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Abstract Consider learning tasks where the precision requirement is very high, for ex-
ample a 99 % precision requirement for a video classification application. We report that
when very different sources of evidence such as text, audio, and video features are available,
combining the outputs of base classifiers trained on each feature type separately, aka late
fusion, can substantially increase the recall of the combination at high precisions, compared
to the performance of a single classifier trained on all the feature types, i.e., early fusion,
or compared to the individual base classifiers. We show how the probability of a joint false-
positive mistake can be less—in some cases significantly less—than the product of indi-
vidual probabilities of conditional false-positive mistakes (a NoisyOR combination). Our
analysis highlights a simple key criterion for this boosted precision phenomenon and justi-
fies referring to such feature families as (nearly) independent. We assess the relevant factors
for achieving high precision empirically, and explore combination techniques informed by
the analysis.
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1 Introduction

In many classification scenarios, e.g., in surveillance or in medical domains, one needs to
achieve high performance at the extreme ends of the precision-recall curve.! For some tasks
such as medical diagnosis and surveillance (for detecting rare but dangerous objects, ac-
tions, and events), very high recall is required. In other applications, for instance for the safe
application of a treatment or high quality user experience, high precision is the goal. In this
paper, we focus on achieving high precision. In particular, the goal in our video classifica-
tion application is maximizing recall at a very high precision threshold, specifically 99 %.
This has applications to improved user experience and advertising, but can also benefit self-
training (bootstrapping) systems during the automatic labeling of the unlabelled data, when
a relatively low false-positive rate is sought. Achieving high precision raises a number of
challenges: features may be too weak or the labels may be too noisy to allow the classifiers
to robustly reach the required precision levels. Furthermore, verifying whether the classifier
has achieved high precision can require expensive manual labeling.

Many applications, particularly in multimedia, provide diverse feature families and dif-
ferent ways of processing the different signals. For example, YouTube videos contain audio,
video, and speech streams, as well as text-based (e.g., title, tags) attributes, and each such
facet (or “view”) can be processed in distinct ways to create predictive features, such as
color, texture, gradient and motion-related histogram features extracted from the visual sig-
nal. Given access to such rich set of feature families, a basic question is how to use them
effectively. Consider two extremes: training one classifier on all the features, aka early fu-
sion or fusion in the feature space, versus training separate classifiers on each family and
then combining their output, aka late fusion? or fusion in classifier/semantic space (Snoek
et al. 2005). Training a single classifier on all the families has the advantage of simplicity.
Furthermore, the learner can potentially capture interactions among the different features.
However, there are complications: one feature family can be relatively dense and low di-
mensional, while another very high dimensional and sparse. Creating a single feature vector
out of all may amount to mixing apples and oranges. This can require considerable experi-
mentation for scaling individual feature values and whole feature families (and/or designing
special kernels), and yet, learning algorithms that can effectively integrate all the features’
predictiveness may not exist. Furthermore, for a significant portion of the instances, whole
feature families can be missing, such as absent audio or speech signals in a video. Train-
ing separate classifiers then combining the outputs may lose the potential of learning from
feature interactions across different modalities, but it offers advantages: one can choose ap-
propriate learning algorithms for each feature family separately, and then combine them for
best results.

In this work, we find that training distinct base classifiers offers an important benefit with
respect to high precision classification, in particular for maximizing recall at a high preci-
sion threshold. Feature families based on very different signals, for example, text, audio,
and video features, can yield independent sources of evidence and complement one another.

n binary classification, given a set of (test) instances, let 7 denote the set of truly positive instances, and

let T be the set that a classifier classifies as positive. The precision of the classifier is 177 , while recall

7]
is ‘T‘%Tl. A precision-recall curve is obtained by changing the threshold at which the classifier classifies

positive, from very conservative or low recall (small size IT]) to high recall.

2Early fusion subsumes late fusion, if one imagines the learning search space large enough to include both
learning of separate classifiers and then combining. But early vs. late is a useful practical distinction.
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The pattern of false-positive errors that the base classifiers make, each trained on a single
feature family, may therefore be nearly independent. Using an independence assumption
on false-positive mistakes of the base classifiers and an additional positive correlation as-
sumption, we derive a simple upper bound, essentially the product of individual conditional
false-positive probabilities, via Bayes’ formula, on joint false-positive mistakes (in case of
two classifiers, the event of both classifiers making a mistake, given both classify positive).
This bound is equivalent to the NoisyOR model (Henrion 1987). Our subsequent analysis
relaxes the assumptions and reveals a single alternative condition that needs to hold for the
substantial drop in the probability of joint mistakes. Furthermore, such criteria can be tested
on heldout data, and thus the increased confidence in classification can be examined and
potentially verified (requiring substantially less labeled data than brute-force validation). In
our experiments on classification of videos, we find that recall can substantially increase at
high precision levels via late fusion of nearly-independent base classifiers. We summarize
our contributions as follows:

1. We report the phenomenon of boosted precision at the beginning of the precision-recall
curve when combining independent feature families via late fusion.> We present analyses
that explain the observations and suggest ways for fusing classifiers as well as methods
for examining dependencies among classifier outputs.

2. We conduct a number of experiments that demonstrate the high-precision phenomena,
and compare several fusion techniques. Informed by our analysis, we illustrate some of
the tradeoffs that exist among the different techniques.

The paper is organized as follows. Section 2 contains our analysis and Sect. 3 presents
experiments. Section 4 discusses related work, and Sect. 5 concludes. This paper extends our
prior work (Madani et al. 2012), in particular with additional experiments on fusion of clas-
sifiers trained on subfamilies of audio and visual features, and experiments on a multiview
paper-classification dataset (McCallum et al. 2000).

