
Mach Learn (2010) 81: 179–205
DOI 10.1007/s10994-009-5143-5

On the infeasibility of modeling polymorphic shellcode
Re-thinking the role of learning in intrusion detection systems

Yingbo Song · Michael E. Locasto · Angelos Stavrou ·
Angelos D. Keromytis · Salvatore J. Stolfo

Received: 31 March 2008 / Revised: 28 July 2009 / Accepted: 7 August 2009 /
Published online: 29 October 2009
Springer Science+Business Media, LLC 2009

Abstract Current trends demonstrate an increasing use of polymorphism by attackers to
disguise their exploits. The ability for malicious code to be easily, and automatically, trans-
formed into semantically equivalent variants frustrates attempts to construct simple, easily
verifiable representations for use in security sensors. In this paper, we present a quantita-
tive analysis of the strengths and limitations of shellcode polymorphism, and describe the
impact that these techniques have in the context of learning-based IDS systems. Our exami-
nation focuses on dual problems: shellcode encryption-based evasion methods and targeted
“blending” attacks. Both techniques are currently being used in the wild, allowing real ex-
ploits to evade IDS sensors. This paper provides metrics to measure the effectiveness of
modern polymorphic engines and provide insights into their designs. We describe methods
to evade statistics-based IDS sensors and present suggestions on how to defend against them.
Our experimental results illustrate that the challenge of modeling self-modifying shellcode

Editors: Pavel Laskov and Richard Lippmann.

This material is based on research sponsored by the Air Force Research Laboratory under agreement
number FA8750-06-2-0221. Army Research Office contract number W911NF0610151, and by NSF
Grant 06-27473, with additional support from Google.

Y. Song (�) · A.D. Keromytis · S.J. Stolfo
Department of Computer Science, Columbia University, New York, NY 10027, USA
e-mail: yingbo@cs.columbia.edu

A.D. Keromytis
e-mail: angelos@cs.columbia.edu

S.J. Stolfo
e-mail: sal@cs.columbia.edu

M.E. Locasto · A. Stavrou
Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

M.E. Locasto
e-mail: mlocasto@gmu.edu

A. Stavrou
e-mail: astavrou@gmu.edu

mailto:yingbo@cs.columbia.edu
mailto:angelos@cs.columbia.edu
mailto:sal@cs.columbia.edu
mailto:mlocasto@gmu.edu
mailto:astavrou@gmu.edu

180 Mach Learn (2010) 81: 179–205

by signature-based methods, and certain classes of statistical models, is likely an intractable
problem.

Keywords Shellcode · Polymorphism · Metrics · Blending

1 Introduction

Code injection attacks, and their counter-measures, remain important research topics within
the security community. Attacks such as buffer overflow and heap corruption exploit vul-
nerabilities in the way certain software handles input data, to inject foreign code into the
execution context of target applications. At the memory layer, the injected code is composed
of machine instructions known as “shellcode”, whose etymology originates from their use
in spawning command shells on the target. Until recent years, one of the most relied-upon
methods to detect such attacks have been network layer signature matching, where special-
ized monitors issued alerts for suspicious strings observed within network traffic. Recently,
however, standard practice in the attacker community have evolved to incorporate sophisti-
cated obfuscation techniques which aim to render these detection schemes obsolete. The new
paradigm, known as “polymorphic shellcode,” utilizes self-modifying code that is delivered
to the target in an encrypted form and performs dynamic self-decryption upon execution,
revealing the actual attack code at the last moment. Evasion tactics against statistical sen-
sors have also begun appearing, such as purposely skewing the distribution of bytes within
shellcode—such methods represent the beginnings of a new challenge of targeted blending
attacks.

In a previous paper, we examined the difficulty of modeling polymorphic shellcode from
a machine learning perspective with experiments using real world obfuscation engines (Song
et al. 2007). While emerging trends in polymorphic shellcode design include elements of
both code obfuscation and targeted blending, our previous paper focused primarily on the
former technique and had only briefly mentioned the latter. In this longer paper, we expand
on our earlier work to provide a more comprehensive exploration of the problem of shellcode
detection. This paper provides an examination of machine learning-based blending attacks
which, given the current trends, we expect adversaries to utilize in the near future. This
paper analyzes the complexity of these two problems, discuss their implications and presents
evidence that signature-based modeling and certain statistical approaches are not likely to
remain as practical solutions in the long term.

Organization This paper is organized as follows: Sect. 2 describes shellcode and polymor-
phism in detail. Section 3 discusses related works in this area. Code obfuscation techniques
and our methods for measuring the strengths of polymorphic engines are presented in Sect. 4
while Sect. 5 covers the fusion of code obfuscation and simple targeted blending attacks.
Section 6 presents our methodology for advanced higher order blending attacks. Section 7
explores the theoretical boundaries of shellcode polymorphism. We present our conclusions
in Sect. 8.

2 Shellcode

Modern computer architectures are designed to follow the Von Neumann model, where in-
struction and data are stored together in memory, and it is largely up to the operating system

Mach Learn (2010) 81: 179–205 181

to keep track of which is which. Memory layer exploits take advantage of software flaws
such as bounds-checking errors, to break out of input data buffers and overwrite important
system control information, such as stack pointers. This form of attack is exemplified by the
classic technique known as “smashing the stack.” In this scenario, when a function within a
program is called (for simplicity, assume the program is written in C) the OS will create a
frame record for the function. This record is allocated on the stack and encapsulates buffers
for variables such as function arguments and local variables, along with control information
such as the address of the calling function (EIP). The attacker may attempt to exploit this
layout by providing a very long string as input, one that is much larger than what the buffer
can hold. If the input is accepted and copied into the buffer without regard to proper bound-
ary checking, it would overflow that buffer and overwite the EIP variable within that stack
frame. Further, the attacker’s input would be crafted so that the value which overwrote EIP
would be an address value that pointed back into the input itself, which would be filled with
the attacker’s executable code. When the function returns, the control flow of the process
passes into the injected code and the execution context of the process is hijacked.

It was “AlephOne” who first illustrated the basics of smashing the stack (AlephOne
2001). The virus writer “Dark Avenger” later introduced the “Dark Avenger Mutation En-
gine”, a polymorphic engine for viruses that mutated each instance of the virus in order
to throw off signature-based AV scanners. This later influenced the shellcoder “K2” to de-
velop the initial research steps in shellcode polymorphism, which he implemented in the
“ADMmutate” engine (K2 2003). “Rix” later advanced this field by demonstrating how
to perform alphanumeric encoding (Rix 2001), which allowed shellcode to be written in
alphanumeric characters. Later, “Obscue” described how to encode shellcode such that it
would survive ASCII-to-Unicode transformations (Obscou 2003) and the “CLET” team de-
veloped the technique of “spectrum spoofing” which altered the statistical distribution of
shellcode to throw off intrusion detection systems. They also expanded ideas on multi-
layer ciphering, as well as randomized register-selection (Detristan et al. 2003). More re-
cently, the “Metasploit” project combined vulnerability probing, code injection, and shell-
code polymorphism—among other features—into one complete system (Metasploit Devel-
opement Team 2006).

Shellcode typically contains three major components: (1) the “NOP sled” (2) the payload
and (3) the “return address zone” which consists of a single jump target address, repeated in
linear sequence. As mentioned previously, the goal of a simple stack exploit is to overwrite
an existing address value on the stack with values contained within the return zone. This
would cause the control flow to jump back into the input string that the attacker has sent.
The NOP sled is designed to safely catch this jump, and then pass the execution into the
payload portion of the attack.

Good payload code can be difficult to write and obfuscation is used as a method to pre-
vent detection. Modern obfuscation techniques typically employ two ways of disguising
shellcode: the first method attempts to automatically re-write code such that each instance
differ syntactically, but retains the same operational semantics as previous samples. This
approach is akin to code-“metamorphism,” and has been shown to be decomposable to
graph isomorphism (Spinellis 2003), which is NP-complete in terms of difficulty. A sec-
ond, more tractable, approach is to use code-obfuscation, such as encrypting the shellcode
with a randomly chosen key. Under this second scheme, a decoding routine is “semantically
prepended” to the shellcode and executes before the payload is triggered. This so called
“decoder” reverses the encryption dynamically at runtime, thus allowing the code to remain
obfuscated while in transit but unveiled prior to execution. This latter technique has proven
to be the most effective in practice, and has led to the development of a fairly standard form
of shellcode, shown in Fig. 1.

182 Mach Learn (2010) 81: 179–205

[nop][decoder][encpayload][retaddr]

Fig. 1 Encrypted shellcode structure

address byte values x86 code
-------- -------------- ------------------
00000000 EB2D jmp short 0x2f
00000002 59 pop ecx
00000003 31D2 xor edx,edx
00000005 B220 mov dl,0x20
00000007 8B01 mov eax,[ecx]
00000009 C1C017 rol eax,0x17
0000000C 35892FC9D1 xor eax,0xd1c92f89
00000011 C1C81F ror eax,0x1f
00000014 2D9F253D76 sub eax,0x763d259f
00000019 0543354F48 add eax,0x484f3543
0000001E 8901 mov [ecx],eax
00000020 81E9FDFFFFFF sub ecx,0xfffffffd
00000026 41 inc ecx
00000027 80EA03 sub dl,0x3
0000002A 4A dec edx
0000002B 7407 jz 0x34
0000002D EBD8 jmp short 0x7
0000002F E8CEFFFFFF call 0x2
00000034 FE db 0xFE
...
payload follows

Fig. 2 A 35-byte polymorphic decryption loop. Left column: position. Center column: byte values. Right:
x86 assembly code. Note the five cipher operations: rol, xor, ror, sub, and add, that begin at 0x09. The working
register for the cipher is EAX. Note the stop condition at 0x2B

With the payload encrypted, only the decoding routine needs to be made polymorphic,
since it must remain in the clear. The return zone is vulnerability dependent, and can also
be ofbuscated if needed, as described later. Rapid development of polymorphic techniques
following this model has resulted in a number of off-the-shelf polymorphic engines such
as ADMmutate (K2 2003), CLET (Detristan et al. 2003), Metasploit (Metasploit Devel-
opement Team 2006), Shellforge (Biondi 2006), Tapion (Bania 2009), Alpha2 (ported into
Metasploit) and others. Modern self-ciphering techinques encode the payload using a re-
versible cipher operating such as “xor/xor”, “add/subtract”, “ror/rol”, etc. and will use sev-
eral rounds of such cipherings for added diversity. Decoders for these types of obfuscations
typically have a length of 30–50 bytes; the length of the overall shellcode sample will be
several hundred to several thousand bytes.

