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Abstract A fully probabilistic approach to reconstructing Gaussian graphical models from
distance data is presented. The main idea is to extend the usual central Wishart model in
traditional methods to using a likelihood depending only on pairwise distances, thus being
independent of geometric assumptions about the underlying Euclidean space. This exten-
sion has two advantages: the model becomes invariant against potential bias terms in the
measurements, and can be used in situations which on input use a kernel- or distance ma-
trix, without requiring direct access to the underlying vectors. The latter aspect opens up
a huge new application field for Gaussian graphical models, as network reconstruction is
now possible from any Mercer kernel, be it on graphs, strings, probabilities or more com-
plex objects. We combine this likelihood with a suitable prior to enable Bayesian network
inference. We present an efficient MCMC sampler for this model and discuss the estima-
tion of module networks. Experiments depict the high quality and usefulness of the inferred
networks.
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1 Introduction

Gaussian graphical models (GGMs) have amassed prolific interest in recent years due to its
intuitive mechanism of representing and visualizing complex connectedness between ob-
jects. They provide a rigid formalism to represent high-dimensional distributions of random
variables (objects). Given a n x d-dimensional random matrix X with n objects and d i.i.d.
measurements (observations), GGMs infer the network of dependencies amongst these n
objects through their pairwise partial correlations. The partial correlations are seen as a
measure of conditional dependence between objects and are obtained from the inverse of
the covariance matrix. Conditional independence is asserted between any two objects if the
pairwise partial correlation is zero and this indicates the absence of an edge between these
objects in the network. Identifying networks—estimating dependencies between objects and
thereby determining their underlying graph structure—is a challenging problem. The prob-
lem is more pronounced in high-dimensional settings i.e. when the number of objects is far
larger than the measurements themselves and when the unknown network structure has to
be learned from noisy observed measurements. The noisiness and high-dimensionality add
degrees of complexity in interpreting and analyzing networks. Further, traditional network
inference models depend on geometric translations of the data which require knowledge of
the underlying geometric coordinates. In many real-world scenarios, especially those deal-
ing with non-vectorial objects like strings, graphs etc, one rarely has access to the objects’
underlying vectorial representations but only to their pairwise distances implying that the
geometric translations are entirely lost. Therefore, it becomes pertinent to devise a network
inference procedure that looks from the angle of pairwise distances, hence being devoid of
any vectorial representations of the objects. To our knowledge, the problem of recovering
networks solely from pairwise relational information has not been addressed in the litera-
ture so far, except for the case of classical GGMs where the standard Wishart likelihood
effectively depends only on pairwise inner products. This dependency on inner products,
however, implies a strong assumption about the origin of the underlying space, and we show
in our experiments that the success of network inference based on the standard Wishart
likelihood crucially depends on the fulfillment of this geometric assumption. Focusing on
situations in which the relational information between objects is all that we can observe
(because, for instance, we are dealing with structured objects like strings, graphs etc for
which no generic vectorial representation exists), it is basically impossible to correct for (or
even to check) this implicit geometric assumption that is encoded into the standard Wishart
likelihood. This problem was the main motivation for us to search for variants of GGMs
which are invariant against assumptions about the origin of the underlying coordinate sys-
tem. Note that this invariance essentially describes the transition from inner products (which
necessarily depend on the origin) to distances (which do not).

In the current paper, we introduce a novel sparse network inference mechanism called
the Translation-invariant Wishart Network (TiWnet) model that is designed solely to work
on pairwise distances. This applicability to situations in which we can only observe distance
information constitutes the strength of this new model over similar approaches involving
the matrix-valued Gaussian likelihood (Allen and Tibshirani 2010). We denote by D,,,, the
matrix that contains the pairwise distances between n objects. To the best of our knowl-
edge this is the first paper that deals with network structure discovery in situations where
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no vectorial representation of objects is available and only pairwise distances are observed.
Additionally, the presence of certain objects having a relatively higher confluence of edges
gives rise to central hub regions. Extracting the network structure from amongst hubs given
noisy measurements makes it, in general, difficult to summarize the entire network suc-
cinctly. To handle this, we present the construction of module networks where networks are
learned on groups of variables called modules, thereby effectively reducing n to the number
of modules.

Graphical abstract For clarity, we provide a graphical abstract (Fig. 1) that captures the
focus of this paper. The top panel shows the classical operational regime for GGMs that uses
the vectorial representation of an object for network recovery. These vectors are present in
the observed X, «,; matrix where n is the number of objects and d the measurements. The
bottom panel sketches the regime our paper focuses on which deals with the non-vectorial
representations of objects. These objects can be those having a structure like graphs, strings,
probability distributions etc. For such objects, it is natural to look into their pairwise repre-
sentations and therefore for network recovery, we make use of their pairwise representations
assembled in a pairwise distance D, y, matrix.

Outline of the paper In Sect. 2, we explain the classical setting for GGMs. The underlying
problems with existing methods are elaborated in Sect. 3. In Sect. 4, we discuss the solution
to these problems and further explain how our model, TiWnet, caters to this solution. Sec-
tion 5 details the TiWnet network inference model. We describe module networks in Sect. 6.
Comparison experiments on simulated data along with three real-world application areas
are demonstrated in Sect. 7. In Sect. 8, we discuss TiWD (Vogt et al. 2010) that uses the
same likelihood as TiWnet and TiWD’s incapability to extract networks. The contributions
of TiWnet are highlighted in Sect. 9 and we conclude the paper in Sect. 10.

2 Classical GGMs

To set the stage, we begin with a description of the classical framework for estimating sparse
GGMs. One usually starts with a n x d observed data matrix X° (the superscript ° means
“original” and is used here only for notational consistency), its d columns interpreted as
the outcome of a measuring procedure in which some property of the n objects of interest
is measured. In a biological setting, for instance, the objects could be n genes and one set
of measurements (one column) could be gene expression values from one microarray. All d
columns in X are assumed to be i.i.d. according to A'(0, X). Then, the inner product matrix
S0 = lllX"(X”)’ follows a central Wishart distribution W,(X) in d degrees of freedom'
(Muirhead 1982) (if d > n otherwise S° is pseudo-Wishart?), and its likelihood as a function
of the inverse covariance ¥ := X! is

d d
L) x|¥|2 -exp|:—§tr('1/S")i|. (1)

IThe central standard Wishart distribution is defined for $° = X°(X?)!. Throughout the paper, we use
SO = %X 2(X°)! so that d appears in the central Wishart distribution and can be later used as an anneal-
ing parameter in the inference procedure.

2The names of the Wishart distribution are inconsistent in the literature. We use the notation in Dfaz-Garcia
et al. (1997).
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Fig. 1 Graphical abstract. Consider the space of objects having a vectorial or non-vectorial representation.
(Top) Classical GGMs operate in a vectorial regime where networks are extracted from objects represented
as vectors in an observed X, x4 matrix with n objects of interest and d observations. (Bottom) Current focus
of this paper deals with objects possessing a non-vectorial representation i.e. these objects have a structure
like a string or graph. For such objects, it is natural to consider their pairwise representations rather than
vectorial representations. To enable network extraction for such structured objects, we use their pairwise
representations collected in a pairwise distance Dy, x;, matrix
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n—dimensional Gaussian N(0,X )

original
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Fig.2 Assumed underlying generative process in classical GGMs. Black arrows indicate the workflow when
drawing samples from this model; n, d: matrix dimensions. Every dth draw from the n-dimensional Gaussian
is an i.i.d. replication and stacked as a column of X°. A draw represents a set of observations and a row
denotes an object of interest

The corresponding generative model is sketched in Fig. 2. Every algorithm for network
reconstruction relies on some potentially interesting sparsity structure garnered within the
inverse covariance matrix ¥ := X ~!. ¥ contains the (scaled) partial correlations between
the n random variables forming the nodes in the network: a zero entry in ¥;; concurs to no
edge prevailing between the pair of random variables (i, j) in the network.

