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Abstract We introduce a new framework for logic-based probabilistic modeling called
constraint-based probabilistic modeling which defines CBPMs (constraint-based proba-
bilistic models), i.e. conditional joint distributions P (· | KB) over independent propositional
variables constrained by a knowledge base KB consisting of clauses. We first prove that
generative models such as PCFGs and discriminative models such as CRFs have equiva-
lent CBPMs as long as they are discrete. We then prove that CBPMs in infinite domains
exist which give existentially closed logical consequences of KB probability one. Finally
we derive an EM algorithm for the parameter learning of CBPMs and apply it to statistical
abduction.

Keywords Probabilistic model · Constraint · Abduction

1 Introduction

Suppose we have i.i.d. data as a bag of ground atoms and wish to build their logic-based
probabilistic model (Getoor and Taskar 2007; De Raedt and Kersting 2008). Theoreti-
cally there are many ways to do it but current approaches seem classified into two types,
feature-based discriminative approaches and rule-based generative approaches. The for-
mer type defines a log-linear model P (x) = Z−1 exp(

∑
i wifi(x)) where the fi ’s are “fea-

tures”, i.e. real-valued functions returning in the case of Boolean ones 1 (true) or 0 (false),
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the wi ’s weights and Z a normalizing constant. For example CFDs (case-factor diagrams)
(McAllester et al. 2004) adopt Boolean features to define a distribution over a “feasible” set
of truth assignments x for Boolean variables. MLNs (Markov logic networks) (Richardson
and Domingos 2006) use first-order clauses as features that count the number of clauses’
ground instances which are true in the Herbrand interpretation x.

Contrastingly the latter type, rule-based approaches such as SLPs (Muggleton 1996),
ICL (Poole 1997), PRISM (Sato and Kameya 2001, 2008) and more recently ProbLog
(De Raedt et al. 2007), employ logical rules, i.e. definite or general clauses to describe
a probabilistic data generation process. They proof-theoretically define a distribution over
ground atoms (Muggleton 1996; Poole 1997), or model-theoretically define a probability
measure on possible worlds, i.e. the set of Herbrand interpretations (Sato and Kameya 2001;
De Raedt et al. 2007). Joint distributions thus defined are a subclass of log-linear models
where the normalizing constant is unity but able to represent a variety of probabilistic mod-
els from BNs (Bayesian networks) to PCFGs (probabilistic context free grammars).

In this paper1,2 we introduce constraint-based probabilistic modeling, a new modeling
framework which deals with the above two types uniformly. It defines CBPMs (constraint-
based probabilistic models), i.e. conditional joint distributions, or more generally condi-
tional probability measures Pc(· | KB)3 on the Herbrand interpretations for KB such that
Pc(·) is a finite or infinite product of Bernoulli distributions and KB is a set of propo-
sitional or first-order clauses. It is motivated by an observation that it is difficult for the
current rule-based approaches to deal with some kind of logical knowledge including dis-
junctive knowledge such as win(rock) ∨ win(paper) ∨ win(scissors), looping rules such
as friend(x, y) ⇐ friend(y, x) and cyclic causal chains such as chemical reactions among
metabolites in a metabolic network (Chen et al. 2008). We wish to logically express those
types of knowledge by CBPMs using arbitrary clauses in probabilistic modeling and apply
logical inference and statistical inference together.

The basic idea of CBPMs is simple: independent propositional variables (ground atoms)
are constrained by a knowledge base KB so that their joint distribution is the intended one.
To illustrate it, let us take the simplest example and consider a distribution P (X = x) for a
single random variable X that takes on values {a, b}. We represent P (X = x) as a CBPM
as follows. Introduce a propositional variable �X = a� corresponding to the event X = a

together with probability Pc(�X = a�) = P(X=a)

1+P(X=a)
and similarly for �X = b�, where Pc(·)

is a joint distribution that makes �X = a� and �X = b� independent. Since either X = a

or X = b always happens but they never happen together, we impose a logical constraint,
exclusive-or, KBX = (�X = a� ∨ �X = b�) ∧ ¬(�X = a� ∧ �X = b�) on them. Then we see

Pc(�X = a� | KBX)

= Pc(�X = a� ∧ KBX)

Pc(KBX)

= Pc(�X = a�)Pc(¬�X = b�)
Pc(�X = a�)Pc(¬�X = b�) + Pc(¬�X = a�)Pc(�X = b�)

1This paper is a revised version of a conference paper presented at ILP 2009 with the same title augmented
with proofs for theorems and new sections for infinite CBPMs, related work and a new learning experiment.
2Distributions are discrete throughout the paper.
3A joint distribution P(X1 = x1, . . . ,Xn = xn) is a probability measure on Rn induced by random variables
X1, . . . ,Xn. When n is countably infinite, the distribution is considered as a probability measure on R∞.
To deal with finite n and infinite n uniformly, when the context is clear, we use “joint distribution” and
“probability measure” synonymously.
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= P (X = a)

P (X = a) + P (X = b)

= P (X = a).

Similarly Pc(�X = b� | KBX) = P (X = b) holds. In this way P (X = x) is representable as
a CBPM Pc(�X = x� | KBX) (x ∈ {a, b}).

This example is trivial but by developing the idea behind it, we can show that CBPMs are
expressive and powerful. That is, they can express both generative models such as PCFGs
and discriminative models such as CRFs (conditional random fields) (Lafferty et al. 2001).
In addition, we can represent our first-order knowledge in a knowledge base KB and perform
logical inference freely. When domains (Herbrand universes) are finite, we can prove that
logically equivalent KBs define the same distribution, and hence we may replace one KB

with another as long as they are logically equivalent, which would be difficult for feature-
based approaches that use logical formulas as features.4 Also we allow any types of clause
in KB be they non-Horn ones or looping ones that might cause an infinite loop in logic
programs. Furthermore despite CBPMs’ broad coverage of probabilistic models, their prob-
abilities are uniformly computed and learned from data by the EMC algorithm described in
Sect. 4.

Primary advantages of CBPMs from the viewpoint of knowledge representation are gen-
erality covering generative and discriminative models and logical expressiveness due to the
use of first-order clauses. The treatment of infinite domains is another advantage: CBPMs
are always definable even for infinite domains and for arbitrary KBs. From a machine learn-
ing point of view, what is new is the EMC algorithm, an EM algorithm applicable to discrete
(binarized) conditional distributions with hidden variables.

In what follows, after introducing CBPMs, we prove basic theorems in Sect. 2. Section 3
defines CBPMs in infinite domains. In Sect. 4, we get back to finite domains and derive
the EMC algorithm for the parameter learning of CBPMs. In Sect. 5, we apply CBPMs to
constraint-based statistical abduction. Section 6 contains related work and Sect. 7 is conclu-
sion.

2 Constraint-based probabilistic models

2.1 Introducing CBPMs

Let L be a countable first order language, UH the Herbrand universe, i.e. the set of ground
terms in L and B H the Herbrand base, i.e. the set of ground atoms in L. We fix an enu-
meration A1,A2, . . . of ground atoms in B H and identify a 0-1 vector such as (1,0, . . .)

with a Herbrand interpretation, i.e. truth assignment for B H such that A1 = 1 (true), A2 = 0
(false) . . . If it makes a closed formula ϕ true, it is called a Herbrand model of ϕ. We use
the Cartesian product IH = ∏

i{0,1}i to denote the set of all Herbrand interpretations. We
assume each {0,1}i representing the truth values of Ai is a discrete probability space with a
probability measure μi(·).

4Consider a non-ground unit clause P(x) representing ∀xP (x). In the Herbrand universe {a, b}, it is logically
equivalent to P(a)∧P(b) or to the clause set {P(a),P (b)}, but {P(x)}, {P(a)∧P(b)} and {P(a),P (b)} are
different feature sets. Likewise {A,A ⇒ B} and {A,B} are logically equivalent but different Boolean feature
sets. When we replace logically equivalent but different feature sets, we need to adjust parameters (weights)
to preserve the distribution.
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Let Pc(·) be a product probability measure of the μi ’s on IH . We consider Ai as a binary
random variable from IH to {0,1} such that Ai(ω) = xi for ω = (x1, x2, . . .) ∈ IH with
Pc(Ai = xi) = μi({xi}) (xi ∈ {0,1}). Pc(·) makes all ground atoms independent and every
closed formula ϕ in L is a binary random variable such that ϕ(ω) = 1 if ω |= ϕ else 0 for
ω ∈ IH with the probability Pc(ϕ = 1) = Pc({ω ∈ IH | ω |= ϕ}). We write Pc(ϕ) (resp.
Pc(¬ϕ)) instead of Pc(ϕ = 1) (resp. Pc(ϕ = 0))5 and P (x) instead of P (X = x) when the
context is clear. We use V (X) for the set of values a random variable X takes.