2 Analyzing fusion based on false-positive independence

We focus on the binary classification setting and on the two-classifier case for the most
part. Each instance is a vector of feature values denoted by x, and has a true class denoted
Yx, ¥x € {0, 1}. We are interested in high precision classification, and therefore analyze the
probability of false-positive events. To show that the probability of joint false-positive mis-
takes can be significantly reduced when different feature families are available, in addi-
tion to an independence assumption on (conditional) false-positive events, we need another
positive-correlation criterion (see below). Our first analysis uses these two assumptions,
and derives an upper bound on the probability of joint false-positive mistake. This bound
is equivalent to the NoisyOR model (Henrion 1987). We then discuss these assumptions,
and subsequently present a relaxation that yields a single intuitive criterion for significant
reduction in false positive probability.
The two assumptions are:

1. Independence of false-positive mistakes:

P(fr(x)=1]y, =0, filx)=1) = P(fo(x) = 1]y, =0)

3In other words, the so-called Duck Test rings true! “If it looks like a duck, swims like a duck, and quacks
like a duck, then it is probably a duck.” See en.wikipedia.org/wiki/Duck_test.
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2. Positive (or non-negative) correlation:
P(fax)=1]Aix)=1) = P(frlx) =1),

where f;(x) = 1 denotes the event that classifier i classifies the instance as positive (“fires”),
and the event (f;(x) = 1|y, = 0) denotes the conditional event that classifier i outputs pos-
itive given the true class is 0 (“misfires”), and (y, =0, f;(x) = 1) is the conjunction of two
events (the true class is negative, while f;(x) = 1). We note that the assumption of the inde-
pendence of conditional false-positive mistakes is a subset (milder form) of the full “view-
independence” assumptions made in the original co-training work (Blum and Mitchell 1998)
(see related work, Sect. 4).
An upper bound on the probability of joint false-positive mistake can now be derived:

Py =0|px) =1, filkx)=1)
_Pox=0.pw=1 A=)

PAt) =1 i) = D) m
_P=0.pW=1A0)=1
=T P(hM =DP(fi(x) =1)
_ P =11y =0, A=) P =0, i) =1) o
P(fa(x)=1) P(fix)=1)
CP(HO) =11y, =0) PG =0, fi(x) =1
T P(h=1 P(fix)=1)
P(fa(x) =1, y, =0)
= PO, 0w = =@ =1) ®
= (1—P)(1—P)P(y=0)", @)

where P(y, = 0) denotes the probability of the negative class (the negative prior), and P;
is short for P(y, = 1| f;(x) = 1) (the “confidence” of classifier i that instance x is positive,
or posterior probability of membership, or equivalently, precision of classifier i). Positive
correlation was used in going from (1) to (2), and independence of false-positive events
was used in (2) to (3). Extension to k > 2 classifiers is straightforward generalization of
the two classifier case, making use of the two assumptions: (1) Independence of false pos-
itive mistakes: Vk > 2, P(fi(x) = 11y, =0, A\, fi(x) = 1) = P(fi(x) = 1|y, = 0), and
(2) positive correlation: Vk > 2, P(fi(x) = 1| \,_, fi(x) =1) = P(fi(x) = 1):

P(y, =0 \ i) =1) < P(y. =0 “ "] - P.
i>1 i
The bound has the form of a NoisyOR model, where the prior probability is the “leak”
probability.

Often, the positive class is tiny and P (y, = 0)~! & 1. Thus, the probability of failure can
decrease geometrically, e.g., from 10 % false-positive error for each of two classifiers, to 1 %
for the combination. This (potential) near-geometric reduction in false-positive probability is
at the core of the possibility of substantial increase in precision, via late fusion in particular.
In our setting, we seek such boosts in precision specially for relatively high probability
ranges. Our focus in this work is on further understanding and utilizing this phenomenon.

2.1 Discussion of the assumptions

There is an interesting contrast between the two assumptions above: one stresses indepen-
dence, given the knowledge of the class, the other stresses dependence, given lack of such

@ Springer



Mach Learn (2013) 92:457-477 461

knowledge. The positive correlation assumption is the milder of the two and we expect it
to hold more often in practice. However, it does not hold in cases when the two classifiers’
outputs are mutually exclusive (e.g., when the classifiers output 1 on distinct clusters of
positive instances). In our experiments, we report on the extent of the correlation. Very im-
portantly, note that we obtain an extra benefit from positive correlation, if it holds: given
that substantial correlation exists, the number of instances on which both classifiers output
positive would be significantly higher than independence would predict.

Let us motivate assumption 1 on independence of false-positive mistakes when each
classifier is trained on a feature family that is distant from the other. In the case of video
classification, imagine one classifier is trained on visual features, while another is trained on
textual features derived from the video’s descriptive metadata (e.g., title, description, etc.).
A plausible expectation is that the ambiguities or similarities among instances in one feature
domain that tend to lead to classifier errors do not co-occur with the ambiguities in the
other domain. For example, “Prince of Persia” refers both to a movie and a video game, and
the presence of these terms can lead to confusion by a text-based classifier between videos
about the movie versus the game. However it is easy to tell such videos apart by the visual
appearance or the audio. There can of course be exceptions. Consider the task of learning to
distinguish two games in a video game series (such as “Uncharted 2” and “Uncharted 3”),
and more generally, but less problematic, video games in the same genre. Then the textual
features may contain similar words, and the visuals could also be somewhat similar.

2.2 A relaxation of the assumptions

As we discussed above, base classifiers trained on different feature families may be only
roughly independent in their false-positive behavior. Here, we present a relaxation of the
assumptions that shows that the geometric reduction in false-positive probability has wider
scope. The analysis also yields an intuitive understanding of when the upper bound holds.

When we replaced P(fo(x) =1, fi(x) =1) by P(fo(x) = DP(fi(x) =1), we could
instead introduce a factor, which we will refer to as positive correlation ratio r, (the desired
or “good” ratio):

L _ P =1 A0 =1
" P(fHLx) =DP(fitx) =1)
Thus, the first step in simplifying the false-positive probability can be written as:
Py« =0, L) =1, filkx)=1)
rpP(HL(x)=DP(fitx)y=1)
The numerator can be rewritten in the same way, by introducing a factor which we will refer
to as the false-positive correlation ratio, r, (the “bad” ratio):
P P(frx)=1, filx)=1,y,=0)
T PRE =1y =0P(fix)=1,y,=0)

P(y,=0lax)=1, i) =1) =

Therefore:
_ rppP(2(x) =1,y =0)P(fi(x)=1,y,=0)
rpP(fa(x)=DP(filx)=1)

Pm=mﬁm=Lﬁm=U=%M—&m—a>
P

P(y: =0[o(x) =1, filx) =1)

, or

&)

Thus as long as the bad-to-good ratio r = rrf—” is around 1 or less, we can anticipate
P
a great drop in the probability that both classifiers are making a mistake, in particular,
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(I — P)(1 — Py) is an upper bound when r < 1. The ratios r, and ry, can be rewritten
in conditional form* as:

