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Abstract Quantile regression forests (QRF), a tree-based ensemble method for estimation
of conditional quantiles, has been proven to perform well in terms of prediction accuracy,
especially for range prediction. However, the model may have bias and suffer from working
with high dimensional data (thousands of features). In this paper, we propose a new bias
correction method, called bcQRF that uses bias correction in QRF for range prediction. In
bcQREF, a new feature weighting subspace sampling method is used to build the first level
QRF model. The residual term of the first level QRF model is then used as the response
feature to train the second level QRF model for bias correction. The two-level models are
used to compute bias-corrected predictions. Extensive experiments on both synthetic and real
world data sets have demonstrated that the bcQRF method significantly reduced prediction
errors and outperformed most existing regression random forests. The new method performed
especially well on high dimensional data.
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1 Introduction

Random forests (RF) (Breiman 2001) is a non-parametric regression method that builds an
ensemble model of regression trees from random subsets of features and bagged samples of
the training data. Given a training data set:

L= {(Xi,Yi),N:HX,‘ eRMy eRl},

where N is the number of training samples (also called objects) and M is the number of
features, a regression RF independently and uniformly samples with replacement the training
data £ to draw a bootstrap data set £; from which a regression tree T;* is grown. Repeating
this process for K replicates produces K bootstrap data sets and K corresponding regression
trees T}", T, ..., T¢ which form a regression RF.

Given an input X = x, aregression RF is used as a function f : RM — R! to estimate the
unknown value y of input x € RM, denoted as f (x). Write the regression RF in the common
regression form

Y =f(X)+e, ey

where E(e) = 0, Var(e) = 052. The function f(-) is estimated from £ and the prediction
f (x) is obtained from an independent test case x.

For point regression with a regression RF, each tree Ty gives a prediction f;(x) and the
predictions of all trees are averaged to produce the final RF prediction

. 1 &
for=— ]Z,fk(xy )

This is the estimation of f (x) = E(Y|X = x). The mean-squared error of the prediction
measures the effectiveness of f, defined as (Hastie et al. 2009)

Err(x)

E[(r = fix = x]

N 2 A A 2
o2+ [Ef) = f0] +E[f) - Efw)]
= 0 + Bias* (f (x)) + Var(f (x))
= Irreducible Error + Bias® + Variance. 3)

The first term is the variance of the target around its true mean f (x). This cannot be avoided
no matter how well f (x) is estimated, unless 052 = 0. The second term is the squared bias and
the last term is the variance. The last two terms need to be addressed for a good performance
of the prediction model.

Given an input object x, a regression RF predicts a value in each leaf node which is the
mean of Y values of the objects in that leaf node. This value can be biased because large
and small values in the objects of the leaf node are often underestimated or overestimated.
The prediction accuracy can be improved if the median is used (instead of the mean) as the
prediction and the median surpasses the mean in robustness towards extreme values/outliers.
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Fig. 1 The predicted median values from the synthetic data set generated by the model of Eq. (4) show the
biases of Y values. The solid line connects the points where the predicted values and the true values are equal.
A large number of points escape from the solid line. (a) Bias in point prediction, (b) The 90 % range prediction

Meinshausen (2006) proposed quantile regression forests (QRF) for both point and range
prediction. QRF uses the median in point regression. For range prediction, QRF requires the
estimated distribution of F(y|X = x) = P(Y < y|X = x) at each leaf node, not only the
mean. Given two quantile probabilities ¢y and «j,, QRF predicts the range [Qg, (x), Qg (x)]
of Y with a given probability t that

P(Qu(x) <Y < Qo ()[X =x) =1.

Besides range prediction, QRF also performs well in situations where the conditional
distributions are not Gaussian. However, similar to regression RF, QRF can still be biased in
point prediction even though the median is used instead of the mean in prediction.

To illustrate this kind of bias, we generated 200 objects as a training data set and 1000
objects as the testing data set using the following model:

Y = 10sin (7 X1 X2) + 20(X3 — 0.5)> + 10X4 + 5X5 + €, )

where X1, X2, X3, X4, X5 and € are from U (0, 1).

We ran the QRF program in R package (Meinshausen 2012) on the generated data with
the default settings. Figure 1 shows the predicted median values against the true values for
point regression and range prediction. The bias in the point estimates is large when the true
values are small or big. In case of range prediction, we can see that the predicted values are
unevenly distributed in the range area of quantiles represented in the grey bars.

It is known that the performance of both regression random forests and quantile regression
forests suffers when applied to high dimensional data, i.e., data with thousands of features.
The main cause is that in the process of growing a tree from the bagged samples, the subset
of features randomly sampled from thousands of features in £ to split a node of the tree is
often dominated by less important features. The tree grown from such a subspace features
has a low accuracy in prediction, which affects the final prediction of the random forests.