A CBPM (constraint-based probabilistic model) is a conditional probability measure
Pc(· | KB) on the Herbrand interpretations IH where KB is a set of countably many clauses.
We assume KB is consistent. Although Pc(ϕ | KB), the conditional probability of a closed
formula ϕ, is definable measure-theoretically for any KB , when Pc(KB) = 0, we are unable
to define it as Pc(ϕ∧KB)

Pc(KB)
. So hereafter, to make probability computation feasible and discus-

sion simple, we assume, unless otherwise stated, that L has no function symbol, B H is finite
and Pc(KB) > 0 (see Sect. 3 for the infinite case).

Consider a joint distribution P (X1 = x1, . . . ,XN = xN) and a CBPM Pc(�X1 =
x1�, . . . , �XN = xN� | KB) where the �Xi = xi�’s are arbitrary propositional variables
(ground atoms)6 such that �Xi = xi� uniquely corresponds to the event Xi = xi (xi ∈
V (Xi),1 ≤ i ≤ N ). When Pc(�X1 = x1�, . . . , �XN = xN� | KB) = P (X1 = x1, . . . ,XN =
xN) holds for every xi (xi ∈ V (Xi),1 ≤ i ≤ N ),7 we say that Pc(�X1 = x1�, . . . , �XN =
xN� | KB) is equivalent to P (X1 = x1, . . . ,XN = xN). We prove a basic theorem on
CBPMs.

Theorem 1 Every joint distribution has an equivalent CBPM.

Proof Let P (X1 = x1, . . . ,XN = xN) be a joint distribution. We correspondingly introduce
state variables �Xi = xi� and parameter variables θx1,...,xN

(xi ∈ V (Xi),1 ≤ i ≤ N ), and
define KB as follows.

XOR(Xi) =
⎛

⎝
∨

xi∈V (Xi )

�Xi = xi�
⎞

⎠∧
∧

xi �=x′
i

¬ (�Xi = xi� ∧ �Xi = x ′
i�
)
,

XOR =
N∧

i=1

XOR(Xi),

EQU =
∧

x1,...,xN

(
N∧

i=1

�Xi = xi� ⇔ θx1,...,xN

)

,

KB = XOR ∧ EQU.

5This applies to a set of formulas as well.
6Propositional variables and ground atoms are synonymous in this paper.
7We sometimes use vector notation such as P(X = x) when non-ambiguous which denotes P(X1 =
x1, . . . ,XN = xN ) where X = (X1, . . . ,XN ) and x = (x1, . . . , xN ).
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XOR(Xi) says that Xi exclusively takes on one of the values in V (Xi). KB is equivalent to
the following DNF formula where disjuncts are mutually exclusive.

KB ⇔
∨

x1,...,xN

⎧
⎨

⎩

N∧

i=1

⎛

⎝�Xi = xi� ∧
∧

x′
i
�=xi

¬�Xi = x ′
i�
⎞

⎠

∧
⎛

⎝θx1,...,xN
∧

∧

(x1,...,xN )�= (x′
1,...,x′

N
)

¬ θx′
1,...,x′

N

⎞

⎠

⎫
⎬

⎭
.

Next introduce a joint distribution Pc(·) which makes all the variables hitherto introduced
independent such that

Pc(�X1 = x1�, . . . , �XN = xN�, θx1,...,xN
) =

(
N∏

i=1

Pc(�Xi = xi�)
)

Pc(θx1,...,xN
),

Pc(�Xi = xi�) = 1/2 for ∀i, xi ∈ V (Xi),

Pc(θx1,...,xN
) = P (X1 = x1, . . . ,XN = xN)

1 + P (X1 = x1, . . . ,XN = xN)
.

It holds that 0 ≤ Pc(θx1,...,xN
) ≤ 1/2 and P (X1 = x1, . . . ,XN = xN) = Pc(θx1,...,xN

)

Pc(¬θx1,...,xN
)
. We see,

by calculation,

Pc(KB) = α
∑

x1,...,xN

N∏

i=1

(
Pc(�Xi = xi�)

Pc(¬�Xi = xi�)
)(

Pc(θx1,...,xN
)

Pc(¬θx1,...,xN
)

)

= α
∑

x1,...,xN

(
Pc(θx1,...,xN

)

Pc(¬θx1,...,xN
)

)

= α
∑

x1,...,xN

P (X1 = x1, . . . ,XN = xN)

= α

where

α =
(

N∏

i=1

∏

xi

Pc(¬�Xi = xi�)
)

∏

x1,...,xN

Pc(¬θx1,...,xN
) > 0.

Hence we conclude

Pc(�X1 = x1�, . . . , �XN = xN� | KB)

=
(
α

Pc(θx1,...,xN
)

Pc(¬θx1,...,xN
)

)

α
= Pc(θx1,...,xN

)

Pc(¬θx1,...,xN
)

= P (X1 = x1, . . . ,XN = xN). �

2.2 CBPMs for BNs

Theorem 1 is general and applicable to BNs. However if applied to a BN defining a joint
distribution P (X1 = x1, . . . ,XN = xN) = ∏N

i=1 P (Xi = xi | �i = πi) where �i is the ran-
dom vector consisting of parent variables of Xi and πi is its value, we need as many as
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|V (X1) × · · · × V (XN)| parameter variables, which is exponential in N . A better way to
construct an equivalent but more compact CBPM is to respect the factorized structure of
the BN and to encode CPTs (conditional probability tables) P (Xi = xi | �i = πi) individu-
ally following (Chavira and Darwiche 2005). They introduce Boolean formulas EQUi and
XOR(Xi)

8 (1 ≤ i ≤ N ) where

EQUi =
∧

xi ,πi

(�Xi = xi� ∧ ��i = πi� ⇔ θxi |πi

)
,

KBBN =
N∧

i=1

XOR(Xi) ∧ EQUi

and compile the conjunction, KBBN, to an AC (arithmetic circuit) that can compute arbi-
trary marginal probabilities of the original BN. Since no joint distribution is given to the
Boolean variables in their approach, they are not random variables. However, using the
above encoding, we can prove the equivalence as follows. First put Pc(�Xi = xi�) = 1/2
and Pc(θxi |πi

) = P(Xi=xi |�i=πi )

1+P(Xi=xi |�i=πi )
for ∀i, xi and πi similarly to Theorem 1. We have

Pc(KBBN) = αBN

∑

x1,...,xN

N∏

i=1

(
Pc(θxi |πi

)

Pc(¬θxi |πi
)

)

= αBN

∑

x1,...,xN

N∏

i=1

P (Xi = xi | �i = πi)

where αBN =
N∏

i=1

(
∏

xi

Pc(¬�Xi = xi�)
)(

∏

xi ,πi

Pc(¬θxi |πi
)

)

and consequently

Pc(�X1 = x1�, . . . , �XN = xN� | KBBN)

=
∏N

i=1 P (Xi = xi | �i = πi)
∑

x1,...,xN

∏N

i=1 P (Xi = xi | �i = πi)

= P (X1 = x1, . . . ,XN = xN). (1)

Thus the number of parameter variables θxi |πi
required by this construction is the same as

the number of parameters in the original BN.
We have two comments on KBBN. First even if a BN has a cyclic directed path, we

can construct KBBN and define Pc(�X1 = x1�, . . . , �XN = xN� | KBBN) as long as CPTs are
assigned to all nodes. So it can define a joint distribution for cyclic BNs as well as for acyclic
BNs. In the cyclic case, the equation (1) tells us that the defined distribution is obtained by
normalizing the product of CPTs.

Second, one might imagine BN probability computation by way of KBBN is inefficient,
but Chavira and Darwiche showed the opposite (Chavira and Darwiche 2005). They demon-
strated that this logical encoding outperforms the standard junction tree algorithm by a wide

8XOR(Xi) is given in the proof of Theorem 1.
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margin when optimizations exploiting “local structure”9 (and subsequent processing to the
AC formula) are performed. CBPMs thus can be computationally efficient, if the model class
and a computation mechanism are appropriate.

2.3 CBPMs for log-linear models

Having seen CBPMs are a general scheme for representing (discrete) joint distributions,
we consider two special cases. The first one is log-linear models where a joint distribu-
tion P (X = x) is given as a product of potential functions P (X = x) = Z−1

∏M

i=1 Fi(x i )

(
⋃M

i=1 x i = x) such that Fi(x i ) is non-negative and not identically zero.10 Here X, x and
x i (⊆ x) are vectors and Z is a normalizing constant. In this subsection we show that log-
linear models have an equivalent CBPM with the same factorization. The basic strategy is
to syntactically separate potential functions and let them generate outputs independently but
filter out incompatible ones by equality constraints defined below.