I P(L(x)=11fix)=1) - P(fa(x) =1,y =01fix) =1, y. =0)

! P(hy=1 7 P(fox) =1,y =0)

Both ratios involve a conditioned event in the numerator, and the unconditioned version
in the denominator. Either measure can be greater or less than 1, but what matters is their
ratio. For example, as long as the growth in the conditional overall positive outputs (7,,) is
no less than the conditional false-positive increase 7 s,,, the product bounds the false-positive
error of combination. We can estimate or learn the ratios on heldout data (see Sects. 3.5
and 3.7). In our experiments we observe that indeed, often, r 7, > 1. This implies that false-
positive events are NOT necessarily independent (in particular when P(y, = 0) = 1, see
inequality (4)), even for very different feature families. However, we also observe that r, >
r¢p. The analysis makes it plausible that instances that are assigned good (relatively high)
probabilities by both base classifiers are very likely positive, which explains why fusing by
simply summing the base classifier scores may yield high precision at top rankings as well.
Simple aggregation techniques are competitive in a variety of tasks (Tamrakar et al. 2012;
Gehler and Nowozin 2009; Dani et al. 2006; Kittler et al. 1998). We also experiment with
the fusion-via-summation technique.

(6)

2.2.1 Conditions for (a mild) boost in confidence (lift in precision-recall curve)

A natural question is whether it is always the case that precision (confidence) tends to in-
crease, or P(y, = 1]fi1(x) = fo(x) = 1) > max(P;, P,), even if not substantially, given
the mild easily understandable assumptions that the classifiers are positively correlated,
and that both somewhat agree® on x being positive (i.e., P; > P(y, = 1)). This can help
us understand when late fusion can help lift the precision-recall curve, albeit modestly,
even when the feature families or classifiers are similar (such as two different classifiers
trained on the same feature family). In particular, assume P, > P,, and we want to under-
stand when it is the case that: P(y, = 0| f>(x) =1, fi(x) =1) <1 — P, (or, using Eq. (5),
%(1 — P)(1 — P,) <1— Py). Simplifying, we get whenever 1 — P, < ;er,, As expected,
because P, > 0, this is a weaker condition than the condition for the product upper bound
to hold (which requires 1 < rrf—"p). However, a remaining question is whether we can replace
the extra dependence on false-positive correlation r s, with the very mild positive correlation
assumption, r, > 1 (together with the assumption that the two classifiers agree). In the ex-
treme case that the classifiers are duplicates, it can be verified that the condition holds, i.e.,
1-P,= r% (as expected, the overall confidence stays the same). But in intermediate cases,
we find that counter examples exist, i.e., the overall confidence can in fact degrade (lower
than the minimum of P; and P). Imagine P(y, = 1) = 0.01 (generally, very low positive-
prior), and P(f>(x) = 1| fi(x) = 1) = 0.5 thus there is positive correlation, and P; = 0.5
(conditional false-positive rate of 50 %), but that P(y, = 0| f1(x) = fo(x) =1) =1 (their
“intersection”, when both output positive, are exactly the two classifiers’ false positives).
Therefore, it appears that we still need to take into account the false-positive correlation
ratio r s, (and in particular the ratio: r,/r s,).

4The ratios can be seen as essentially the pointwise mutual information quantities (without the log function)
(Manning and Schutze 1999).

51n the experiments, we will observe that when Py is very low (e.g., P] < P(yx = 1)), while P, > P(yx =1)
i.e., when the two classifiers disagree on x, the overall joint confidence can be lower than the max P, (and

rp <Tfp)-
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3 Experiments

We focus on video classification, where the problem is classifying whether a video depicts
mostly gameplay footage of a particular video game.® We also include brief experiments, in
Sect. 3.9, on the Cora dataset, which is a text (research paper) classification dataset enjoying
multiple views (McCallum et al. 2000).

Our objective here is to maximize recall at a very high precision, such as 99 %. For eval-
uation and comparison, we look both at ranking performance, useful in typical user-facing
information-retrieval applications, as well as the problem of picking a threshold, using val-
idation data, that with high probability ensures the desired precision. The latter type of
evaluation is motivated by decision theoretic scenarios where the system, once deployed,
should make binary (committed) decisions or provide good probabilities on each instance
(irrespective of other instances). We begin by describing the experimental setting, then pro-
vide comparisons under the two evaluations. Most of our experiments focus on visual and
audio feature families. We report on the extent of dependencies among the two, and present
some results that include other feature families (text), as well as sub-families of audio and
visual features, and explore several variants of stacking.

For the video experiments in this paper, we chose 30 game titles at random, from amongst
the more popular games. We treat each game classification as a binary 1-vs-rest problem.
For each game, we collected around 3000 videos that had the game title in their video title.
Manually examining a random subset of such videos showed that about 90 % of the videos
are truly positive (the rest are irrelevant or do not contain gameplay). For each game, videos
from other game titles constitute the negative videos, but to further diversify the negative set,
we also added an extra 30,000 videos from other game titles to serve as negatives for all 30
labels. The data, of about 120,000 instances, was split into 80 % training, 10 % validation,
and 10 % test.

3.1 Video features and classifiers

The video content features used span several different feature families, both audio (Au-
dio Spectrogram, Volume features, Mel Frequency, ...) and visual features (Global vi-
sual features such as 8 x 8 hue-saturation, and PCA of patches at spatio-temporal in-
terest points, etc.) (Walters et al. 2012; Yang and Toderici 2011; Lyon et al. 2010;
Toderici et al. 2010). For each type, features are extracted at every frame of the video,
discretized using k-means vector quantization, and summarized using a histogram, one bin
for each codeword. Histograms for the various feature types are individually normalized to
sum to 1, then concatenated to form a feature vector. The end result is roughly 13000 audio
features and 3000 visual features. Each feature vector is fairly dense (only about 50 % are
zero-valued). We also include experiments with two text-based feature families, which we
describe in Sect. 3.6.