Breiman (1996) introduced bagging in RF as a way to reduce the prediction variance and
increase the accuracy of the prediction. However, the bias problem remained. In his later
work (Breiman 2001), an iterative bagging algorithm was developed to reduce both variance
and bias in general prediction problems. However, this iterative bagging approach was not
well understood in applications to improve RF predictions (Xu 2013). Recently, Zhang and
Yan (2012) proposed five techniques for using RFs to estimate the regression functions. They
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considered that the bias of the model is related to both the predictor features and the response
feature. A simple non-iterative approach was introduced to use a regular RF to correct the
bias in regression models. The results were compared favorably to other bias-correction
approaches. However, their approach can only be applied to point prediction. Moreover,
the mean values were used in predictions at leaf nodes, which, as mentioned before, could
suffer from extreme values in data. Besides, the techniques were tested only on small low
dimensional data sets with the number of features less than or equal to 13. Xu (2013) proposed
a bias correction method in random forests which corrects the bias of RFs using a second RF
(Liaw and Wiener 2002). They demonstrated that the new approach performed better in de-
biasing and improving RF predictions than a standard de-biasing technique in the R-package
randomForest. They also proposed a generalized version of iterative bias correction in RFs
by applying a similar bias correction when predicting the out-of-bag bias estimates from RF,
and showed that predictions on some data sets may be improved by more iterations of bias
correction.

In this paper, we propose a new bias correction method called bcQREF to correct the bias in
QRF models. The bcQRF method is based on the QRF model to correct the bias in regression
models instead of the adaptive bagging proposed by Breiman (1999). bcQRF consists of two
levels of QRF models. In the first level model, a new subspace feature weighting sampling
method is used to grow trees for regression random forests. Given a training data set £, we
first use a feature permutation method to measure the importance of features and produce raw
feature importance scores. Then, we apply p-value assessment to separate important features
from the less important ones and partition the set of features in £ into two subsets, one
containing important features and one containing less important features. We independently
sample features from the two subsets and put them together as a new feature subspace for
splitting the data at a node. Since the subspace always contains important features which can
guarantee a better split at the node, this subspace feature weighting sampling method enables
generating trees from the bagged sample data with smaller regression errors.

After the first QRF model is built, the residual value is used to replace the response
feature of the original training data set and the second level QRF model is built to estimate
the bias values of the first level QRF model. The bias-corrected values are computed based
on the difference between the values predicted by the first level QRF model and the second
level QRF model. With bcQREF, both point regression bias and range prediction bias can be
corrected. Our experimental results on both synthetic and real world data sets have shown
that the proposed algorithm with these bias-correction techniques dramatically reduced the
prediction errors and outperformed existing regression random forests models.

2 Random forests for regression
2.1 Regression random forests
Given a training data £, a regression random forests model is built as follows.

— Step 1: Draw a subset of samples £; from £ using bagging (Breiman 1996, 1999), i.e.,
sampling with replacement.

— Step 2: Grow a regression tree Ty from L. At each node ¢, the split is determined by the
decrease in impurity that is defined as x,-er(Yi —Y)? /N (t), where N (¢) is the number
of objects and Y, is the mean value of all ¥; at node 7. At each leaf node, Y, is assigned as
the prediction value of the node.
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— Step 3: Let Y'* be the prediction of tree T} given input X. The prediction of regression
random forests with K trees is

polsp
-2

Since each tree is grown from a bagged subset of samples, it is grown with only two-third
of objects in £. About one-third of objects are left out and these objects are called out-of-
bag (OOB) samples which are used to estimate the prediction errors (Breiman 1996, 2001;
Breiman et al. 1984).

2.2 Quantile regression forests

Quantile regression forests (QRF) uses the same steps as used in regression random forests
to grow trees (Meinshausen 2006). However, at each leaf node, it retains all Y values instead
of only the mean of Y values. Therefore, QRF keeps a raw distribution of Y values at each
leaf node.

Using the notations by Breiman (2001), let 6x be the random parameter vector that deter-
mines the growth of the kth tree and ® = {9;{}{( be the set of random parameter vectors for the
forests generated from L. In each regression tree 7y from Ly, we compute a positive weight
w; (x;, Ox) foreach case x; € L.Letl(x, 6k, t) bealeafnodet in T;. The cases x; € [(x, O, t)
are assigned to the same weight w; (x, ) = 1/N(t), where N(¢) is the number of cases in
I(x, Ok, t). In this way, all cases in £ are assigned positive weights and the cases not in Ly
are assigned weight zero.