Related work There exists a plethora of literature on network structure estimation using
i.i.d. samples. To infer the underlying network, it is straightforward (at least from a method-
ological viewpoint) to maximize the Wishart likelihood while ensuring that ¥ is sparse. This
is exactly the approach followed in graph lasso (Friedman et al. 2007) where a ¢; sparsity
constraint on ¥ is used:

d d
log L(¥) Elog|lll| - Etr(qrfsv) — AL 2)

where A controls the amount of penalization and ||¥ ||; =), |¥;|, the £; norm which is the
sum of absolute values of the elements in ¥. A methodologically similar, but simplified
approach that decouples this joint estimation problem into n independent neighborhood-
selection problems is dealt in Meinhausen and Biihlmann (2006). The neighborhood se-
lection problem is cast into a standard regression problem and is solved efficiently using
a ¢, penalty. The model presented in Kolar et al. (2010b) deals with conditional covari-
ance selection where the neighborhoods of nodes are conditioned on a random variable that
holds information about the associations between nodes. They employ a logistic regression
model with a £, /¢, penalty for the neighborhood-selection problem while additionally as-
suming this conditioning variable which steers sparsity of edges. Another method to extract
networks called walk-summable graphs is introduced in Johnson et al. (2005b) where a
neighborhood is constructed based on walks accumulated by every node in the graph and
weighted as a function of the edgewise partial correlations present in ¥.
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Fig. 3 Assumed underlying generative process. Black arrows indicate the workflow when drawing samples
from this model; n, d: matrix dimensions. The red arrows highlight the same distance matrix D produced
from either the “original data” X (consisting of i.i.d. samples) or the “mean-shifted” data X (purple-outlined
boxes) (Color figure online)

3 Underlying problems with existing methods

The above papers and related approaches, however, have been built on an assumption that the
d columns in X are i.i.d. This particular assumption of considering columns to be identi-
cally distributed might be too restrictive: even if the underlying Gaussian generative process
is a valid model, different column-wise bias terms are common in practice. In the above bi-
ological example, there might be global expression differences between the d microarrays.
It is therefore indispensable to model these unknown shifts (biases) for valid network infer-
ence. An ensuing consequence of modeling these biases is that the column i.i.d. assumption
gets relaxed i.e., one ends up working with just independent data since the columns now
come from different distributions.

Employing non-i.i.d. data for network recovery has been dealt with in the past, primarily
in the area of time-varying data. Here, the data are no longer identically distributed since
observations are taken at d discrete time points. In this case, the time-varying GGMs aim
in capturing the longitudinal relational structure between objects. Examples of such work
that deal with transient non-i.i.d. data due to discrete time points can be found in Kolar
et al. (2010a), Zhou et al. (2010) and Carvalho and West (2007). In these references, it must
be noted that every observation assumes to have been generated from either a common-
mean discrete-distribution Ising model (Kolar et al. 2010a) or zero-mean multivariate normal
distribution (Zhou et al. 2010 and Carvalho and West 2007). At this juncture, our work
differs from this fraternity in that although we also deal with non-i.i.d. data, the non-i.i.d.
nature arises not due to the time component but due to admitting different column-wise
biases.

To model these column-wise biases in TiWnet, they are included in the generative model
by introducing a shifting operation in which scalar bias terms b, 4) are added to the
“original” column vectors x{, which results in a mean-shifted vector x;, forming the ith
column in X, cf. Fig. 3 (purple-outlined boxes). Hence the columns come from different
distributions i.e. they cease to be identically distributed. In the classical case of not con-
sidering column biases, X° is distributed as A'(0, X), but in TiWnet which now accom-
modates these column biases, the joint distribution of all matrix elements is expressed, that
here is matrix normal X ~ N (M, £2) with mean matrix M := lnbﬁ, and covariance ten-
sor 2 := X, ® I;. This model implies that § = éX X' follows a non-central Wishart
distribution § ~ W, (X, ®) with non-centrality matrix ® := X~'MM' (Gupta and Nagar
1999). Practical use of the non-central Wishart for network inference, however, is severely
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Fig.4 Left: Example network, artificially created from a data generator. Right: performance of edge recovery
for the graph lasso (GL) method which maximizes the standard Wishart likelihood with a £ sparsity penalty.
The leftmost boxplot refers to the original (unshifted) data (GL.0), meaning that the model assumptions are
correct, the rightmost boxplot refers to data with column shifts (GL.s), and the middle boxplot refers to
empirically centering the columns (GL.C). Refer Sect. 7 for details on sample generation, methods, model
selection and evaluation criteria

hampered by its complicated form and more so, the problem of estimating the unknown non-
centrality matrix ® based on only one observation of S which is problematically analogous
to identifying the mean of any distribution given only a single data point.

It is, thus, desirable to use a simpler distribution. One possible way of handling such
column biases is to “center” the columns by subtracting the empirical column means l;,- ,and
using the matrix S¢ = %(X — ll;’)(X —1b")" in the standard central Wishart model. Since
the entries in the ith column, {xy;, ..., x,;}, are not independent but coupled via the X -part
in £2, this centering, however, brings about undesired side effects; apart from removing the
additive shift, the original columns are modified with the resulting column-centered ma-
trix S¢ being rank deficient. As a consequence, S¢ ~ W(X) i.e. S¢ is not central Wishart
distributed. Instead, S¢ follows the more complicated translation invariant Wishart distri-
bution, see (12) below.

Figure 4 exemplifies these problems where we depict the performance of graph lasso
(Friedman et al. 2007) based on (i) the original unshifted data generated using Fig. 2 (GL.0),
(i1) mean-shifted data generated using Fig. 3 (GL.s) and (iii) column-centered data (GL.C).
Graph lasso maximizes the Wishart likelihood using a £; sparsity constraint (see (2)) and
works best in case (i) where the model assumptions are met. The boxplots in Fig. 4 confirm
that the presence of column-wise biases (case ii) significantly deteriorates the performance
of graph lasso and even column-centering (case iii) does not augment the performance.
Thus column-biases are not only a theoretical problem of model mismatch but also a severe
practical problem for inferring the underlying network.

Another problem-arising situation is where even observing X, ., is not valid, instead
one assumes access to a measuring procedure which directly returns pairwise relationships
between n objects. Two variants are considered: either a positive definite similarity matrix
identified with the matrix S is measured, or pairwise squared distances arranged in a matrix
D is measured, defined component-wise as D;; = S;; + §;; — 25;;. In the first case with §
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or in the second case with D, column-centering is still possible by the usual “centering”
operation in kernel PCA (Scholkopf et al. 1998): S¢c = 0SQ' = —(1/2)QD Q’, with Q;; =
8ij — % However, using this column-centered matrix S¢ in the standard Wishart model
induces obviously the same problems related to model mismatch as in the vectorial case
above (Fig. 4).

4 Novel solution to network inference

To overcome the above intertwined problems of having to work with column-wise biases
and the complicated non-central Wishart we need to rely on a model that makes use of only
pairwise distances. Figure 5 shows how one can move from X + S+ D and the infor-
mation loss involved therein. When one moves from X to S, the rotational information is
lost and when one moves from S to D, the translational information is lost. Once in D,
we are devoid of any relevant geometric information i.e. D is both translation and rota-
tion invariant. Since we consider D to contain the squared-Euclidean pairwise distances,
the distances are preserved throughout. On the other hand, the mappings from D — §
and S — X are not unique and this non-uniqueness is the problem that requires careful
handling. We explain more on this non-uniqueness and how we handle it in the follow-
ing.

Since by assumption D contains squared Euclidean distances, there is a set of inner prod-
uct matrices S that fulfill D;; = §;; + S;; — 2S;; (McCullagh 2009). If S, is one (any) such
matrix, the equivalence class of these matrices mapping to a single D is formally described
as set S(D) = {S|S =S, + 1v' +v1’, S > 0, v € R"}. The elements in S(D) can be seen as
Mercer kernels that represent many objects ranging from graphs to probability distributions
to strings etc. Mercer kernels are kernels that satisfy Mercer’s theorem conditions (Vapnik
1998 and Cristianini and Shawe-Taylor 2000). These kernels are viewed as similarity mea-
sures between structured objects that have no direct vectorial representation.’ For example,
Fig. 6 represents a structured object like a graph for which different Mercer kernels S; and
S, can be constructed wherein S, S, € S(D) and therefore map to the same D. This S is
exactly the set of inner product matrices that can be constructed by arbitrarily biasing the
column vectors in X, 4. Shifting the viewpoint from column to row vectors, this invariance
means that the density does not depend on the origin of the coordinate system in which
the n objects are represented as vectors containing d different measurements. Column-wise
biases referred to before reduce in this view to simple shifts of the origin of an underlying
coordinate system.

