nuv · n
aubv

(7)
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H(X|G) � −
r∑

u=1

au
n

log
au
n

H(Y|G) � −
c∑

v=1

bv

n
log

bv

n
(8)

Here we propose a few practical ways to obtain contingency tables (X,Y)|G based on the
randomgridG. First of all, by performing Kr randomdiscretizations for bothX andY, we can
efficiently compute K = K 2

r random grids obtained using all pairs of random discretizations.
This allows us to generate fewer random discretizations than by independently generating
each grid. The other required parameter is Dmax, which determines the maximum number
of random bins to discretize one variable. Once both variables are discretized, the NMIproc
procedure can be used to compute the normalized mutual information. Algorithm 1 presents
the pseudo-code for RIC computation.

Algorithm 1 RIC computation

RIC(X,Y, Kr , Dmax)

1 for k = 1 to Kr
2 BinLabelXk = RandomDiscr(X, Dmax)
3 BinLabelYk = RandomDiscr(Y, Dmax)
4 for k = 1 to Kr
5 for k′ = 1 to Kr
6 RIC+ = NMIproc(BinLabelXk ,BinLabelYk′ )
7 return RIC/K 2

r

Discretization of random variablesNext we present in Algorithm 2 the random discretiza-
tion procedure for a single random variable X . A variable is discretized using a number of
cut-offs D chosen at random in [1, Dmax − 1]. Each cut-off is chosen by sampling a random
example of the variable with uniform distribution. The bin label for each data point can eas-
ily be encoded with integer values using I(cut − off < xi ) with D passes through the data
points, where I is the indicator function. The idea is inspired by random ferns (Kursa 2012;
Özuysal et al. 2007): a type of random forest that achieves even higher speed. This can also
be viewed as a random hash function (Wang et al. 2012) or a random projection on a finite
set (Lopez-Paz et al. 2013). This procedure can be easily implemented in any programming
language, for example C++. No sorting is required. The worst case computational complexity
of this procedure is O(Dmax · n).

Discretization of sets of random variables An efficient approach to randomly discretize
a set of p random variables X consists not only in choosing cut-offs at random but also
to randomly choose the variables to discretize: i.e., build a random fern (Kursa 2012) on
the set of features X. This is very computationally efficient: the worst case computational

Table 3 Contingency table
(X,Y)|G on a data set
{(Xi ,Yi )}i=0...,n−1 defined by
the grid G
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Algorithm 2 Random discretization of a random variable X .

RandomDiscr(X, Dmax)

1 Choose the number of random cut-offs D at random between [1, Dmax − 1]
2 for d = 1 to D
3 cut-off = random data point
4 for i = 0 to n − 1
5 BinLabelX (xi )+ = I(cut-off < xi )
6 return BinLabelX

complexity is O(Dmax · n) which is independent from the number of variables p. However,
the straightforward implementation of a random fern presented in Algorithm 3 does not allow
to have fine control on the number of generated bins Dmax: the number of maximum bins
Dmax is exponential in the number of cut-offs D, i.e., Dmax = 2D . Therefore D cannot be
greater than log2 Dmax − 1. Moreover, many bins can be empty due to repeated choices of
the same variable.

Algorithm 3 Random fern discretization of a set X of random variables

RandomDiscrFern(X, Dmax)

1 Choose the number of random cut-offs D at random between [1, log2 Dmax − 1]
2 for d = 0 to D − 1
3 j = random index of variable in X
4 cut-off = random data point for X j
5 for i = 0 to n − 1
6 BinLabelX (Xi )+ = 2d · I(cut-off < xi j )
7 return BinLabelX

We therefore use the following randomized approach to discretize a set of p variables
X in exactly D bins, maintaining linear worst case complexity in the number of variables
and records: O(Dmax · n · p). By choosing D random data points as seeds, we can easily
discretize a set of variables into D non-empty bins by assigning each data point to its closest
seed. We make use of the Euclidean norm to find the distances between points. For the ease
of implementation, both random cut-offs in Algorithm 3 and random seeds in Algorithm 4
are chosen via sampling with replacement.

Algorithm 4 Random seeds discretization of a set X of random variables

RandomDiscrSeeds(X, Dmax)

1 Choose the number of random seeds D at random between [2, Dmax]
2 Choose a set S = {s1 . . . s j . . . sD} of D random seeds among the data points
3 for i = 0 to n − 1
4 BinLabelX (Xi ) = argmin j :s j∈SDist(Xi , s j )
5 return BinLabelX
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The worst case computational complexity for Algorithm 1 to compute RIC between the
set X of p variables and the set Y of q variables is thus determined by the discretization
algorithm:

– O (
Kr · Dmax · n + K 2

r (n + D2
max)

)
if random ferns are used;

– O (
Kr · Dmax · n · (p + q) + K 2

r (n + D2
max)

)
if random seeds are used.

Kr controls the trade-off between accuracy and computational time. The more randomiza-
tions Kr are used, the lower the variance, but the longer the computational time. Based on
experimentation we consider Kr = 20 a reasonable value. The number of maximum bins
Dmax should be chosen in order to avoid increasing the grid resolution towards the limit of
NI = 1 where each point belongs to a single cell. In the worst case, for uniformly distributed
variables and n samples we would like to have at least one point per cell of the contingency
table in Table 3. This implies:

n

DmaxDmax
≥ 1 ⇒ n

D2
max

≥ 1 ⇒ D2
max ≤ n ⇒ Dmax = �√n


However, a larger value of Dmax might help to identify more complex relationships, at the
cost of higher variance. Dmax can be tuned to obtain optimal performance. Given that in our
analysis we used Dmax = O(

√
n), RIC’s worst case computational complexity in the number

of data samples is O(n1.5).

4 Variance analysis of grid estimators of mutual information

In this section, we theoretically justify the use of random grids to obtain small variance
with the RIC statistic. Then, we prove that a lower variance is beneficial when comparing
dependencies and ranking relationships according to the grid estimator ofmutual information.

4.1 Ensembles for reducing the variance

The main motivation for our use of random discretization grids is that averaging across
independent random grids allows reduction of variance (Geurts 2002). By using random
grids, it is possible to achieve small correlation between the different estimations of NI . RIC
variance tends to be a small value if the estimations are uncorrelated.