For a single tree prediction, given X = x, the prediction value is

N
Y= wi.00Yi = Y wix.0)Y. )
i=1 x,X,'El(x,Gk,I)

The weight w; (x) assigned by random forests is the average of weights by all trees, that is

1 K
wi () = — 1; w; (x, 6g). (©6)

The prediction of regression random forests is
N
Y= wix):. @)
i=1

We note that ¥ is the average of conditional mean values of all trees in the regression
random forests.

Given an input X = x, we can find the leaf nodes /i (x, 6;) from all trees where X falls
and the set of Y; in these leaf nodes. Given all ¥; and the corresponding weights w(i), we
can estimate the conditional distribution function of Y given X as

N
FOIX=x)=> wi0)I¥ <), ®)

i=1
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where Z(-) is the indicator function that is equal to 1 if ¥; < y and O otherwise. Given a
probability «r, we can estimate the quantile Q,(X) as

0o(X =x) =inf [y: FOIX =) = . ©)

For range prediction, we have
[Qur(X), 0y (X1 = [inf [y POYIX =) = cu}inf fy: FOIX =) = ] 10)

where o; < oy, and (o, — 1) = 7. Here, 7 is the probability that prediction Y will fall in the
range of [ Qe (X), Qu, (X)].

For point regression, the prediction can be a value in the range, such as the mean or
median of Y; values. The median surpasses the mean in robustness towards outliers. We use
the median of Y values in the range of two quantiles as the prediction of ¥ given input X = x.

3 Feature weighting for subspace selection
3.1 Importance measure of features by permutation

Given a training data set £ and a regression random forests model RF', Breiman (2001)
described a permutation method to measure the importance of features in the prediction. The
procedure for computing the importance scores of features consists of following steps.

1. Let Ez"b be the out-of-bag samples of the kth tree Ty. Given X; € LZOb , use Ty to predict
I?ik, denoted as fik(Xl-).

2. Choose a predictor feature j and randomly permute the value of feature j of case X;
with the value of another case in L‘Z(’b. Use tree T to obtain a new prediction denoted

as fl.k’p J(X;) on the permuted X; where p is the index of permutations. Repeat the
permutation process P times.

3. For K; trees grown without X;, compute the out-of-bag prediction by RF in the pth
permutation of the jth predictor feature as

i 1 .
i = - Z FErix;).
! X;Eﬁng

4. Compute the two mean square residuals (MSR) with and without permutations of pre-
dictor feature j on X; as

1 " 2
MSR; = Eg{; [f,» (Xi) — Yi]

and
. 1 & :
MSRZ.f =5 Z [ fi" (X)) — Y,-] respectively.
p=1

5. Let AMSR{ = max (O, MSRl.j — MSR,-). The importance of feature j is

1 ]

J

IMP; = — E AMSR; .
iel
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Table 1 The importance scores matrix of all predictor features and shadow features with R replicates

Iter. VI)(1 VIX2 VIXM VIAMJrl VIAM+2 VIAZM

1 Vi, Vi, Vi y VI“l.(MH) V1a1_<M+2) Vi oy
2 Vi, Vi, Vg y Vlaz.(M+1) VI“Q.(M+2) Viay
R VIXR,l VIXR.z VIXR,M VI“R,(MJrl) VIaR,(M+2) VI“R.2M

To normalize the importance measures, we have the raw importance score as

IMPj

VI =
SIEEMimp’

an

where M is the total number of features in £. We can rank the features on the raw importance
scores according to Eq. (11).

3.2 p-value feature assessment

The permutation method only gives the importance ranking of features. However, for bet-
ter feature selection at each node of a tree, we need to separate important features from less
important ones. This can be done with Welch’s two-sample t-test (Welch 1947) that compares
the importance score of a feature with the maximum importance score of the generated noisy
features called shadows. The shadow features do not have prediction power to the response
feature. Therefore, any feature whose importance score is smaller than the maximum impor-
tance score of the noisy features is considered as less important. Otherwise, it is considered
as important. This idea was introduced by Stoppiglia et al. (2003) and further developed in
Kursa and Rudnicki (2010), Tuv et al. (2006, 2009), Tung et al. (2014), Sandri and Zuccolotto
(2008, 2010).

We build a random forests model R F from this extended data set with shadow features.
Following the importance measure by the permutation procedure, we use RF to compute
2M importance scores for 2M features. We repeat the same process R times to compute R
replicates. Table 1 illustrates the importance measures of M input features and M shadow
features by permutating the values of the corresponding features in the data.

From the replicates of shadow features, we extract the maximum value from each row
and put it into the comparison sample V* = max{Aj},(r =1, .R; j=M+1,.2M). For
each input feature X ;, we compute t-statistic as:

Vig, - V"
f= e (12)

,/slz/n] +522/n2

where sl2 and s22 are the unbiased estimators of the variances of the two samples, Vix i is the

average of R importance scores on the jth input feature and V¥isthe average of R comparison
values in V*. For significance test, the distribution of #; in Eq. (12) is approximated as an
ordinary Student’s distribution with the degree of freedom df calculated as
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df = (slz/m +s22/n2)2 (13)

(s2/m)? = 1) + (s22/m2) Sz — 1)

where ny = ny = R.