Let us consider a joint distribution P (X = a,Y = b,Z = c) ∝ F1(a, b)F2(b, c). To find
an equivalent CBPM, we introduce a factor distribution Q(1)(X = a,Y1 = b) = F1(a,b)∑

a,b F1(a,b)

and its equivalent CBPM P (1)
c (�X = a�, �Y1 = b� | KB1) as in Theorem 1. Likewise in-

troduce another factor distribution Q(2)(Y2 = b,Z = c) by normalizing F2(b, c) and an
equivalent CBPM P (2)

c (�Y2 = b�, �Z = c� | KB2) = Q(2)(Y2 = b,Z = c) = F2(b,c)∑
b,c F2(b,c)

. Y1

and Y2 are syntactic variants of Y in the original distribution P (X = a,Y = b,Z = c). So
V (Y ) = V (Y1) = V (Y2) holds. They are called connection variables for Y . Next construct
a product distribution Pc = P (1)

c × P (2)
c such that P (1)

c and P (2)
c are marginal distributions of

Pc . By simple calculation, we find that

P (X = a,Y = b,Z = c)

= F1(a, b)F2(b, c)
∑

a,b,c F1(a, b)F2(b, c)
= Q(1)(X = a,Y1 = b)Q(2)(Y2 = b,Z = c)

∑
a,b,c Q1(X = a,Y1 = b)Q(2)(Y2 = b,Z = c)

= P (1)
c (�X = a�, �Y1 = b� | KB1)P

(2)
c (�Y2 = b�, �Z = c� | KB2)

∑
a,b,c P

(1)
c (�X = a�, �Y1 = b� | KB1)P

(2)
c (�Y2 = b�, �Z = c� | KB2)

KB1 and KB2 have no variable in common and independent w.r.t. Pc

= Pc(�X = a� ∧ �Y1 = b� ∧ �Y2 = b� ∧ �Z = c� ∧ KB1 ∧ KB2)

Pc

(∨
a,b,c (�X = a� ∧ �Y1 = b� ∧ �Y2 = b� ∧ �Z = c� ∧ KB1 ∧ KB2)

)

= Pc(�X = a� ∧ �Y1 = b� ∧ �Y2 = b� ∧ �Z = c� ∧ KB1 ∧ KB2)

Pc

(∨
a�X = a� ∧∨

b(�Y1 = b� ∧ �Y2 = b�) ∧∨
c�Z = c� ∧ KB1 ∧ KB2

)

KB1 ⇒
∨

a

�X = a�, KB2 ⇒
∨

c

�Z = c� and �Y1 = b� ∧ �Y2 = b� ⇒ �Y1 = Y2�

9One is determinism, meaning some CPT entries have zero probability. Another is CSI (context-specific
independence (Boutilier et al. 1996)) which is value-wise conditional independence.
10Usually log-linear models are written as P(x) = Z−1 exp(

∑M
i=1 wifi(xi )) which is always positive. We

however prefer a more general form P(x) = Z−1 ∏M
i=1 exp(wifi (xi )) = ∏M

i=1 Fi(xi ) and allow Fi(xi ) to
be zero at some xi .
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are tautologies where

�Y1 = Y2� =
∨

b

(�Y1 = b� ∧ �Y2 = b�)

= Pc(�X = a�, �Y1 = b�, �Y2 = b�, �Z = c� | �Y1 = Y2� ∧ KB1 ∧ KB2)

= Pc(�X = a�, �Y1 = b�, �Z = c� | �Y1 = Y2� ∧ KB1 ∧ KB2).

Thus P (X = a,Y = b,Z = c) ∝ F1(a, b)F2(b, c) is expressed as a CBPM. The point of
this transformation is the introduction of connection variables Y1 and Y2 and the addition
of an equality constraint �Y1 = Y2� on them to ensure that they take a compatible value b

appearing in F1(a, b) and F2(b, c).
Generalizing this example is straightforward. To state Theorem 2 below, we make our

terminology precise. Let P (X = x) ∝ ∏M

i=1 Fi(x i ) be a given distribution. If z, a value of a
random variable Z ∈ X, is shared by two or more potential functions Fi1(x i1), . . . ,Fik (x ik )

(k > 1), Z is said to be shared. For such Z we introduce new variables Z′
i1
, . . . ,Z′

ik
called

connection variables for Z together with a Boolean formula
∨

z∈V (Z)�Z′
i1

= z�∧· · ·∧�Z′
ik

=
z� called the equality constraint associated with Z. Now we have (proof omitted)

Theorem 2 Suppose P (X = x) = Z−1
∏M

i=1 Fi(x i ) (
⋃M

i=1 x i = x) is given. Then P (X =
x) has an equivalent CBPM Pc(�X′

1 = x1�, . . . , �X′
M = xM� |C ∧ KB) with the same fac-

torization as P :

P (X = x) = Pc(�X′
1 = x1�, . . . , �X′

M = xM� |C ∧ KB)

=
∏M

i=1 Pc(�X′
i = xi� |KBi)

∑
x
∏M

i=1 Pc(�X′
i = xi� |KBi)

(2)

where C is a conjunction of the equality constraints associated with shared variables in
X, Pc(�X′

i = x i� |KBi) is a CBPM equivalent to the factor distribution Q(i)(X
′
i = x i ) =

Fi (x i )∑
x i

Fi (x i )
(1 ≤ i ≤ M) and KB = ∧M

i=1 KBi .

Here �·� is extended to vector equations in an obvious way. The denominator in (2) is the
probability that independent sampling from factor distributions Q(i)(X

′
i = x i ) (1 ≤ i ≤ M)

returns “compatible” values x i such that
⋃M

i=1 x i = x for some x .
Theorem 2 gives us a way of viewing log-linear models such as CRFs and MLNs as

conditional distributions, which leads to a new parameter learning algorithm presented in
Sect. 4.

2.4 Generative models and CBPMs

We next consider rule-based generative models such as PCFGs. To show that CBPMs can
deal with them, we use PRISM which is a symbolic-statistical modeling language based on
Prolog extended with a built-in predicate msw/3 representing probabilistic choices (Sato and
Kameya 2001, 2008). PRISM covers generative models in general and PCFGs in particular
as exemplified in (Sato and Kameya 2001). We first review PRISM’s semantics (distribution
semantics) for self-containedness.

A PRISM program DB = R ∪ F consists of a set R of definite clauses and a set F of
ground msw atoms. No clause in R contains the msw predicate in the head. We give a base
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distribution Pmsw(·) over the Herbrand interpretations of F in such a way that msw(i, t, v)

represents a probabilistic choice i from exclusive alternatives Vi at trial t returning a value v

(∈ Vi ) where i, t and v are arbitrary ground terms. So when {msw(i, t, v) | v ∈ Vi} are drawn
from Pmsw(·), exactly one of them becomes true for each i, t .

Pmsw(·) is extended to PDB(·), a probability measure on the set of possible Herbrand
interpretations for DB , by way of the least model semantics (Lloyd 1984) combined with
Kolmogorov’s extension theorem as in (Sato and Kameya 2001). PDB(·) turns every closed
formula ϕ into a binary random variable having a probability PDB(ϕ). What is important in
the distribution semantics is that iff (R), the if-and-only-if completion of R (Lloyd 1984),
has probability one, i.e. PDB(iff (R)) = 1.

When B H is finite as assumed here, iff (R) is given as a Boolean formula iffg(R)
def=∧

H iffg(H) where iffg(H) = H ⇔ B1 ∨ · · · ∨ BM (M ≥ 0) is a formula such that H

is a ground atom which is not an msw atom and {H ⇐ B1, . . . ,H ⇐ BM} is the set of
ground clauses from R having H in the head. When M = 0, iffg(H) = ¬H . Suppose
G is a non-msw ground atom. An explanation for G is a conjunction E of msw atoms
in F such that E ∧ R � G. We say G has a disjunctive explanation E1 ∨ · · · ∨ Ek if
there are explanations E1, . . . ,Ek for G satisfying iffg(R) � G ⇔ E1 ∨ · · · ∨ Ek .11 Since
PDB(G) = Pmsw(E1 ∨ · · · ∨ Ek) holds thanks to PDB(iffg(R)) = 1 by the distribution se-
mantics, we compute PDB(G) by logically reducing G to its disjunctive explanation us-
ing iffg(R). It is however generally hard to tell when G has a disjunctive explanation. To
state a sufficient condition, we introduce a binary relation “�” over B H by A � B if-and-
only-if B appears in the body W of some ground clause A ⇐ W from DB . DB is said
to be cycle-free if there is no looping chain A1 � A2 � · · · � A1. Then it is rather easy
to see that if DB is cycle-free and B H is finite, G has a disjunctive explanation such that
iffg(R) � G ⇔ E1 ∨ · · · ∨ Ek .