Theorem 2 Let NIG = NI
(
(X,Y)|G)

be the normalized mutual information estimated on
a random grid G and RIC as per Eq. (1). If NI estimations for RIC are uncorrelated then:

lim
K→∞Var(RIC) = VarG(E[NIG |G])

Proof The variance of RIC can be decomposed using Eve’s law of total variance according
the i.i.d. random variables grids Gk with k = 1 . . . K as follows, Var(RIC) is equal to:

Var(RIC) =VarG1...GK

(
E[RIC|G1 . . .GK ]

)
+ EG1...GK

[
Var(RIC|G1 . . .GK )

]

=VarG1...GK

(
E

[ 1

K

K∑

k=1

NIGk |G1 . . .GK

])

+ EG1...GK

[
Var

( 1

K

K∑

k=1

NIGk |G1 . . .GK

)]
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Fig. 1 Variance of RIC compared to the variance of NIF on a fixed equal width grid F . According to
Theorem 2 if estimations are uncorrelated, the variance of RIC tends to the variance of E[NIG |G] which is
less dependent to the data. In practice, estimations are always correlated. Nonetheless, the use of random grids
helps in decreasing the correlation between them

=VarG1...GK

( 1

K

K∑

k=1

E[NIGk |Gk]
)

+ EG1...GK

[ 1

K 2

( K∑

k=1

Var(NIGk |Gk)

+
∑

k �=k′
Cov(NIGk ,NIGk′ |Gk,Gk′)

)]

=VarG(E[NIG |G]) + EG1...GK

[ 1

K 2

( K∑

k=1

Var(NIGk |Gk)

+
∑

k �=k′
Corr(NIGk ,NIGk′ |Gk,Gk′)Var(NIGk |Gk)Var(NIGk′ |Gk′)

)]

If Corr(NIGk ,NIGk′ |Gk,Gk′) = 0 for all k and k′, then:

Var(RIC) =VarG(E[NIG |G]) + EG1...GK

[ 1

K 2

K∑

k=1

Var(NIGk |Gk)
]

=VarG(E[NIG |G]) + EG [Var(NIG |G)]
K

that when K → ∞ is equal to VarG(E[NIG |G]). ��

The expected value E[NIG |G] is less dependent on the data because of the random grid G
and shows small variance across grids. Intuitively, this result suggests that some variance of
the data can be captured with the random grids. We empirically validate this result in Fig. 1.
In practice, it is very difficult to obtain completely uncorrelated NI estimations. Nonetheless,
the use of random grids allows us to strongly decrease their correlation.

We aim to show that the decrease in variance is due to the random grid G, by comparing
the variance of NIF where F is a fixed grid with equal width bins for X and Y . The number
of bins for each variable is fixed to 9 for both G and F , and cut-offs are generated in the
range [−2, 2] and [−3, 3] for X and Y , respectively. The chosen joint distribution (X, Y )

is induced on n = 100 points with X ∼ N (0, 1) and Y = X + η with η ∼ N (0, 1). The
variance of RIC decreases as K increases because the random grids enable us to decorrelate
the estimations of NI . In general, if we allow grids of different cardinality (different number
of cut-offs) and large K , the variance can be decreased even further.
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Fig. 2 Variance of RIC in Algorithm 1 at the increase of the number of random grids for different sample
size n. Increasing Kr is always beneficial. However, it is particularly important when n is small. For example,
the variance of RIC still decreases for Kr > 50 for this particular relationship between X and Y

Using RIC in Algorithm 1 we can efficiently compute K = K 2
r grids. Increasing the

number of random grids by increasing Kr is always beneficial. However, this is particularly
important when the sample size n is small. In Fig. 2 we show the behavior of RIC’s variance
at the variation of Kr for different sample size n for the same relationship discussed above.
The variance reaches the plateau already at Kr = 50 when n = 500. On the other hand,
when the sample size is small, e.g. n = 50, the variance is still decreasing at Kr = 100. Kr

might be chosen according to the sample size n: i.e., larger if the sample size n is small and
smaller if the sample size n is large. Nonetheless, having a large Kr is always beneficial in
general, at the cost of computational time.

4.2 Importance of variance in comparing relationships using the grid estimator of
mutual information

When mutual information is used as a proxy for the strength of the relationship, a small
estimation variance is likely to be more useful than a smaller bias when comparing relation-
ships, as implied by some observations in Kraskov et al. (2004), Margolin et al. (2006) and
Schaffernicht et al. (2010). The reason is that systematic biases cancel each other out. We
formalize these observations as follows:

Theorem 3 Let bias(φ̂) = φ − E[φ̂] be the bias of the estimator φ̂. Let φ̂(s) = φ̂s and
φ̂(w) = φ̂w be estimations of φ on the strong relationship s and the weak relationship w,
where the true values are φs > φw . The probability of making an error P(φ̂s ≤ φ̂w) is
bounded above by:

Var(φ̂s) + Var(φ̂w)

Var(φ̂s) + Var(φ̂w) +
(
φs − φw − (

bias(φ̂s) − bias(φ̂w)
))2

if E[φ̂s] > E[φ̂w] or equivalently if φs − φw > bias(φ̂s) − bias(φ̂w).

Proof Let �̂ = φ̂w − φ̂s , if E[�̂] < 0 then:

P(�̂ ≥ 0) = P(�̂ − E[�̂] ≥ −E[�̂]) ≤ Var(�̂)

Var(�̂) + E[�̂]2
according to the 1-sided Chebyshev inequality also known as Cantelli’s inequality (Ross
2012). ��
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Fig. 3 Probability of error in identifying the strong relationship. RIC’s probability is smaller due to its small
variance

Remark If there is a systematic bias component, the variance of a dependency measure is
important also to identify if a relationship exists. The probability of making an error in
determining if a relationship exists (independence testing between X and Y with φ̂) is just a
special case of Theorem 3 where φw = 0.

Regarding the grid estimator of mutual information IF on a fixed grid F with nF bins,
there is always a systematic bias component which is a function of the number of samples
n and the number of bins nF (Moddemeijer 1989). This systematic bias component cancels
out in bias(IF,s) − bias(IF,w). If the non-systematic estimation bias is small enough, then
the denominator of the upper bound is dominated by the true difference Is − Iw. Therefore,
the upper bound decreases because of the numerator, i.e., the sum of the variances. Of course
variance is just part of the picture. It is worth to decrease the variance of an estimator if the
estimand has some utility. Moreover, many estimators have a bias and variance trade-off.
Deliberately reducing the variance at the expense of bias is not a good idea. Variance can
be reduced if there is a strong systematic estimation bias component and if the effect on the
non-systematic bias is minimal.