We used the passive-aggressive online algorithm as the learner (Crammer et al. 2006).
This algorithm is in the perceptron linear classifier family. We used efficient online learn-
ing because the (video-content) feature vectors contain tens of thousands of dense features,
and even for our relatively small problem subset, requiring all instances to fit in memory
(as batch algorithms do) is prohibitive. For parameter selection (aggressiveness parameter

6These “gameplay” videos are user uploaded to YouTube, and can be tutorials on how to play a certain stage,
or may demonstrate achievements, and so on.
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and number of passes for passive-aggressive), we chose the parameters yielding best aver-
age Max F1,” on validation data for the classifier trained on all features (audio and visual)
appended together. This is our early fusion approach. We call this classifier Append. The
parameters were 7 passes, and aggressiveness of 0.1, though the differences, e.g., between
aggressiveness of 1 and 0.01 were negligible at Max F1 0.774 and 0.778 respectively. We
also chose the best scaling parameter among {1, 2, 4, 8} between the two feature families,
using validation for best recall at 99 % precision, and found scaling of 2 (on visual) to be
best. We refer to this variant as Append™. For classifiers trained on other features, we use
the same learning algorithm and parameters as we did for Append. We note that one could
use other parameters and different learning algorithms to improve the base classifiers.

We have experimented with 2 basic types of late fusion: (1) fusion using the bound (4)
of Sect. 2 (NoisyOR), where false-positive probability is simply the product of the false-
positive probabilities of base classifiers, i.e., the NoisyOR combination, and (2) fusion using
the average of base classifier probability scores (AVG). For NoisyOR, we set the negative
prior P(y, = 0) = 0.97, since the positives, for each label, are roughly 3 % of data.? In
Sect. 3.8, we also report on learning a weighting on the output of each classifier (stack-
ing), and we describe another stacking variant, NoisyOR Adaptive, as well a simpler hybrid
technique, NoisyOR+AVG in Sect. 3.7.

3.2 Events definitions and score calibration

We require probabilities for the conditional events of the sort (y, = 1| f;(x) = 1), i.e., poste-
rior probability of class membership. Many popular classification algorithms, such as sup-
port vector machines, don’t output probabilities. Good estimates of probability can be ob-
tained by mapping classifier scores to probabilities using held-out (validation) data (e.g.,
Niculescu-Mizil and Caruana 2005; Zadrozny and Elkan 2001; Madani et al. 2012). Here,
we generalize the events that we condition on to be the event that the classifier score falls
within an interval (a bin). We compute an estimate of the probability that the true class is
positive, given the score of the classifier falls in such intervals.

One technique for extracting probabilities from raw classifier scores is via sigmoid fitting
(Platt 1999). We instead used the simple non-parametric technique of binning (pooling) the
scores and reporting the proportion of positives in a bin (interval) as probability estimates,
because sigmoid fitting did not converge for some classes, and importantly, we wanted to be
conservative when estimating high probabilities. In various experiments, we did not observe
a significant difference (e.g., in quadratic loss) when using the two techniques. Our binning
technique is a variant of the (pool-adjacent violators) PAV algorithm for isotonic regres-
sion (Robertson et al. 1988; Zadrozny and Elkan 2002). Briefly, instances are processed by
classifier score from highest to lowest, and bins are created when at least 20 instances are
inside a bin, and there is at least one positive and one negative instance inside a bin (except
for the lowest bin which may have only negatives). The minimum-size condition controls
for statistical significance, and the latter condition ensures that the probability estimates for
the high scoring ranges are somewhat conservative. Repeatedly, pairs of adjacent bins that
violate the monotonicity condition are then merged. Note that in typical isotonic regression,
initially each bin contains a single point, which can lead to the last (highest) bin with 1.0
positive proportion or a very high probability estimate. Figure 1 shows the mapping for one

7F1 is the harmonic mean of precision and recall. The maximum is taken over the curve for each problem.

8The prior does not change the ranking experiments (Table 1), but affects threshold selection (Table 2).
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Fig. 1 The score to probability mapping learned for one classifier using two parameter settings, one typical
isotonic regression (minimum bin size of 1), and another requiring a minimum bin size of 20 and both negative
and positive instances within a bin (the diversity constraint), as a simple way to obtain more conservative
probability estimates

Table 1 Ranking performance,

i.e., recall at several precision Prec.

thresholds (averaged over 30 99 % 95 % 90 % Max F1

classes), on the test set (rec @99,

rec@95, etc.) Audio 0.046 0.093 0.13 0.51
Visual 0.13 0.50 0.63 0.81
Append 0.14 0.41 0.59 0.78
Append ™t 0.26 0.39 0.57 0.82
NoisyOR 0.33 0.55 0.66 0.82
AVG (SUM) 0.45 0.62 0.70 0.82

classifier, for plain isotonic regression and our parameter setting in this paper (minimum bin
size set to 20, and the diversity constraint). The main significant difference tends to be at the
top of the probability range.

3.3 Ranking evaluations

Table 1 reports recalls at different (high) precision thresholds,” and Max F1, for audio and
visual classifiers as well as early (Append, Append™) and late fusion techniques, NoisyOR
and AVG. Figure 2 shows the precision-recall curves for a few classifiers on one problem.
‘We observe that late fusion substantially improves performance (“lifts” the curve up) at the
high precision regions of the curve. Note that we optimized the parameters (experimenting
with several parameters and picking the best) for the early fusion (Append) techniques. It
is possible that more advanced techniques, such as multi-kernel learning, may significantly
improve the performance of the early fusion approach, but a core message of this work is
that late fusion is a simple efficient approach to utilizing nearly-independent features for
boosting precision (see also the comparisons of Gehler and Nowozin 2009). Importantly,
note that Max F1 is about the same for many of the techniques. This underscores the dis-
tinction that we want to make that the major performance benefit of late over early fusion,
for nearly-independent features, appears to be mainly early in the precision-recall curve.

91In these results, we rank the test instances by classifier score and compute precision/recall.
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Fig. 2 Precision vs. recall curves, on one of the 30 game classes, for the classifiers trained on visual only,
audio only, the union of the two features (Append), and late fusion. Fusion substantially increases recall at
high precisions

We will be using rec@99 for recall at 99 % precision. When we pair the rec@99 values
for each problem, at the 99 % precision threshold, AVG beats all other methods above it in
the table, and NoisyOR beats Append and the base classifiers (at 99 % confidence level).
As we lower the precision threshold or when we compare Max F1 scores, the improvements
from late fusion decrease.

The improvement in recall at high precision from late fusion should grow when the base-
line classifiers have comparable performance, and all do fairly well, but not necessarily
extremely well, so there would be room for improvement. Figure 3 illustrates this (negative)
correlation with the absolute difference in F1 score between the base classifiers: the smaller
the difference, in general the stronger the boost from late fusion.!”