Most of the methods used for constructing kernels have no information about the origin
of the kernel’s underlying space meaning that we have no knowledge whether the proba-
bility distribution of either S; or S, is that of S¢ i.e. the S having zero-column shifts. This
indicates that as long as the kernels belong to set S(D), the exact form of the kernel matrix
is irrelevant. On the other hand, were S; or S, ¢ S(D), then the choice of S is critical in
the framework of probabilistic models whereas for discriminative classifiers, the choice of
S does not pose a problem. Most supervised kernel methods like SVMs are invariant against
choosing different representatives in S, and in common unsupervised kernel methods like

3This does not necessarily imply that it is meaningful to use any Mercer kernel for reconstructing a Gaus-
sian graphical model. The main focus here is not on kernels as a means for mapping input vectors to high-
dimensional feature spaces in order to exploit nonlinearity in the input space but as similarity measures.
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Fig. 5 Relationship between data matrix X, similarity matrix S and pairwise distance matrix D and the
information loss procured by moving between them. The straight lines from X — S, X +— D and S +— D
show a unique mapping whereas the dotted lines from D +— S and S — X show a non-unique mapping.
Since we deal with squared-Euclidean pairwise distances throughout, the distances are preserved. It is the
non-uniqueness that poses the real problem which requires attention

kernel PCA (Scholkopf et al. 1998) the rows of X are considered i.i.d. implying that sub-
tracting the empirical column means (leading to S¢) is the desired centering procedure for
selecting a candidate in S(D). However, the sampling model for GGMs is not invariant
against choosing S € S. If one adopts column centering, then this reduces to selecting one
specific representative S¢ from the set of all possible S € S(D), namely the one whose ori-
gin is at the sample mean. This leads to implicitly assuming the underlying vectorial space.
Such column centering, however, destroys the central Wishart property of S (assuming it
was a Wishart matrix before) as discussed in Sect. 3. The strategy is therefore to avoid the
selection of a representative S € S altogether.

Instead, the proposed solution is to use a probabilistic model for squared Euclidean
distances D. We use a likelihood model in TiWnet that depends only on D where
these distances are not affected by any column-wise shifts (translations), cf. the red ar-
rows in Fig. 3. The likelihood model invariant to shifts has been studied before in the
Translational-invariant Wishart Dirichlet (TiWD) cluster process (Vogt et al. 2010). In
Sect. 8, we discuss further the TiWD model and its unsuitability for network extrac-
tion.
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Fig. 6 A structured object like a graph for which two different similarity matrices (Mercer kernels) Sy and
Sy exist that give rise to the same D. In this case, the choice of S for usage in a probabilistic setup is irrelevant
whereas if they did not map to the same D, then the choice of S is critical for the probabilistic model. In a
discriminative framework, the choice of S is irrelevant

5 The TiWnet model

In this section, we discuss the likelihood model common to both TiWD and TiWnet, the prior
construction we use suitable for network inference and the network inference mechanism.

5.1 Likelihood model

One starts with an observed matrix D containing pairwise squared distances between row
vectors of an unobserved matrix X ~ N (M, £2). This means that in addition to the classical
framework for GGMs, arbitrary column biases b, .. 4) are now allowed which “shift” the
columns in X but leave the pairwise distances unaffected.

As elaborated in Sect. 4 and depicted in Fig. 6, there exists S(D), the set of kernel matri-
ces mapping to the same D. We can now work with either D or with any S € S(D) i.e. a spe-
cific § is not required. Since there exists no convenient expression for the distribution of D,
the likelihood in terms of D can be computed based on the distribution of S (McCullagh
2009). Here, it is shown that the distribution of an arbitrary S € S can be derived analytically
as a singular Wishart distribution with a rank-deficient covariance matrix. The likelihood
is developed through the concept of marginal likelihood (Patterson and Thompson 1971;
Harville 1974). Below, we explain the constructs for marginal likelihood and then define it
in terms of D.

Marginal likelihood The term marginal likelihood is not consistently used in the litera-
ture. What is sometimes called the “classical” marginal likelihood, (Patterson and Thomp-
son 1971; Harville 1974), is a decomposition of the likelihood into one part which depends
on the parameters of interest and a second one depending only on “nuisance” parameters.
The “Bayesian” marginal likelihood, on the other hand, is computed by integrating out the
nuisance parameters after placing prior distributions on them. In the following we will use
the first definition, which involves a partition of the likelihood into an “interesting” part and
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a “nuisance” part. In some cases, this classical marginal likelihood coincides with the pro-
file likelihood, which is obtained by replacing the nuisance parameters with their maximum
likelihood (ML)-estimates. This interpretation indeed holds true in our case, implying that
here the intuitive idea of plugging-in the ML estimates leads to a valid likelihood function
(which is not always true for profile likelihoods). Further technical details on this equiva-
lence between profile- and marginal likelihood are given in the Appendix, and a discussion
of these likelihood concepts from a Bayesian viewpoint can be found in Berger et al. (1999).

Let the data matrix X be distributed according to p(X|e«, 6), where the distribution is
parametrized by the interest parameter « and the nuisance parameter 6. Assume there exists
a statistic 7 (X) whose distribution depends only on «. Then p(X|a, ) can be decomposed
as follows:

p(Xla, 0) = p(t(X), X

o, 9)

=p(t(X)|a) p(X|1(X), ., 0). 3)
N ——’
ML of interest

We base our inference on p(#(X)|o) which is the “classical” marginal likelihood based on
(X=1,b)
I X—1,8"||
is the standardized statistic and the interest parameter @ = ¥. The nuisance parameters ¢
consist of bias estimates b and scale factor t. Note that this specific statistic 7 (X) is constant
on the set of all X and S matrices that map to the same D. Therefore # (X) can be seen as a
function that depends only on the scaled version of D i.e. f (ﬁ).

the interest parameter alone. We notate p(f(X)|a) as L(a; t(X)) where 1(X) =

Proposition 1 (McCullagh 2009) Consider the standardized statistic 1(X) = ﬁ

where t(X) is a function f (ﬁ) depending only on (scaled) D. The interest parameter
is W. The shift- and scale- invariant likelihood in terms of D is:

_(n=Dd
2

c(wi) det(P)? t —LFD) )
Yion) < 2

where U = f(W) =W — 1'¥1,) w11 ¥,

The proof of Proposition 1 is given in the Appendix.

Thus, there is a valid probabilistic model underlying (4), and with a suitable prior
Bayesian inference for ¥ is well-defined.

The reader should notice that (4) can be computed either from the distances D, or from
any inner product matrix S € S(D). Rather than choosing any S and implicitly fixing the un-
derlying coordinate system, our solution is to make the distribution invariant to the choice of
any S (refer Sect. 4). This is achieved by working directly with D whereby any S € S(D) can
be used. The practical advantage of this property is that one can now make use of the large
“z00” of Mercer kernels that represent structured objects whose vectorial representations are
generally unknown. With TiWnet based on D, we make no assumption of the underlying
coordinate system and can now use these Mercer kernels for reconstructing GGMs without
being dependent on the choice of S € S.

5.2 Prior construction

For network inference in a Bayesian framework, we complement the likelihood (4) with
a prior over ¥. We develop a new prior construction that enables network inference. This
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prior is similar to the spike and slab model introduced in Mitchell and Beauchamp (1988).
In principle, any distribution over symmetric positive definite matrices can be used. The
likelihood has a simple functional form in @, but our main interest is in ¥, since zeros
in ¥ determine the topology. Unfortunately, the likelihood in ¥ is not in standard form
making it plausible to use a MCMC sampler. For any two X matrices, X and X, that are
related by ¥, = X| + 1v' + vl’, the likelihood is the same for X and X, (McCullagh
2009). This means that ¥ is non-identifiable and a sampler will have problems with such
constant likelihood regions by continuing to visit them unless a prior is used that breaks this
symmetry.