We empirically compare the probability of error as stated in Theorem 3 for the estimation
mutual information I with grids. RIC can be used to estimate mutual information if we
average across grids of the same cardinality and do not normalize mutual information on the
grids. Let s = (X, Ys) and w = (X, Yw) be the strong and the weak relationships where
X ∼ N (0, 1), Ys = X + ηs and Yw = X + ηw with ηs ∼ N (0, .7) and ηw ∼ N (0, 1).
Indeed, if X ∼ N (0, σ 2

X ) and Y = X + η with η ∼ N (0, σ 2
η ) it is possible to analytically

compute the mutual information between X and Y : I(X, Y ) = 0.5 log2 (1 + σ 2
X/σ 2

η ). In
Fig. 3 we compare the probability of error P(RICs < RICw) for RIC as an estimator of
mutual information and the probability of error P(IF,s < IF,w) for the estimator IF on a fixed
equal width grid F , with an increase of the number of random grids K for RIC. We generate
13 bins for X and Y for both F and RIC’s grids. The distributions are induced on n = 100
samples. The probability of error is smaller for RIC because of its small variance. Indeed,
the probability of error decreases with the increase of K , just as the variance decreases with
bigger K . The bias stays constant when K varies and it contributes less to a small probability
of error.

In Fig. 4 we show in more detail the contribution of the bias and the variance to the proba-
bility of error. The upper bounds for the probability of error for RIC and IF are respectively:

U (RIC) = Var(RICs) + Var(RICw)

Var(RICs) + Var(RICw) +
(
Is − Iw − (

bias(RICs) − bias(RICw)
))2
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Fig. 4 Probability of error in identifying the strong relationship. RIC’s probability is smaller due to its small
variance. a Probability of error and upper bound, b terms of the upper bound

U (IF ) = Var(IF,s) + Var(IF,w)

Var(IF,s) + Var(IF,w) +
(
Is − Iw − (

bias(IF,s) − bias(IF,w)
))2

Figure 4 shows also the behaviour of the upper bound at the variation of K term by term.
The bias difference for RIC as an estimator of mutual information I is a bit bigger than the
bias difference for IF . Nonetheless, the probability of error decreases mainly because of the
variance decrease of RIC.

Moreover, when the dependency measure with a systematic bias is used for ranking rela-
tionships, we can still show that reducing the estimator variance plays an important role.

Corollary 1 When ranking m relationships according to the true ranking φ1 > φ2 > · · · >

φm, the probability P(φ̂1 > φ̂2 > · · · > φ̂m) of accurately obtaining the correct ranking
using the estimators φ̂i , i = 1, . . . ,m is bounded below by:

1 −
m−1∑

i=1

Var(φ̂i+1) + Var(φ̂i )

Var(φ̂i+1) + Var(φ̂i ) +
(
φi+1 − φi − (

bias(φ̂i+1) − bias(φ̂i )
))2

if E[φ̂i+1] > E[φ̂i ] or equivalently if φi+1 − φi > bias(φ̂i+1) − bias(φ̂i ) ∀i = 1 . . .m − 1.

Proof Let Ei = {φ̂i+1 > φ̂i } be an event then:

P(φ̂1 > φ̂2 > · · · > φ̂m) = P(E1 ∩ E2 ∩ · · · ∩ Em−1) = 1 − P(Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
m−1)

≥ 1 −
m−1∑

i=1

P(Ec
i )
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where Ec
i is the complementary event to Ei : Ec

i = {φ̂i+1 ≤ φ̂i }. The corollary follows using
the upper bound for P(Ec

i ) proved in Theorem 3:

P(Ec
i ) ≤ Var(φ̂i+1) + Var(φ̂i )

Var(φ̂i+1) + Var(φ̂i ) +
(
φi+1 − φi − (

bias(φ̂i+1) − bias(φ̂i )
))2

��
As we empirically demonstrated above for the grid estimator of mutual information,
bias(φ̂i+1) − bias(φ̂i ) tends to be small if there is some systematic bias component, and
thus a small variance is the main contributor to the accuracy.

Remark about boostrapping It is also natural to consider whether using bootstrapping
improves the discrimination performance of a statistic by decreasing the variance. When
bootstrapping, the statistic is actually estimated on around 63% of the samples and this
decreases the discrimination ability of each measure. Similarly, sampling without replace-
ment of a smaller number of points and averaging across different estimation of a measure
is not expected to perform well. The best way to decrease the variance is thus to inject ran-
domness in the estimator itself. This is the rationale for RIC. We achieve this goal by using a
strong measure such as mutual information and injects randomness in its estimation in order
to decrease the global variance.

5 Experiments on dependency between two variables

In this section, we compare RIC1 with 16 other state-of-the-art statistics that quantify the
dependency between two variables X and Y . We focus on three tasks: identification of
noisy relationships, inference of network of variables, and feature filtering for regression.
Table 4 shows the list of competitor measures compared in this paper and the parameters
used in their analysis. The parameters used are the default parameters suggested by the
authors of the measures in their respective papers. Indeed, only on the task of feature filtering
for regression it is possible to tune parameters with cross-validation on a given data set.
The tasks of inference of network of variables and identification of noisy relationships are
unsupervised learning tasks and do not allow parameter tuningwhen applied to a new data set.
Nonetheless, most of the default parameters are not tuned for hypothesis testing. Therefore,
we decided to follow the approach used in Reshef et al. (2015a). In this comprehensive
empirical study, leading measures of dependence are compared in terms of two important
features: equitability and power against independence. Similarly in this paper, we discuss
the power against independence on different noise models as well as the equitability of the
measures. When testing the power of a measure for a particular noise model, we identify the
best parameters for independence testing by maximizing the power on average on a set of
relationships and different noise levels.

Themeasures in the first group of Table 4 aremutual information estimators. Iew and Ief are
respectively the equal-width and equal-frequency bin grid estimator of mutual information.
IA2 is the adaptive grid estimator of mutual information that assures the number of points
for each cell to be at least 5. We chose to fix the number of bins D for Iew and Ief to
�√n/5
 because no universally accepted valuewas found in the literature.Kraskov’s k nearest
1 RIC implementation is available at https://sites.google.com/site/randinfocoeff/.
2 From http://www.iim.csic.es/~gingproc/mider.html (Villaverde et al. 2014).
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Table 4 Dependency measures compared in this paper and parameters used in the tasks of network inference,
feature filtering for regression, and estimation of running times

Family Acr. Name Parameters

Mutual
information
estimators

Iew Mutual information (discretization equal width) D = �√n/5


Ief Mutual information (discretization equal frequency) D = �√n/5

IA Mutual information (adaptive partitioning) –

Imean Mutual information (mean nearest neighbours) –

IKDE Mutual information (kernel density estimation) h0 = n−1/6

IkNN Mutual information (nearest neighbours) k = 6

Correlation based r2 Squared Pearson’s correlation –

ACE Alternative conditional expectation ε = 10−12

dCorr Distance correlation –

RDC Randomized dependency coefficient k = 20, s = 1/6

Kernel based HSIC Hilbert–Schmidt independence criterion σX , σY = med. dist.