3.4 Threshold picked using validation data

We now focus on the setting where a threshold should be picked using the validation data,
i.e., the classifier has to decide on the class of each instance in isolation during testing. Ta-
ble 2 presents the findings. In contrast to Table 1, in which the best threshold was picked on
test instances, here, we assess how the probabilities learned on validation data “generalize”.

In our binning, to map raw score to probabilities, we require that a bin have at least 100
points, and 99 % of such points to be positive, for its probability estimate > 0.99 (Sect. 3.2).
Therefore in many cases, the validation data may not yield a threshold for a high precision,
when there is insufficient evidence that the classifier can classify at 99 % precision. For
a given binary problem, let E; denote the set of test instances that obtained a probability
no less than the desired threshold 7. E; is empty when there is no such threshold or when
no test instances meet it. The first number in the triples shown is the number of “passing”
problems (out of 30), i.e., those for which |E;| > 0 (the set is not empty). For such passing
problems, let E? denote the number of (true) positive instances in E-. The second number in

10An interesting trend appears to be that Append™ (early fusion) gains an advantage when the performances
of one feature family dominates the other (high x values).
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Fig. 3 Each point corresponds to one problem. The x-coordinate for all points is the absolute difference in
Max F1 performance of audio and visual-only base classifiers. For the first two plots, the y-coordinate is the
gain, i.e., the difference in recall at 99 % (rec @99) when instances are ranked. The first plot shows the gains of
NoisyOR (in rec@99) over the visual classifier, the 2nd is the gain of AVG over the Append™ classifier, and
the 3rd is the gain of NoisyOR Adaptive (Sect. 3.7) over average. In general, the closer the performance of
the two base classifiers, the higher the gain when using late fusion. For many of the problems, the difference
in rec@99 is substantial

Table 2 For each classifier and threshold combination (threshold picked using validation data), we report
three numbers: The number of “passing” problems (out of 30), where some test instances obtained a prob-
ability no less than the threshold t, the number of “valid” problems, i.e., those passing problems for which
the ratio of (true) positive test instances with score exceeding t to all such instances is at least 7, and the
average recall at threshold 7 (averaged over the valid problems only). Note that if we average the recall over
all problems, at T = 0.99 Appendt gets 0.06 (i.e., 0.6 x ﬁ, since Append® achieves 3 valid problems),
while NoisyOR and AVG get respectively 0.21 and 0.26. Both the number of valid problems and recall are
indicative of performance

Threshold ©

>0.99 >0.95
Audio (0,0, 0) (8,4,0.32)
Visual (8,3,0.653) (24, 20, 0.56)
Append (early fuse) (3,1, 0.826) (26, 16, 0.50)
Append+ (early fuse) (7, 3, 0.60) (23, 20, 0.63)
NoisyOR (24, 18, 0.35) (29, 22, 0.56)
AVG 0,0, 0) (13, 13,0.19)
Calibrated AVG (17, 12, 0.65) (30, 26, 0.62)
|E

the triple is number of “valid” problems, i.e., those for which
is greater than desired threshold 7).

Note that, due to variance, the estimated true positive proportion may fall under the
threshold t for a few problems. There are two types of variance. For each bin (score range),
we extract a probability estimate, but the true probability has a distribution around this esti-

4 . ., .
‘ EZ\l > t (the ratio of positives
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Fig. 4 The positive correlation (good) ratios, rp (y axis), versus dependency ratios r ¢, on 19 games, for
threshold T = 0.2 (see Sect. 3.5), measured on test (f; (x) = 1 if P; > t). Note that for all the problems, the
bad-to-good ratio r gy /rp < 1

mate.!! Another variation comes from our test data: while the true probability may be equal
or greater than a bin’s estimate, the estimate from test instances may indicate otherwise due
to sampling variance.!? The last number in the triple is the average recall at threshold T,
averaged over valid problems only.

Fusion using NoisyOR substantially increases the number of classes on which we reach
or surpass high thresholds, compared to early fusion and base classifiers, and is superior to
AVG based on this measure. As expected, plain AVG does not do well specially for threshold
7 =0.99, because its scores are not calibrated. However, once we learn a mapping of (cali-
brate) its scores (performed on the validation set), calibrated AVG improves significantly on
both thresholds. NoisyOR being based on an upperbound on false-positive errors, is conser-
vative: on many of the problems where some test instances scored above the 0.99 threshold,
the proportion of true positives actually was 1.0. On problems that both calibrated AVG and
NoisyOR variants reach 0.99, calibrated AVG yields a substantially higher recall. NoisyOR
is a simple technique and the rule of thumb in using it would be that if calibration of AVG
does not reach the desired (99 %) threshold, then use NoisyOR (see also NoisyOR+AVG in
Sect. 3.7). We note that in practice, with many 100s to 1000s of classes, validation data may
not provide sufficient evidence that AVG reaches 99 % (in general, a high precision), and
NoisyOR can be superior.

3.5 Score spread and dependencies

For a choice of threshold 7, let the event f;(x) = 1 mean that the score of classifier i exceeds
that threshold (the classifier outputs positive or “fires”). For assessing extent of positive cor-
relation, we looked at the ratios r,, (Eq. (6), Sect. 2.2), where f; is the visual classifier and
/> is the audio classifier. For 7 € {0.1, 0.2, 0.5, 0.8}, r,, values (median or average) were rel-
atively high (>14). Figure 4 shows the spread for t = 0.2. We also looked at false-positive

U This variance could be estimated and used for example for a more conservative probability estimation,
though we don’t pursue that here.

12Note also that many test instances may obtain higher probabilities than t, and thus the expected proportion
of positives can be higher than t.
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Table 3 Average recall, over 30 classes, for several precision thresholds on the test set, comparing classifiers
trained solely on LDA (1000 topics using text features), Append (LDA, audio, visual), fusion of LDA with
Append on audio-visual features (LDA+Append), and fusion of all three feature types (LDA+audio+visual).
While LDA feature alone perform very well, fusion, in particular of audio, video, and LDA features, does
best

Prec.