Having computed the ¢ statistic and df, we can compute the p-value for the feature
and perform hypothesis test on ij > V". Given a statistical significance level, we can
identify important features. This test confirms that if a feature is important, it consistently

scores higher than the shadow over multiple permutations.

3.3 Feature partition and subspace selection

The p-value of a feature indicates the importance of the feature in prediction. The smaller
the p-value of a feature, the more correlated the predictor feature to the response feature, and
the more powerful the feature in prediction.

Given all p values for all features, we set a significance level as the threshold A, for
instance & = 0.05. Any feature whose p-value is smaller than A is added to the important
feature subset Xp;qp, and otherwise it is added to the less important feature subset X4y .
The two subsets partition the set of features in data. Given Xj;,;, and X;,,, at each node, we
randomly select some features from Xj;¢5 and some from X, to form the feature subspace
for splitting the node. Given a subspace size, we can form the subspace with 80 % of features
sampled from Xp;e, and 20 % sampled from X, .

4 Bias correction algorithm
4.1 A new quantile regression forests algorithm

Now we can extend the quantile regression forests with the new feature weighting subspace
sampling method to generate splits at the nodes of decision trees and select prediction value of
Y from the range of low and high quantiles with high probability. The new quantile regression
forests algorithm eQRF is summarized as follows.

1. Given L, generate the extended data set £¢ in 2M dimensions by permutating the corre-
sponding predictor feature values to generate shadow features.

2. Build a regression random forests model R F'¢ from £¢ and compute R replicates of raw
importance scores of all predictor features and shadows with R F'¢. Extract the maximum
importance score of each replicate to form the comparison sample V* of R elements.

3. For each predictor feature, take R importance scores and compute ¢ statistic according
to Eq. (12).

4. Compute the degree of freedom df according to Eq. (13).

5. Given ¢ statistic and df, compute all p-values for all predictor features.

6. Given a significance level threshold A, separate important features from less important
ones in two subsets X;,,, and Xp;gp.

7. Sample the training set £ with replacement to generate bagged samples L1, L7, ..., Lk.

8. For each sample set L, grow a regression tree Ty as follows:

(a) Ateachnode, selectasubspace of mtry (mtry > 1) features randomly and separately
from Xj,, and Xpie, and use this subspace features as candidates for splitting the
node.
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(b) Each tree is grown nondeterministically, without pruning until the minimum node
size npiy, is reached. At each leaf node, all Y values of the objects in the leaf node
are kept.

(c) Compute the weights of each X; by individual trees and the forests with out-of-bag
samples.

9. Given a probability 7, ¢ and «;, for o, — oy = v, compute the corresponding quantile

Qg and Q, with Eq. (10) (we set default values [o; = 0.05, o, = 0.95] and = = 0.9).

10. Given an input X, estimate the prediction value from a value in the quantile range of Qy,
and Qy, such as mean or median.

4.2 Two-level bias-correction algorithm

Breiman described an adaptive bagging method (Breiman 1999) as a stage-wise iterative
process. Consider Y values in the first stage and denote Y as the predicted values which are
calculated by subtracting the predictors, the second stage of bagging is carried out using Y
values. He suggested that the iteration should stop if the mean squared errors for new cases
from the next stage are 1.1 times of the minimal errors calculated so far. Consequently, the
residuals ¥ — ¥ at the second stage will bring extra variance. This means that adding more
iterative stages will lead to bias which tends to zero, while the variance will keep increasing.
Thus, addressing more than two stages is not necessary.

We propose a two-level bias-correction algorithm bcQRF to correct the prediction bias,
instead of Breiman’s approach. The first level quantile regression forests model is built from
the training data. The prediction errors from the first level QRF model replace the values of
the response feature in the original training data. The new training data with the prediction
errors as the response feature is used to build the second level quantile regression forests
model. The final bias-corrected values are calculated as the prediction value of the first level
model minus the prediction value of the second level model.

The bcQREF algorithm in range prediction is summarized as follows.

— Step 1: Grow the first level QRF model from the training data £ with response feature Y.