Information
theory based

MIC Maximal information coefficient α = 0.6

MICe Maximal information coefficient α = 0.6

GMIC Generalized mean information coefficient α = 0.6, p = −1

MID Mutual information dimension –

TICe Total information coefficient α = 0.65

RIC Randomized information coefficient Kr = 20, Dmax = �√n


neighbours estimator IkNN3 uses a fixed parameter k = 6 and the kernel density estimator

IKDE4 uses the parameter h0 = 4
p+q+2

1/(p+q+4)
n−1/(p+q+4) = n−1/6 when comparing

two variables given that the number of variables is p + q = 2. This is one possible kernel
width and suggested as a default value in Steuer et al. (2002). We also compare a novel
information theoretic estimator of mutual information which has a nice analytical form and
can be obtained from the average of IkNN for k from 1 to n−1 (Faivishevsky and Goldberger
2009). All other measures were used with the default parameters suggested in their respective
papers as described in Table 4: dCorr,5 RDC, ACE,6 HSIC,7 MIC,8 GMIC, MID.9 As we
discussed above, we tuned the parameters of each measure when testing for independence.
Being the state-of-the-art in this task, we also introduced TICe in the analysis. Regarding RIC
on computing dependency between two variables, we decided to generate discretizations for
X and Y according Algorithm 2; we generate for each discretization a random number of
cut-offs D chosen at random uniformly in [1, Dmax − 1].

3 From http://code.google.com/p/information-dynamics-toolkit/ (Lizier and Jidt 2014).
4 From http://tinyurl.com/ojlkrla (Margolin et al. 2006).
5 From http://tinyurl.com/ozadxzr.
6 From http://tinyurl.com/oja3k3v.
7 From http://people.kyb.tuebingen.mpg.de/arthur/indep.htm.
8 From https://github.com/minepy/minepy.
9 From https://github.com/mahito-sugiyama/MID.
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5.1 Identification of noisy relationships

We consider the task of discriminating between noise and a noisy relationship, i.e., deter-
mining whether a dependency exists by testing for independence between X and Y , across
a large number of dependency types. In Fig. 5, 12 different relationships between X and Y
are induced on n = 320 data points.

We use the same setting as in Simon and Tibshirani (2011). In this study, the measure
performance on a relationship is assessed by power at level α = 0.05. For each test case,
we generated 500 random data sets with X and Y being completely independent. These
constitute the negative class or the complete noise class. Then, for each noise level between
1 and 30, we generate 500 other data sets to create the positive class or the noisy relationship
class. We evaluate the ability of different measures to discriminate between complete noise
and the noisy relationship classes by computing the power (sensitivity) for the positive class
at level α = 0.05. Experiments were carried out on two different noise models, namely
additive noise and white noise. In the first scenario we add different levels of Gaussian noise
by varying the noise standard deviation ση. In the second scenario we substitute some points
of the relationship with uniform noise. Figure 5b, c show examples of noise levels for the
linear relationship in the additive noise model and white noise model respectively. Given that
all measures present good discrimination ability in the white noise model, level 1 (lowest
noise) starts by assigning 40% of points to the relationship and 60% to uniformly distributed
noise.

Given that the default parameters of each measure are not tuned for independence testing,
we decided to follow the approach of Reshef et al. (2015a): for a particular noise model
we identify the parameters that maximize the average power for all level of noise and all
relationship types. This analysis can be found in “AppendixA”. For example, a bigger number
of nearest neighbors is beneficial to IkNN to achieve more power under the additive noise
model (Kraskov et al. 2004). Furthermore, measures which make use of kernels should
employ kernels with larger width to maximize power under additive noise. Even though
these parameters cannot be tuned on a new data set because the task is unsupervised, the
analysis provided “Appendix A” might guide the user when the particular noise model is
known for a data set. As discussed in Sect. 4.1, increasing Kr for RIC helps to decrease
its variance. This is particularly important in order to achieve power when testing against
independence. Figure 6a, b show the area under power curve for each relationship tested in
this paper and their average at the variation of Kr for RIC. Increasing Kr is very beneficial
to increase power when the number of data points is small: n = 100. This is an interesting
feature of RIC. Increasing Kr gives more power but also increases the computational running
time. Nonetheless, higher Kr is needed only if the sample size is small.

We show the performance of RIC with Dmax = �√n/4
 and Kr = 200 as obtained
by parameter tuning. Detailed results for each relationship types are provided in “Appendix
A”. Note that because not all the relationships in Fig. 5a are functional, it is not possible to
plot power against a normalized x-axis as in Reshef et al. (2015a). In Reshef et al. (2015a)
the power of functional relationships is plotted against the R2 between the true underline
function between variables and its noisy version. In this paper, we follow the approach in
Simon and Tibshirani (2011) where the x-axis represents some non-normalized amount of
noise added to the relationship between the variables. Therefore, the amount of noise for a
particular value on the x-axis and a particular relationship is not comparable with the amount
of noise added to another relationship at the same point on the x-axis. Nonetheless on our
set of relationships, we would like to point out that all the power plots are monotonically
decreasing and they do not look to be intersecting each other. In particular, if a dependency
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(a) (b) (c)

Fig. 5 Relationships between two variables and example of additive and white noise. a Relationships types
n = 320, b additive, c white
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Fig. 6 Each line is the area under the power curve for each relationship tested in this paper. The solid black
line shows their average. All results are shown at the variation of the paramenter Kr for RIC which determines
the number of random discretization grids. The power against independence of RIC always increases at the
increase of Kr because its variance decreases. This is particularly important when the number of data points
is small: e.g., n = 100. a Power of RIC at small sample size: n = 100, b power of RIC on larger samples:
n = 1000
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Fig. 7 Average rank ofmeasures across relationshipswhen the target is powermaximization under the additive
noise model. RIC with Dmax = �√n/4
 and Kr = 200 is very competitive in this scenario

measure D1 shows higher power than a measure D2 at a given level of noise, D1 will also
have higher power than D2 at a higher level of noise. Please refer to Fig. 20 in “Appendix
A”.

In order to compare the different measures on multiple data sets (relationships) we use
the framework proposed in Demšar (2006): we show the average rank across data sets for
each measure. According to this framework we compare a statistic based on ranking which is
not influenced by the absolute value of the metric of performance. Therefore, this evaluation
is not influenced by the fact the x-axis in the power plots cannot be normalized. Moreover,
in order to provide graphical intuition about their performance, we show their average rank
sorted in ascending order using bar plots. Figure 7 present the performances on the additive
noise model. RIC computed with Dmax = �√n/4
 and Kr = 200 shows very competitive
performance.