Now let A1, . . . ,AN be an enumeration of non-msw atoms in B H (B H is finite). Construct
a product P1 of Bernoulli distributions over A1, . . . ,AN such that P1(A1) = · · · = P1(AN) =
1/2. Then construct a CBPM P2 for msw atoms following the proof of Theorem 1 such that
P2(· | XORmsw) = Pmsw(·) holds where XORmsw is a Boolean formula expressing the mutual
exclusiveness and exhaustiveness of msw atoms. Finally define Pc as the product distribution
of P1 and P2. Note that the Ai ’s and the msw atoms are independent w.r.t. Pc .

Lemma 1 Suppose B H is finite and DB is cycle-free. Let � be a Boolean formula consisting
of msw atoms. We have Pc(iff

g(R) ∧ �) = (1/2)NP2(�) for some N .

Proof Write iffg(R) = ∧N

i=1(Ai ⇔ Wi). Take the transitive closure of � and extend it to
a total ordering “�∗” (possible because B H is finite and DB is cycle-free). Without loss
of generality, we may assume A1 �∗ · · · �∗ AN . Note that A1 does not occur in W1 or in
any other Ai ⇔ Wi (i ≥ 2) because A1 is the highest atom in the “�∗” ordering. So A1 is
independent of W1, Ai ⇔ Wi (i ≥ 2) and � w.r.t. Pc . Put �′ = (

∧N

i=2 Ai ⇔ Wi) ∧ �. We
have

Pc(iff
g(R) ∧ �) = Pc((A1 ⇔ W1) ∧ �′)

= Pc(A1 ∧ W1 ∧ �′) + Pc(¬A1 ∧ ¬W1 ∧ �′)

= 1/2Pc(W1 ∧ �′) + 1/2Pc(¬W1 ∧ �′)

11Intuitively G is a sentence, explanations E1, . . . ,Ek are sentence derivations and iffg(R) is the set of CFG
rules used to parse the sentence.
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= 1/2Pc((W1 ∨ ¬W1) ∧ �′) = 1/2Pc(�
′)

= · · · = (1/2)NPc(�) = (1/2)NP2(�). �

Theorem 3 Suppose B H is finite and a PRISM program DB is cycle-free. Then DB has
an equivalent CBPM such that for a non-msw ground atom G, PDB(G) = Pc(G | iffg(R) ∧
XORmsw) where PDB(G) is the probability of G defined by DB .

Proof Let E1 ∨ · · · ∨Ek be a disjunctive explanation for G. PDB(G) = Pmsw(E1 ∨ · · · ∨Ek)

holds. Since iffg(R) � G ⇔ E1 ∨ · · · ∨ Ek , we have, applying Lemma 1,

Pc(G | iffg(R) ∧ XORmsw) = Pc(E1 ∨ · · · ∨ Ek | iffg(R) ∧ XORmsw)

= Pc((E1 ∨ · · · ∨ Ek) ∧ iffg(R) ∧ XORmsw)

Pc(iff
g(R) ∧ XORmsw)

= (1/2)NP2((E1 ∨ · · · ∨ Ek) ∧ XORmsw)

(1/2)NP2(XORmsw)

= P2(E1 ∨ · · · ∨ Ek | XORmsw) = Pmsw(E1 ∨ · · · ∨ Ek)

= PDB(G). �

Theorem 3 assumes B H is finite, or equally the number of propositional variables (ground
atoms) is finite. As a result Theorem 3 is applicable to BNs but not to PCFGs which require
infinitely many random variables. This is theoretically correct but we do not use infinitely
many random variables in practice. Think of a PCFG in Chomsky normal form. The back-
bone CFG rules expressed as a PRISM program take the form A(i, j) ⇐ B(i, j) ∧ C(j, k)

and A(i, i + 1) ⇐ word(i, i + 1) where i, j, k are position indexes (Sato and Kameya 2001).
When we parse a corpus by the PCFG, only finitely many rules are used because the corpus
is finite. Accordingly Theorem 3 is applicable to this finite fragment of the original PCFG,
which is practically enough to compute and learn probabilities from the corpus.

Theorem 1 shows that CBPMs are general. Theorem 2 and Theorem 3 show that they are
not only able to represent but to “simulate”12 a large class of discrete probabilistic models
despite their conceptual simplicity. In addition, probabilities can be efficiently computed
based on BDDs (binary decision diagrams) as explained in Sect. 4. In Sect. 5, we exploit the
generality of CBPMs to build probabilistic models for abductive reasoning. We conclude
this section with logical properties of CBPMs in finite domains.

Proposition 1 Let Pc(· | KB) be a CBPM conditioned on a Boolean formula KB . Suppose
Pc(·) gives every Herbrand model of KB a positive probability.13 Then for any Boolean
formula ϕ, it holds that Pc(ϕ | KB) = 1 if-and-only-if KB � ϕ. It also holds that Pc(ϕ |
KB) = Pc(ϕ | KB ′) if � KB ⇔ KB ′.

Proof Since KB � ϕ implies Pc(ϕ | KB) = 1 is evident, we prove the other way around.
Suppose KB �� ϕ. So KB ∪ {¬ϕ} has a Herbrand model ω0 such that ω0 |= KB ∧ ¬ϕ.

12By “simulate” we mean the preservation of factorization in the case of log-linear models shown in Theo-
rem 2 and goal-subgoal simulation by iffg(R) of SLD derivation for logic programs in the case of rule-based
approaches shown in Theorem 3.
13For example, 0 < Pc(A) < 1 for every ground atom A is enough.
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By assumption Pc({ω0}) > 0. It follows that Pc(KB ∧ ¬ϕ) = Pc({ω | ω |= KB ∧ ¬ϕ}) ≥
Pc({ω0}) > 0. Hence Pc(ϕ | KB) = 1 − Pc(¬ϕ | KB) < 1. Also suppose � KB ⇔ KB ′.
Then

Pc(ϕ | KB) = Pc(ϕ ∧ KB)

Pc(KB)
= Pc(ϕ ∧ KB ′)

Pc(KB ′)
= Pc(ϕ | KB ′). �

Thus in finite domains, we may replace one KB with another when they are logically
equivalent. Also Pc(ϕ | KB) = 1 coincides with the notion of logical consequence KB |= ϕ.
However in infinite domains, the latter is false as we see next.

3 CBPMs in infinite domains

3.1 Conditional probability

So far we have only been dealing with CBPMs constructed from finitely many Boolean
variables (ground atoms) whereas infinite domains such as natural numbers are excluded.
In this section, we investigate the differences between CBPMs in finite domains and those
in infinite domains. We assume L, the first-order language we use, has function symbols.
Then the Herbrand universe UH and the Herbrand base B H are countably infinite, whereas

IH , the set of Herbrand interpretations for B H , has as many elements as real numbers and
the probability of each interpretation is infinitesimal or zero, numerically speaking. Also
universally quantified formulas are likely to have probability zero when UH is infinite.14

Hence if KB contains non-ground clauses, it is impossible in general, as Pc(KB) = 0, to

compute the conditional probability of a closed formula ϕ by Pc(ϕ | KB) = Pc(ϕ∧KB)

Pc(KB)
.

Nonetheless, Pc(ϕ = y | KB = x) (x, y ∈ {0,1}) is measure-theoretically definable as
the Radon-Nikodym derivative (Feller 1971). The problem is that this measure-theoretic
Pc(ϕ = y | KB = x) is not unique at KB = 1 because Pc(KB = 1) = 0. In other words, we
have to choose, or have to construct an appropriate probability measure as Pc(· | KB = 1),
hopefully as an extension of the finite case. In particular we require Pc(ϕ = 1 | KB = 1) = 1
hold if KB � ϕ. In what follows, we construct such Pc(· | KB = 1) by considering an infinite
sequence of joint distributions Pc(X1 = x1, . . . ,Xk = xk | φ1, . . . , φn) (n > 0, k > 0) and
their limit, where φ1, . . . , φn are ground clauses from KB . Before going into details, we
look at an example to get a feeling for the infinite case.

Suppose L contains a unary predicate symbol q/1, a constant symbol 0 and a unary func-
tion symbol s/1. Then the Herbrand base B H

′ is {q(0), q(s(0)), . . .}. For the sake of brevity,

we write

i
︷ ︸︸ ︷
s(· · · s(0) · · · ) as i and the successor of i (i ≥ 0) as i+1. As stated in Sect. 2, a Her-

brand interpretation for B H
′ is identified with an infinite 0-1 vector (x0, x1, . . .) which speci-

fies the truth value of q(i) as xi (i ≥ 0, xi ∈ {0,1}). Let P ′
c(·) be a product probability mea-

sure satisfying (by abuse of notation) P ′
c(q(0) = x0, q(1) = x1, . . .) = ∏∞

i=0 P ′
c(q(i) = xi)

where P ′
c(q(i) = xi) = 1/2 (i ≥ 0, xi ∈ {0,1}).