— Step 2: Obtain the predicted quantile values Qa (X = x) of x from the training data.
Estimate the bias as the median of the predicted values in the quantiles minus the true
response value of input data, defined as

E= Q05X =x)—7Y. (14)

— Step 3: Given X = x4, use the first level QRF model to produce the quantile values and
the range [Qal (X = Xpew)» Qah (X = Xpew)]- _

— Step 4: Extend the training data set £ with the bias errors E as a new response feature to
generate an extended data set £¢ = {L, E }. Grow the second level QRF model from £°¢
with the response feature E. Use the second level QRF model to predict the training data
and obtain a new set of errors E, new-

— Step 5: The bias-corrected quantiles are computed as

I:Qalnewa Qahnew] = [Qa[ (X = Xpew) — Enewa Qah (X = Xpew) — Enew] . (15)
For point prediction, the predicted values are chosen as Qo,s-
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5 Experiments and evaluations
5.1 Data sets
5.1.1 Synthetic data sets

We have defined Model 1 in Eq. (4) for synthetic data generation. Here, we define Model 2
as follows.

Y:O.1€4X1 +m+3}(3+2}(4+}(5+6, (16)
where € ~ N(0, 1.5%) and 5 iid predictor features were from U (0, 1). The two models were
used in Friedman (1991) to generate data sets with multiple non-linear interactions between
predictor features. Each model has 5 predictor features. In generating a synthetic data set,
we first used a model to create 200 objects in 5 dimensions plus a response feature and then
expanded the 200 objects with five noisy features. Two data sets were generated with the two
models and saved in files LM 10; and £M 10, where the subscripts indicate the models used
to generate the data, M 10 indicates the number of dimensions and £ is the training data. In
the same way, we also generated two test data sets, HM 107 and HM 10, where H indicates
test data. Each test data set contained 1000 objects.

To investigate the effect of irrelevant or noisy features on prediction errors, we used
Model 1 of Eq. (4) to generate two groups of data sets with three different dimen-
sions {M5, M20, M50} and three noise levels 0 = 0.1, 1 and 5. Totally, we created
9 synthetic training data sets as {LMS5S0.1, LMS5S1, LM5S5, LM?20S0.1, LM?20S1,
LM?20S5, LM50S50.1, LM5081, LM50S85}, where S indicates a noise level. Each data
set contained 200 objects. In the same way, we created 9 test sets {HM5S0.1, HM5S51,
HMSS5, HM20S50.1, KM20S1, HM20S5, HM50S50.1, HM50S1, HM50S5}. Finally, we
used Model 1 to generate 3 pairs of high dimensional data sets {£M200S5, HM?200SS5,
LMS50085, HM500S5, £LM1000S5, HM1000S5} to evaluate the new algorithm on high
dimensional noise data. Again, each training data set had 200 objects and each test data had
1000 objects.

5.1.2 Real-world data sets

Table 2 lists the real-world data sets used to evaluate the performance of regression forests
models. The table is divided into two sections. The top section contains 10 real world data sets
in low dimensions. Seven of them were taken from UCI.! We removed the object records
with missing values and feature “car name” from data set Auto MPG because the feature
has too many categorical values. Twenty-five predictor features were removed from data set
Communities and Crime. Three data sets Childhood, Horse Racing and Pulse Rates were
obtained from the DASL? database.

The bottom section of Table 2 lists 5 high-dimensional data sets. The computed tomog-
raphy (CT) data was taken from UCI and used to build a regression model to calculate the
relative locations of CT slices on the axial axis. The data set was generated from 53,500
images taken from 74 patients (43 males and 31 females). Each CT slice was described by
two histograms in a polar space. The first histogram describes the location of bone structures

! The data are available at http://archive.ics.uci.edu/.
2 http://lib.stat.cmu.edu/DASL/DataArchive.html.
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Table 2 Characteristics of

real-world data sets sorted by the Dataset name #0Objects  #Features  #Unique of Y
number of features 1 Servo 167 4 51
2 Childhood 654 4 575
3 Computer hardware 209 6 116
4 Auto MPG 392 7 127
5 Concrete slump test 103 7 90
6 Concrete compressive 1,030 8 845
strength
7 Pulse rates 110 10 55
8 Horse racing 102 12 19
Boston housing 506 13 229
10  Communities and 1,994 102 98
crime
11 Computed 53,500 385 53,347
tomography
12 Embryonal tumours C 60 7,129 2
13 DLBCL 240 7,399 104
14 Prostate tumor 102 10, 509 2
15  TFIDF-2006 19,395 150,360 15,848

in the image and the second represents the location of air inclusions inside the body. Both
histograms are concatenated to form the feature vector.

The microarray data Diffuse Large B-cell Lymphoma (DLBCL) was collected from Rosen-
wald et al. (2002). The DLBCL data consisted of measurements of 7399 genes from 240
patients with diffuse large B-cell lymphoma. The outcome was the survival time, which was
either observed or censored. We used observed survival time as a response feature because
censored data only had two states, dead or alive. A detailed description can be found in
Rosenwald et al. (2002).