RIC outperforms all mutual information estimators, in particular the discretization based
Iew, Ief, IA, and the kNN based IkNN. The kernel based density estimator IKDE looks more
competitive in noisy scenarios than all the other mutual information estimators, as also
pointed out in Khan et al. (2007). The performance of Imean is particularly surprising: even if
Imean is a smooth estimator of mutual information, which guarantees low variance, it cannot
discriminate very noisy relationships well. A careful look at its derivation reveals that Imean

takes into account kNN with k very large, e.g. k = n − 1. In fact, even IkNN in this case
cannot discriminate between noise and noisy relationships. MIC with parameters optimized
for independence testing shows to outperform distance correlation. MIC outperforms GMIC
with parameter p = −1 when the parameter α is tuned independently for both of them. In
particular, MIC obtains its optimum at α = 0.35 and GMIC at α = 0.65. The comparison
carried out in Luedtke andTran (2013) consideredα = 0.6 for bothmeasures, concluding that
GMIC was superior with this setting. Moreover, the new version MICe shows to improve on
MIC results. The new information theoretic basedmeasureMIDalso presents less competitive
discrimination ability on this set of relationships because it is better suited for the white
noise model. RDC achieves good results overall, in particular on the scenarios where it
seems possible to linearize the relationship via a random projection: low frequency sinusoids
and circle relationships. When the relationship is linear, r2 is the best choice in terms of
discrimination ability. This property reflects the motivation for dCorr, which was proposed as
a distance based extension to the non-linear scenarios: its performance is very competitive on
the linear, and 4th root case. However, it fails in the high frequency sinusoidal case and circle
relationship. The best measure among the competitors is the newly proposed TICe which is
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Fig. 8 Average rank of measures across relationships when the target is power maximization under the white
noise model. RIC with Dmax = �√n ∗ 10
 and Kr = 200 is competitive but yet it is outperformed by HSIC

explicitly designed for independence testing. These results indicate that when the purpose
is to identify an arbitrary relationship in the additive noise scenario, RIC delivers extremely
competitive performance on average. If the user is interested in a specific relationship type,
it will be best to choose a particular dependency measure known to be specifically good for
that scenario. The results in the appendix may help guide the user in this choice.

RIC also shows good performance under the white noise model but it is outperformed
by HSIC. Average results are shown in Fig. 8. The optimal parameters under white noise
are different from the optimal parameters under additive noise for many measures as shown
in “Appendix A”. Regarding the grid estimators of mutual information, RIC, TICe, MIC,
MICe, and MID, a denser grid is better suited for the white noise scenario because points are
uniformly distributed on the joint domain (X, Y ). IkNN presents competitive performance
under white noise when k is small. As in the additive noise model, TICe proved to be strong
competitor to RIC in this scenario. Instead, dCorr seems to be little competitive under the
white noise model. HSIC with very small kernel width performs the best under white noise.

5.2 Equitability

In this section,weassess the equitability of themeasures discussed in this paper.Adependence
measure is equitable if it provides similar scores to equally noisy relationships of different
kinds, relative to some measure of noise (Reshef et al. 2011, 2015a, b). For example, in the
case of functional relationships, one natural instantiation of equitability is for an equitable
measure of dependence to assign similar scores to relationships with the same coefficient of
determination R2 between the true underlying function and its noisy version. Therefore, for
functional relationships an equitable measure is 1 if the dependency between the variables is
noiseless.

As inReshef et al. (2015a), we discuss results on two sets of functional relationships shown
in Table 5: functional relationships from Simon and Tibshirani (2011) shown in Fig. 5a that
we employed in the power analysis in Sect. 5.1, and the a set of relationships from Reshef
et al. (2011). These functional relationships are defined as follows: y = f (x) + σ · ε where
f (·) is a function, σ is a constant, and ε is Gaussian noise with 0 mean and variance 1. In
order to quantify if a measure is equitable, we estimate the R2 between a given noiseless
function and its noisy version on a data set of n = 320 points. We vary the amount of noise
using a different constant σ . Each value for the R2 is matched against the score obtained by
a measure for the same noisy relationship at the same level of noise. Scatter-plots for each
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Table 5 The two different sets
of functional relationships used
in the equitability analysis

Simon and Tibshirani (2011)

1 y = x + σ · ε

2 y = 4(x − 0.5)2 + σ · ε

3 y = 128(x − 1
3 )3 − 48(x − 1

3 )3 − 12(x − 1
3 ) + σ · ε

4 y = sin(4πx) + σ · ε

Reshef et al. (2011)

1 y = x + σ · ε

2 y = 4(x − 0.5)2 + σ · ε

3 y = 4(2.3x − 1.3)3 + (2.3x − 1.3)2 − 4(2.3x − 1.3) + σ · ε

4 y = sin(8πx) + σ · ε

The first one comes from Simon
and Tibshirani (2011) and the
second one from Reshef et al.
(2011). In particular, they differ
in the definition of the
relationships 3 and 4: the cubic
and the sinusoidal relationships.
We add to every function a
different amount of gaussian
noise ε ∼ N (0, 1) varying the
multiplicative constant σ

measure are shown in Fig. 9. The narrower the scatter-plot for a measure, the more equitable
a measure is.

In exploratory data analysis, often there is no ground-truth. For example, there is no
ground-truth when the task is identifying the top pair of dependent variables among all the
possible pairs. In this case, it is not possible to tune the parameters for a particular measure.
In this analysis, we relied on the default values provided for the measures in the respective
papers. These are shown in Table 4. With their default parameters, the best measures in
terms of equitability are MIC and ACE. More specifically, ACE seems to consistently score
noiseless functional relationships with a value 1 but seems to fail when the amount of noise
increases. MIC and its improved version MICe instead show good equitability across the
board. On the other hand, RIC is not an equitable measure. The scatter-plot for RIC is similar
to GMIC and TICe scatter-plots. Indeed, all these measures use multiple grids to compute
mutual information related statistics and aggregate their values. This aggregated grid-based
approach seems to bemore beneficial when the task is identify a relationship with high power.

We rank the measures in terms of equitability in Figs. 10 and 11. For each scatter-plot we
identify the worst case for equitability: i.e., the maximum range of values for R2 associated to
a single value for a measure. That single value corresponds to two completely different levels
of noise. For example, the Pearson correlation squared r2 is equal to 0 for both a completely
noiseless sinusoidal relationship and a completely noisy one. Indeed, r2 is consistently ranked
as last in Figs. 10 and 11. MICe shows to be the best overall in this task. Note also that MICe

seems to better match the R2 on this sets of relationships: it is very close to 0 when R2 is 0
and 1 when R2. Other work in literature proposed to enforce this property using adjustment
for chance (Romano et al. 2016; Wang et al. 2017). This is an important property which
enables MICe to be used as proxy of the R2.