To deal with this problem, we quantize the space of possible ¥ -matrices such that any
two candidates have different likelihood. This is achieved with a two-component prior:
P;(¥) is uniform over the discrete set A of symmetric diagonally-dominant matrices with
off-diagonal entries in {—1, +1, 0}, and diagonal entries are deterministic, conditioned on
the off-diagonal elementsie. ¥; =) ot |W;;|+ € where € is a positive constant added to en-
sure full rank of ¥. Thus A= {¥'|¥;; e {—1,+1,0}, ¥;; =¥, ¥ = Z#i |¥;;|+€}. Note
that we treat only the off-diagonal entries as random variables. Enforcing such a diagonally-
dominant matrix construction ensures that the matrix will be positive definite. The usage
of diagonally-dominant matrices for network reconstruction is further justified since these
matrices form a strict subclass of GGMs that are walk summable (Johnson et al. 2005a)
and in Anandkumar et al. (2011) theoretical guarantees are provided establishing that walk-
summable graphs make consistent sparse structure estimation possible. It is clear that such a
three-level quantization of the prior which differentiates only between positive, negative and
zero partial correlations encodes a strong prior belief about the expected range of the partial
correlations. However, it is straightforward to use more quantization levels, or even switch to
continuous priors like the ones introduced in Harry (1996), Daniels and Pourahmadi (2009)
which parametrize the “semi-partial” correlations. On the other hand, our simulation ex-
periments below suggest that the simple three-level prior performs very well in terms of
structure recovery.

The second component of the prior is a sparsity-inducing prior P,(¥). This corresponds
to a Laplacian prior over the number of edges for each node and is given by P,(¥|A) «
exp(—A Y " (¥;; — €)) where (¥;; — €) denotes the number of edges for the ith node and A
is equivalent to the regularization parameter controlling the sparsity of the connecting edges.

5.3 Inference in TiWnet

To enable Bayesian inference in our model, we make use of the likelihood given in (4)
and the two-component prior described in Sect. 5.2. For inference we devise a Metropolis-
within-Gibbs sampler where the Metropolis-Hastings step proposes an appropriate ¥ matrix
by iteratively sample one row/column in the upper triangle part of ¥, conditioning on the
rest, and the Gibbs iteration involves repeating the Metropolis-Hastings step for every node.

The proposal distribution defines a symmetric random walk on the row/column vector
taking values in {—1, +1, 0} by randomly selecting one value and resampling it with iden-
tical probability to the two other possible values. After updating the ith row/column in the
upper triangle matrix and copying the values to the lower triangle, the corresponding di-
agonal element is imputed deterministically as ¥; =) ki |¥;;| + €. This creates lﬁproposed
which is then accepted according to the usual Metropolis-Hastings equations based on the
posterior ratio P(Q;pmposedh) / P(l1~/01d|o). The acceptance threshold is given by just the pos-
terior ratio since we implement a symmetric random walk Metropolis sampling. The entire
Metropolis-within-Gibbs sampler is described in Algorithm 1.
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Algorithm 1 (Metropolis-within-Gibbs sampler)

in ith row/column vector in upper triangle of ¥

1: Uniformly selectindex k, k € {1,...,i —1,i+1,...,n}

2: Resample value at ¥ by drawing with equal probability from {—1,+1,0}

3: Set ¥}; = W and update ¥;; and Wy, (to ensure diagonal dominance). This is Wyroposed
4: Compute P(¥|e) o< L(P) P, (V)P (¥) ~

5: Calculate the acceptance threshold a = min (1, L}q:‘(’%’pl‘:‘%d)"))

6: Sample u ~ Unif@, 1)

7: if (u < a) accept Wproposed, else reject.

end

Since the proposal distribution, lINIProposed, defines a symmetric random walk on set A
consisting of diagonally-dominant matrices, one can reach any other element in .4 with
non-zero probability after a sufficient number of @ steps that account for number of
elements in the upper triangle of ¥. This construction ensures ergodicity in the Markov
chain.

Note that the (usually unknown) degrees of freedom d in the shift- and scale-invariant
likelihood (4) appears only in the exponents and, thus, has the formal role of an annealing
parameter. In the annealing framework, the likelihood equation is seen as the energy function
with d as the annealing temperature. We use this property of d during the burn-in period,
where d is slowly increased to “anneal” the system until the acceptance probability reaches
below a certain threshold, and then the sampled ¥ -matrices are averaged to approximate the
posterior expectation. If a truly sparse solution is desired, the annealing is continued until a
network is “frozen”.

Implementation & complexity analysis Presumably the most efficient way to recompute
P(l17|o) after a row/column update of ¥ is through the identity: det(l;) = (det(¥)/1'¥1)-n
(McCullagh 2009). Assume now we have a QR factorization of ¥4 before the update. Then
the new ¥ = Woq + v; 0! +v; v’ where i, j are the row/column indices of ¥4 to be updated
along with the correspondmg dlagonal elements and this accounts for two rank-one updates.
Thus the QR factorization of the new 7 ' can also be computed in O (n?) time and det(lP)
is then derived as [[; R;;. The trace tr(lI/D) is also computed in O (n?) time, as it is the
sum of the element-wise products of the entries in ¥ and D. It is clear that this scaling
behavior is prohibitive for very large matrices, but matrices of size in the hundreds can be
easily handled, and for larger matrices with a “complex” inverse covariance structure the
statistical significance of the reconstructed networks is questionable anyway, unless a really
huge number of measurements is available. Moreover there is an elegant way of avoiding
such large matrices by reconstructing module networks as outlined in the next section.

6 Inferring module networks

A particularly interesting property of TiWnet is its applicability to learning module net-
works. We define a module as a completely-connected subgraph, forming nodes in a mod-
ule network. As a motivating example we refer to our gene-expression example of X, 4
where the measurements consist of d microarrays for n genes. In usual situations having far
more objects than measurements, one should not be too optimistic to reconstruct a mean-
ingful network, in particular if the measurements are noisy and if the underlying network
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has “hubs”—nodes with high degrees. Generally when the node neighborhoods are small,
networks can be learned well whereas when the neighborhoods tend to grow larger as in
the case with hubs, learning networks gets difficult due to the higher-order dependencies
existing between nodes. Unfortunately, both high noise and existence of hubs are common
in such data. To address these issues, we present the computationally-attractive method of
initially creating clusters of objects, that we connote as modules, over which networks are
learned. Considering the gene-expression example, there are usually groups of genes which
have highly correlated expressions and can often be jointly represented by one cluster with-
out losing too much relevant information, due to high noise. To create clusters, we begin
with the d-dimensional expression profile vectors, x € RY, of the n genes and use a mix-
ture model to cluster these expression vectors into “modules”, reducing n to the effective
number of modules. The mixture model density is given by p(x) = Z,le 7k pi (x) where 7y
is the mixing coefficient and py(x) is the component distribution of the kth module. Parti-
tion matrices can be viewed as block-diagonal covariances (see McCullagh and Yang 2008;
Vogt et al. 2010), and in the terminology of Gaussian graphical models the blocks define
independent subgraphs with completely connected nodes, which is what we have defined as
modules.

The link to learn networks on top of these modules goes via kernels defined on probability
distributions. We can use kernels like Bhattacharyya kernel (Jebara et al. 2004):

Kpk, j)= / (VP )P, (@) ) dx 5)

or the Jensen-Shannon kernel (Martins et al. 2008):

(©)

K5k, ) =In2) — H(pk(x) + pj(x)> 4 M) + H(p; ()

2 2

(where H is the Shannon entropy) over the component distributions of the modules to com-
pute an inner-product matrix of the modules. Network inference is then performed using this
resulting inner-product matrix.

Usually, there is no information available about the origin of the underlying space, and by
reconstructing networks from such kernels we heavily rely on the geometric invariance en-
coded in the TiWnet model. This elegant solution for inferring module networks overcomes
statistical problems, and is also a principled way of applying the TiWnet to large problem
instances. An example of this strategy is presented in Sect. 7.