With the payload encrypted, the effectiveness of the polymorphic transformation is now
dependent on how well the decoder can be hidden, so that AV and IDS solutions cannot sim-
ply look for a decryption routine instead of a payload. Decoder obfuscation can be achieved
in numerous ways: by rearranging and randomizing the order of the individual ciphers com-
ponents, by using randomly chosen keys, by inserting junk instructions, and more, as this
paper will describe. Figure 2 shows an example of a decoder that we extracted from a pop-

Mach Learn (2010) 81: 179–205 183

ular shellcode engine, it incorporates many of the features previous mentioned. Decoders
provide an effective technique for rapid and simple dissemination of shellcode variants, al-
lowing attackers to reuse old payloads in arbitrarily different forms—an invaluable tool for
those looking to remain hidden. For the rest of the shellcode components, diversity can be
injected into each component, as this section will show.

• [NOP]: Recall that the attacker needs to redirect the process execution flow into the in-
jected payload code during exploitation (i.e. when overwriting EIP). In reality, it is rare
that the exact beginning address of the injected code is known, making it difficult to spec-
ify exact addresses in the return zone. The NOP sled is a large contiguous array of NOP
instructions, such as {x90,x90,...,x90}, that is prepended to the decoder to safely
catch the execution jump, which can land in any position within the sled. The NOP sled
transfers the execution flow into the decoder without leaving the system in a volatile state.
As we would expect, many signature-based systems rely on this artifact for detection, for
example, scanning for large blocks of x90 characters. As such, various innovations have
been introduced to make the sled polymorphic as well. Such methods leverage the fact
that the sled does not need to consist of actual “NOP” machine instructions (such as x90
for the x86 architecture). Rather, such instructions need only be equivalent to code which
did nothing, but can be invoked at any location. In the ADMmutate documentation, K2
described the discovery of 55 different ways to write single-byte NOP equivalent instruc-
tions. Thus, a NOP-sled of length N implies potentially 55N unique sleds.

“Recursive NOP sleds” have been proposed by the CLET team (Detristan et al. 2003).
This technique for building sleds discovers benign instructions by first finding a set of 1-
byte benign instructions, then finding a set of 2-byte benign instructions that contains the
1-byte instructions in the lower byte. Therefore, it does not matter if control flow lands
in the 2-byte instruction or if it lands one byte to the right since that position will hold
another equally benign instruction. This method can be used recursively to find benign
instructions of longer length that can be combined to create the NOP-sled. To the best
of our knowledge, no analysis of the potential of this method exists, but it serves as a
very useful polymorphic technique because modeling this type of sled may amount to
modeling random instructions. While such effective ways at disguising the NOP-sled exist
in practice, often times they are not even needed, as described by Foster et al. (2005).
For many Windows exploits, the exact location of the target can be recovered due to the
inherent homogeneity of the operating system and its applications.

• [RETADDR]: Attempting to model the return address zone to detect shellcode presents no
less of a challenge. Without address space randomization, the locations of the stack and
stack variables on most architectures remain consistent. The homogeneity of Windows
systems means that, in most cases, at least for the same version of the OS, the same
applications exist in identical locations in memory. Thus, the attacker has a firm basis for
recovering a very good estimate for the location of the injected shellcode, which is then
used to craft the return address section. Return address zone polymorphism is trivially
achievable when using a NOP sled, by modifying the lower order bits within the address
elements. This method causes the control-flow to jump into different positions in the NOP
sled, but as long as it still lands somewhere in the sled then exploit will work. Thus, if the
return address zone consists of the address target, repeated an m number of times, and if
each value can be modified v ways (where v is some tolerable variance in the jump target)
then a total of vm possible variations exist. In addition, in certain classes of attacks, when
the vulnerable function stores the location of the data input in a register, then no memory
location guessing is required at all (thus no NOP sled or return zone are needed), other
tricks may be employed to recover the exact target payload address. A notable study was

184 Mach Learn (2010) 81: 179–205

[nop][decoder][enc payload][PADDING][retaddr]

Fig. 3 Shellcode with blending section

[nop][encrypted payload][decoder][retaddr]
[nop][decoder 1][enc.payload][decoder 2][retaddr]

[nop][padding][enc.payload][padding][decoder][retaddr]
... etc.

Fig. 4 Other potential structures

done by Crandall et al. (2005b) who refer to this technique as a “register spring.” For
off-by-one exploits, a return zone is also not needed (since only one byte is over-written).

• Spectrum shaping and byte padding: Recent research has demonstrated the
feasibility of polymorphic “blending” attacks where the shellcode is actually crafted to
appear similar to benign traffic in terms of the n-gram content distribution as described by
the worksof Fogla and Lee (2006) and Kolesnikov and Lee (2006). The CLET polymor-
phic engine (Detristan et al. 2003) uses this technique, to some extent. They accomplish
this by changing the structure of the shellcode that it generates to take on a new form
(Fig. 3).

In CLET shellcode, extra bytes are added to the “PADDING” area, shown in Fig. 3, to
skew the 1-gram distribution of the shellcode. In addition, the payload itself is ciphered with
different length keys, each of which is randomly generated. The entropy from these keys
propagate into the shellcode through the cipher operations.

Perhaps the most troublesome threat is that these individual techniques are highly in-
dependent, and can be combined into a single engine. Later, we show that this is, in fact,
not difficult to accomplish. Section 5 describes an engine that we designed as a proof of
concept. Moreover, the structure described previously, in Fig. 3, is merely a convention; it
is equally tractible to modify the individual sections between the NOP sled and the return
address, to inject additional randomness. With additional jump instructions, new shellcode
of the following form are also easily achievable (Fig. 4).1

This paper studies these dual evasion tactics, of self-cipher-based obfuscation and tar-
geted blending attacks, and metrics are proposed to quantify the effectiveness of these ob-
fuscations. Our attention is focused on analyzing the decoder portion of the shellcode, since
this is the most constrained portion of the attack. Other than the higher order bits of the
return address zone, this is the only section that cannot be trivially disguised, since it must
hold executable machine code. At the same time we also study the challenge of making
shellcode appear similar to normal traffic, in order to evade certain classes of statistical
anomaly detection-based sensors.

3 Related work

Though it was the virus writers who first introduced self-decryption and self-unpacking-
based polymorphism as simple, yet effective, ways of evading signature-based AV scanners,

1We demonstrate that these variations are indeed possible in a proof-of-concept engine described in a separate
work-in-progress paper.

Mach Learn (2010) 81: 179–205 185

it did not take long before shellcode writers adopted this technique. Recently, polymorphism
has become a standard tool for web-based attacks as well, where exploits are delivered in
the form of interpreted code such as Javascript or PHP. The MPack (Panda Labs 2007)
toolkit, currently being traded in the malware underground and responsible for tens of thou-
sands of recent website compromises, obfuscates Javascript attacks with several layers of
self-encryption and randomization. The Metasploit team, already famous for their shell-
code exploit engines, has announced the release of their “eVade o’Matic Module (VoMM),”
a polymorphism engine for Javascript based exploits.

Countering such polymorphic attacks is a difficult problem. Researchers have proposed
a variety of defenses against polymorphic shellcode, from artificial diversity of the address
space (Bhatkar et al. 2003) or instruction set (Kc et al. 2003; Barrantes et al. 2003) to
compiler-added integrity checking of the stack (Cowan et al. 1998; Etoh 2000) or heap
variables (Sidiroglou et al. 2005) and “safer” versions of library functions (Baratloo et
al. 2000). Other systems explore the use of tainted dataflow analysis to prevent the use
of untrusted network or file input (Costa et al. 2005; Newsome and Song 2005) as part
of the instruction stream. A large number of schemes propose capturing a representa-
tion of the exploit to create a signature for use in detecting and filtering future versions
of the attack. Signature generation methods are based on a number of content modeling
strategies, including simple string-based signature matching techniques like those used in
Snort Development Team (2009). Many signature generation schemes focus on detection
heuristics such as traffic characteristics (Singh et al. 2004; Kim and Karp 2004) (e.g.,
frequency of various packet types) or identification of the NOP sled (Toth and Kruegel
2002), while others derive a signature from the actual exploit code (Liang and Sekar 2005;
Locasto et al. 2005) or statistical measures of packet content (Wang and Stolfo 2004;
Wang et al. 2005; Newsome et al. 2005), including content captured by honeypots (Yeg-
neswaran et al. 2005).

3.1 Traffic content analysis

Snort Development Team (2009) is a widely deployed open-source signature-based de-
tector. Exploration of automatic exploit-signature generation has been the focus of a
great deal of research (Kim and Karp 2004; Singh et al. 2004; Newsome et al. 2005;
Liang and Sekar 2005; Yegneswaran et al. 2005; Locasto et al. 2005; Anagnostakis et al.
2005). To create a signature, most of these systems either examine the content or charac-
teristics of network traffic, or instrument the host (through some degree of virtualization)
to identify malicious input. “Host-based” approaches filter traffic through an instrumented
(virtualized) version of the application to detect malcode. If detection is confirmed then the
malcode is dissected to dynamically generate a signature in order to stop similar attacks. Ab-
stract Payload Execution (APE) (Toth and Kruegel 2002) examines network traffic and treats
packet content as machine instructions. Instruction decoding of packets can identify the
NOP sled. Krugel et al. (2005) detect polymorphic worms by learning a control-flow graph
for worm binaries with similar techniques. Convergent Static Analysis (Chinchani and Berg
2005) aims to reveal the control flow of a random sequence of bytes. The SigFree (Wang
et al. 2006b) system adopts similar processing techniques. Statistical content anomaly de-
tection represents another key direction of research. The PayL (Wang et al. 2005) sensor
models 1-gram distributions for normal traffic, and detects anomalies by using the Maha-
lanobis distance to gauge the normality of incoming packets. Anagram (Wang et al. 2006a)
caches known benign n-grams extracted from normal content in a fast hash map, and com-
pares ratios of seen and unseen grams to determine normality—packets with a high amount
of unrecognized content generate alerts.