Embryonal Tumours C and Prostate Tumor are two gene data sets taken from NCBI.?
Each of those data sets contained two classes. We changed one class label to 1 and the other
label to 0, and treat them as continuous values. The classification problem was converted to
a regression one. We built a regression random forests model to estimate the outcome and
used a given threshold to divide the outcomes into two classes.

The TFIDF-2006* data set represents a set of financial reports. Each document is associ-
ated with an empirical measure of financial risk. These measures were the log transformed
volatilities of stock returns. All records from 2001 to 2005 were used to train regression
random forests models and the last year records (2006) were used as test data.

5.2 Experimental settings

Two evaluation metrics are used to measure the performance of a model in prediction. They
are the mean of square residuals (M S R) and the mean absolute prediction error (MAPE)
calculated as follows, respectively.

3 http://www.ncbi.nlm.nih.gov.

4 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
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N

1 N 2
MSR = + ; (v = fe) (17)
and
1 & .
MAPE = N;m — fal, (18)

where f (x;) is the prediction on X = x;, N is the number of objects in the test data and y;
is the true value.

The M AP E evaluation is used to measure how close the predictions are to Y values. A
low MSR and M AP E of a model corresponds to a better prediction performance.

In the experiments, four random forests methods were used to build regression models
from the training data sets. They were the regression random forests RF, unbiased condi-
tional random forests cRF, quantile regression forests QRF and the proposed bcQRF. We
used the latest R-packages of RF, cRF and QRF, randomForest, cForest, quantregForest in
these experiments (Liaw and Wiener 2002; Hothorn et al. 2011; Meinshausen 2012). We
implemented a new feature weighting subspace sampling method and a new bias-correction
method in bcQRF. In the experiment environment, we ran R code to call the correspond-
ing C/C++ functions. The experiment results were evaluated using two measures MSR and
MAPE as defined in Egs. (17) and (18).

For the two large data sets computed tomography (CT) and TFIDF-2006, we only experi-
mented one model with 500 trees in each random forests method. In CT data, two-third was
used for training, and one-third for testing. In TFIDF-2006 data, the given training data was
used to learn the models and the test data was used to evaluate the models.

For other remaining synthetic and real-world data sets, we used 10-fold cross-validation to
evaluate the prediction performance of regression random forests algorithms. In each fold, we
built 30 regression models, each with 500 trees and tested 30 models with the corresponding
test data sets. The number of features used to split a node are | M /3] for low dimensional
data sets and [+/M | for high dimensional data, respectively. The parameter nodesize in a
regression forests model was five. The performance of each algorithm was measured by the
average of MSR and MAPE.

5.3 Results and evaluations
5.3.1 Comparison of results on synthetic data sets

The result comparisons of the four regression random forests RF, cRF, QRF and bcQRF from
11 pairs of synthetic data sets evaluated in MAPE and MSR are listed in Table 3. The second
pair of the data sets LM 10, and HM 10, were generated with Model 2 of Eq. (16) and the
rest 10 pairs of data sets were generated from Model 1 of Eq. (4). The upper part of the
table shows the MAPE evaluations of the four algorithms on the test data and the lower part
is the MSR evaluations of the four algorithms. We can clearly see that bcQRF significantly
reduced MAPE and MSR errors, especially on the data sets with the large noise level (o = 5).
These results demonstrated that the bias correction algorithm bcQRF produced more accurate
prediction results and was robust to noisy (irrelevant) features.

Figure 2 shows the MAPE and MSR evaluations of the four regression forests algorithms
on three high dimensional test data sets. Thirty regression models were created with each
algorithm from each training data set. The MAPE and MSR values of each algorithm on each
data set are the averages of MAPE and MSR values of 30 models. At the top of each bar
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Table 3 Comparisons of four
regression random forests
algorithms on synthetic data sets MAPE