7 Experiments

7.1 Toy examples

The TiWnet is compared with the graph lasso method (Friedman et al. 2007) and with its
non-invariant counterpart Wnet on artificial data. The graph lasso maximizes the standard
Wishart likelihood under a sparsity penalty on the inverse covariance matrix, see (2). Wnet
replaces the invariant Wishart used in TiWnet with the standard Wishart (1), but uses other-
wise exactly the same MCMC code.
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true distribution of abs(edge weights)
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Fig. 7 Left: Example network drawn from the data generator. Right: generative distribution of the edge
weights

Sample generation For these experiments we implemented a data generator that mimics
the assumed generative model as shown in Fig. 3. First, a sparse inverse covariance ma-
trix ¥ € R™" with n = 25 is sampled. Networks with uniformly sampled node degrees
are relatively easy to reconstruct for most methods, while networks with “hubs” are better
suited for showing differences. Hubs are nodes with high degrees that appear naturally in
many real networks since they often are scale-free i.e. their node degrees follow a power
law. We simulate such networks by drawing node degrees from a Pareto(7 x 1073, 0.5)-
distribution and use these values as parameters in a binomial model for sampling 0/1 entries
in the rows/columns of ¥. The sign of these entries is randomly flipped, and scaled with
samples from a Gamma- or uniform distribution (see below for a precise description of the
distribution of the edge weights). The diagonal elements are imputed as the row-sums of
absolute values plus some small constant (= 0.1) to ensure full rank. We draw d vectors
x? € R" from N(0,, ¥), and arrange them as columns in X°. §¢ = $X”(X")’ is then a
central Wishart matrix. To study the effect of biased measurements, we randomly generate
biases b1, 4), resulting in the mean-shifted vectors x; in Fig. 3. The resulting matrix S
is non-central Wishart with non-centrality matrix @ = X ‘MM, and M = 1b'. In fact, we
always sample two i.i.d. replicates of the matrices S° and S, and we use the second ones
as a test set to tune all model parameters of the respective methods (the ¢; regularization
parameter in graph lasso and the corresponding A-parameter in the prior P,(¥) of TiWnet
and Wnet) by maximizing the predictive likelihood on this test set. In order to separate the
effects of parameter tuning from the “true” differences in the models themselves, we addi-
tionally compared all models by tuning them to the same sparsity level. Figure 7 shows an
example network drawn from our data generator together with a Gamma(2,4)-distribution
of the absolute values of the edge weights.

Simulations In a first experiment, we compare the performance of TiWnet with graph
lasso and Wnet. The quality of the reconstructed networks is measured as follows: A binary
vector [ of size n(n — 1)/2 encoding the presence of an edge in the upper triangle matrix
of ¥ is treated as “true” edge labels, and this vector is compared with a vector i containing
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F-measure, optimal threshold Optimal thresholding: Boxplots (of the differences)
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Fig. 8 Left: Boxplots of F-scores obtained in 20 experiments with randomly generated ¥ -matrices for graph
lasso (GL): GL.o uses original S° and GL.C uses column-centered S, TiWnet, and Wnet. Right: Boxplot of
the pairwise differences together with color-coded significance (green, if multiple-testing-corrected p < 0.05)
computed by a non-parametric Friedman test with post-hoc analysis (Wilcoxon-Nemenyi-McDonald-Thomp-
son test, see Hollander and Wolfe 1999) (Color figure online)

the absolute values of elements in the reconstructed ¥ after zeroing those elements in i
which are not sign-consistent with the nonzero entries in ¥ (meaning that sign-inconsistent
estimates will always be counted as errors). The agreement of I and / is measured with
the F-measure, i.e. the highest harmonic mean of precision and recall under thresholding the
elements in /. The left panel in Fig. 8 shows boxplots of F-scores obtained in 20 experiments
with randomly generated ¥ -matrices for graph lasso, TiWnet, and Wnet. For graph lasso, a
series of ¥ estimates with increasing £, penalty parameter is computed using the glassopath
function from the glasso R-package.* For the MCMC-based methods TiWnet and Whnet, v
is computed as the sample average of networks drawn from the Gibbs samples after a certain
burn-in period. The right panel shows the outcome of a Friedman test (i.e. non-parametric
ANOVA) with post-hoc analysis for assessing the significance of the differences, see figure
caption for further details. From the results we conclude that for the methods relying on
the standard Wishart distribution (i.e. graph lasso and Wnet), column centering does not
overcome the problem of model mismatch due to column biases. Further, TiWnet using only
the pairwise distances D performs as well as graph lasso on the original (not shifted) data.
Note that for the original S°, graph lasso might indeed serve as a “gold standard”, since
the model assumptions are exactly met. And last but not least, the invariance properties
of the likelihood used in TiWnet are indeed essential for its good performance, since its
non-invariant counterpart Wnet uses exactly the same MCMC code (apart from using the
standard Wishart likelihood, of course).

The left column of Fig. 9 shows the networks reconstructed by the different methods
(networks with highest predictive likelihood for graph lasso and sample average in the case
of TiWnet and Wnet). The right column depicts the thresholded networks according to the
best F-score with respect to the known ground truth. Analyzing the reconstructed networks

4http://www— stat.stanford.edu/~tibs/glasso.
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GL.o GL.o thresholded

Fig. 9 Left column: networks with highest predictive likelihood for graph lasso (GL): GL.o uses original
S? and GL.C uses column-centered S and sample averages for TiWnet, and Wnet. Right column: Optimally
thresholded networks according to the best F-score with respect to the known ground truth. The underlying
ground truth network is the one depicted in Fig. 7
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F-measure, no thresholding No thresholding: Boxplots (of the differences)
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Fig. 10 Left: F-scores without additional thresholding for graph lasso (GL): GL.o uses original S and GL.C
uses column-centered S, (model selected according to best predictive likelihood) and TiWnet/Wnet (also
selected according to predictive likelihood, then annealed). Right: Corresponding boxplots of the pairwise
differences

in the left column of Fig. 9, it is obvious that the graph lasso networks are very dense, and
that thresholding the edge weights is essential for a high F-score. Note, however, that such
thresholding is only possible if the ground truth is known. The average TiWnet/Wnet result
is also dense, since it represents the empirical distribution of networks sampled during the
MCMC iterations. Thresholding the edges is also essential here, but for the MCMC models
we can easily compute a truly sparse network by annealing the Markov chain without having
access to the ground truth. Further studying this effect leads us to a second experiment,
where we directly compare the lasso-type networks reconstructed using a sequence of £,
regularization parameters with the “frozen” TiWnet after annealing. In this comparison,
however we do not allow for further thresholding the edge weights when computing the
F-score (i.e. we replace the entries in ] by their sign). The left panel in Fig. 10 shows that
TiWnet clearly outperforms all other methods. We conclude that model selection in the lasso
methods does not work satisfactorily, probably because the £; penalty not only sparsifies the
solution, but also globally shrinks the parameters. As a result, truly sparse solutions have a
relatively small predictive likelihood. Further, it is obvious that in the case of TiWnet, the
annealing mechanism in our MCMC sampler produces very sparse networks of very high
quality. The direct comparison with the non-invariant Wnet model shows that the invariance
in the Wishart likelihood is indeed the essential ingredient of TiWnet.

It is clear that the results of the previous experiment crucially depend on the model se-
lection step. To exclude differences caused by model selection, in a third experiment we
additionally investigated the performance of the models after tuning all of them to the same
sparsity level as the annealed network obtained by TiWnet. The results are presented in
Fig. 11. It is obvious that TiWnet clearly outperforms its competitors. Inspecting the recov-
ered networks for the graph lasso, we see that under these restrictive sparsity constraints, the
lasso selection has particular problems to recover the edges connecting hubs in the network.