186 Mach Learn (2010) 81: 179–205

3.2 Proactive defense

Preventing intrusions by attempting to remove the weaknesses of current execution en-
vironments is another active area of research. Data Execution Prevention (DEP) is used
in the latest versions of the Windows operating system to flag certain memory areas
as non-executable in order to prevent code injection. Similar features exist such as the
WˆX feature in BSD kernel. StackGuard and similar techniques (Cowan et al. 1998;
Etoh 2000) inject control variables into the stack to detect unauthorized modifications,
such as those stemming from a buffer overflow. Program shepherding (Kiriansky et al.
2002) validates branch instructions in IA-32 binaries to prevent transfer of control to in-
jected code and to ensure that calls into native libraries originate from valid sources.
Abadi et al. (2005) propose formalizing the concept of Control Flow Integrity, observ-
ing that high-level programming often assumes properties of control flow that are not en-
forced at the machine language level. CFI statically verifies that execution remains within
a control-flow graph (the CFG effectively serves as a policy). Randomization based de-
fenses work by making the host a “moving target.” Address space randomization for ex-
ample prevents return-into-libc type attacks. Instruction set randomization (Kc et al. 2003;
Barrantes et al. 2003) has been proposed to frustrate an attacker’s ability to write executable
code for a target system.

3.3 Countering polymorphism

Shield (Wang et al. 2004) represents recent work which calls into question the ultimate util-
ity of exploit-based signatures, and research on vulnerability-specific protection techniques
(Crandall et al. 2005a; Brumley et al. 2006; Joshi et al. 2005) (and especially Dynamic
Taint Analysis Costa et al. 2005; Newsome and Song 2005) explores methods for defeating
exploits despite differences between instances of their encoded form. The underlying idea
relies on capturing the characteristics of the vulnerability (such as a conjunction of equiv-
alence relations on the set of jump addresses that lead to the vulnerability being exercised:
i.e., the control flow path). Cui et al. (2007) discuss combining tainted dataflow analysis
(similar to that used in the Vigilante system Costa et al. 2005) and protocol or data for-
mat parsing to construct network or filesystem level “data patches” to filter input instances
related to a particular vulnerability.

Brumley et al. (2006) supply an initial exploration of some of the theoretical founda-
tions of Vulnerability Based Signatures. Vulnerability signatures help classify an entire set
of exploit inputs rather than a particular exploit instance. As an illustration of the difficulty
of creating vulnerability signatures, Crandall et al. (2005a) discuss generating high quality
vulnerability signatures via an empirical study of the behavior of polymorphic and meta-
morphic malcode. They outline the difficulty of identifying enough features of an exploit to
generalize about a specific vulnerability. One way to counter the presence of the proof-of-
concept engines which we propose in later sections to use Anomaly Detection (AD) sensors
to shunt suspect traffic (that is, traffic that does not match normal or white-listed content)
to a heavily instrumented replica to confirm the sensor’s initial classification. The intuition
behind our approach is that the normal content model for a site or organization is regular
and well-defined relative to the almost random distribution representative of possible poly-
morphic exploit instances. If content deemed normal is put on the fast path for service and
content deemed abnormal is shunted to a heavily protected copy for vetting, then we can re-
liably detect exploit variants without heavily impacting the service of most normal requests.

In fact, Anagnostakis et al. (2005) propose such an architecture, called Shadow Hon-
eypot. A shadow honeypot is an instrumented replica host that fully shares state with the

Mach Learn (2010) 81: 179–205 187

production application, that receives copies of messages sent to a production application—
messages that a network anomaly detection component deems abnormal. If the shadow con-
firms the attack, it creates a network filter to drop future instances of that attack, and provides
positive confirmation to the anomaly detector. If the detector mis-classified the traffic, the
only impact will be slower processing of the request (since the shadow shares full state with
the production application).

4 Polymorphic engine analysis

As previously mentioned, our study is focused on the most constrained portion of the shell-
code: the decoder, which is the only section that is delivered in clear-text. Six modern poly-
morphic engines are examined in this paper: ADMmutate, CLET, and four engines from
Metasploit: Shikata Ga Nai, Jumpcall Additive, Call4dWord and Fnstenv Mov. Previous re-
search on automatic generation of exploit signatures from polymorphic code (Kim and Karp
2004; Newsome et al. 2005) reports successful detections of exploits from many existing
engines, some of which are from Metasploit. We explore the reasons why some signature-
based methods are successful, and why they might not work in the future.

This section explores methods to measure the usefulness of a polymorphic engine. We
demonstrate how to easily visualize the artifacts that some engines leave in their shell-
code instances, artifacts that can be used as signatures for string-matching-based detection
(the type that AV scanners use.) We also show that these artifacts appear differently across
engines—an indication that they cannot be used as general indicators for polymorphic code,
outside of their training class. The metrics presented here are built upon two main factors,
or “strengths.” What we call the VARIATION STRENGTH is a quantitative measure of an
engine’s ability to generate high spatial variance in their decoder samples, on a per-byte ba-
sis. The PROPAGATION STRENGTH is an information divergence measure, conditioned on
pairwise decoder distances, and is meant to be a way of measuring the minimum expected
distance between samples drawn from the same engine. These metrics are positively cor-
related though not exactly equivalent, but when used together, can provide good empirical
estimates to support real world observations.

For each of the six engines, our metric yields a scaled score which we call the “relative
polymorphism strength score” or p-score for short. This normalized metric allows multiple
engines to be evaluated with respect to each other, as well as with respect to random distrib-
utions. The concept of a “spectral image” is also proposed, which allows one to view the dis-
tortion in a collection of decoder samples, and is used in combination with the above metrics
to derive our ultimate results. These results lend strong empirical support to the long held,
yet unproven, belief that the class of x86 polymorphic shellcode is too random to model.

Spectral image It is often desirable to have an easy and intuitive way to understand the ef-
fectiveness of a particular engine, for analysis and reverse engineering. For this purpose we
propose the concept of viewing an engine’s “Spectral Image.” This image can be generated
as follows: given a polymorphic engine, produce a set of N decoders, each of length d—for
non fixed-length decoders, padding can be appended to make the lengths equal. These de-
coders should then be stacked together, yielding a N × d matrix which can then be rendered
as an image where the ith byte of decoder j is the intensity value for the (i, j)th pixel of
the image. The byte-value of 0x00 would produce a black pixel, 0xFF, a white pixel, and
everything in between would fall within a shade of gray. This representation is most useful
as a quick way to observe bytes which exist in the same positions within all decoders from
a particular engine—such salient bytes would show up clearly as columns within the image.

188 Mach Learn (2010) 81: 179–205

Fig. 5 Visualization of shellcode variations. (a) Shikata Ga Nai (b) Jcadd (c) Call4dWord (d) Fnstenv Mov
(e) ADMmutate (f) CLET. Each pixel row represents a decoder from that engine and each individual pixel
value represents the corresponding byte from that decoder. A column of identical intensities indicates an
identifiable artifact left by the engine

Figure 5 shows the images for six engines. These were generated by taking a single shell-
code sample and generating 10000 unique samples through as many independent obfusca-
tions, per engine. From these sequences the decoder portion were extracted, down-sampled,
then stacked. The values are then row-sorted and displayed as previously described. Note
how Shikata Ga Nai generates roughly three subclasses of decoders—similar blocks of code
exist in the engine but not always at the same place. The weaknesses of the C4d and Fn-
stenv Mov engines are apparent as the vertical columns indicate that these engines always
embed large artifacts in every decoder. The vertical band for the CLET engine represents
register-clearing operations. It is evident that though these engines perform the same basic
actions (to decode a string within a small distance of itself in memory) there lacks a single
invariance across these different engines.

Construction of a spectral image is a simple way to visualize decoder variation but a met-
ric that can quantify the observed distortion is desired—for this we can take a parametric
approach and assume that each decoder sample is a d-dimensional random variable embed-
ded an integer space, with each dimension bounded to the range of values representable with
a single byte x ∈ B

d where B ∈ {0,1, . . . ,255}. The metric assumes that the samples are in-
dependent and identically-distributed (i.i.d.) and examination of the moments of the sample
distribution provides a way to measure the “scatter” of the samples generated by different
engines. We note that this metric is, at best, an approximation since the geometry of the x86
instruction space does not admit a simple Euclidean space embedding. x86 instructions are
variable-length, and matters are complicated by the fact that polymorphic instructions may
actually “overlap,” such as the case of recursive NOP sleds. The same engine may generate
decoders of different lengths and “scatter” identical decoders within B

d by using different
keys, or swapping the order of cipher components, all without changing the operational
semantics of the code. The metrics that we propose simply remaps this complex decoder
manifold to the B

d cube, and measures the scatter of the distribution in this space, treating
these polymorphic transformations as shifts and translations.