5.3 Application to network inference

We next employ the measures for biological network reverse engineering, which is a popular
and successful application domain for dependency measures (Villaverde et al. 2013). The
applications include cellular, metabolic, gene regulatory, and signalling networks. Each of
the m variables is associated with a time series of length n. In order to identify the strongest
relationships between variables (e.g., genes), a dependency measure D is employed. Due to
the natural delay of biochemical interactions in biological networks, the strongest dependency
might occur only after some time (Xuan et al. 2012). For this reason,we incorporate timedelay
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Fig. 9 Equitability of eachmeasure on the two different sets of functional relationships fromTable 5. Different
values for the R2 between the noiseless functional relationship and its noisy version are plotted against the
value the dependency measure would obtain for that particular amount of noise. The narrower the scatter-plot
is, the better the equitability. a Simon and Tibshirani (2011), b Reshef et al. (2011)

into the dependency measures as Ddelayed = maxτ∈[−τm ,+τm ] D (X (t − τ), Y (t)), where D
is any measure from Table 4 and τm is the maximum time delay. We collected 10 datasets
where the true interactions between the variables are known. A dependency measure is
effective on this task if its output is high on real interactions (positive class) and low on
non-interacting pairs of variables (negative class). We evaluate the performance of a measure
with the average precision (AP), also known as the area under the precision-recall curve.
In order to obtain meaningful comparisons and perform statistical hypothesis testing, we
performed 50 bootstrap repetitions for each dataset and computed the mean AP (mAP)
across the repetitions.

We made use of the MIDER framework (Villaverde et al. 2014) for evaluating the per-
formance of dependency measures. The first 7 datasets were retrieved from the MIDER
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Fig. 10 Worst case equitability for relationships in Simon and Tibshirani (2011): i.e., the maximum range
of values for R2 associated to a single value for a measure. That single value corresponds to two completely
different levels of noise
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Fig. 11 Worst case equitability for relationships in Reshef et al. (2011): i.e., the maximum range of values
for R2 associated to a single value for a measure. That single value corresponds to two completely different
levels of noise

framework. The last 3 datasets were generated using SynTren (Bulcke et al. 2006), a genera-
tor of synthetic gene expression data. SynT1 and SynT1-s were generated starting from the
Escherichia coli transcriptional regulatory network provided with the framework with default
noise parameters where SynT1-s has shorter time series. SynT2 was generated starting from
the synthetic direct acyclic graph provided with the framework. Based on the data sampling
rate, we set τm = 3 for these datasets, which cover most plausible time-delayed interactions.
Table 6 shows a summary of the datasets used.

The small amount of data available and the high amount of noise in biological time
series posed a very challenging task for all statistics. Mutual information estimators have
been extensively employed for this task (Villaverde et al. 2013). Just recently, HSIC has
been tested on network inference (Lippert et al. 2009) and even more recently dCorr has
been shown to be competitive on this task (Guo et al. 2014). In this task, it is important to
powerfully discriminate between independent and non-linearly dependent variables. Indeed,
measureswith high power as discussed in Sect. 5.1might have an advantage (Guo et al. 2014).
Of course, a measure can be even more competitive if it is also equitable. Nonetheless, this is
a different task from equitability assessment and equitability is only part of the picture. This
explains the performance of dCorr and HSIC in the literature (Lippert et al. 2009; Guo et al.
2014).
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Table 6 Summary of the
datasets used for network
inference (left) and regression
(right): n is the data points and m
is the number of variables

# Name n m

Network inference datasets

1 Glycolysis 57 10

2 Enzyme-cat 250 8

3 Small-chain 100 4

4 Irma-on-off 125 5

5 Mapk 210 12

6 Dream4-10 105 10

7 Dream4-100 210 100

8 SynT1 100 200

9 SynT1-s 30 200

10 SynT2 30 40

Regression datasets

1 Pyrim 74 27

2 Bodyfat 252 14

3 Triazines 186 60

4 Wisconsin 194 32

5 Crime 111 144

6 Pole 1000 48

7 Qsar 384 482

8 Qsar2 384 186

To our knowledge, there is no prior comprehensive survey of the performance of RDC,
Imean, MIC, MICe, GMIC and MID on this task. We perform a comprehensive evaluation
of RIC plus 16 other dependency measures on network inference. The results are shown in
Table 7.

We use RIC with parameters Dmax = �√n
 and Kr = 20 because on these tasks it
is important to achieve high discrimination between strong relationships as well as weak
relationships. Figure 12 presents the average rank of the measures across all tested networks.
Overall, RIC performs consistently well across all datasets. It outperforms by far all the
discretization based mutual information estimators as well as other information theoretic
based measures including MIC, GMIC andMID. Among the mutual information estimators,
IKDE and IkNN show very good results. RIC’s main competitor was dCorr, which also shows
very good performance mainly due to the crucial importance of the linear relationships
between variables. Its results are very correlatedwith r2 results, which in some cases provides
the best result for a single data set. This is mainly due to its high ability to discriminate linear
relationships well. We found RIC particularly competitive on short time series with a large
number of variables.

As well known within the machine learning community, there is no “free lunch”. In the
context of this application, this wisdom is evident, observing in Table 7 that no method
always performs the best or worst in every case. MID for example, is badly affected by
additive noise commonly observed in biological time series and thus showed overall less
competitive performance. Nonetheless, it achieved the best performance on Irma-on-off, an
in vivo yeast semi-synthetic network.
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Fig. 12 Average rank across networks on the task of biological network with time inference. RIC outperforms
on average all other measures

We want to reiterate that this is an unsupervised task. Therefore it is not possible to tune
parameters with cross-validation on a given data set. The tasks of inference of network of
variables and identification of noisy relationships are unsupervised learning tasks and do
not allow parameter tuning when applied to a new data set. When the user is provided with
a new data set, this can only rely on the default parameters of a measure. Of course these
could be tweaked to identify different top pairs of relationships. Nonetheless, all different
sets of top relationships obtained with different parameters should be inspected individually
because no ground truth is available for validation. Moreover, the real data sets discussed in
this paper are a sample of the possible real data sets that can be analysed. Yet our data sets
are independent and the analysis discussed in the paper can provide a picture of the behavior
of different measures with default parameters.

5.4 Feature filtering for regression

In this section, we evaluate the performance of RIC and the other statistics as feature filtering
techniques. A dependency measure D can be used to rank the m features Xi on a regression
task based on their prediction ability for the target variable Y . Only the top m� features
according to D are used to build a regressor for Y . Table 8 shows the average correlation
coefficient between the predicted and the actual target value using the top m� ≤ 10 features
using a k-NN regressor (with k = 3). Each value is obtained by averaging 3 random trials of
10-fold cross-validation for each m� ≤ 10.

The datasets collected have at least 10 features and in the case of n > 1000 records, we
randomly sampled 1000 records to speed up the running time of dCorr, HSIC, IKDE, Imean,
MIC, MICe, and GMIC with default parameters. Records with missing values were deleted.
We analyzed the performance on 8 datasets: 5 from the UCI machine learning repository,10

the Pole telecommunication data,11 and 2 datasets Qsar and Qsar2 from the website of the
3rd Strasbourg Summer School on Chemoinformatics.12 The list of datasets used is shown
in Table 6.