We test the dependency of these results on the validity of the model assumptions, in a
fourth experiment. The TiWnet in its simplest form uses only three levels for edge weights:
0,41, —1. It is clear that this simple model will have problems recovering networks with a
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F-measure, adjusted sparsity
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Fig. 11 F-scores obtained by tuning the models to (roughly) the same sparsity level as the annealed TiWnet,
averaged over 20 randomly drawn networks (fop left). Other panels: networks recovered by graph lasso
(GL): GL.0 uses original S° and GL.C uses column-centered S and TiWnet in one of the 20 experiments. The
underlying ground truth network is again the one depicted in Fig. 7

very high dynamic range of edge weights (the generalization to more than 3 levels, however,
is straight forward). Since the edge weight distribution in the previous experiments was
relatively concentrated around the mode of the gamma distribution (see Fig. 7), we changed
the distribution to a uniform distribution over the interval [0.2, 20]. This choice implies a
uniform dynamic range over two decades. The performance of TiWnet measured in terms of
the F-score, however, did not change significantly, see the top row in Fig. 12 in comparison
to Fig. 8.

In order to further test the robustness under model mismatches, in a fifth experiment,
we substituted the Gaussian to produce X° with a Student-t distribution in our data gen-
erator. The resulting plot of F-scores (Fig. 12, bottom row) has the same overall-structure
as in Fig. 8, which shows that TiWnet is relatively robust under such model mismatches.
In summary, we conclude from these experiments that TiWnet significantly outperforms its
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F-measure, optimal threshold Optimal thresholding: Boxplots (of the differences)
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Fig. 12 Top row: Testing the quality of the three-level prior on the elements in the inverse covariance matrix
by simulating edge-weights with a uniform distribution on the interval [0.2, 20] for graph lasso (GL) (GL.o
uses original S° and GL.C uses column-centered S) and 7iWnet/Wnet. Bottom row: Results using a multivari-
ate Student-t distribution in three degrees of freedom instead of a normal distribution to generate the columns
in X°

competitors, and that the main reason for this good performance is indeed attributed to the
invariant Wishart likelihood.

7.2 Real-world examples

A module network of Escherichia coli genes  For inferring module networks in a biological
context, we applied the TiWnet to a published dataset of promoter activity data from ~ 1100
Escherichia coli operons (Zaslaver et al. 2006). The promoter activities were recorded with
high temporal resolution as the bacteria progressed through a classical growth curve ex-
periment experiencing a “diauxic shift”. Certain groups of genes are induced or repressed
during specific stages of this growth curve. Cluster analysis of the promoter activity data
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Gene clusters showing
expression profiles

Fig. 13 Module Network of Escherichia coli Genes. Black/green edges = positive/negative partial correla-
tion (Color figure online)

was performed using a spherical Gaussian mixture model with shared variance o: p(x) =
> TN (x|, o) along with a Dirichlet-process prior to automatically select the number
of clusters. This revealed the presence of 14 distinct gene clusters (see expression profiles
of nodes in Fig. 13). Network inference with TiWnet was carried out on a Bhattacharyya
kernel K 5 computed over the Gaussian clusters where K 3 (k, j) = exp~I#—11*/87 (see Je-
bara et al. 2004). When the clusters were analyzed, genes known to be co-regulated were
predominantly found in the same or nearby clusters with positive partial correlations. For
example, during the diauxic shift experiment, the transcriptional activator CRP induces a
certain set of genes in a specific growth phase (Keseler et al. 2011). Strikingly, of the 72
known CRP regulated operons in the dataset, 43 genes are found in cluster 6 or the four
neighboring clusters (3,9, 11, 13). Likewise, genes involved in specific molecular functions
(those coding for proteins involved in amino acid biosynthesis pathways) were found in
close proximity in the network, for example in nodes 1 and 2 (Fig. 13). Physiologically, this
co-regulation makes sense since protein biosynthesis (carried out by the ribosome) depends
on a constant supply of synthesized amino acids. Thus TiWnet can successfully identify
connections between genes co-regulated by the same molecular factor, or are involved in
interlinked molecular processes.

“Landscape” of chemical compounds with in vitro activity against HIV-1 As a second
real-world example TiWnet is used to reconstruct a network of chemical compounds. We
enriched a small list of compounds identified in an AIDS antiviral screen by NCI/NIH avail-
able at http://dtp.nci.nih.gov/docs/aids/searches/list. html#NPorA with all currently available
anti-HIV drugs, yielding a set of 86 compounds. Chemical hashed fingerprints were com-
puted from the chemical structure of the compounds that was encoded in SMILES strings
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(Weininger 1988). The Tanimoto kernel, a similarity matrix S of inner-product type, is con-
structed by the pairwise Tanimoto association scores (Rogers and Tanimoto 1960) between
the compounds. Since the geometric position of the underlying Euclidean space is unclear,
we again relied heavily on the geometric invariance inherent in TiWnet. The resulting net-
work (Fig. 14) shows several disconnected components which nicely correspond to chemical
classes (the node colors). Currently available anti-HIV drugs are indicated by their chemical
and commercial names alongside their 2D-structures depicting the chemical similarity un-
derlying this network. These drugs belong to the functional groups “Nucleoside reverse tran-
scriptase inhibitors (NRTI)”, “Non-nucleoside reverse transcriptase inhibitors (NNRTI)”,
“Protease inhibitors”, “Integrase inhibitors”, or “Entry inhibitors”, and most compounds of
a certain functional type cluster together in the graph. Medically, this network can be very
useful to predict “cross resistance” between resistant HIV-1 variants and drugs and is es-
pecially distinctive for NRTIs. The pairs lamivudine-emtricitabine, tenofovir-abacavir, and
d4T-zidovudine(ZDV) show almost the same resistance profiles (Johnson et al. 2010). This
similarity is very well reflected by our network where these pairs are in close proximity.

It is worth noting that graph lasso has similar difficulties on this dataset as in the toy
examples. When following the solution path by varying the penalty parameter, it is dif-
ficult to find a good compromise between sparsity and connectivity: either the obtained
graphs are very dense being difficult to plot and harder to interpret, or are increasingly
sparse in which, however, several interesting structural connections are lost since many
singleton nodes are created. For a graphical depiction, refer Figs. 1-3 in Supplementary
material A. The R and C++ source code for this experiment using TiWnet is available at
http://bmda.cs.unibas.ch/TiWnet.

The “Landscape” of glycosidase enzymes of Escherichia coli. In yet another real-world
experiment, we use TiWnet to extract the network of Glycosidase enzymes of Escherichia
coli. Every enzyme is represented by its vectorized contact map computed from their PDB
(Protein Data Bank) files. A contact map is a compact representation of the topological
information of the 3D protein structure, present in the PDB file, into a symmetric, binary
2D matrix consisting of pairwise, inter-residue contacts: for a protein with R amino acid
residues, the contact map (see Fig. 15) would be a R x R binary matrix CM where CM;; =1
if residues i and j are similar or O otherwise. The starting point for TiWnet is the contact map
representation of an enzyme whose row-wise vectors serve as strings. To obtain the pairwise
distances between strings in these contact maps, we compute the Normalized Compression
Distance (NCD) (Li et al. 2004) which is an approximation to the Normalized Information
Distance (NID). The NID (Li et al. 2004) is a distance metric minimizing any admissible
metric between objects. Given strings x and y, NID is proportional to the length of the
shortest program that computes x|y as well as y|x and is defined as
_ max{K(x]y), K(y|x)} _ K(xy) —min{K(x), K(y)}

NIDG ) = = K. KO max(K@). K]

where K (x) is the Kolmogorov complexity of the string x. The real-world approximated
version of NID is given by NCD and is calculated as follows:
C — min{C(x), C

NCD(x. y) = (xy) {C(x). C)}
max{C(x), C(y)}

)

where C(xy) represents the size of the file obtained by compressing the concatenation of
x and y. We use the ProCKSI-Server (Barthel et al. 2007; Krasnogor and Pelta 2004) to
compute NCD(x, y).
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The network extracted by TiWnet from the NCD values is shown in Fig. 16. The network
shows a clear formation of subnets of enzymes given by node colors. To further analyze
the obtained subnets, we look at their corresponding Gene Ontology (GO) annotations. The
GO annotations are part of a Directed Acyclic Graph (DAG), covering three orthogonal
taxonomies: molecular function, biological process and cellular component. For two subnets
(shown in dotted circles in Fig. 16), we inspect the GO subgraphs that are subsets of the
entire GO graph. The three taxonomic components of the GO subgraphs explain the proteins
in these subnets and show the relevance of these proteins through the color-scaling scheme
where red accounts for highly-frequent enzymes. As depicted, the GO subgraphs plotted
for the two subnets consist of many highly-significant enzymes thus emphasizing that the
subnets so obtained using TiWnet are not random, but instead consist of groups of enzymes
having shared annotations. Subnets of this kind are beneficial to identify the most important
GO domains for a given set of enzymes and also suggest biological areas that warrant further
study.