In practice, not just decoders but all data, will inhabit this B
d space when information

is represented as byte sequences. In the domain of IDS solutions, false positives represent
the primary inhibiting factor and for most applications a 0.1% false positive rate could be
considered unusable for modern gigabit-rate traffic networks, since such a rate would entail
hundreds of alerts per second when modeling packet-level traffic. Given that benign data and
polymorphic shellcode both share the same bounded space, the fact that we cannot bound
arbitrary benign data when we design generic IDS systems, and that any confusion between

Mach Learn (2010) 81: 179–205 189

the two would render an IDS solution unusable, we define “strength” as the ability of an
engine to increase the scatter of its decoders within this space (to envelope normal content),
such that a larger scatter entails a stronger rating. The ideal polymorphic engine is able to
yield a uniform distribution of decoders throughout B

d . Such an engine is unlikely to be
reliably detected under a 0.1% FP constraint. Under this assumption, the remain part of this
section describes our approach at quantifying this strength.

Variation strength To quantify strength as a measure of variance, so that a single score
may be assigned, a function can be constructed, in the most general way, by assuming a
Gaussian distribution, and then utilizing the spectral norm of the covariance matrix.

� = 1

N

N∑

i=1

(xi − μ)(xi − μ)T (1)

� ∈ R
d×d for sequences of length d where we have N total samples. xi is a single decoder

sample, generated by the engine that we are examining, and μ = 1
N

∑N

i xi to be the sample
mean. Both x and μ are column vectors. The construction of our metric relies on evaluating
the spectral norm of this covariance matrix. The solution is simply v and λ such that �v =
vλ. v is the set of d eigenvectors and λ are the square of the corresponding d eigenvalues.
Summing over the square roots of {λ1, . . . , λd} gives us the variation strength of an engine:

�(engine) = 1

d

d∑

i=1

√
λi (2)

To analyze the strength of a single polymorphic engine, we run 10000 independent en-
coding operations on a seed shellcode sample and extract the same number of unique de-
coder sequences. These sequences are used to generate the covariance matrix according
to (1) and recover the eigenvalues to solve for the score using (2).

Propagation strength Some trivial byte-level transformations might yield the same code-
block signatures but in different positions within the decoder, such as shifting the order of
a group of identical instructions—a method that does not necessarily speak much for the
engine’s obfuscation capabilities. Simply adjusting the padding length, for example, might
cause a sequence of bytes within the decoder to be positionally shifted. Such trivial trans-
formations are commonly used, yet they induce large variances in the covariance matrix
due to the fact that they are interpreted as complex translations within B

d . To compensate,
we introduce an additional term based on the minimum distances between the individual de-
coders. We refer to this quality as the engine’s “propagation strength.” This second metric is
defined as the expected divergence between any two distinct decoders. One way to deal with
trivial transformations, such as the padding example, is to use information divergence met-
rics such as Bhattacharyya affinity over the 1-byte distributions. This is useful if a blending
attack is not involved. More stringent metrics such as string kernels are also possible but one
must keep in mind that these sequences are non-i.i.d, and maliciously generated by actual
adversaries—it is unwise to use overly-specific assumptions about the underlying paramet-
ric form. For our work, we found that simply using a minimum string-alignment distance
was sufficient to obtain a good estimate. We use the following distance:

δ(x,y) = min
r=1,...,d

[‖x − rot(y, r)‖
‖x‖ + ‖y‖

]
(3)

190 Mach Learn (2010) 81: 179–205

where rot(y, r) indicates a rotation of the string y to the left by r-bytes, with wrap-around.
We divide by (‖x‖ + ‖y‖) to transform the metric into a ratio of the distance between two
vectors with respect to the sum of their individual norms. This relates more to the angle be-
tween samples than their spatial distances, and removes the number of dimensions (decoder
length) as a factor in the distance. The final form for the propagation strength is given as:

�(engine) = 2(1 − η/d)

N(N − 1)

N∑

i=1

N∑

j=i+1

δ(xi ,yj) (4)

As before, xi is the ith decoder generated by an engine, N is the total number of de-
coders, and d is the length of the decoders. δ(x,y) is the previously defined (3). This is a
divergence metric for decoder sequences as a whole rather than byte-level components. In
addition, an η parameter is introduced which measures the number of salient bytes within
the samples generated by an engine. This is used as a scaling factor to decrease the strength
of engines that leave consistent artifacts in their decoders; artifacts which can be exploited
by signature based IDS implementations. For the case where an engine generates variable
length decoders, the average length (over all sequences) can be used to compare any two
sequences. Padding that exhibit the same statistical properties can be added to the shorter
sequence and the longer sequence should be truncated to minimize the effect of distortion
based on length.

Overall strength We define the overall strength of a polymorphic engine �(·) to be the
product of the propagation strength and variation strength since they are positively corre-
lated.

�(engine) = �(engine) · �(engine) (5)

Table 1 shows the relative strengths of these engines based on our metrics. rand128 refers
to a set of randomly generated strings with each byte value between [0,128], encapsulating
the range of ASCII printable characters. rand256 refers to random strings with byte values
between [0,256].

The minimum Euclidean distance metric that we use is not differentiable, therefore a
normalization constant can not be calculated in closed form. Empirically, we can simply
apply the metric to a uniformly random distribution, then divide the strengths of each engine
by this value to generate a normalized score. We call this final scalar value the “relative
polymorphism score” or p-score, for short. Table 1 shows that this metric is normalized
since the strength for rand128 is half of that for rand256. The p-score, used in conjunction

Table 1 The decoder
polymorphism strengths of
various engines under our metric.
Also shown as the scores for
random distributions of strings
within range 128 and range 256.
Compare with Fig. 5

Engine Prop. St. Var. St. Overall St. p-score

Shikata 0.27 53.24 14.38 0.67

Jcadd 0.22 44.62 9.82 0.46

C4d 0.12 14.62 1.75 0.08

Fnstenv 0.14 15.70 2.20 0.10

Clet 0.28 53.00 14.84 0.69

Admmutate 0.30 68.76 20.62 0.96

rand128 0.29 36.90 10.70 0.50

rand256 0.29 73.74 21.38 1.00

Mach Learn (2010) 81: 179–205 191

with the spectral images, can be used to measure the effectiveness of polymorphic engines
relative to each other, as well as to random noise. This method provides some usefulness
in predicting detection success rates for new unseen engines. Three of the engines from
Metasploit are not fully polymorphic, according to their documentation, and it is easy to
see which ones these are. While the novelty and efficiency of CLET was on par with that
of ADMmutate in terms of disguising its payload, we found that all decoders generated by
CLET contained a unique 9-byte signature string which represents a set of instructions used
to clear the working registers and the appropriate jump/call instructions used to load the
needed loop counter variable into memory. While overall, CLET is one of the more creative
engines that we have seen, this particular artifact lowers the level of polymorphism in the
decoders; this fact is even acknowledged in the engine’s documentation. CLET also allows
the user to specify arbitrary layers i.e., xor then sub then add etc. For our experiments, we
tested on the default setting of five instruction operations.

5 A hybrid engine: combining polymorphism and blending

The polymorphism techniques described in earlier sections can be easily combined. To
demonstrate this, we took the best of aspects of the CLET and ADMmutate engines and
put them into a single engine. CLET’s decoder leaves noticeable artifacts but it does have
a useful spectral ciphering technique which allows the shellcode to blend to a target byte
distribution by ciphering the payload with specially chosen keys. ADMmutate cannot per-
form blending but it can generate very random looking decoders, and produce recursive
NOP-sled. We simply use CLET to cipher the shellcode, then hide CLET’s decoder with
ADMmutate and use ADMmutate’s advanced NOP sled generator. Section 2 described tech-
niques used to make the other sections polymorphic, such as return address randomization;
we employ these tactics in our engine design.

The combination of all of these features makes the generated shellcode instances not
only difficult to model but also allows them to blend into a target host’s normal-traffic model.
Every section of Shellcode can be made polymorphic, leaving only a padding section, known
as the “blending section”, exposed—as demonstrated in Fig. 6. Here, bytes were added into
each of the padding sections for each sample so that, when stacked together, the independent
samples render a picture of the BSD daemon. Each row of the three spectral images shown in

Fig. 6 Spectral images.
(a) A single CLET mutated
exploit is stacked row-wise 100
times (note the vertical bands).
CLET leaves a blending section
which is never reached in the
execution. We fill this section
with bytes that stack together to
display a random picture.
(b) CLET’s decoder and exploit
is hidden by ADMmutate,
leaving only the blending bytes
exposed. The repeating columns
represent the [RETADDR] section
which is shown morphed in (c)
through application of random
offsets

192 Mach Learn (2010) 81: 179–205

Fig. 6 represents a 512-byte fully working shellcode instance that was tested and confirmed
to have executed successfully. In practice, this section can be enlarged and “normal looking”
n-grams can be placed within this padding section, to make the shellcode blend into normal
traffic and evade certain classes of statistical IDS sensors.

ADMmutate’s encoding scheme uses two layers of ciphering on the payload with 16-
bit random keys. This allows the formerly detectable CLET decoder samples to be scattered
across B

d . The padding section can carry any arbitrary combination of bytes since the exploit
code exists semantically in front of this section, and executes before the control flow can pass
into the blending section. For 1-gram blending attacks, a simple method is to sequentially
fill the section with new characters in proportion to the target frequency, and then randomly
permuting the section. The permutation prevents signatures from being derived but, in terms
of the 1-byte distribution, the section has not changed. In a later section, we show how to
blend n-grams with n > 1. In our results, we have chosen a padding section of size 100 bytes,
out of a total shellcode size of 512 bytes. Of course, this section, and the entire shellcode,
can easily be enlarged. The only change that needs to be made is to increment the values in
the [RETADDR] section to “aim a little higher” to compensate for the larger shellcode.

The [RETADDR] section is shown as the series of repeated columns, seen to the right of
the padding section in Figs. 6(a), (b) (notice the periodicity). As mentioned in the previous
section, the [RETADDR] is not easily modeled—this section normally has variable length,
is permutable by adding random offsets and is both platform and vulnerability dependent.
This mutability feature is demonstrated in Fig. 6(c) where we have mutated the [RETADDR]
section by aiming EIP (the value in the return addresses) at the center of the NOP-sled and
adding a random offset of approximately 50-bytes in each of the repeated return addresses.
This gives us about 100m possible unique sequences for the [RETADDR] section, where m

is the number of times the return address is repeated. The base of the exponent (100) can be
larger or smaller, depending on how large the NOP sled section is.