99 % 95 % 90 % Max F1
LDA 0.58 0.79 0.85 0.94
Append 0.65 0.86 091 0.93
LDA+Append 0.73 0.85 0.92 0.95
LDA+audio+visual 0.76 0.88 0.94 0.95

dependence and in particular rs,. For relatively high v > 0.5, we could not reliably test
whether independence was violated: while we observed 0O false positives in intersection, the
prior probability of false positive is also tiny. However, for 7 > 0.2, we could see that for
many problems (but not all), the NULL hypothesis that the false positives are independent
could reliably be rejected. This underscores the importance of our derivations of Sect. 2.2:
Even though the feature families may be very different, some dependence of false positives
may still exist. We also pooled the data over all the problems and came to the same con-
clusion, that the NULL hypothesis could be rejected. However, r, is in general relatively
small, and r, > r, for all the problems and thresholds T > 0.1 that we looked at. Note that
the choice of threshold that determines the event (when the rule fires), makes a difference in
the bad-to-good ratios (see Sect. 3.7).

Note that if the true rec @99 of the classifier is x, and we decide to require y many positive
instances ranked highest to verify 99 % precision (e.g. y = 100 is not overly conservative),
then in a standard way of performance verification, we require to sample and label y/x many
positive instances for the validation data. In our game classification experiments, we saw that
base classifiers’ rec@99 were rather low (around 10 to 15 % on test data from Table 1). This
would require much labeled data to reliably find a threshold at or close to 99 %. Yet with
fusion, we achieved that precision level on more than a majority of the problems (Table 2).

3.6 Text-based features and further exploration of dependencies

Our training data comes from title matches, thus we expect classifiers based on text features
to do rather well. Here, as features, we used a 1000-topic Latent Dirichlet Allocation (LDA)
model (Blei et al. 2003), where the LDA model was trained on title, tags, and descriptions
of a large corpus of gaming videos. Table 3 reports on the performance of this model, and
its fusion with video content classifiers (using NoisyOR). We observe LDA alone does very
well (noting that our training data is biased). Still, the performance of the fusion shows
improvements, in particular, when we fuse visual, audio, and LDA classifiers. Another text
feature family, with high dimensionality of 11 million, is features extracted from description
and tags of the videos, yielding “tags” classifiers. Because we are not extracting from the
title field, the tags classifiers are also not perfect,'? yielding an average Max F1 performance
of 90 %.

3Note that combining these classifiers is still potentially useful to increase the coverage. Only a fraction of
game videos’s titles contain the game titles.
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Table 4 Average values of r ;, and r, for several paired classifiers (at T = 0.1). Tag and LDA (LDAvsTag)
classifiers are highly dependent in their pattern of false positives, and % > 1. We observe a high degree of
independence in the other pairings

Pair

LDAvsTag LDAvsVis TagvsVis VisvsAudio HOGvsMotionHist
Tfp 101 6 3 2 2.7
p 30 18 17 14 4.5

Table 4 shows the rf, and r, values when we pair tag classifiers with LDA, etc. We
observe very high ry, values, indicating high false-positive dependence between the text-
based classifiers. This is not surprising, as the instances LDA was trained on contained
words from tags and description.'* We also compared pairs of feature subfamilies from
either visual or audio features respectively. The bad to good ratios remained less than one
(for T = 0.1). The table includes the ratios for video HOG (histogram of gradients) and
motion histogram subfamilies.

3.7 Improved NoisyOR: independence as a function of scores

Further examination of the bad-to-good ratio r =7, /7, both on individual per class prob-
lems, as well as pooled (averaged over) all the problems, suggested that the ratio varies as
a function of the probability estimates and in particular: (1) » > 1 (far from independence),
when the classifiers “disagree”, i.e., when one classifier assigns a probability close to O or
the prior of the positive class, while the other assigns a probability significantly higher, and
(2) r €10, 1], i.e., the false-positive probability of the joint can be significantly lower than
the geometric mean, when both classifiers assign a probability significantly higher than the
prior. Figure 5 shows two slices of the two-dimensional surface learned by averaging the
ratios over the grid of two classifier probability outputs, over the 30 games. These ratios are
used by NoisyOR Adaptive to estimate the false-positive probability.!> Note that, it makes
sense that independence wouldn’t apply when one classifier outputs a score close to the posi-
tive class prior: Our assumption that the classifier false-positive events are independent is not
applicable when one classifier doesn’t “think” the instance is positive to begin with. Inspired
by this observation, a simple modification is to take an exception to the plain NoisyOR tech-
nique when one classifier’s probability is close to the prior. In NoisyOR+AVG, when one
classifier outputs below 0.05 (close to the prior), we simply use the average score. As seen in
Tables 5 and 6, its performance matches or is superior to the best of NoisyOR and AVG. We
also experimented with learning the two-dimensional curves per game. The performance of
such, with some smoothing of the curves, was comparable to NoisyOR+AVG. The perfor-
mance of NoisyOR Adaptive indicates that learning has potential to significantly improve
over the simpler techniques.'®

14we later compared tag-only and description-only classifiers and observed r ¢, /rp < 1, even though both
are based on bag-of-words text features.

15Given p1 and pj, the map is used to obtain rp, p,, and the product rp, p, (1 — p1)(1 — p2) is the false-
positive probability. To learn the map, the domain [0, 1] x [0, 1], is split into grids of width 0.05, and ratio r
is estimated for each grid cell for each problem, then averaged over all problems.

16Note that NoisyOR Adaptive has a potential advantage in that the map is estimated using multiple games.
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Fig. 5 The bad-to-good ratio r as a function of individual classifier output-probability ranges. When the
classifiers ‘disagree’ (one output is near the positive prior, 0.03, while the other is higher), r > 1. But r ~ 1,
or r < 1, when both ‘agree’, i.e., when both outputs are higher than the positive prior (lower curve)

Table 5 Ranking performance

experiments (Table 1) using Prec.
NoisyOR+AVG and NoisyOR 99 % 95 % 90 % Max F1
Adaptive. The rows for (plain)
NoisyOR and AVG are copied AVG (SUM) 0.45 0.62 0.70 0.82
from Table 1 for ease of NoisyOR+AVG 0.45 0.62 0.72 0.83
comparison
NoisyOR Adaptive 0.47 0.65 0.72 0.83
Table 6 Threshold experiments
(Table 2) repeated for Threshold =
NoisyOR+AVG and NoisyOR >0.99 >0.95
Adaptive. The rows for (plain)
NoisyOR and calibrated AVG are NoisyOR (24, 18, 0.35) (29, 22, 0.56)
ied fi Table 2 fq se of
copiec Trom 2able £ for case o Calibrated AVG (17, 12, 0.65) (30, 26, 0.62)
comparison
NoisyOR+AVG (24, 22,0.322) (28, 26, 0.45)
NoisyOR Adaptive (29, 22,0.43) (30, 25, 0.59)