Put ϕ
def= ∀x (q(x) ⇒ q(x + 1)) and define ϕn (n ≥ 0) by

ϕn
def= ∀x < n(q(x) ⇒ q(x + 1))

14If for example Pc(q(n)) < α < 1 for every natural number n, Pc(∀x q(x)) = limk αk = 0.
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= (q(0) ⇒ q(1)) ∧ · · · ∧ (q(n − 1) ⇒ q(n)).

We find, by calculation,

P ′
c(ϕn) =

(
1

2

)n+1

(n + 2),

P ′
c((q(0) ∨ · · · ∨ q(k)) ∧ ϕn) =

(
1

2

)n+1

(k + 1) (n ≥ k + 1),

P ′
c(∃x q(x) ∧ ϕn) =

(
1

2

)n+1

(n + 2) (because P ′
c(∃x q(x)) = 1).

Accordingly we have

P ′
c(ϕ) = P ′

c(∀x (q(x) ⇒ q(x + 1)))

= lim
n→∞P ′

c(ϕn)

= lim
n→∞

(
1

2

)n+1

(n + 2) = 0,

P ′
c(q(0) ∨ · · · ∨ q(k) | ϕ)

def= lim
n→∞P ′

c(q(0) ∨ · · · ∨ q(k) | ϕn)

= lim
n→∞

k + 1

n + 2
= 0,

P ′
c(∃x q(x) | ϕ)

def= lim
n→∞P ′

c(∃x q(x) | ϕn)

= 1.

We note that although P ′
c(ϕ) = 0, conditional probabilities P ′

c(q(0) ∨ · · · ∨ q(k) | ϕ)

and P ′
c(∃x q(x) | ϕ) have definite values, 0 and 1 respectively, if they are computed as

limits of P ′
c(· | ϕn) using successive approximations ϕn to ϕ. However we also note that

1 = P ′
c(∃x q(x) | ϕ) �= limk→∞ P ′

c(q(0) ∨ · · · ∨ q(k) | ϕ) = 0. This means our limiting
procedure which assigns probabilities to all formulas independently all at once does not yield
a countably additive probability measure. So we next construct a conditional probability
measure by repeating a limiting procedure and defining increasingly larger joint distributions
to which Kolmogorov’s extension theorem applies.

3.2 Infinite domains

Suppose L has function symbols. So the Herbrand universe UH and the Herbrand base B H
are countably infinite. Let A1,A2, . . . be an enumeration of atoms in B H . IH , the set of all
Herbrand interpretations for B H , is written as IH = ∏∞

i=0{0,1}i where {0,1}i represents the
truth values of Ai . We consider each {0,1}i as a probability space with the discrete topology
and give the product topology to IH . We construct a probability space (IH, F ,Pc) where
Pc(·) is an infinite product measure on F which is the smallest σ -algebra containing all open
sets of IH (Feller 1971). Pc(A1 = x1,A2 = x2, . . . ,An = xn) = ∏n

i=1 Pc(Ai = xi) holds for
every n > 0. Let φ1, φ2, . . . be an enumeration of ground clauses from KB . In the Herbrand
universe, KB is logically equivalent to

∧
i>0 φi .
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Define an infinite sequence (n0,i )i>0 by

n0,i = i (i > 0).

Now we are going to inductively construct a subsequence (nk,i)i>0 of (n0,i )i>0 for each k

(k ≥ 0) so that eventually (ni,i)i>0, a subsequence of every subsequence, makes a distri-
bution sequence Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φni,i

) (i = 1,2, . . .) convergent for all
k > 0 and the xj ’s.

Suppose (nk−1,i )i>0, a subsequence of (n0,i )i>0, has been defined for k (k > 0) and
limi→∞ Pc(A1 = x1, . . . ,Ak−1 = xk−1 | φ1, . . . , φnk−1,i

)15 exists for every x1, . . . , xk−1 ∈
{0,1} if k > 1. Choose a subsequence (nk,i)i>0 of (nk−1,i )i>0 such that

Pk,∞(A1 = x1, . . . ,Ak = xk)
def= lim

i→∞
Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk,i

)

exists for every x1, . . . , xk ∈ {0,1}.16 Since (nk,i)i>0 is a subsequence of (nk−1,i )i>0, we have

∑

xk

lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk,i
)

=
∑

xk

lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk−1,i
)

= lim
i→∞

∑

xk

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk−1,i
)

= lim
i→∞

Pc(A1 = x1, . . . ,Ak−1 = xk−1 | φ1, . . . , φnk−1,i
)

= Pk−1,∞(A1 = x1, . . . ,Ak−1 = xk−1). (3)

Repeat this process and define (nk−1,i )i>0 for all k (k > 0). Then consider (ni,i )i>0. (ni,i)i≥k ,
the sequence with the initial k − 1 elements removed from (ni,i)i>0, is a subsequence of
(nk,i )i>0 for every k (k > 0). Therefore,

lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φni,i
)

= lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk,i
)

= Pk,∞(A1 = x1, . . . ,Ak = xk) (4)

holds for every k > 0 and x1, . . . , xk ∈ {0,1}. Also by construction, it holds that
∑

xk

Pk,∞(A1 = x1, . . . ,Ak = xk)

=
∑

xk

lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φnk,i
)

15In this section, a formula φ on the conditioning part always means φ = 1. That is, Pc(· | φ) means Pc(· |
φ = 1).
16We can always choose such a convergent subsequence as there are only finitely many (x1, . . . , xk−1)s and
a countably infinite set {Pc(A1 = x1, . . . ,Ak−1 = xk−1 | φ1, . . . , φnk−1,i

) | xj ∈ {1,0}, i > 0} has a cluster
point in [0,1].
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= Pk−1,∞(A1 = x1, . . . ,Ak−1 = xk−1) by (3).

So we can apply Kolmogorov’s extension theorem (Chow and Teicher 1997) to the set of
“consistent” joint distributions {Pk,∞(A1 = x1, . . . ,Ak = xk) | k > 0} and conclude that a
probability measure denoted by P ∞

c (· | ∧i>0 φi) on IH having Pk,∞(A1 = x1, . . . ,Ak =
xk)s as marginal distributions exists:

P ∞
c

(

A1 = x1, . . . ,Ak = xk

∣
∣
∣
∧

i>0

φi

)

= Pk,∞(A1 = x1, . . . ,Ak = xk)

= lim
i→∞

Pc(A1 = x1, . . . ,Ak = xk | φ1, . . . , φni,i
) by (4).

We summarize the argument so far as

Theorem 4 Suppose KB is a set of countably many clauses in a first-order language L
which may contain function symbols. Let IH be the Herbrand interpretations for L and Pc(·)
a probability measure on IH such that Pc(A1 = x1, . . . ,Ak = xk) = ∏k

i=1 Pc(Ai = xi) (xi ∈
{0,1}) for every k (k > 0) where A1,A2, . . . is an enumeration of ground atoms in L. Let
φ1, φ2, . . . be an enumeration of ground clauses from KB . We assume Pc(φ1 ∧ · · · ∧φm) > 0
for every m > 0.17

Then there exist an infinite sequence (ni,i )i>0 and a probability measure on IH denoted
by P ∞

c (· | ∧i>0 φi) or equivalently by P ∞
c (· | KB) such that limi→∞ Pc(A1 = x1, . . . ,Ak =

xk | φ1, . . . , φni,i
) converges to a joint distribution P ∞

c (A1 = x1, . . . ,Ak = xk | KB) for every
k > 0. Moreover, if KB � φ holds for an existentially closed formula φ,18 we have P ∞

c (φ |
KB) = 1.

Proof We have only to prove the latter part. Suppose KB � φ and φ is existentially closed.
We consider the universally quantified formula ¬φ as a set of clauses.