The only real weakness we see from ADMmutate is a white column, which represents
a 4-byte salient artifact generated by the engine and is present in all of the decoders. This
is obviously is too small to use as a signature or statistical feature. In terms of statistical
features, Fig. 7(a) shows the 1-gram distribution of the decoders generated by our engine.
This plot was calculated by finding the average 1-byte histogram of the decoders, then nor-
malizing by dividing by the variance along each dimension. This is a Fisher-score-motivated

Fig. 7 adm + clet engine. (a) 1-gram distribution (b) 3-gram scatter. Comparing this to Fig. 15, we can see
that this engine is equally difficult to model

Mach Learn (2010) 81: 179–205 193

Fig. 8 adm + clet engine executing a blending attack. (a) Target distribution (b) distance to target given
padding section size

operation, and normalizes the values so that we obtain their discriminative scores—if a fea-
ture is consistently present then it would have low variance. Thus, dividing by its variance
increases the prominence of that feature. Conversely, if a feature exhibits very high variance,
then it’s discriminative power is low. From Fig. 7(a), we see that there is little to no signal
from the 1-byte distribution. Figure 7(b) shows the 3-gram scatter of these 100 decoders,
showing us the range of 3-grams present. As we can see, for 3-grams, it is full spectrum
spread.

Furthermore, we also added an automated blending function into our ADM + CLET
engine. Figure 8 shows a simulation of a blending attack. Here, we first generate an artificial
target distribution which is shown in Fig. 8(a). We chose the target distribution to be a
mixture of three Gaussians with centroids at 55 (ASCII character “7”), 77 (ASCII character
“M”) and 109 (ASCII character “m”) in order to simulate the network traffic distribution
of a server hosting multiple clear-text transfers. We also added binary noise to account for
binary transfers, such as images and video. Each centroid has a variance of 15.

D(x,μ) = (x − μ)T �−1(x − μ) (6)

The Mahalanobis distance, shown in (6), is used in statistical IDS sensors such as
PayL (Wang and Stolfo 2004). μ is the 1-byte target distribution and we set � = 0.1I
where I is the identity matrix. The estimates are chosen exactly as described in the orig-
inal PayL paper. Figure 8(b) shows the engine’s blending attack converging on the target
distribution. The Y -axis shows the Mahalanobis distance, as a function of the size of the
blending section. For each size, we generate a new shellcode instance with a blend section
of that size. Next, we fill the section with bytes generated using the method we outlined at
the start of this section, then calculate the 1-byte distribution of the shellcode with these new
bytes in place and find the Mahalanobis distance to the target distribution using the equation
provided above.

We see that a padding section of around 200 bytes is needed to blend an executable
shellcode sample generated from our engine into the given target distribution, under our
chosen threshold value. In practice, the target distribution will have to be estimated by cap-
turing traffic corresponding to normal interactions with the target host, using tools such
as tcpdump. Then, using the captured data, estimate the parameters of the target mod-
els. In addition to this, we can also make use of binary-to-text encryption to transform the

194 Mach Learn (2010) 81: 179–205

Fig. 9 Function 2-Blend(D,L)
returns an L-length blending
string whose 1-gram transition
probabilities mirror that of D

function 2-Blend(D,L)
1 Estimate p(xi |xj) from training data D
2 x1 ∼ rand(1..256)

3 for i ← 2 to L

4 xi ∼ p(xi |xi−1)

5 end
return x

decoder portion of the shellcode into a string that consists of only printable characters by
using techniques such as the ones provided in the ShellForge engine (Biondi 2006). There
are also techniques that will allow the shellcode to survive sanitization functions such as
to_upper() and to_lower(). For additional discussion on the topic of 1-gram blend-
ing, as well as some more detailed comments on potential attack scenarios where such tactics
would most likely be effective, we refer the reader to the work by Fogla et al. (2006) who
also present some interesting complexity arguments by appealing to NP-completeness. The
next section of this paper extends this work to higher order blending with larger gram sizes.

6 N -gram blending

This section describes an approach towards blending attacks against statistical AD sensors
which uses n-gram models. Given a sequence such as “http://”, 2-gram tokens include “ht”,
“tt”, “tp”, etc. A description of a simple 2-gram blending attack in Sect. 6.1 sets up the moti-
vation for our methodology, which is then generalized to the n-grams case in the remaining
section.

6.1 2-gram blend

To generate a blending attack against 2-gram feature-counting-based anomaly detection
models, we can recover the 1-gram transition probabilities and use a Markov random walk
approach to generate the bytes that are to be placed in the blending section. These bytes,
combined, will hereafter be referred to as the “blend-string.” Let x ∼ p() denote draw-
ing a sample x from an arbitrary distribution p that operates over a set of parameters 	.
For 2-grams, the probability distribution can be the 1-gram transition probabilities—that
is, the probability of any gram to immediately follow any other gram. Under this model
we have a conditional probability specified by p(xt |xt−1) where xt denotes the character
in position t . The simple model is convex in the data and parameters and therefore admits
parameter estimation by Maximum Likelihood, which entails counting the number of gram-
to-gram transitions from the training data, then normalizing the resulting transition matrix
so that each row sums to 1.

Any sampling algorithm can be used for the x ∼ p() step. For our experiments, we used
random draws from a “bag-of-grams” model. Our method draws from a pool which contains
different numbers of characters in proportions specified by a 256-dimensional distribution
vector θ ∈ B

1×256 (B denotes the set of integers between 0 and 255.) 	, in this case, is the
full transition matrix that contains the set of all 256 different discrete character-to-character
transition probabilities.

Figure 10 shows as we increase the size of the blending string and allow more artificially
crafted data to be present, the L2 norm distance between the transition matrix of the gener-
ated samples to the target transition matrix decreases (note the 10−3 scale). This method can

Mach Learn (2010) 81: 179–205 195

Fig. 10 2-gram blending attack.
x-axis shows the size of the
blending string, y-axis shows
L2-norm distance between the
transition matrix of the blending
string and the target transition
matrix. Compare with Fig. 8(b)

be viewed as an approximation algorithm for an exact 2-gram blend, where the transition
proportions in the generated samples are identical to the target distribution. Generating such
an exact attack was recently shown to be NP-complete by Fogla et al. (2006) which ana-
lyzes the complexity of 2-gram blending from an algorithmic complexity motivation. Note
that our algorithm is, in fact, linear in both runtime and space requirements relative to the
gram size.

6.2 N -gram blend

The 2-gram blend is generalizable to n-gram models if we define the random walk over an
(n−1)-dimensional sample space. The probability of observing the nth gram would then be
conditioned on the probability of observing grams n − 1, n − 2, . . . ,1. This n-gram model
subsumes models for all models for grams sizes smaller than n, therefore, there is no need
for more complicated factorizations to account for sub-gram models, although it is worth
noting that using larger gram sizes carry the potential for dramatic over-fitting to the train-
ing data, as is the standard caveat when increasing model complexity. An exact sampling for
n-grams, under our previously described methodology, would require exponential storage
space and runtime since the transition matrix will be of size (n − 1)256 × 256. This is due to
the strong coupling of the n − 1 individual variables p(xn|xn−1, xn−2, . . . , x1). For smaller
gram sizes, the blending attack can be brute forced, in which case the only change to the
previous algorithm is the input of a larger transition matrix. However a linearly-complex
algorithm is possible if we relax the model to assume pair-wise independence between
the individual variables i.e. xi⊥xj |xn, where i, j < n, and only look at products of pair-
wise conditional probabilities. This factorization yields the following for a 5-gram model:
p5(x5|x4, . . . , x1) = p(x5|x4)p(x5|x3)p(x5|x2)p(x5|x1). More generally, for any gram size
G we have:

pG(xn|xn−1, . . . , xn−G+1) =
G−1∏

i=1

p(xn|xn−i) (7)

Given this model, only n − 1 transition matrices (each of dimensionality 256 × 256)
needs to be kept in memory. The factorization also yields a computational advantage—as

196 Mach Learn (2010) 81: 179–205

Fig. 11 Function 2-blend(D,L)
returns an L-length string whose
transition probabilities mirror
that of training samples D

function n-blend(D,L)
1 Estimate n − 1 transition matrices from training data D
2 x1..n−1 ∼ rand(1..256)1×n−1

3 for i ← n to L

4 xi ∼ p(xi |xi−1)p(xi |xi−2) · · ·p(xn|xi−n−1)

5 end
return x

k2105/web_exp/jumble.plindars/grapeoplendamenders/
calenaleoraphtheor/persandateorl/caiendors/peory/
pen/arsondets

Fig. 12 Sample blend string generated by a model focused at mimicking URL structure. Note the word
transitions (overlaps)

we compute the probability of subsequent grams, only the conditional probability related to
the previous gram needs to be calculated, the other n − 2 probabilities do not change and
can be kept in memory. Note that the model remains convex, thus the maximum likelihood
solution requires only estimation of n − 1 individual transition matrices, each in the manner
as mentioned previously. Similar to the previous example, the algorithm for n-gram blending
is shown in Fig. 11.

The sampling algorithm can still use the bag-of-grams concept as before, except now one
needs to take into account n − 1 distinct θi ∈ 	 models and factor in the product probabil-
ities accordingly. Figure 12 shows an example of a typical blend-string generated by our
engine, which was trained to mimic URL tokens. As we can observe, the model yields many
recognizable n-gram tokens which transition smoothly into each other, such as how “grape”
and “people” are both present in “grapeople”. Our sampling algorithm minimizes the num-
ber of undesired tokens, such as those which would be generated when words were simply
concatenated, i.e. a concatenation to form “grapepeople” would yield the undesired “pepe”
token.