3.8 Learning a weighting (stacking)

We can take a stacking approach (Wolpert 1992) and learn on top of classifier outputs and
other features derived from them. We evaluated a variety of learning algorithms (linear
SVMs, perceptrons, decision trees, and random forests), comparing Max F1 and rec@99. On
each instance, we used as features the probability output of the video and audio classifiers,
p1 and p,, as well as 5 other features: the product p, p,, max(p;, p2), min(p;, p2), @,
and gap |p; — p»|. We used the validation data for training and the test data for test (each
12k). For the SVM, we tested with the regularization parameters C = 0.1, 1, 10, and 100,
and looked at the best performance on the test set. We found that, using the best of the learn-
ers (e.g., SVM with C = 10) when compared to simple averaging, recall at high precision,
rec@99, did not change, but Max F1 improved by roughly 1 % on average (averaged over
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Table 7 Average ranking test performance (over 30 classes), when late fusing individual classifiers trained
on sub-feature families of Audio and Visual features (14 many subfamilies), where late fusion is achieved by
learning on the validation data (no learning for SUM). We observe a significant boost in rec@99, in particular
via random forests

Prec.

99 % 95 % 90 % Max F1
Random forests (200 trees) 0.53 0.65 0.73 0.84
Perceptron committee (40) 0.50 0.64 0.72 0.83
Linear SVMs, C = 10 0.49 0.63 0.72 0.83
SUM 0.47 0.59 0.67 80

the problems). Pairing the F1 performances on each problem shows that this small improve-
ment is significant, using the binomial sign test, at 90 % confidence.!” SVMs with C = 10
and random forests tied in their performance. Because the input probabilities are calibrated
(extracted on heldout data), and since the number of features is small (all are a function of
p1 and p,), there is not much to gain from plain stacking. However, as we observe in the
next section, with additional base classifiers, stacking can show a convincing advantage for
further boosting precision.

3.8.1 Late fusing classifiers trained on subfamilies

There are several feature subfamilies within Audio and Visual features. A basic question is
whether training individual classifiers on each family separately (14 classifiers), then cali-
brating and fusing the output, can further boost precision. As we split the features, individual
classifiers get weaker, but their fusion may more than make up for the lost ground. In partic-
ular, we observed in Sect. 3.6 that the bad-to-good ratios for each subfamily pair were lower
than 1 for the pairs we checked, indicating the potential for precision boost. For training
the 14 classifiers, we used the same algorithm with exact parameters as above (7 passes of
passive-aggressive). Calibration of the classifiers was performed on all of validation data,
as before. We used 2-fold validation on the validation data for parameter selection for sev-
eral stacking algorithms we tested, as in the previous section (random forests, linear SVMs,
committees of perceptrons). The features are the outputs of the 14 classifiers (probabilities)
on each instance. For SUM (simply sum the feature values, akin to AVG), SVMs, and per-
ceptrons (but not random forests), we found that including the products of pairs and triples
of outputs as extra features was very useful. For efficiency, we kept a product feature for
an instance as long as the value passed a minimum threshold of 0.001. Both on the 2-fold
validation data, and on test data, random forest of 200 trees performed best in achieving a
rec@99 of 0.53 on test. Max F1 did not noticeably improve (compared to using two classi-
fiers). Table 7 presents the performance results. The superior performance of random forests
on rec@99, compared to SVMs, perceptron committees, and fusing two classifiers (e.g.,
AVG) is statistically significant using a paired sign test (e.g., 21 wins vs. 9 losses when
comparing to SVMs).

17Even using only p; and p as features gives a slight improvement in Max F1 over simple averaging, but
using all the features gives additional improvement.
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Table 8 The Cora Research

Paper Classification dataset. Top: Tp Tfp Tp Tfp
The good (rp) and bad ratios (for

T = 2), using the two linear SVM AL (35 %) 1.7 3.3 HW Arch (4 %) 10 11
classifiers trained on Citations or IR (2 %) 17 92 Theory (10 %) 5.5 8

Authors only for the 11 top level

classes. The percentage of DB (4 %) 1 15 Prog. (13 %) 4.5 6.7
positive instances is shown in Encr. (4 %) 12 10 HCIL (5 %) 1.1 11.7
parentheses for each class. 0S (8 %) 5.9 7 Data (8 %) 8.1 8.7

Bottom: Ranking performance
(recall at two precision
thresholds and Max F1), using

Netw. (5 %) 6.1 6.9

SVM classifiers, averaged over Prec.

the 11 problems 99 % 95 % Max F1
Author only 0.02 0.03 0.54
Citations only 0.03 0.13 0.71
Append 0.04 0.19 0.73
AVG 0.09 0.19 0.73
NoisyOR 0.08 0.18 0.72
NoisyOR+AVG 0.09 0.21 0.73

3.9 Analysis on the Cora dataset

The Cora Research Paper Classification dataset consists of about 31k research papers, where
each paper is described by a number of views, including author names, title, abstract, and
papers cited (McCallum et al. 2000). Each paper is classified into one of 11 high level subject
categories (Artificial Intelligence, Information Retrieval, Operating Systems, ...). We used
two views, author and citations, and partitioned the data into a 70-15-15 train-validation-
test split. Each paper has on average 2.5 authors and 21 citations. We trained and calibrated
the scores of linear SVM classifiers (trained on each view separately and on both appended),
using the best parameter C = 100 for early fusion, after trying C € {1, 10, 100} on validation
(all had close performance). Same C was used for single-view classifiers.

We expect the authors and citations views to be roughly independent, but exceptions in-
clude papers that cross two (or more) fields (e.g., both Artificial Intelligence and Information
Retrieval): the citations may include papers crossing both fields and the authors may also
have published papers in both. Table 8 presents the good (7)) and bad ratios and ranking
performances for a few algorithms. The median bad-to-good ratio slightly exceeds 1 (it is
1.2). Thus we observed weaker patterns of independence compared to the video data, but the
near 1 ratios suggest that late fusion techniques such as AVG and NoisyOR+AVG should
still perform relatively well at high precision requirements, as seen in Table 8. Note that the
positive proportion of the various classes is high compared to the video dataset, therefore,
considering inequality (4), the factor P(y, = 0)~! can be high (1.5 for Al and =~ 1.1 for
several other classes).