As for the task of network inference in Sect. 5.3, it is important for a measure to be
both equitable and powerful when detecting relationships. Powerful measures despite being
non-equitable have been shown to performwell on this task: e.g. the HSIC (Song et al. 2007).

10 http://ics.uci.edu/~mlearn.
11 http://tunedit.org/.
12 http://infochim.u-strasbg.fr/.
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Fig. 13 Average rank of measures when the task is maximizing the correlation coefficient between the
predicted and the target value of a kNN regressor. The the kNN regression is built on top of m� features.
Results were averaged across m� ≤ 10 and all datasets

As in Sect. 5.3 we use RIC with parameters Dmax = �√n
 to avoid low density grids that
are better suited for testing of independence tasks. Overall, as can be observed from Fig. 13,
RICperforms consistentlywell on average. RIC is also particularly usefulwhen the number of
features m is high and especially when their relationships to the target variable Y are noisy.
These represent the most challenging scenarios as can be justified by the low correlation
coefficient achievable using the selected features, e.g., on the Pyrim and Triazines datasets.
We also note the good performance of RIC on datasets where there are features that can take
only a predefined number of values: e.g., discrete numerical features. Pole,Qsar, andQsar2
include these type of features. For such features it is very difficult to either optimize a kernel
or a grid size or find the optimal data transformation to obtain the maximal correlation with
ACE, which explains the less competitive performance of HSIC, IKDE, IA, Imean, and ACE.
RIC is not affected by this problem as there is no optimization and grids are generated at
random. Note that the good performance on feature selection for RIC is also due to the fact
that features with high entropy are penalized because of the normalization factor in Eq. (2).

5.5 Run time comparison

Here we compare the running times of eachmeasure in Table 4 varying the amount of records
n on two independent variables X and Y uniformly distributed. The average run time on 30
simulations is shown in Fig. 14a for each measure. RIC is very competitive in terms of speed
and can be groupedwith the fastest measures: Ief, Iew, IkNN, IA, r2,MID, ACE, and RDC. On
the other hand, dCorr, IKDE, HSIC, Imean, MIC, MICe, GMIC, and TICe appear to be slower
according to the implementations discussed at the beginning of Sect. 5 and the parameter
setting from Table 4. As discussed in the related work section, different parameter setting
yield more competitive running times for some measures. For example, TICe can obtain
close to linear complexity in the number of records if α = 0.2. In our analysis, we chose
to set α = 0.65 because it is the choice that allows us to maximize power when testing for
independence under additive noise.

Figure 14a shows the running time for RIC with default parameters Kr = 20 and Dmax =
�√n
. Similarly to other measures, the running time for RIC depends to its parameter setting.
Figure 14b shows the different time taken by RIC on n = 103 records according to different
Kr and different c where Dmax = �√n/c
. By increasing Kr we increase the number of
random grids and by increasing c with decrease the grid coarsity. Figure 14b shows different
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Fig. 14 Running time in seconds (best viewed in color). a Time for each measures with parameters in Table 4,
b time for RIC on n = 103 records

plots at the variation of Kr for c = 4, c = 1, and c = 0.1 which respectively yield to
Dmax = �√n/4
, Dmax = �√n
, and Dmax = �√n · 10
. These settings are respectively the
ones we used for: independence testing under additive noise; network inference and feature
filtering; and independence testing under white noise. The latter scenario proved to be the
most challenging in terms of RIC running time.

Large Kr increases the computational time. Nonetheless, large Kr is not always required.
As discussed in Sect. 5.1 even though it is always beneficial to increase Kr to further decrease
the variance of RIC, this is particularly important when n is small. Thus, Kr can always be
tuned by the user according to the sample size of the data set analyzed and the disposable
computational budget.

6 Experiments on dependency between two sets of variables

In this section,we performcomparisons between the performance ofmeasureswhich quantify
the dependency between two sets of p variables X and q variables Y. This is different from
finding a subset of variables that are significantly correlated. In that case, new advances in
that area yielded interestingmeasures to compare (Nguyen et al. 2014a; Nguyen andVreeken
2015). In our paper, we compare themeasures discussed in Table 4. The Pearson’s correlation
coefficient, ACE, IA, MIC, GMIC, and MID are not applicable in these scenarios and there
is no straightforward method to extend them to sets of variables available in literature.

6.1 Identification of multi-variable noisy relationships

Here we extend the experiments of Sect. 5.1 to sets of variables X and Y. In particular, we
test the power in identifying relationships between X with p = 3 variables and a single
variable Y with the additive noise model. In order to use the same 12 relationships displayed
in Fig. 5a, we map the set of features X on a single feature X ′ = X1+···+X p

p and obtain Y
according a given relationship plus additive noise. Figure 15 shows an example of a quadratic
relationships between Y and X = (X1, X2) (p = 2) with additive noise.
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Fig. 15 Example of a quadratic relationship between Y and X = (X1, X2) on the left plot. The plot on the

right shows how Y is obtained through the mapping of X into X ′ = X1+X2
2

We fix the number of variables p = 3 forX because somemeasures require specific tuning
in regards to the number of variables considered. For example, the most straightforward
way to extend the discretization based estimators of mutual information Iew and Ief is to
independently discretize all the variables in each set. This requires carefully choosing the
number of discretization bins for each variable in X and each variable in Y. If the same
number of bins DX is chosen for all the variables in X and the same number of bins DY is
chosen for all the variables in Y, it is possible to end up with as many as Dp

X · Dq
Y total bins.

This issue makes it practically infeasible to use Iew and Ief in high p, q scenarios. Given
this limitation of the discretization based estimators of mutual information, we also made
use of a multi-variable discretization approach of the set of variables X which allows a more
sensible choice of the total number of bins. Even if methods for multi-variable discretization
are available in literature (Garcia et al. 2013; Dougherty et al. 1995) to our knowledge there
is no extensive survey about the performance of estimation of mutual information with multi-
variable approaches. Therefore, we chose to discretizeX andYwith the clustering algorithm
k-means and then compute the mutual information. We name this measure Ik−mean. This
allows us to choose the total number of bins (clusters) to be produced.