Since KB ∪ {¬φ} is inconsistent, it follows from Herbrand’s theorem that there
are ground clauses {φ1, . . . , φN } from KB and those {ψ1, . . . ,ψM} from ¬φ such that
φ1, . . . , φN � ¬(ψ1 ∧ · · · ∧ ψM). So φ1, . . . , φni,i

� ¬(ψ1 ∧ · · · ∧ ψM) holds for every
i such that {φ1, . . . , φni,i

} ⊇ {φ1, . . . , φN }, and hence we have Pc(¬(ψ1 ∧ · · · ∧ ψM) |
φ1, . . . , φni,i

) = 1 for large i. Therefore, by taking the limit, we conclude P ∞
c (¬(ψ1 ∧ · · · ∧

ψM) | KB) = 1. On the other hand, since ¬φ ∪ {¬(ψ1 ∧ · · · ∧ ψN)} has no Herbrand model,
we have ¬(ψ1 ∧ · · · ∧ ψN) � φ. It follows from P ∞

c (¬(ψ1 ∧ · · · ∧ ψM) | KB) = 1 that
P ∞

c (φ | KB) = 1 as well. �

We remark that P ∞
c (· | KB) depends on (ni,i)i>0 and may not be unique. A simple

uniqueness condition is as follows. Let φ1, φ2, . . . be an enumeration of ground clauses from
KB . Suppose Pc(KB) = limi→∞ Pc(φ1 ∧ · · · ∧ φi) > 0 exists.19 Then P ∞

c (· | KB) is unique
and coincides with Pc(· | KB). This is because Pc(ϕ | KB) = limi→∞ Pc(ϕ | φ1 ∧· · ·∧φi) =
limi→∞ Pc(ϕ | φ1 ∧ · · · ∧ φni,i

) = P ∞
c (ϕ | KB)20 holds for any Boolean formula ϕ. When

17This is satisfied if 0 < Pc(Ai) < 1 for all i (i > 0).
18A formula is existentially closed if it is closed and takes the form ∃x1, . . . , xnϕ where ϕ has no quantifier.
19Apparently the limit does not depend on the choice of enumeration.
20Any convergent subsequence of a convergent sequence has the same limit.
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Pc(KB) = 0 however, the uniqueness condition is still an open question. We need to check
the uniqueness of P ∞

c (· | KB) for each case at the moment.
Unlike Proposition 1, the inverse of Theorem 4, i.e. P ∞

c (φ | KB) = 1 implies KB �
φ, does not necessarily hold in infinite domains. Here is a counter example. Let ϕ =
∀x (q(x) ⇒ q(x + 1)), ϕn = (q(0) ⇒ q(1)) ∧ · · · ∧ (q(n − 1) ⇒ q(n)) and P ′

c(·) be as
in the previous subsection. We see that limn→∞ P ′

c(q(0) = x0, . . . , q(k) = xk | ϕn) always
converges for any x0, . . . , xk and the resulting P ′∞

c (· | ϕ) is unique regardless of the choice
of (ni,i )i>0. Thus (ϕn)n≥0 defines an infinite CBPM P ′∞

c (· | ϕ). We have P ′∞
c (¬q(0) | ϕ) = 1

because P ′∞
c (q(0) | ϕ) = limn→∞ P ′

c(q(0) | ϕn) = 0. We on the other hand have ϕ �� ¬q(0)

because ϕ has a Herbrand model that makes every ground atom true. So P ′∞
c (¬q(0) | ϕ) = 1

but not ϕ �� ¬q(0).
From the next section on, we get back to finite domains and consider probability compu-

tation and parameter learning in finite domains.

4 Parameter learning

In this section we assume KB is a Boolean formula (finite set of ground clauses) and derive
the EMC algorithm, an EM algorithm for CBPMs which statistically estimates parameters
from data. It is a descendent of the FAM algorithm for SLPs (Cussens 2001) such that con-
ditioning by a “success” proposition in FAM is generalized to conditioning by a knowledge
base KB .

4.1 Probability computation by BDDs

Before deriving the EMC algorithm, we describe how probabilities of probabilistic Boolean
formulas are computed by BDDs (binary decision diagrams) (Akers 1978; Bryant 1986).21

The description is sketchy due to space limitations.
Suppose a probabilistic Boolean formula ϕ consisting of independent Boolean variables

is given. To compute Pc(ϕ), we convert ϕ to a BDD which is a directed acyclic graph
representing a disjunctive normal form of ϕ such that disjuncts are mutually exclusive. In
the graph, each non-terminal node N is labeled by a Boolean variable, A, and has two
outgoing edges to its children, 1-edge and 0-edge, respectively representing the assignments
A = true and A = false. There are two types of terminal nodes, 1-terminal and 0-terminal.
Each path from the root node to a 1-terminal represents an assignment for the Boolean
variables in ϕ making ϕ true, thereby corresponding to a disjunct in a disjunctive normal
form

∨n

i=1(Li,1 ∧ · · · ∧ Li,ki
) for ϕ. Let BDDϕ be a BDD for ϕ. BDDϕ is unique as a graph

once a variable ordering in ϕ is fixed. The size of BDDϕ heavily depends on the variable
ordering and finding the best ordering is NP-hard.

Pc(ϕ) is naively computed as

Pc

(
n∨

i=1

ki∧

j=1

Li,j

)

=
n∑

i=1

ki∏

j=1

Pc(Li,j )

21Similar probability computation is possible by ZDDs (zero-suppressed BDDs) (Minato 2001). For the
full details of probability computation by BDDs and ZDDs, see (Ishihata et al. 2008), downloadable at
http://www.cs.titech.ac.jp/˜tr/reports/2008/TR08-0004.pdf.
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where for a literal L (L = A or L = ¬A for some atom A), Pc(L) = Pc(A) if L = A else
1 − Pc(A). It is possible however to perform the same computation much more efficiently
based on BDDϕ by taking advantage of the fact that subgraphs in BDDϕ are shared and
hence probability computations for subgraphs can also be shared. So we compute backward
probabilities for all nodes in BDDϕ by dynamic programming, starting from terminal nodes
then upward in which the backward probability for a non-terminal node is computed as the
sum of those for its child nodes. Pc(ϕ) is obtained as the backward probability for the root
node. It is computed in time proportional to the number of edges in BDDϕ .

Applying the BDD probability computation to parameter estimation by the EM algo-
rithm (Dempster et al. 1977) is more complicated. The backward probability computation
described above is just one of the four types of probability computation done in the BDD-EM
algorithm which is a BDD-based EM algorithm for probabilistic Boolean formulas (Ishi-
hata et al. 2008; Inoue et al. 2009). It uses “decomposed BDDs”, hierarchically organized
BDDs, and computes by dynamic programming forward probability, inside-probability and
outside-probability in addition to backward probability. Using BDDs is not the only one
choice though. We may use ZDDs instead of BDDs. Then for example, parameter learn-
ing for PCFGs is done in O(N3) per iteration by the ZDD-EM algorithm where N is the
sentence length (Ishihata et al. 2008), exactly the same order as the standard Inside-Outside
algorithm for PCFGs. Although details are skipped, the EMC algorithm introduced next
employs the same computation techniques as the BDD(ZDD)-EM algorithm to compute
required probabilities and expectations.

4.2 Deriving the EMC algorithm

Suppose we have a CBPM Pc(· | KB, θ) and let O1, . . . ,OT (T > 0) be Boolean formulas
representing i.i.d. observations. We estimate parameters θ , i.e. probabilities of atoms be-
ing true, from O1, . . . ,OT by MLE (maximum likelihood estimation) using the following
likelihood function.

L(θ) =
T∏

t=1

Pc(Ot | KB, θ). (5)

Since atoms appearing in KB other than those in O1, . . . ,OT are not observed, we use
the EM algorithm (Dempster et al. 1977) to find θ that maximizes L(θ). Let x be a Her-
brand interpretation considered as a 0-1 vector as before and Pc(x | θ) the underlying joint
distribution that makes atoms in B H independent.

To deal with the existence of i.i.d. atoms in probabilistic models, we assume B H is parti-
tioned into a set C of sets s of i.i.d. atoms. Every atom A ∈ s (s ∈ C) has the same parameters
θs,1 = Pc(A) and θs,0 = Pc(¬A). We use σs,v(x) (s ∈ C, v ∈ {1,0}) for the count of atoms in
s that take on v in the Herbrand interpretation x. We can write θ = {θs,1, θs,0 | s ∈ C}.

Let Pc(xt ,Ot |KB, θ) be a conditional joint distribution over Herbrand interpretations xt

and the t -th observation Ot whose marginal distribution is Pc(Ot |KB, θ). Since it is not
just a joint distribution but a conditional one, we follow (Cussens 2001) and derive the Q
function as follows. First introduce a new joint distribution P̃ (·) below:

P̃ (〈u(1), . . . , u(k−1)〉, xt ,Ot | KB, θ)

def=Pc(u
(1),¬KB | θ) · · ·Pc(u

(k−1),¬KB | θ)Pc(xt ,Ot ,KB | θ)
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Step 1: Initialize parameters θ (0)

Step 2: Iterate θ (k) = argmaxθ Q(θ , θ (k−1)) until convergence of L(θ (k))

Step 3: Return θ (∞) = θ (k) at convergence as estimated values

Fig. 1 The abstract EM algorithm

where the u(j)’s are independent Herbrand interpretations. It holds that

∞∑

k=1

∑

〈u(1),...,u(k−1)〉
P̃ (〈u(1), . . . , u(k−1)〉, xt ,Ot | KB, θ)

=
∞∑

k=1

(
∑

u

Pc(u,¬KB | θ)

)k−1

Pc(xt ,Ot ,KB | θ) = Pc(xt ,Ot | KB, θ).