8 TiWD versus TiWnet

In this section, we describe the Translational-invariant Wishart Dirichlet (TiWD) cluster
process (Vogt et al. 2010) (previously mentioned in Sect. 4) and explain why it is unsuited
for extracting networks. TiWD is a fully-probabilistic model for clustering and is specifically
devised to work with pairwise Euclidean distances by suitably encoding the translational
and rotational invariances. Although the TiWD clustering model and TiWnet use identical
likelihoods, the priors in both models are different.

The TiWD clustering model uses a Dirichlet-Multinomial type prior over clusters with
the priors being restricted to block-diagonal form. This kind of prior construction is in-
competent for network inference since if such a prior is used, all networks would always
decompose into separated clusters which are maximal cliques i.e. fully connected within
themselves. Therefore, to enable network recovery an enhanced prior construction is nec-
essary and to this end, TiWnet uses a prior that relaxes the block-diagonal form. The two-
component TiWnet prior (Sect. 5.2) is designed that, along with the invariance encoded
in the likelihood, leads to sparse network recovery. The resulting ¥ is constructed to be a
sparse diagonally-dominant matrix.
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Fig. 16 Top: “Landscape” of Glycosidase enzymes of Escherichia coli. Black/green edges = posi-
tive/negative partial correlation. For two subnets, Subnet 1 and 2 (encircled by dots), the corresponding Gene
Ontology (GO) subgraphs (centre and bottom) are given that explain the enzymes present in the subnet. The
multiple red/orange-hued boxes in the GO subgraph signal highly-frequent enzymes thus showing that the
subnets extracted by TiWnet are not random but instead contain groups of enzymes having shared annotations
(Color figure online)
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Fig. 16 (Continued)

We illustrate the difference between the TiWnet and TiWD prior constructions in Fig. 17.
The top panel of Fig. 17 depicts the original network generated using ¥ (no longer
block-diagonal) meant for network inference and the inferred network using TiWnet. The
black/green edges depict the positive/negative partial correlations between the nodes. The
bottom panel of Fig. 17 shows the inferred block-diagonal ¥ (left) obtained from TiWD
clustering that uses a block-diagonal prior and different views of the network obtained using
this ¥: the center plot shows that the network is densely connected bearing no resemblance
to the original network and the right plot highlights that the network gets decomposed into
separate fully-connected clusters (maximal cliques). Moreover, the network fails to capture
the positive/negative partial correlations between the nodes since the inferred X in the case
of TiWD clustering only contains information regarding the cluster structure but without
signs.

From the above discussion, it is obvious that clustering is a specialized case of network
inference and that general networks cannot be recovered using the TiWD clustering model
of Vogt et al. (2010). Thus the prior designed for use in TiWnet is not of the block-diagonal
form thereby allowing any possible internodal interaction. Combining this enhanced prior
suitable for network reconstruction with the likelihood, we are able to perform Bayesian
network inference in TiWnet. We refer the reader to the Sect. 5 for complete details of our
inference mechanism.

9 Contributions of TiWnet

TiWnet deals with distance data and is therefore, shift invariant Classical GGMs extract
networks from vectorial representations of objects and are based on the standard (central)
Wishart likelihood model. The central Wishart model is only justified for zero column-shifts
(i.i.d. data). These methods have solely relied on the i.i.d. assumption and not catered to the
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Original Inferred (TiWnet)

Fig. 17 Illustration of the difference between TiWnet and TiWD clustering (Vogt et al. 2010) using data gen-
erated from ¥ (no longer block-diagonal) designed for network inference. Top: Left: Original network. Right:
Inferred sparse network using TiWnet. The black/green edges denote positive/negative partial correlations be-
tween nodes. Bottom: Left: Inferred ¥ using TiWD clustering that has a block-diagonal structure which leads
to fully-connected clusters (maximal cliques). Center: Densely-connected network obtained using this block-
diagonal ¥. The edges do not differentiate between positive/negative partial correlations. Right: The same
network as in the center now showing that the network decomposes into separate maximal cliques. Here the
network decomposes into 5 clusters viz. 3 fully-connected and 2 singletons (Color figure online)

inherent column-shifts, thereby possibly generating biased networks. Graph lasso’s perfor-
mance on column-shifts (Fig. 4) and our extensive comparison experiments in Sect. 7 vali-
date that not handling the column-wise biases is detrimental to network extraction. Instead,
TiWnet based on D is shift-invariant and can therefore handle non-i.i.d. data (non-vectorial
data). We show that in practical applications this shift invariance is an essential ingredient
for recovering correct networks. Due to this, network reconstruction is possible using any D
induced by a Mercer kernel that represents objects with structures for which the underlying
vectorial space is unknown.

Generate module networks  Being able to derive networks from such complex objects, for
example graphs and probability distributions, further leads to the development of module
networks which addresses the high-dimensionality problem setting. A module connotes a
cluster of homogeneous objects, thereby reducing the number of objects to that of the overall
clusters, where each module is now represented by a probabilistic distribution or a graph
over which a Mercer kernel can be constructed and used for network discovery.

TiWnet provides a distribution over networks Graph lasso was devised for estimating a

truly sparse network from the data. Since TiWnet is fully probabilistic, on output we not
only obtain a single network but a distribution of networks explaining the data. For many
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cases in reality, this is more meaningful since one has access to possible structural variations
of the extracted networks.

TiWnet provides an annealed network Further, if required, our method has the flexibility
to yield a single MAP-estimate network by simulated annealing and this is possible even
without knowing the underlying ground truth. On the contrary, obtaining such an equivalent
sparse network with graph lasso would require thresholding the edge weights and this too is
only possible if the ground truth is known. The graph lasso’s sparse networks obtained by
the highest predictive likelihood are comparatively less better than TiWnet’s (Fig. 10). This
could probably be to the improper model selection in the lasso-based models in the presence
of column-shifts in the data.

TiWnet can extract hub nodes Comparing TiWnet with graph lasso and Wnet based on the
same sparsity level, we see that graph lasso clearly fails in recovering hub nodes (Fig. 11).
TiWnet still returns a sparse annealed network with these desirable properties that seem
difficult to be achieved by graph lasso. Thus, the experiments justify TiWnet’s superior per-
formance against lasso-based non-invariant models and the reason can be clearly attributed
to the translation-invariance encoded in the Wishart likelihood.

10 Conclusion

The TiWnet model is a fully probabilistic approach to inferring GGMs from pairwise Eu-
clidean distances obtained from inner-product similarity matrices (i.e. kernels) of n objects.
Traditional models for reconstructing GGMs, for example lasso-type methods, are based on
the central Wishart likelihood parametrized by the inverse covariance, and sparsity of the
latter is usually enforced by some penalty term. Assuming a central Wishart, however, is
equivalent to assuming that the origin of the coordinate system is known. If these methods
use on input only kernel matrices, then usually only the kernels’ pairwise distance informa-
tion is truly relevant. Since traditional methods solely rely on the origin implicitly encoded
in any such kernel, they might generate biased networks. Our TiWnet method is specifically
designed to work with pairwise distances since the likelihood used in inference depends
only on these distances. Combining this likelihood with a prior suited for sparse network re-
covery, we are able to extract sparse networks using only pairwise distances. This property
opens up a huge new application field for GGMs, because network inference can now be
carried out on any such distance matrix induced by a Mercer kernel on graphs, probability
distributions or more complex structures. We also present an efficient MCMC sampler for
TiWnet making it applicable to medium-size instances, and the possibly remaining scaling
issues may be overcome by inferring module networks using kernels defined on probability
distributions over groups of nodes. Comparisons with competing methods demonstrate the
high quality of networks obtained from TiWnet, evoking the effectiveness of working with
pairwise distances. TiWnet is also robust to model mismatches unlike existing methods. The
three real-world examples provide an insight into the huge variety of possible applications.