Training data  Test data RF cRF QRF bcQRF

LM10y HM10; 2.03 2.37 2.13 1.67
LM10, HM10, 2.18 2.83 2.02 1.68
LM550.1 HM550.1 0.151 0.209 0.156 0.123
LM20S50.1 HM2050.1 0.201 0.241 0.196 0.139
LM50S50.1 HM5050.1 0.226 0.253 0.216 0.149
LM5S1 HM5S1 1.83 2.31 1.97 1.55
LM?20S1 HM20S1 2.27 2.510 2.30 1.80
LM50S1 HMS50S1 2.47 2.61 2.50 1.93
LM5S5 HMS5S5 18.2 31.7 14.0 11.1
LM20S5 HM20S85 254 36.8 17.9 12.3
LM50S85 HM50S85 28.7 38.7 19.9 13.1
MSR
LM10; HM104 6.45 8.71 7.09 4.54
LM10, HM10, 8.81 16.83 7.43 4.70
LM550.1 HMS5S50.1 0.037 0.070 0.039 0.024
LM20S50.1 HM2050.1 0.064 0.092 0.061 0.031
LM50S50.1 HM5050.1 0.080 0.101 0.074 0.035
LM5S1 HM5S1 5.27 8.23 6.07 3.92
LM?20S1 HM20S1 7.98 9.74 8.23 5.20
LM50S1 HM50S1 9.39 10.43 9.68 5.94
The value of bold in each row LM5S5 HMSS5 6048 17471 3563 2037
indicates the best result from the
corresponding data among the LM20S5 HM20S5 11173 23434 5888 2505
algorithms LM5085 HM50S85 1371.0 2506.1 727.1 283.5
8- o
- M=200 8 _
n 27 W wm=200
89 [ wm=s00
o | [ M=s500
Wool W wm=t000 x g
< N = | W wm=1000
E 2
9: 7 o
o 2
o - [I o [ =]
bcQRF cRF QRF RF bcQRF cRF QRF RF

Fig.2 Comparisons of four regression forests algorithms on three high dimensional test data sets { HM200S5,
HM50085, HM1000S5}. The results were the averages of 30 models by each algorithm

is the variance of the 30 results. We can see that bcQRF performed much better than other
algorithms on these high dimensional synthetic data. This was because the feature weighting
subspace sampling method was used in generating trees in bcQRF.

Figure 3 shows prediction results of two test data sets HM 10; and HM 100055 by QRF
without bias correction in Fig. 3a, ¢ and bcQRF with bias correction in Fig. 3b, d. HM 10,
is a small synthetic data set generated with Model 1. The biased predictions can be clearly
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Fig. 3 (a) Point and range predictions of data set HM 101 by QRF. The solid line represents the set of points
where the predicted values equal to the true values. The predicted values on the left are smaller than the true
values whereas the predicted values are greater than the true values on the right. Both right and left predictions
by QRF are biased. (b) Point and range predictions of data set HM 10; by bcQRFE. The left and right biases
are corrected. (¢) and (d) Point and range predictions of data set HM 1000S5. The predicted points and ranges
in (d) are more evenly distributed along the solid line, which demonstrates the effect of bias correction by
bcQRF

observed from Fig. 3a. The biased predictions were corrected by bcQRF as shown in Fig. 3b.
HM1000S5 is a high dimensional data set. We can see that predictions with bias correction
by bcQRF were clearly improved as shown in Fig. 3d in comparison with the predictions by
QRF in Fig. 3c.

5.3.2 Comparison of prediction performance on real-world data sets

Table 4 lists the MAPE and MSR evaluations of the four regression random forests algo-
rithms RF, cRF, QRF and bcQRF on 10 small real world data sets listed in Table 2. The
MAPE and MSR values were the averages of 30 evaluation values from 30 models by each
algorithm on each data set. The RFM/RFLADWM column lists the best prediction results of
the corresponding data sets obtained by Roy and Larocque (2012). We can see that bcQRF
outperformed other three algorithms and the best results by Roy and Larocque (2012) on
most data sets. In the data sets where bcQRF did not obtain the best results, the differ-
ences from the best results were minor. These results indicate that bcQRF is able to produce
the-state-of-the-art prediction results.

Figure 4 shows comparisons of the point and 90 % range predictions of the 10 small real
world data sets by QRF and bcQRF. The point predictions were the median values of Y.
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Table 4 Comparisons of regression random forests algorithms on 10 small real world data sets listed in Table
2. The best results in the REFM/RFLADWM column lists the best prediction results of the corresponding data
sets given in Roy and Larocque (2012)

Data set RF cRF QRF RFM/ bcQRF
RFLADWM

MAPE
1 Servo 0.313 0.505 0.303 0.345 0.254
2 Childhood 0.327 0.318 0.320 0.332 0.315
3 Computer hardware 26.8 40.5 29.9 25.8 25.9
4 Auto MPG 1.89 2.07 1.93 1.87 1.86
5 Concrete slump 389 47.0 39.9 35.1 32.8
6 Concrete com. strength 3.33 5.06 3.35 3.37 2.89
7 Pulse rates 9.87 13.76 9.54 9.67 8.54
8 Horse racing 1.58 2.06 1.62 1.46 1.38
9 Boston housing 2.14 2.54 2.03 2.07 1.90
10 Communities and crime 0.092 0.091 0.092 0.088 0.089
MSR
1 Servo 0.391 0.745 0.551 0.524 0.420
2 Childhood 0.188 0.173 0.175 0.190 0.171
3 Computer hardware 3470 9324 5500 3405 3370
4 Auto MPG 7.15 8.64 7.96 7.41 7.43
5 Concrete slump test 2357 3218 2747 2060 1988
6 Concrete com. strength 22.8 43.5 252 255 20.3
7 Pulse rates 224 337 217 255 183
8 Horse racing 4.04 6.93 4.32 3.48 3.18
9 Boston housing 10.3 16.0 9.1 10.3 8.0
10 Communities and crime 0.019 0.019 0.023 0.018 0.019