Accordingly Pc(Ot | KB, θ) is a marginal distribution of P̃ (〈u(1), . . . , u(k−1)〉, xt ,Ot |
KB, θ). Hence putting uk−1

t = 〈u(1), . . . , u(k−1)〉 and assuming uk−1
t , xt as hidden variables

in P̃ (uk−1
t , xt ,Ot | KB, θ ′), we introduce Q(θ , θ ′) by

Q(θ, θ ′)def=
T∑

t=1

∞∑

k=1

∑

xt

∑

uk−1
t

P̃ (uk−1
t , xt | Ot,KB, θ ′) ln P̃ (uk−1

t , xt ,Ot | KB, θ)

= T

Pc(KB | θ ′)

⎛

⎝
∑

u:u|=¬KB

Pc(u | θ ′) lnPc(u | θ)

⎞

⎠

+
T∑

t=1

1

Pc(Ot ∧ KB | θ ′)

∑

xt :xt |=Ot∧KB

Pc(xt | θ ′) lnPc(xt | θ). (6)

Using this Q(θ , θ ′), the EM algorithm is abstractly described in Fig. 1.
Since Q(θ , θ ′) ≥ Q(θ ′, θ ′) ⇒ L(θ) ≥ L(θ ′) is provable, L(θ (k)) is guaranteed to increase

at every iteration. Note that θ (∞) only gives a local maximum of L(θ), not necessarily the
global maximum. By substituting (6) for Q(θ , θ ′) in Fig. 1, we obtain the EMC algorithm
(EM algorithm for constraint-based probabilistic models) in Fig. 2.

As explained previously, we adopted BDD(ZDD)-based probability computation when
we implemented the EMC algorithm. We call the resulting algorithm the BDD-EMC algo-
rithm. Compared to the BDD-EM algorithm (Ishihata et al. 2008) it additionally computes
the first term in (7) which is the average number of i.i.d. atoms in s that take on the value
v in a Herbrand interpretation falsifying KB . Although BDD(ZDD)-based probability com-
putation techniques may help us but computing Pc(KB | θ) is still infeasible when KB is
large. It remains as a future research topic for CBPMs.

5 Constraint-based statistical abduction

In this section we apply CBPMs to statistical abduction. We assume domains are finite.



258 Mach Learn (2011) 83: 241–264

Put

{
W1 = {u | u |= ¬KB}
W t

2 = {xt | xt |= Ot ∧ KB} (1 ≤ t ≤ T )

where W1 (resp. W t
2) is the set of truth assignments for B H which make KB false (resp.

Ot ∧ KB true), and repeat the E-step and the M-step below alternately until convergence.

E-step: Compute the conditional expectation ηv
θ [s] of σs,v for s ∈ C, v ∈ {0,1} by

ηv
θ [s] = T

Pc(KB)

∑

u∈W1

σs,v(u)
∏

s′∈C

∏

v′∈{1,0}
θ

σs′,v′ (u)

s′,v′

+
T∑

t=1

1

Pc(Ot ∧ KB)

∑

xt ∈W t
2

σs,v(xt )
∏

s′∈C

∏

v′∈{1,0}
θ

σs′,v′ (xt )

s′,v′ (7)

where

Pc(¬KB | θ) =
∑

u∈W1

∏

s∈C

∏

v∈{1,0}
θσs,v(u)
s,v ,

Pc(KB | θ) = 1 − Pc(¬KB | θ),

Pc(Ot ∧ KB | θ) =
∑

xt ∈W t
2

∏

s∈C

∏

v∈{1,0}
θσs,v(xt )
s,v .

M-step: Update θ to θ̂ by

θ̂s,v = ηv
θ [s]

η1
θ [s] + η0

θ [s]
for every s ∈ C, v ∈ {0,1}.

Fig. 2 The EMC algorithm

5.1 Statistical abduction

Abduction is one of three forms of logical inference (deduction, induction, abduction) that
infers the best explanation E for an observation O such that KB ∧ E � O and KB ∧ E is
consistent. Statistical abduction in addition attempts to quantify explanations with proba-
bilities and select the best explanation as the one having the highest probability, realizing
robust abduction applicable to noisy data. The framework of statistical abduction is general.
Many known probabilistic models from BNs to PCFGs are understood as performing statis-
tical abduction (Sato and Kameya 2001). There are already a couple of systems for statistical
abduction (Poole 1993, 1997; Sato and Kameya 2002). They are common in that O is an
atom representing our observation, E is a conjunction made up of particular (probabilistic)
atoms called abducibles, and KB is a logic program of one kind or another that describes
the process of how O is deduced from KB ∧ E. One problem with these systems is that
to ensure this procedural nature, KB is restricted to definite clause programs (Poole 1993;



Mach Learn (2011) 83: 241–264 259

Sato and Kameya 2002) or to acyclic logic programs (Poole 1997)22 that prevents the use of
disjunctions and cyclic rules. Observations restricted to atoms is another problem. We may
observe negative results ¬happy(Bill) or complex events such as rich(Bill) ⇒ happy(Bill).
Although these restrictions simplify inference and probability computation, they are unnec-
essarily restrictive from the viewpoint of knowledge representation.

To solve these problems, we propose constraint-based statistical abduction which ap-
plies CBPMs to statistical abduction. In the constraint-based statistical abduction, we have
a knowledge base KB which is a set of arbitrary clauses, not restricted to Horn clauses, and
i.i.d. observations O1, . . . ,OT which we assume to be arbitrary Boolean formulas made
up of ground atoms. For each Ot (1 ≤ t ≤ T ), we search for an explanation E in the
search space E of possible explanations such that KB ∧ E � Ot and KB ∧ E is consis-
tent. E is specified beforehand, for instance as a set of conjunctions of abducibles as in
PRISM. Let {E(t)

1 , . . . ,E
(t)
kt

} be a set of explanations we obtain for Ot .23 The disjunction

E(t) = E
(t)

1 ∨ · · ·∨E
(t)
kt

is called a disjunctive explanation for Ot following PRISM. We then
construct a CBPM Pc(· | KB, θ) that specifies a distribution over Herbrand interpretations.
Here θ collectively stands for parameters, i.e. the probabilities of atoms in B H being true.
We estimate θ as the maximizer of the following likelihood function Labd(θ).

Labd(θ) =
T∏

t=1

Pc(E
(t) | KB, θ). (7)

The reason for the choice of this likelihood function is as follows. First as a probabilistic
model applied to i.i.d. data O1, . . . ,OT , we should maximize L(θ) = ∏T

t=1 Pc(Ot | KB, θ).
On the other hand as we are seeking for true explanations for the Ot ’s in statistical abduction,
the probability of (at least) one of the Ot ’s explanations {E(t)

1 , . . . ,E
(t)
kt

}, or equivalently their
disjunction E(t) being true, should be high. In other words, we should maximize Labd(θ) =∏T

t=1 Pc(E
(t) | KB, θ) as well. Unfortunately parameters that maximize Labd(θ) may differ

from those that maximize L(θ). We therefore maximize
∏T

t=1 Pc(Ot ∧ E(t) | KB, θ) as a
compromise between the two. However in view of KB |= E(t) ⇒ Ot , Pc(Ot ∧ E(t) | KB, θ)

is equal to Pc(E
(t) | KB, θ), thus reaching Labd(θ) in (7). Moreover the EMC algorithm in

Fig. 2 works for any Ot s as long as they are Boolean formulas. So we can use it simply by
replacing Ot with E(t) in Fig. 2 to maximize Labd(θ).

5.2 Learning example

We present here a small learning example for the understanding of constraint-based statis-
tical abduction. It is often observed that smart people are rich and rich people are friends
with rich people who are generous. The following KBrich formalizes this observation (free
variables are implicitly universally quantified).

KBrich =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

friend(a, b),

friend(b, c),

generous(b),

friend(x, y) ⇐ friend(y, x),

rich(x) ⇔ smart(x) ∨ ∃y(friend(x, y) ∧ rich(y) ∧ generous(y)).

22Later the condition is relaxed to “contingently acyclic logic programs” (Poole 2000).
23Note that there may be infinitely many explanations but we assume they are finite.
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Table 1 Learned probabilities Pr (F ) for ground formulas F

F Observations

a[30/0]c[30/0] a[20/10]c[10/20] a[0/30]c[0/30]

friend(a, b) 1.00000 1.00000 1.00000

friend(b, c) 1.00000 1.00000 1.00000

friend(c, a) 0.42478 0.51797 0.49984

generous(a) 0.68836 0.28644 0.45345

generous(b) 1.00000 1.00000 1.00000

generous(c) 0.89564 0.15686 0.57080

smart(a) 0.59494 0.58865 0.00000

smart(b) 1.00000 0.03550 0.00000

smart(c) 0.24699 0.12255 0.00000

rich(a) 1.00000 0.66666 0.00000

rich(b) 1.00000 0.28147 0.00000

rich(c) 1.00000 0.33334 0.00000

rich(a) ∧ ¬rich(b) 0.00000 0.38520 0.00000

The above KB rich is non-Horn. It says that there live three people a, b and c in the world
where a and b are friends and so are b and c (but it is unknown whether or not a and c are
friends). b is known to be generous. We are sure that if y is a friend of x, symmetrically, x

is a friend of y. Also it holds that x is rich if-and-only-if x is smart or has a friend who is
rich and generous. Friendship is cyclic and being rich is also cyclic.