Appendix: Proof of Proposition 1

The marginal likelihood in terms of D, L(¥; (X)), is developed indirectly through the

distribution of S. Here, 7(X) = % is the standardized statistic and is constant on the
—An
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set of all X and S mapping to the same D. Therefore #(X) can be seen as a function of
the scaled version of D alone i.e f (”%”). Our interest parameter is ¥. McCullagh (2009)
shows that the distribution of an arbitrary S € S(D) can be analytically derived as a singular
Wishart distribution with a rank-deficient covariance matrix.

We first explain the linear transformation and its kernel applied to S necessary to formu-
late the marginal likelihood and then proceed with the derivation of the marginal likelihood

in D.

Linear transformation and kernel Given a transformation matrix L. with kernel K, i.e.
LK = 0 and a generalized Gaussian random variable in R", X ~ N (K, u, %), then the lin-
early transformed vector LX is distributed as A (L, LXL"). Under K = 1,,, two parameter
values (i1, X) and (,, X,) are equivalent when L(t; — pp) =0 and L(X) — X)L =0
i.e. when (u; — py) €1, and (X — %) € {1,v' + vl); v € R"}, the space denoted by
sym?(1, ® R™). Equivalent parameter values denote the same distribution. Corresponding
to the generalized distribution of X with kernel K = 1,,, the similarity matrix S = éX X'
is now distributed as S ~ W,(1,, ¥'). D exhibits the negative definiteness property i.e.
x' Dx = —2x'Sx < 0 for any x : x'1, = 0. The same property holds when x is replaced by a
symmetric positive semi-definite matrix Q i.e. 0DQ =—-20S5Q <0 forany Q: 01, =0.

Now we consider the case of having a generalized Gaussian random matrix for kernel K:
Xxa ~ MN(K, M, £2) with mean matrix M :=1,b" where b; is the ith-column bias of X
and covariance tensor §2 := X, ® I;. For the mean-shifted X, the exponent term in the
matrix normal distribution of X will be:

(X —1,0')' =71 (X —1,"). ©)
The corresponding exponent term in the distribution of the transformed X, L X, is now:
(X —1,6") 'L (LEL) " 'L(X — 1,8). ®)

We define Q = YL/ (LYL")"'L or ¥ Q =L/ (LXL")~'L (where ¥ = ¥~') as a unique
orthogonal projection with K =1,. Q can be written as (I—-1,,(1, vl1,)"! 1, @) which is the
orthogonal projection onto the orthogonal complement of the space spanned by symmetric
positive semi-definite X' matrices constructed by X + 1,9 + 91; v € R". Note that Q is
rank deficient with rank =n — 1.

Based on LX, the corresponding S follows a generalized Wishart distribution in d de-
grees of freedom S ~ W, (1, X, ,,,). McCullagh (2009) shows that D;; = S;; + S;; — 2S;; is
a linear transformation on symmetric matrices with transformation kernel K = sym?(1,, ®
R™), implying that D follows a generalized Wishart distribution —D ~ W,(1,2%) de-
fined with respect to a transformation kernel X =1 C R". The generalized distribution
is different from the standard Wishart distribution in that ¥ is replaced by U=wQ=
va-1, (Ijllllln)*l 1, ¥) and the | - | symbol for determinant is replaced by the generalized
det(-) which is the product of non-zero eigenvalues of its argument. ¥ is rank deficient with
rank =n — 1.

Shift- and scale-invariant marginal likelihood in D  Using the above formulation of lin-
ear transformation and kernel on symmetric positive semi-definite S matrices, McCullagh
(2009) derives the marginal likelihood in D based on the standardized statistic 7(X) =
% and the interest parameter « = ¥ (3). The nuisance parameters 6 are bias estimates
—in

A

b and scale parameter t.
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Given X ,, the corresponding S° = 5X °(X°)" follows a central Wishart distribution’

and its likelihood as a function of the inverse covariance ¥ is:
d d
L(¥;8%) =|w|z -exp|:—§tr(lI/S”)i|. ©)

We consider the statistic for mean-shifted X as (X — lni)). In terms of this statistic, S =
(X —1,b")(X —1,b")" and (9) becomes:

L, w;S)=|w|? -exp[—gtr(lPS}]. (10)

In (10), we apply an arbitrary but fixed transformation L. with kernel I = 1, leading
to ¥ Q =L/ (LXL")~'LL and replace the determinant | - | symbol by the generalized det(-)
which is the product of non-zero eigenvalues of its argument (since Q is rank deficient) and
obtain:

LOW; S) o det(¥ Q)2 .exp[—%tr(tI/QS)]. (11)

We substitute ¥ =¥ Q = ¥ (I — 1,(1'¥1,)"'1 W) to arrive at the shift-invariant form
for marginal likelihood in S:

LW S) o det(P)? -exp[—% tr(tT/S)]
~ 4 d ~
o det(¥)?2 -exp[—ztr(lI/S)]. (12)

The likelihood in (12) is constant for all choices of S € S(D) and hence it depends only
on D. Using the negative definiteness property of Di.e. WS = (— %)lIJD, (12) can be written
in terms of D as:

L(W; D) o det(F)? -eXp[% tr(ll"?D)] (13)

Equation (13) is the shift-invariant marginal likelihood in D based on the statistic (X — lnl;)
and the rank-deficient inverse covariance ¥.
To remove the scalar terms, we base the marginal likelihood on the standardized statistic

1,5 .
t(X)= X=1b)  Consider the scale parameter T = =
IX—1,0" | IX=1,b"||

. Equation (10) now becomes:

~ "4
Lb,t,¥;S) =

d
2 d
= -exp[—z—rztr(lPS)]. (14)

S5The central standard Wishart distribution is defined for S° = X°(X9)!. Throughout the paper, we use

SO = ‘I—ZX 2(X°)! so that d appears in the central Wishart distribution and can be later used as an anneal-

ing parameter in the inference procedure.
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Applying the same procedure as before i.e. using K =1, leading to ¥ Q, replacing | - |
with det(-) symbol and substituting for ¥, we get:

~ d
v 2 d ~
L(t,¥;S) xdet| =) -exp| —=——=tr(¥S)
72 272
(15)

2 (n—=1)d

~ d ~
xXT 2 -det(lll)% -exp| —=— tr(¥S)
272

since rank(¥) = (n — 1) and det(cA)" = "'k det(A)" for any constants ¢ and & and a
nonsingular matrix A. Notice here that the dependency on biases b is removed.
Next, we differentiate (15) and set the derivative to zero.

_d(L(T,¥;5))
- dt

n— d ~ d ~
— g2t -exp(—ﬁtr(lI/S)> : <—§> w(@s) v
T

“hd_ e 2)( l)d (16)

d ~
+ exp(—ﬁ tr(lI/S)> ST

_p=hd d ~ d ~ 4
2T T .expl =t (@S )| —= Jur(¥S) -t
272 2

d ~ _pi=ld (n—1)d
:exp(—z—rztr(lI/S)> T 2 -(—2)7 (17
By canceling terms and rearranging (17), we obtain:
(¥ S
2= TS (18)
n—1
and then substitute the expression for t2 back in (15):
Fs)\ " d
t ~ d ~
LW;S) x 1#s) ~det(lI/)?1 -exp| ———=—tr(¥S) (19)
n—1 (LS (w5))

where the dependency on T vanishes.
Ignoring constant terms, we obtain the shift- and scale-invariant likelihood in S
(Tunnicliffe-Wilson 1989; McCullagh 2009):

d

LW: S) o det(T) 3 w(@ §)~ "7 (20)

which is constant for all S € S(D). Thus the likelihood depends only on (the scaled version
of) D and by the negative definiteness property of D, we finally arrive at the shift- and
scale-invariant marginal likelihood in D:

_(n=Dd
2

L‘(l]/ D) dtlI/2t(—llZD) 21
”D”cxe()r2 . 2n
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