In our case, where p = 3 and q = 1 we chose compute Iew and Ief fixing DY = 5 and
compute DX in order to limit the number of total bins in regards to the number n of data
points: Dp

X ·DY ≤ n
5 ⇒ DX = � log n/25

log p 
. When n = 320, DX = 2.We tuned the parameters
of every other measure in order to maximize the average power on all relationships. Please
refer to “Appendix B” for more details. Regarding RIC, in order to have full control on the
number of bins produced, we compared the multi-variable dicretization approach that uses
random seeds as described in Algorithm 4. More specifically, we fixed the number of random
seeds to �√n/c
 given that also choosing the number of random seeds at random might
result in configurations with as few as 2 seeds, which strongly deteriorates the discrimination
ability of mutual information on multiple variables. The parameter c for RIC that maximizes
the power on average is c = 6 which generates �√n/6
 seeds. This setting is very similar
to the optimal parameter setting found for testing for independence between variables under
additive noise in Sect. 5.1. Most of the measures obtain similar optimal parameters to the
ones obtained when testing for independence between variables. Just IKDE seems to require
even larger kernel width when comparing sets of variables.

Figure 16 show average rank of each measure across different relationships. Individual
results are shown in “Appendix B”. RIC with Dmax = �√n/6
 and Kr = 200 looks more
competitive than all other measures but IKDE. Therefore, the strongest competitor seems to
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Fig. 16 Average rank across relationships for the multi-variable additive noise model. RIC with Dmax =
�√n/6
 and Kr = 200 shares the top position with IKDE
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Fig. 17 Average rank when the target is maximization of the correlation coefficient between the predicted
and the target value for a kNN regressor. The kNN regression is built on top of m� features chosen by forward
selection. Results are averaged across m� ≤ 10 and all datasets

be IKDE that with a careful choice of kernels achieves very good performance on simple
relationships such as the linear, quadratic, and cubic. We also can see that the discretization
based estimators of mutual information do not do a good job because they dramatically fail
on some data set. Moreover, Ik−means which produces the same number of bins as RIC has
clearly lower performance than the latter. The superior performance of RIC is thus due to the
randomization.

6.2 Feature selection for regression

We also tested multi-variable measures of dependency in the task of feature selection using a
similar framework to Sect. 5.4. Rather than filtering the features according to their individual
importance to the target variable Y , we proceed by forward selection. The optimal set of p
features according to a dependency measure is identified by finding the best set of features
X = Xp−1 ∪ Xi , with Xp−1 representing the set chosen at the previous iteration of forward
selection and Xi chosen among the possiblem−(p−1) features of a dataset. Amulti-variable
dependency measure can be fully employed in this case because we require to compute the
dependency between X features and the target variable Y at each step of the iteration.

As in Sects. 5.3 and 5.4 we use RIC with parameters Dmax = �√n
 to avoid low density
grids that are better suited for testing of independence tasks under additive noise. We use the
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random seeds discretization approach of Algorithm 4 with a fixed number of random seeds.
We also choose to fix DX = 2 and DY = 5 for the naive discretization based estimators of
mutual information. Average results for all the measures are shown in Fig. 17 and a table
with detailed comparisons is presented in “Appendix B”. We notice that the ranking by per-
formance of classifier changes from the one obtained using the feature filtering approach,
although RIC again shows competitive performance against the other approaches. All esti-
mators of mutual information lose positions except for the IKDE kernel based estimator. It
seems that on multiple variables kernels are more effective than in the univariate scenario.
Indeed, HSIC also gains a few positions. RDC’s average performance stays the same and
it still gets outperformed by dCorr. dCorr performs really well when computed on sets of
variables. As previously noted, even in this case RIC outperforms Ik−means and this result is
due to the randomized approach.

7 Conclusion

We presented the Randomized mutual information (RIC), an information theoretic measure
of dependency between two sets random variablesX andY, that makes use of an ensemble of
randomgrids. Our theoretical analysis justifies the benefits of having a low-variance estimator
of mutual information based on grids for the task of ranking relationships, where systematic
biases cancel each other out. By reducing the estimation variance of mutual information with
grids, RIC is extremely competitive for ranking different relationships. We experimentally
demonstrated its strong performance on univariate X and Y on the task of discrimination of
noisy relationships, network inference and feature filtering for regression. We have shown
that RIC can be extended to multivariate X and Y with a subtle discretization scheme. We
recommend RIC’s use with the default parameters: maximum number of random cut-offs
Dmax = �√n
 and number of random discretizations Kr = 20 for both X and Y in general
applications. However, Dmax can be decreased when testing for independence under additive
noise and Kr can be increased to decrease the variance, at the cost of computational time.

Acknowledgements Simone Romano’s work was supported by a Melbourne International Research Schol-
arship (MIRS). James Bailey’s work was supported by an Australian Research Council Future Fellowship.
Experiments were carried out on Amazon cloud supported by AWS in Education Grant Award.

Appendix A: Identification of noisy relationships

Power at level α = 0.05 of discrimination between complete noise and noisy relationship for
each relationship type presented in the paper is shown in Figs. 20 and 21. These two figures
show result for each measure with optimal parameters for independence testing. Parameter
tuning is performed on Figs. 18 and 19. Regarding the discretization based estimators of
mutual information Iew and Ief, we varied the parameter c in D = �√n/c
 to change the grid
coarsity. Similarly, we varied the parameter c in Dmax = �√n/c
 for RIC. The parameter
s in RDC should be set around 1/6 when comparing variables (Lopez-Paz et al. 2013). In
order to identify the best parameter settings for power in RDC, we explored values around
1/6 by varying p̃ in s = 1

6 · p̃. Similarly, the kernel widths in HSIC are usually set to the
median distance of the data points according X and according Y . This is why we explored
the values σX = med. dist. in X · p̃ and σY = med. dist. in Y · p̃. The parameter p̃ can be
seen as a percentage of the default parameters.
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Fig. 18 Parameter tuning to maximize the power of each measure on average for the additive noise model
when comparing variables. These plots show the average area under power curve and their average across
relationship types
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Fig. 19 Parameter tuning to maximize the power of each measure on average for the white noise model
when comparing variables. These plots show the average area under power curve and their average across
relationship types
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Appendix B: Multi-variable relationships

Power at level α = 0.05 of discrimination between complete noise and noisy relationship for
each relationship type presented in the paper is shown in Fig. 23. The relationship is between
a uniformly generated variable X with p = 3 components and a single Y (q = 1). Parameter
tuning for this task can be found in Fig. 22. All the measures but IKDE find similar optimal
parameters to Sect. 1 when comparing variables. IKDE requires larger kernel width when
comparing sets of variables. Furthermore, RDC seem to be little sensitive to the parameter
s. In that case we optimized sX and sY independently with p̃ where: sX = 1

6p · p̃ = 1
6·3 · p̃

and sY = 1
6q · p̃ = 1

6·1 · p̃.
Table 9 shows results related to feature selection via forward selection.
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Fig. 22 Parameter tuning to maximize the power of each measure on average for the additive noise model
when comparing sets of variables. These plots show the average area under power curve and their average
across relationship types
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