6.3 The role of blending engines

Blending methods such as those described in this paper are aimed primarily at exploiting
IDS sensors which use feature-counting-based models that measure the existence of certain
artifacts (in specific proportions) in the data such as the sensors described in Wang et al.
(2005, 2006a), Kruegel and Vigna (2003). The adversarial environment is similar to spam
detection. However, it is important to note the distinction that network-situated anomaly de-
tectors typically see traffic at significantly higher rates (often orders of magnitude higher).
This must be taken into consideration when setting thresholds, i.e. even a 0.01% false posi-
tive rate on a gigabit connection could mean the user is bombarded with thousands of false
positive alerts per minute, depending on the type of network. Statistical IDS sensors are
therefore often prevented from applying tight detection thresholds. The role of blending is
to train models which can generate n-grams for whatever portion of the data-request (be it
packet level or higher) that the adversary selects to mimic.

In a blending attack against a port 80 web sensor, for example, the adversary might
generate pseudo-random URL-like tokens and place them as arguments within portions of an

Mach Learn (2010) 81: 179–205 197

HTTP request which do not affect the exploit itself. In the case of an attack that uses HTTP
GET requests such as IISWebDav (SANS 2004c), IISMedia (SANS 2004a) or the notorious
CodeRed (CERT 2001) and Santy (SANS 2004b) worms, blend-strings can be placed in
the message body or in the adjacent protocol fields. Common server applications such as
Apache will not recognize the extra argument strings and will ignore them by default, thus
allowing the exploit to execute unaffected. Network layer IDS sensors which are protocol-
aware might be able to discriminate such inputs but in general, NIDS do not always have
the protocol specifications for the applications available on the network.

6.4 N -gram blending evaluation

We evaluated blending attacks against 1-gram models in the previous section (blending
against PayL). We now evaluate blending attacks against n-gram models using these new
algorithms. We tested these methods against Anagram (Wang et al. 2006a), an n-gram
based detection algorithm from our lab. The Anagram sensor, first introduced by Wang et al.
(2006b) is a hash-dictionary based anomaly detector, that is, it only trains on normal traffic.
Since exact modeling of n-grams is an ill-posed problem due to the exponential growth in
the sample space as a function of n, the sparsity of training samples prevents exact para-
meter estimation. Instead, anagram chooses to simply store every instance of the positive
training data into a dictionary by storing the hashes of the distinct n-grams observed in the
data. More specifically, the algorithm presented by Wang et al. makes use of Bloom filters—
binary arrays where elements are indexed by the hash values of n-grams. Observed n-grams
have corresponding Bloom filter elements set to 1; all other elements of the filter are set to 0.
Given a test sample, Anagram compares hash collisions of distinct n-grams extracted from
the data with existing Bloom filters for “normal traffic”, if the amount of “foreign” n-grams
(i.e. those that do not exist in the Bloom filter) exceeds some proportional threshold, an alert
is thrown.

For our evaluation, we craft an attack by first using binary-to-text encryption to hide
the shellcode (as described in earlier sections). This done to reduce the footprint of the
shellcode, we then add a blend-string generated by our engine and craft the attack by putting
the string into different protocol fields as mentioned in the previous subsection. The entire
HTTP request is then given to Anagram to test for normality. The dataset we used consists
of packets we captured on our university network over the course of a day. Two unique hosts
are considered: one which serves faculty and department web-pages and the other serves
student pages. The former server hosts several hundred distinct pages as well as a technical
papers database, on-site conference pages, and other web material one might expect to find
on a computer science department’s website. The latter serves only student pages.

We used “tcpdump” (Tcpdump 2009) to capture packets corresponding to normal re-
quests that are sent to our target. These include requests for certain websites, file-downloads,
etc. For an actual attacker, recording normal transactions with a target webpage would suf-
fice to as a way to collect normal traffic. This data was captured over the course of a single
day and contained roughly 5500 requests for the student server, and 3700 for the depart-
ment server. It took roughly one second to generate a 2200-character-length blend-string on
a 1.8-GHz processor using MATLAB. Note that simply replicating a single good token will
not work since the distribution of the n-grams would be skewed. Using stochastic random
draws to find these unique tokens is the a more reliable solution. Figures 13(a) and (b) show
the normality scores that Anagram (Wang et al. 2006a) generates as we increase the size of
the blend-string. Depending on the type of traffic modeled, Anagram can use thresholds up
to 25%. As we can see from the figure, it is possible to blend an attack such that it passes

198 Mach Learn (2010) 81: 179–205

Fig. 13 URL token blending attack for various gram-sizes. For models of up to 3-grams, the shellcode
eventually blended underneath the threshold. At 5-grams the models begin to diverge instead

under this threshold, at least for smaller gram sizes. As we increase the size, the models be-
gin to under-fit, larger grams entails additional complexity, and the models yield non-useful
grams at the 5-gram level. This leads to divergence rather than blending. For larger n, the
ill-posed nature of density estimation remains intractable even in this factorized model.

6.5 Probabilistic dictionary attack

This section shows how we can modify the use of the model to yield an alternative blending
strategy which is more effective and suffers less from under-fitting problems. Instead of
sampling from the probability model directly, we can use the models to build a dictionary
of blending tokens that can then be concatenated into a blend-string. The model estimation
process is the same as before, except the models are now used on the training data to find the
existing tokens which are most likely to be present in the n-gram model for normal traffic
on the target site. Normalization is achieved by finding the arithmetic mean in log-space:

logpG(x1, . . . , xN) = log

(
N∏

i=G

pG(xi |xi−1, . . . , xi−G+1)

)

= log

(
N∏

i=G

i∏

j=i−G+1

pG(xi |xj , . . . , xi−1)

)

=
N∑

i=G

i∑

j=i−G+1

logpG(xi |xj , . . . , xi−1)

Dividing by the length of the string N recovers the likelihood function p∗
G(x1, . . . , xN) for a

string x1, . . . , xN when using gram size G. This yields the new likelihood function:

p∗
G(x1, . . . , xN) = 1

N

N∑

i=G

i∑

j=i−G+1

logpG(xi |xj , . . . , xi−1) (8)

This normalizes the likelihood so that a longer string does not lower the overall likelihood,
and corresponds to finding the geometric mean of the likelihood of subsequent characters

Mach Learn (2010) 81: 179–205 199

Fig. 14 Dictionary-based token-blending attack. The under-fitting problems are gone, now efficient blending
at 5-gram level is possible. Blending attacks against two distinct servers (which see different types of HTTP
resource requests) exhibit the same performance, demonstrating the generalization ability of this technique.
No adjustments were made to the learning algorithm between the two different attacks

within a string for n-gram probability models, with gram size G. Equation (8) is the final
equation used to score each input string when building the dictionary. Additionally, argmax
sampling is used instead of randomized sampling. The distinction is that, in this case, we do
not draw from a distribution, rather we select the character that yields the highest likelihood-
increase at each position of the string. A hash is also used to prevent the selection of identical
tokens given the uniqueness constraint. While we evaluated our algorithm on Anagram,
our method is aimed at defeating any n-gram counting features based detectors by using
judicious selection of known good tokens.

Figure 14 shows the effectiveness of the dictionary based blending tactic. As the figure
shows, higher order blending up to 5-grams is possible given a large enough blend-string.
Also note that smaller blend-strings are ineffective, as can be expected since the ASCII
encrypted shellcode we used in this experiment is around 800 bytes long and represents the
majority of the foreign grams detected by the Anagram model. The larger the blend-string
the more diluted the anomaly score will be for the overall attack. To populate the dictionary
with several thousand tokens, it takes on average 45 seconds, per dataset, on a 1.8-GHz
processor running MATLAB code. Concatenating the resulting tokens into an actual attack
takes negligible time. An attacker would need to populate only one dictionary per target.
From Fig. 14, we can also see that in order to launch a successful blending attack, the
attacker needs to use at least two packets, where the exploit is split nearly evenly between
them with two separate blend-strings. This is because network layer, packet-level sensors
such as Anagram examines each packet separately, and the Maximum Transmission Unit
(MTU) limit for a network packet is at most 1500-bytes. One packet is not enough to hold
both the exploit and a sufficiently large blend-string. There already exist certain methods
which can deal with this challenge, among them is a fragmentation attack which
we briefly describe in the next section.

6.6 Overlapping fragmentation attack

This section is meant to show that various techniques exist to make blending attacks feasi-
ble. Among the most well known is overlapping reassembly, which we describe here. Many
network layer sensors work at packet-level, and when left in their naive setting could fall

200 Mach Learn (2010) 81: 179–205

vulnerable to the “overlapping reassembly” packet fragmentation attack, a method to by-
pass network layer IDS sensors by distributing an attack into several interlocking pieces.
For technical details we refer the reader to an earlier “Security Focus” tutorial (Siddharth
2005). To bypass the size limit issue mentioned in the previous section, overlapping re-
assembly can be used to craft an attack such that smaller portions of the exploit are exposed
sequentially. This would work as follows: the first arriving packet would expose a small
portion of an exploit, such as the first 10 bytes, followed by a large blend-string to make the
entire packet appear normal. The second packet would contain the next sequential substring
of the exploit, followed by another large blend-string, but this second packet would also have
a fragmentation marker set to indicate that the payload it carries consists of bytes starting
at the 11th position of the datagram. This will cause the TCP-layer to reassemble the two
packets in such a way that the first packet is largely overwritten by the second, erasing the
previous blend-string and leaving 20 bytes of the exploit exposed, followed by the remain-
ing portion of the second blend-string. This process would be repeated until the exploit has
been fully reassembled.