Suppose we have observed the state of a and c several times. If we observe rich(a)

n times while ¬rich(a) m times, we denote the observations by a[n/m]. Similarly for
c[n′/m′]. We estimate the probability of rich(b) from observations a[n/m] and c[n′/m′]. As
the set of possible explanations for rich(a) for example, we take {smart(a)∨ (friend(a, y)∧
rich(y) ∧ generous(y)) | y ∈ {a, b, c}}, i.e. ground instantiations of the r.h.s. of the equiv-
alence formula for rich(x), and dually the negation of the r.h.s. as the ones for ¬rich(a).
Similarly for rich(c) and ¬rich(c). Under this abductive setting, we learned parameters θ in
Pc(· | KBrich, θ) from observations a[n/m] and c[n′/m′] by the EMC algorithm varying n,
m, n′ and m′.

Table 1 summarizes probabilities Pr(F )
def=Pc(F | KB rich, θ) specified by the learned θ

for various ground formulas F .
Columns correspond to each observation set. So for example friend(c, a) is true with

probability 0.51797 when parameters are learned from observations a[20/10]c[10/20], i.e.
rich(a) observed 20 times and ¬rich(a) 10 times etc.24

In the table, facts in KB rich such as friend(a, b) and generous(b) receive probability one.
Also we can confirm rich(a) ⇐ rich(b), a logical consequence of KBrich, has probabil-
ity one by computing Pr(rich(a) ⇐ rich(b)) = Pr(rich(a)) + Pr(¬rich(b)) − Pr(rich(a) ∧
¬rich(b)) from the table. Learned probabilities seem to support our intuition that the chance
of being rich is affected by friends. For example look at b. When both a and c are always
observed to be rich (a[30/0]c[30/0]), Pr(rich(b)) hits the highest value (1.0) while it de-
creases to less than one third (0.28147) when b’s friends are sometimes observed to be not

24For each observation set, we repeated parameter learning 100 times with random start and selected the
parameter set that gave the highest likelihood. This applies to Table 2 as well.
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Table 2 MAP-learned
probabilities with
a[0/30]c[0/30]

α = β Pr (rich(a)) Pr (rich(b)) Pr (rich(c))

1.01 0.00046 0.00013 0.00019

1.1 0.00451 0.00170 0.00434

2 0.02687 0.01338 0.01916

10 0.13469 0.07649 0.12029

100 0.52631 0.41646 0.52583

1000 0.81027 0.72530 0.81030

rich (a[20/10]c[10/20]). When they are never observed to be rich (a[0/30]c[0/30]), it drops
to 0.0.

We notice that the last behavior, i.e. no observation means probability zero, is typical with
MLE. If, however, one wishes to avoid this, it is possible to incorporate MAP (maximum
a posteriori) estimation into the EMC algorithm though we do not detail it here. Actually
when we applied a beta distribution prior ∝ θα−1(1 − θ)β−1 uniformly to the probabilities
of ground atoms and learned them with a[0/30]c[0/30], changing α = β to 1.01, 1.1, 2, 10,
100 and 1000 respectively, Pr(rich(x)) (x ∈ {a, b, c}) always remained non-zero as shown
in Table 2.

It is also interesting to see an interplay between logical inference and probabilistic
inference. By logical inference we know KB rich � rich(a) ⇐ rich(b). So Pr(rich(a) ⇐
rich(b)) = 1 holds by the property of CBPMs. Consequently we have Pr(rich(a)) ≥
Pr(rich(b)), irrespective of learned parameters. Since the same holds for c, rich(b) must
satisfy two inequalities, Pr(rich(a)) ≥ Pr(rich(b)) and Pr(rich(c)) ≥ Pr(rich(b)), which
certainly hold in Table 1 and in Table 2 for all learning cases.

6 Related work

To our knowledge, constraint-based probabilistic modeling is the first probabilistic modeling
framework that uniformly deals with (discrete) log-linear models and rule-based probabilis-
tic models. There is a large body of related work but we mention only some of them for
reasons of space.

CFDs (case factor diagrams) (McAllester et al. 2004) define log-linear models at proposi-
tional level. A set of “feasible” truth assignments on (essentially) finitely many propositional
variables are constructed by a CFD combining case statements and factor statements. A log-
linear model is then defined considering each feasible assignment as a vector of Boolean fea-
tures. CFDs and CBPMs are similar in that both define distributions over truth assignments.
However CBPMs use first-order clauses instead of CFDs and can define a joint distribution
over infinitely many propositional variables (ground atoms).

MLNs (Richardson and Domingos 2006) use typically first-order clauses like CBPMs but
as feature functions to define log-linear models. What CBPMs differ most from (clausal)
MLNs is the role of clauses. In CBPMs, unlike MLNs, clauses in a knowledge base KB

logically exclude Herbrand interpretations that falsify KB , giving them probability zero, and
define a (possibly) non-uniform distribution over the remaining interpretations. In MLNs,
the same effect is obtained by giving clauses equal weights and taking the infinite limit,
but the resulting distribution is always uniform. Also we can simulate rule-based generative
models such as PCFGs procedurally by CBPMs using iffg(R) as left-to-right rewriting rules
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(see Lemma 1 and Theorem 3) and calculate the probability of an observation from rule
selection probabilities.

One of the salient features of CBPMs is the unconditional existence of probabilistic mod-
els in infinite domains (Theorem 4). Existing approaches are more or less conditional as far
as we know. Probability measures (Gibbs measures) for infinite MLNs exist (Singla and
Domingos 2007). Their existence however is guaranteed only when clauses are locally fi-
nite, in particular when they are σ -determinate, i.e. literals in a clause share the same set
of variables over infinite domains. So clauses such as even(x) ⇐ plus(x, y, y) (x = y + y)
in the natural number domain are prohibited. Similarly in the case of infinite BNs, there is
some restriction (Pfeffer and Koller 2000; Kersting and De Raedt 2001; Milch et al. 2005;
Laskey 2006). For example nodes cannot have infinite parents in recursive probability mod-
els (Pfeffer and Koller 2000). Bayesian logic programs (Kersting and De Raedt 2001) use
Bayesian clauses of the form A0|A1, . . . ,An to define a BN such that nodes are ground atoms
in the least Herbrand model of the program and A′

0 has incoming edges from A′
1, . . . ,A

′
n (A′

i

is a ground instance of Ai ). An infinite BN is definable under the condition that every node
has finite ancestors and there is no cyclic path in the dependency graph derived from the
program. In contingent BNs (Milch et al. 2005) where edges are labeled by events such as
X = 0, nodes can have infinite parents and cyclic paths are allowed. However the set of la-
bels labeling a cyclic path, an infinite upward chain X1 ← X2 ← ·· · , and infinite incoming
edges to a node must be inconsistent. MEBN (Laskey 2006) is a first-order probabilistic
language based on MFrags which are schematic specifications of local BNs. For an infinite
BN to be definable in MEBN, it is required that for each instantiated MFrag for a node,
when parent nodes allowed by the MFrag are added indefinitely, the CPT stops changing at
some point such that from that point on, no further addition of relevant parent nodes does
not affect the CPT.

The EMC algorithm in Sect. 4 offers, though not always, an alternative parameter learn-
ing algorithm to the IM (iterative maximization) algorithm (Riezler 1998). The IM algo-
rithm is applicable to log-linear models with incomplete data but since it solves numerical
equations at every iteration say by Newton’s method, it is a double loop algorithm. By com-
parison the EMC algorithm is a single-loop algorithm and simple to implement.

7 Conclusion

We have proposed constraint-based probabilistic modeling and proved that discrete prob-
abilistic models (log-linear, rule-based) have an equivalent CBPM (constraint-based prob-
abilistic model) Pc(· | KB) which is a joint distribution conditioned on a clausal set KB .
We also proved the existence of CBPMs in infinite domains giving probability one to exis-
tentially closed logical consequences of KB . We then derived a new EM algorithm named
the EMC algorithm applicable to log-linear models with hidden variables for the parame-
ter learning of CBPMs. Finally we applied CBPMs to statistical abduction and proposed
constraint-based statistical abduction that allows a knowledge base KB to include arbitrary
clauses unlike existing approaches.

Although we provided a theoretical basis for CBPMs in this paper, we have a long list of
future research topics. They include Bayesian inference, approximate probability computa-
tion, computational complexity of CBPMs and applications to real data. Also the uniqueness
condition of CBPMs in infinite domains and the treatment of graphical models with a mix-
ture of directed and undirected edges are interesting future research topics.
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