4 Related work

The literature on benefits of multiple views, multi-classifier systems (ensembles), and fu-
sion, applied to a variety of tasks, is vast (Hansen and Salamon 1990; Ho et al. 1994;
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Blum and Mitchell 1998; Jain et al. 2005; Long et al. 2005; Snoek et al. 2005; Brown 2009;
Gehler and Nowozin 2009; Zhou 2012). The work of Kittler et al. (1998) explores a number
of classifier combination techniques. There are several differences between that work (and
much related work) and ours: the treatment is for a more general setting where classifier
outputs can be very correlated.'® Often other performance measures, such as average pre-
cision over the entire precision-recall curve, equal error rate, or Max F1, are reported. We
are not aware of work that focuses on high precision, in particular on the problem of max-
imizing recall at a high precision threshold, with a careful analysis of near independence
of the false-positive events, explaining the phenomenon of increased precision early in the
precision-recall curve via late fusion.

Near-independence relates to classifier diversity, and these and close properties such as
(dis)agreement rate, have been studied in work on classifier ensembles as well as co-training
and semisupervised learning settings (Hansen and Salamon 1990; Blum and Mitchell 1998;
Abney 2002; Tulyakov and Govindaraju 2005; Madani et al. 2004; Wang and Zhou 2010).
The original view-independence assumptions in co-training (Blum and Mitchell 1998) are
strong, in that they assume conditional independence assumptions for all the possible com-
binations of class values and output values of the classifiers (similar to the Naive Bayes
assumption). Abney (2002) describes an example scenario (two classifiers on a data set)
where the classifier outputs remain correlated after conditioning on the class. Later work
has sought to relax the assumptions, and make them more realistic and directly relevant
(i-e., find sufficient and/or necessary conditions) to the success of co-training (Abney 2002;
Wang and Zhou 2010). For instance, Abney gives a condition for weak dependence (which
remains a function of all possible class values), and shows that co-training can succeed if
only weak dependence holds. Similarly, early work on ensembles pointed to their potential
in reducing error (e.g., via majority vote), by making ideal independence assumptions. Our
initial analysis is similar in nature, but with our focus on conditional false-positive events,
requires a milder independence assumption (plus an unconditional positive correlation) than
full view independence.

Multikernel learning is an attractive approach to early fusion, but in our setting, efficiency
(scalability to millions of very high dimensional instances) is a crucial consideration. We
observed that a simple scaling variation is inferior. Prior work has found combination rules
very competitive compared to multikernel learning with simplicity and efficiency advantages
(Gehler and Nowozin 2009; Tamrakar et al. 2012).

Fusion based on NoisyOR variants has a similarity to the Product of Experts (PoE) in that
it involves a product (Hinton 2002). POE combines probabilistic expert models by multiply-
ing their outputs together and renormalizing. The product operation in PoE is a conjunction,
requiring that all constraints be simultaneously satisfied. In contrast, since NoisyOR fusion
considers the product of failure probabilities, it is akin to a disjunction (Henrion 1987); the
predicted confidence is always as strong as the least confident expert, and when multiple
experts agree the confidence increases sharply. The product rule for two classifiers is simply
P1 D2, while the NoisyOR is p; 4+ p» — p1 p» (ignoring the priors). Kittler et al. (1998) study
the product rule and compare it to variants such as sum, and find sum to be more robust,
due to the higher sensitivity of the product rule to variance in the output of the classifiers.
We briefly experimented with ranking evaluation using the product rule (i.e., the set up of
Table 1). Recall at 99 % precision was high, but a percent lower than AVG (SUM), and the
average Max F1 was lower at 0.79 (several techniques obtain 0.82). Note that for the product

18We also note that in much of past work on ensembles, the classifier outputs, even if they are interpretable
as probabilities, are not carefully calibrated probabilities learnt from heldout data.
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rule to work well, in general the low probabilities need to be estimated fairly well too. For
example, at an extreme, if very low scores, from one classifier, are rounded to O by the cali-
bration technique, the probability output of the other classifier loses its influence completely
(e.g., on ranking such instances). Tamrakar et al. (2012) and Gehler and Nowozin (2009)
find competitive results with late fusion using simple sum and product techniques.

A number of techniques are somewhat orthogonal to the problems addressed here.
Cost-sensitive learning allows one to emphasize certain errors (Elkan 2001), for exam-
ple on certain types of instances or classes. In principle, it can lead the learner to fo-
cus on improving part of the precision-recall curve. In our case, we seek to minimize
false-positive errors, but at high ranks. If formulated naively, this would lead to weight-
ing or supersampling the negative instances. However, negative instances are already a
large majority in many applications, as is the case in our experiments, and thus weight-
ing them more is unlikely to improve performance significantly. It has been observed
that changing the balance of negative and positive classifier can have little effect on
the learned classifier (in that work, decision trees and naive Bayes) (Elkan 2001). Other
work mostly focuses on oversampling the positives or downsampling the negatives (e.g.,
Batista et al. 2004). Area under curve (AUC) optimization is a related technique for
improved ranking, though the techniques may be more appropriate for improving mea-
sures such as Max F1, and we are not aware of algorithms that substantially improve at
very high precision over standard learning technique (e.g., see Cortez and Mohri 2004;
Calders and Jaroszewicz 2007).

5 Summary

Fusing classifiers trained on different sources of evidence, via a NoisyOR model and its
extensions, can substantially increase recall at high precisions. When one seeks robust class
probabilities, or a threshold that achieves high precision, one can significantly save on man-
ually labeling held-out data compared to the standard way of verifying high precision. For
classifiers trained on very different features, we showed how the probability of a (condi-
tional) joint false-positive can be upper bounded by the product of individual (conditional)
false-positive probabilities, therefore, in such scenarios, an instance receiving high proba-
bilities from multiple classifiers is highly likely a true positive. This property also partly
explains our observation that simply summing the base classifier probabilities, and other
simple variants such as product, can do very well when the objective is improving pre-
cision at top rankings. As the number of classifiers grows, addressing the interdependen-
cies of classifier outputs via a learning (stacking) approach becomes beneficial. We showed
promising results in that direction. Investigating the multiclass case and developing a fur-
ther understanding of the tradeoffs between early and late fusion are fruitful future direc-
tions.
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