7 Exploring N -space

So far, this paper has focused primarily on empirical analysis of existing engines. This sec-
tion discusses work on exploring the potential span of polymorphic shellcode within B

d .
More specifically, given n bytes, 28n possible strings exist and an interesting problem is to
consider what portion of this space consists of code which “behaves” like polymorphic shell-
code. The answer, or an estimate thereof, would provide insights into the future of shellcode
detection. Since a complete search of this space is intractable for large n, our search method-
ology focuses on byte strings of length 10. From the structure of the decoder, it is known
that two main components must exist: (1) a modification operation (e.g., add, sub, xor,
etc.), and (2) some form of a loop component e.g., jmpz that sweeps the cipher across the
payload. Figure 2 shows that full decoders are longer and more complex than these simple
requirements; for example, they contain maintenance operations such as clearing registers,
multiple cipher operations, and some exotic code to calculate the location of the executable.
We believe, however, that our restrictions retain the critical operations for examining decod-
ing behavior, and focus only on this small restricted portion. A 10-byte constraint reduces
the search space to 280 strings, which is an intractable problem if each string is to be evalu-
ated. Instead, we make use of Genetic Algorithms (Russell and Norvig 2002) to perform the
search in a directed manner by choosing to explore areas where existing polymorphic code
are known to reside.

7.1 Decoder detector

To construct the GA search, a function is constructed that accepts a string as input and
determines whether that string represents x86 code that exhibits polymorphic behavior.
A “decoder detector” was implemented as a process monitoring tool within the “Valgrind”
(Nethercote and Seward 2003) emulation environment. Valgrind’s binary supervision en-
ables us to add instrumentation to a process without modifying its source code or altering
the semantics of the process operations. Most importantly, Valgrind provides support for ex-
amining memory accesses, thus allowing us to track the parts of memory a process touches
during execution. Our tool detects “self-modifying code,” which we define as code that mod-
ifies bytes within a small distance (two hundred bytes) of itself. The GA-search framework

Mach Learn (2010) 81: 179–205 201

compiles and executes this simulated buffer-overflow in the instrumented environment and
checks for polymorphic behavior. In particular it looks for the following actions: self-write,
when writing to a memory location within two hundred bytes of the executing instruction,
self-modify when reading from a memory location within two hundred bytes of the instruc-
tion, and within the next four instructions, performs a write to the same location. This latter
definition captures the machine level behavior of in-place modification operations, such as
xor, add, sub, etc.

7.2 Genetic algorithms

Genetic Algorithms is a well-known optimization technique from classic AI. These algo-
rithms prove most useful in problems with a large search space domain: problems where it
would otherwise be infeasible to solve a closed form equation to directly optimize a solution.
Instead, various solutions are represented in coded string form and evaluated. Users of a GA
search define a function to determine the “fitness” of the string. GA algorithms combine fit
candidates to produce new strings over a sequence of epochs. In each epoch, the search eval-
uates a pool of strings, and the best strings are used to produce the next generation according
to some evolution strategy.

The fitness function used for our GA search framework is the decoder detector described
above. We assign a score of 1 to each self-write operation and a score of 3 to each self-
modify operation. The higher score for the latter operation reflects our interest in identify-
ing instruction sequences that represent the xor, add, sub,... decoder behavior. The
sum of the behavior scores of a 10-byte string defines its fitness. Any string with a non-zero
score therefore exhibits polymorphic behavior.

Since the search is not looking for the “best” decoder, a lower limit for polymorphic-
behavior can be set, and any string that passes this threshold can be admitted into the pop-
ulation. This dynamic threshold for minimum acceptable polymorphic behavior is set to be
five percent of the average polymorphic score of the previously found sequences; we boot-
strapped with an arbitrary constant of 6. The threshold was used in order to ignore strings
which performed a small (one or two) number of modifications, since we wanted to cap-
ture strings that exhibited a significant amount of polymorphic behavior. Significant scores
would indicate the presence of some form of a loop construct.2 All strings which met the
polymorphic criteria are stored in an associative array, to preserve uniqueness and for cer-
tain speed advantages. We observed that the average fitness value reached into the hundreds
after a few hundred epochs.

Genetic algorithms perform intelligent searching by restricting their attention to search-
ing the space surrounding existing samples. The algorithms accomplish this search by tak-
ing existing samples and permuting them slightly using evolution strategies, then re-testing.
Therefore, this form of local search needs good starting positions to achieve reasonable
results. We seeded our search engine with two decoder strings extracted from ShellForge
(Biondi 2006) and roughly 45000 strings from Metasploit (Metasploit Developement Team
2006) in order to obtain a good distribution of starting positions. We implemented a standard
GA-search framework using some common evolution strategies, which we list below.

1. Increment: The lowest significant byte is incremented by one modulo 255, with carry.
We use this technique after finding one decoder to then undertake a local search of the
surrounding space.

2We used a four second runtime limit in our Valgrind decoder detector tool as we periodically find strings
which run into infinite self-modification loops.

202 Mach Learn (2010) 81: 179–205

2. Mutate: A random number of bytes within the string are changed randomly. Useful for
similar reasons, except we search in a less restricted neighborhood.

3. Block swap: A random block of bytes within one string is randomly swapped with an-
other random block from the same string. This technique helps move blocks of instruc-
tions around.

4. Cross breed: A random block of bytes within one string is randomly swapped with an-
other random block from another string. This technique helps combine different sets of
instructions.

5. Rotate: The elements of the string are rotated to the left position-wise by some random
amount with a wrap-around. This is to put the same instructions in different order.

6. Pure random: A new purely random string is generated. This adds variation to the pool
and helps prevent the search from getting stuck on local max. It is used mainly to intro-
duce entropy into the population and is not useful by itself since the likelihood of finding
executable x86 code with self modification and an inner loop at random is low.

For each sequence, we automatically generate a new program that writes the string into
a character buffer between two NOP-sleds of 200 bytes each. The program then redirects
execution into that buffer, effectively simulating a buffer overflow attack. We then retrieve
the fitness score of that string from the decoder detector, evaluate it, and continue with the
search according to the process described above.

This method is similar to work done by Polychronakis et al. (2006). While they had im-
plemented their tool as a detector, dynamically filtering network content through the detector
to search for the presence of decryption engines, our detector is used off-line to pre-compute
a set of byte strings that perform self-modification.

7.3 GA-search results

This evaluation aims to assess the hypothesis that the class of self-modifying code spans B
d

where n is the length of the decoder sequence. Our GA-search framework found roughly
two million unique sequences after several weeks of searching and currently shows no signs
of slowing down. The results that we derive show that the class of n-byte self-modifying
code not only spans B

d but saturates it as well. First let us look at the (rounded) mean and
variances of the generated sample pool of 10-byte sequences, shown in decimal for each
reading:

Mean: {90,66,145,153,139,127,123,138,134,126}
Std.: {72,71,86,78,80,84,86,82,75,76}

The mean is observed to be near the center of B
d , as we would expect from Central limit

theorem and the high variance along each dimension shows that the high degree of scatter
within these samples.

For each sequence in our sample pool, a 1-byte distribution was computed to find the
average for all sequences. This average is further normalized by dividing by the variance
along each dimension, as was done in the previous section. Figure 15(a) shows the average
1-byte distribution. The sample pool contains no distinguishable distribution, and is closer
to white noise—with the exception of the {x00} and {xFF} characters, which are likely
to be padding artifacts. Moving on to 3-space, Fig. 15(b) shows the 3-gram scatter-plot of
all 3-grams extracted from all of the candidate decoder pool. This plot shows that, for 3-
grams, the space is well saturated. It follows that 2-space is saturated as well, since it is a
subspace of 3-space. This result can be expected since arbitrary polymorphic code is less

Mach Learn (2010) 81: 179–205 203

Fig. 15 Results. (a) 1-gram distribution—note the uniform byte distribution. (b) 3-gram scatter plot—each
dot represents a 3-gram, note the 3-space saturation

constrained than the decoders that were examined in the previous sections. Nevertheless,
our results show that there is a significant degree of variance in the range of x86 code that
perform operations associated with self-decryption routines.

8 Conclusions

Our results show the difficulties we face when designing detectors given modern obfuscation
techniques. We proposed metrics which can measure the strengths of these engines and have
shown how targeted higher order blending attacks are possible, in an effort to forecast future
threats. We explained how signature-based modeling can work in some cases, and confirmed
that the long-term viability of such approaches is consistent with the long held, intuitive,
belief that polymorphism will eventually defeat these methodologies.

We argue that while signature-based methods may work in the short term, evidence sug-
gests that they cannot generalize to protect against future attacks. Similarly, feature-counting
based statistical models also suffer from equally troubling deficiencies. In our discussion on
blending, we assumed that we had access to labeled samples—in practice this is a luxury
that is not always available, at least not for the defender. In contrast, the attacker can gener-
ate perfectly labeled data by querying the target host for positive samples, as we did in our
experiments to find the normal traffic pattern.

Given these properties, any generative approach to modeling malicious code would ap-
pear to be threatened. At the same time, we must always keep in mind the stringent false-
positive requirements that constrain all anomaly-detection sensors, and that we must expect
the attackers to exploit this requirement. The strategy of modeling malicious content forces
us to try to keep up with the adversary, and if polymorphic code is really distributed in the
manner that our study indicates, then we might never achieve a generalizable defense by con-
tinuously refining a single representation of what the attackers may do. A positive-security
model, one that focus on normal content, might be a more reliable solution.

References

Abadi, M., Budiu, M., Erlingsson, U., & Ligatti, J. (2005). Control-flow integrity: principles, implemen-
tations, and applications. In Proceedings of the ACM conference on computer and communications
security (CCS).

204 Mach Learn (2010) 81: 179–205

AlephOne (2001). Smashing the stack for fun and profit. Phrack, 7(49-14).
Anagnostakis, K. G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E., & Keromytis, A. D. (2005).

Detecting targeted attacks using shadow honeypots. In Proceedings of the 14th USENIX security sym-
posium.

Bania, P. (2009). Tapion polymorphic engine. http://pb.specialised.info/all/tapion/.
Baratloo, A., Singh, N., & Tsai, T. (2000). Transparent run-time defense against stack smashing attacks. In

Proceedings of the USENIX annual technical conference.
Barrantes, E. G., Ackley, D. H., Forrest, S., Palmer, T. S., Stefanovic, D., & Zovi, D. D. (2003). Randomized

instruction set emulation to distrupt binary code injection attacks. In Proceedings of the 10th ACM
conference on computer and communications security (CCS).