The value of bold in each row indicates the best result from the corresponding data among the algorithms

The left figure on each data set shows the predictions by QRF and the right figure shows
the predictions by bcQRF. Clear improvements in predictions can be observed in the right
figures of most data sets from the facts that the predicted points are closer to the diagonal
lines which indicates that the predicted values were close to the true values in data, and there
are less red points in the right figures which indicates that a large number of predictions were
within the predicted ranges. These results clearly demonstrate the advantages of bcQRF over
QRFE.

Table 5 lists the MAPE and MSR evaluations of three regression random forests algorithms
RF, QRF and bcQRF on 5 high dimensional real world data sets. Since cRF could not run on
the two large data sets CT and TFIDF-2006, we exclude it from this experiment. Except for
the MSR result of data set Embryonal Tumours C, bcQRF outperformed other two algorithms
in both MAPE and MSR evaluations. Error reductions on most data sets are significant. Even
with data set Embryonal Tumours C, the difference of MSR evaluation of bcQRF from the
best MSR evaluation of RF is minor. These results demonstrate that bcQRF has advantages
over other algorithms on high dimensional data.

Figure 5 shows the point and 90 % range prediction results of two large high dimensional
data sets CT and TFIDF-2006 by QRF and bcQRE. It can be seen that prediction errors of CT
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Fig.4 Comparisons of prediction results on 10 small real world data sets. The left figure of each data set shows
the point and the 90 % range predictions of QRF without bias correction. The vertical axis shows the true values
in data and the horizontal axis shows the predicted values. The vertical bars indicate the predicted ranges. The
green points show the predictions within the predicted ranges and the red points are the predictions outside
the predicted ranges. The right figure of each data set shows the predictions of bcQRF with bias correction.
(a) Servo, (b) childhood, (c¢) pulse rate, (d) computer hardware, (e) auto MPG, (f) concrete slump test, (g)
concrete compressive strength, (h) horse racing, (i) boston housing, (j) communities and crime
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Table 5 Comparisons of three

. Data set RF QRF bcQRF
regression random forests
algorithms on high-dimensional MAPE
data sets
11 Computed tomography (CT)  0.798 0392  0.141
12 Embryonal tumours C 0.463 0356  0.331
13 DLBCL 3.43 3.10 2.73
14 Prostate tumor 0.304 0.117 0.063
15 TFIDF-2006 0450 0455  0.232
MSR
11 Computed tomography (CT) 1.785 1.280  0.261
12 Embryonal tumours C 0.242 0355 0330
The value of bold in each row 13 DLBCL 16.5 17.9 13.8
indicates the best result from the 14 Prostate tumor 0.118 0.115 0.063
corresponding data among the 15 TFIDF-2006 0337 0351  0.118

algorithms
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Fig. 5 Comparisons of range predictions by QRF and bcQRF on high-dimensional data sets CT and TFIDF-
2006. (a) Range predictions of CT data by QRF, (b) Range predictions of CT data by bcQRF, (c¢) Range
predictions of TFIDF-2006 by QREF, (d) Range predictions of TFIDF-2006 by bc-QRF

data set by QRF appeared at values in the ranges of [20-30 cm] (shoulder part) and [60-75
cm] (abdomen part) as shown in Fig. 5a. The prediction errors in the same regions reduced in
the predictions by bcQRF as shown in Fig. 5b. For the predictions of data set TFIDF-2006, a
clear bias in point prediction can be observed in the results of QRF as shown in Fig. 5c. The
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bias was corrected in the results of bcQRF as shown in Fig. 5d. The effect of bias correction
is clearly demonstrated in this result.

6 Conclusions

We have presented a new bias-correction quantile regression forests algorithm bcQRF that
uses two-level models to correct bias in point and range predictions and improve the perfor-
mance of prediction models. The first level model is an extended quantile regression forests
model that uses a feature weighting subspace sampling method in tree growth to improve
prediction accuracy of the tree models. The second level regression forests model is built
with the residuals of the first level model as the response feature in the training data so it can
predict the bias of the first level model. With these two techniques, bcQRF can effectively
correct the prediction bias that often occurs in predictions of other regression random forests
models. We have presented a series of experiment results on both synthetic and real world
data sets to demonstrate the capability of the bcQRF models in bias correction and advantages
of bcQRF over other commonly used regression random forests algorithms.

In our future work, we will increase the scalability of the bcQRF algorithm by parallelizing
it on the cloud platform to deal with big data.
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