Bhatkar, S., DuVarney, D. C., & Sekar, R. (2003). Address obfuscation: an efficient approach to combat a
broad range of memory error exploits. In Proceedings of the 12th USENIX security symposium (pp. 105–
120).

Biondi, P. (2006). Shellforge project. http://www.secdev.org/projects/shellforge/.
Brumley, D., Newsome, J., Song, D., Wang, H., & Jha, S. (2006). Towards automatic generation of

vulnerability-based signatures. In Proceedings of the IEEE symposium on security and privacy.
CERT (2001). Code red I/II worm. http://www.cert.org/advisories/CA-2001-19.html.
Chinchani, R., & Berg, E. V. D. (2005). A fast static analysis approach to detect exploit code inside network

flows. In Proceedings of the 8th international symposium on recent advances in intrusion detection
(RAID) (pp. 284–304).

Costa, M., Crowcroft, J., Castro, M., & Rowstron, A. (2005). Vigilante: end-to-end containment of Internet
worms. In Proceedings of the symposium on systems and operating systems principles (SOSP).

Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., & Zhang,
Q. (1998). Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks. In Pro-
ceedings of the USENIX security symposium.

Crandall, J. R., Su, Z., Wu, S. F., & Chong, F. T. (2005a). On deriving unknown vulnerabilities from zero-day
polymorphic and metamorphic worm exploits. In Proceedings of the 12th ACM conference on computer
and communications security (CCS).

Crandall, J. R., Wu, S. F., & Chong, F. T. (2005b). Experiences using minos as a tool for capturing and analyz-
ing novel worms for unknown vulnerabilities. In Detection of intrusions and malware and vulnerability
assessment (DIMVA).

Cui, W., Peinado, M., Wang, H. J., & Locasto, M. E. (2007). ShieldGen: automated data patch generation for
unknown vulnerabilities with informed probing. In Proceedings of the IEEE symposium on security and
privacy.

Detristan, T., Ulenspiegel, T., Malcom, Y., & von Underduk, M. S. (2003). Polymorphic shellcode engine
using spectrum analysis. Phrack, 11(61-9).

Etoh, J. (2000). GCC extension for protecting applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp.

Fogla, P., & Lee, W. (2006). Evading network anomaly detection systems: formal reasoning and practical
techniques. In Proceedings of the 13th ACM conference on computer and communications security
(CCS) (pp. 59–68). http://doi.acm.org/10.1145/1180405.1180414.

Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., & Lee, W. (2006). Polymorphic blending attacks. In Pro-
ceedings of the USENIX security conference.

Foster, J. C., Osipov, V., Bhalla, N., & Heinen, N. (2005). Buffer overflow attacks: detect, exploit, prevent.
Syngress.

Joshi, A., King, S. T., Dunlap, G. W., & Chen, P. M. (2005). Detecting past and present intrusions through
vulnerability-specific predicates. In Proceedings of the symposium on systems and operating systems
principles (SOSP).

K2 (2003). ADMmutate documentation. http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.
Kc, G. S., Keromytis, A. D., & Prevelakis, V. (2003). Countering code-injection attacks with instruction-set

randomization. In Proceedings of the 10th ACM conference on computer and communications security
(CCS) (pp. 272–280).

Kim, H. A., & Karp, B. (2004). Autograph: toward automated, distributed worm signature detection. In
Proceedings of the USENIX security conference.

Kiriansky, V., Bruening, D., & Amarasinghe, S. (2002). Secure execution via program shepherding. In Pro-
ceedings of the 11th USENIX security symposium.

Kolesnikov, A., & Lee, W. (2006). Advanced polymorphic worms: evading IDS by blending in with normal
traffic. In Proceedings of the USENIX security conference.

Kruegel, C., & Vigna, G. (2003). Anomaly detection of web-based attacks. In Proceedings of the 10th ACM
conference on computer and communications security (CCS).

http://pb.specialised.info/all/tapion/
http://www.secdev.org/projects/shellforge/
http://www.cert.org/advisories/CA-2001-19.html
http://www.trl.ibm.com/projects/security/ssp
http://doi.acm.org/10.1145/1180405.1180414
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

Mach Learn (2010) 81: 179–205 205

Krugel, C., Kirda, E., Mutz, D., Robertson, W., & Vigna, G. (2005). Polymorphic worm detection using struc-
tural information of executables. In Proceedings of the 8th international symposium on recent advances
in intrusion detection (RAID) (pp. 207–226).

Liang, Z., & Sekar, R. (2005). Fast and automated generation of attack signatures: a basis for building self-
protecting servers. In Proceedings of the 12th ACM conference on computer and communications secu-
rity (CCS).

Locasto, M. E., Wang, K., Keromytis, A. D., & Stolfo, S. J. (2005). FLIPS: hybrid adaptive intrusion pre-
vention. In Proceedings of the 8th international symposium on recent advances in intrusion detection
(RAID) (pp. 82–101).

Metasploit Development Team (2006). Metasploit project. http://www.metasploit.com.
Nethercote, N., & Seward, J. (2003). Valgrind: a program supervision framework. In Electronic notes in

theoretical computer science (Vol. 89).
Newsome, J., & Song, D. (2005). Dynamic taint analysis for automatic detection, analysis, and signature

generation of exploits on commodity software. In Proceedings of the 12th symposium on network and
distributed system security (NDSS).

Newsome, J., Karp, B., & Song, D. (2005). Polygraph: automatically generating signatures for polymorphic
worms. In Proceedings of the IEEE symposium on security and privacy.

Obscou (2003). Building IA32 ‘Unicode-Proof’ shellcodes. Phrack, 11(61-11).
Panda Labs (2007). MPack uncovered. http://pandalabs.pandasecurity.com/.
Polychronakis, M., Anagnostakis, K. G., & Markatos, E. P. (2006). Network-level polymorhpic shellcode de-

tection using emulation. In Detection of intrusions and malware and vulnerability assessment (DIMVA).
Rix (2001). Writing IA-32 alphanumeric shellcodes. Phrack, 11(57-15).
Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach. New York: Prentice Hall.
SANS (2004a). IISMedia Exploit. http://www.sans.org/newsletters/cva/vol2_21.php.
SANS (2004b). Santy worm. http://isc.sans.org/diary.html?date=2004-12-21.
SANS (2004c). Webdav exploit. http://www.sans.org/resources/malwarefaq/webdav-exploit.php.
Siddharth, S. (2005). Evading NIDS. http://www.securityfocus.com/infocus/1852.
Sidiroglou, S., Giovanidis, G., & Keromytis, A. D. (2005). A dynamic mechanism for recovering from buffer

overflow attacks. In Proceedings of the 8th information security conference (ISC) (pp. 1–15).
Singh, S., Estan, C., Varghese, G., & Savage, S. (2004). Automated worm fingerprinting. In Proceedings of

symposium on operating systems design and implementation (OSDI).
Snort Development Team (2009). Snort project. http://www.snort.org/.
Song, Y., Locasto, M. E., Stavrou, A., Keromytis, A. D., & Stolfo, S. J. (2007). On the infeasibility of mod-

eling polymorphic shellcode. In Proceedings of the ACM conference on computer and communications
security (CCS).

Spinellis, D. (2003). Reliable identification of bounded-length viruses is NP-complete. IEEE Transactions on
Information Theory, 49(1), 280–284.

Tcpdump (2009). http://www.tcpdump.org.
Toth, T., & Kruegel, C. (2002). Accurate buffer overflow detection via abstract payload execution. In Pro-

ceedings of the 5th international symposium on recent advances in intrusion detection (RAID) (pp. 274–
291).

Wang, K., & Stolfo, S. J. (2004). Anomalous payload-based network intrusion detection. In Proceedings of
the 7th international symposium on recent advances in intrusion detection (RAID) (pp. 203–222).

Wang, H. J., Guo, C., Simon, D. R., & Zugenmaier, A. (2004). Shield: vulnerability-driven network filters for
preventing known vulnerability exploits. In Proceedings of the ACM SIGCOMM conference (pp. 193–
204).

Wang, K., Cretu, G., & Stolfo, S. J. (2005). Anomalous payload-based worm detection and signature gen-
eration. In Proceedings of the 8th international symposium on recent advances in intrusion detection
(RAID) (pp. 227–246).

Wang, K., Parekh, J. J., & Stolfo, S. J. (2006a). Anagram: a content anomaly detector resistant to mimicry
attack. In Proceedings of the 9th international symposium on recent advances in intrusion detection
(RAID).

Wang, X., Pan, C. C., Liu, P., & Zhu, S. (2006b). SigFree: a signature-free buffer overflow attack blocker. In
Proceedings of the 15th USENIX security symposium (pp. 225–240).

Yegneswaran, V., Giffin, J. T., Barford, P., & Jha, S. (2005). An architecture for generating semantics-aware
signatures. In Proceedings of the 14th USENIX security symposium.

http://www.metasploit.com
http://pandalabs.pandasecurity.com/
http://www.sans.org/newsletters/cva/vol2_21.php
http://isc.sans.org/diary.html?date=2004-12-21
http://www.sans.org/resources/malwarefaq/webdav-exploit.php
http://www.securityfocus.com/infocus/1852
http://www.snort.org/
http://www.tcpdump.org

	On the infeasibility of modeling polymorphic shellcode
	Abstract
	Introduction
	Organization

	Shellcode
	Related work
	Traffic content analysis
	Proactive defense
	Countering polymorphism

	Polymorphic engine analysis
	Spectral image
	Variation strength
	Propagation strength
	Overall strength

	A hybrid engine: combining polymorphism and blending
	N-gram blending
	2-gram blend
	N-gram blend
	The role of blending engines
	N-gram blending evaluation
	Probabilistic dictionary attack
	Overlapping fragmentation attack

	Exploring N-space
	Decoder detector
	Genetic algorithms
	GA-search results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

