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Abstract

Context Emissions of greenhouse gases in urban

areas play an important role in climate change.

Increasing attention has been given to urban landscape

structure–emission relationships (SERs). However, it

remains unknown if and to what extent SERs are

dependent on observational scale.

Objective To assess how changing observational

scales (in terms of spatial and thematic resolutions) of

urban landscape structure affect SERs.

Methods We examined correlations between 16

landscape metrics and greenhouse gas emissions

across 52 European cities, through (1) systematic

manipulation of spatial and thematic resolutions of the

urban land use/cover (ULUC) dataset, and (2) com-

parison between available standard ULUC datasets

with different spatial resolutions.

Results Our analyses showed that the observed SERs

significantly depend on both thematic and spatial

resolutions of the ULUC data. For the 16 landscape

metrics, we found diverse spatial/thematic scaling

relations exhibiting monotonic, hump-shaped or scale-

invariant trends. For different landscape metrics, the

SERs were strongest at different spatial scales,
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suggesting that there is no consistent scaling relation

over those observational scales.

Conclusions SERs are highly sensitive to spatial and

thematic resolutions of landscape data. To avoid the

problem of ‘ecological fallacy,’ important caveats

should be taken for interpretations based on single

landscape metrics. Particular consideration should be

paid to metrics that are easily interpretable, pre-

dictable in scaling behaviors, and important for

shaping SERs, such as PLAND, ED, and LPI.

Systematic investigations on scaling behaviors of

SERs over well-defined scale domains are encouraged

in future studies linking greenhouse gas emissions and

urban landscape structure.

Keywords Climate change � Landscape pattern �
Landscape metrics � Remote sensing � Scale � Scaling

Introduction

Fossil-fuel energy has boosted the worldwide socioe-

conomic development since the Industrial Revolution.

However, greenhouse gases (GHGs, such as CO2,

N2O, CH4, and SF6) released from the combustion of

fossil fuels have induced a range of serious environ-

mental problems. Currently, anthropogenic GHG

emissions are estimated to amount to * 50 gigatons

of CO2-equivalent per year (Pachauri et al. 2014).

Such massive emissions have resulted in drastic

elevation of GHG concentrations in the atmosphere,

cascading to significant changes of global and regional

climate (Crowley 2000; Melillo et al. 2014) and

profound impacts on ecosystems and human well-

being (Field and Barros 2014). Urban areas are among

the most important sources of GHG emissions.

Accounting for only * 3% of the Earth’s land surface

(Liu et al. 2014), they are directly or indirectly

responsible for more than half of GHG emissions in

the world (Hoornweg et al. 2010). Therefore, cutting

urban GHG emissions is recognized as the primary

goal for mitigating global climate change (Dhakal

2010).

As a fundamental step towards effective actions in

reducing urban GHG emissions, it is imperative to

identify and understand the physical and socioeco-

nomic drivers of those emissions. Much attention has

been paid to socioeconomic factors, such as

population density, income, and lifestyle of urban

residents (Newman and Kenworthy 1989; Baur et al.

2013, 2015b; Lee and Lee 2014). However, physical

properties of urban landscapes can also substantially

influence anthropogenic emissions (Norman et al.

2006; Ou et al. 2013). In this context, recent studies

have focused on the role of urban spatial structure,

giving rise to a general observation that sprawling

urban landscape structures, contrasting with relatively

compact counterparts, are correlated with higher per

capita emissions of air pollutants and GHGs (Borrego

et al. 2006; Makido et al. 2012; Baur et al. 2015a). This

correlation makes intuitive sense. For example, if

urban patches are more scattered in space, residents

have to travel longer distances, i.e., commute between

home, work place, and amenities, substantially

increasing energy consumption of transportation and

associated emissions (Anderson et al. 1996; Chen et al.

2011). Such correlation provides an important practi-

cal implication, in the sense that urban systems

designed with ‘optimal’ spatial structures could con-

tribute to both air quality improvement and climate

change mitigation (Martins 2012; Rodrı́guez et al.

2016). This idea has given rise to the ‘compact city’

movement that now receives growing attention

worldwide.

Despite this optimization and mitigation opportu-

nity, relationships between urban landscape structure

and anthropogenic GHG emissions (hereafter referred

to as structure–emission relationships, SERs) remain

largely uncertain. One key uncertainty is rooted in the

issue of scale. Typically, SERs are commonly scale-

dependent pattern–process relationships. Depending

on the spatial, temporal, or thematic scale, a given

SER can be detected as either strong or weak (Turner

1989; Wu 2004). During the past decades, systematic

investigations have shown that landscape pattern

metrics used to quantify landscape structure are

sensitive to spatial scale, in terms of grain size (Turner

et al. 1989; Wu et al. 2002; Wu 2004) and spatial

extent (Saura and Martinez-Millan 2001; Shen et al.

2004). With the gradual increase of spatial scale,

landscape metrics may present linear, logarithmic,

hump-shaped, or complex response (e.g., Wu et al.

2002). Similar observations have also been reported

for thematic scale, i.e., the number of categories that

are distinguished in the land use/cover maps (e.g.,

Shao et al. 2001; Buyantuyev and Wu 2007). These

findings suggest the need for a routine analysis of scale
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dependence of landscape pattern–process relationship.

At a minimum, observations, experiments, or models

should be conducted at multiple, at least three,

relevant scales (e.g., Wu et al. 2000; Li and Wu

2006). Yet, explicit scale analyses are still limited for

many pattern–process relationships.

Reasonably, the scale issue is important for SERs.

So far, it remains unclear how SERs would respond to

changes in observational scales. To our knowledge, we

conducted the first systematic scaling analysis (in

terms of changing data resolutions) of SERs in this

study by focusing on GHG emissions across 52

selected European cities. We used two scaling

approaches. First, we conducted systematic manipu-

lation of spatial and thematic resolutions of an urban

land use/cover (ULUC) dataset. Second, we compared

several available and commonly used ULUC datasets

with inherently different spatial resolutions. The

second approach addresses the concern that previous

studies tended to arbitrarily select land use/cover data

for quantifying landscape pattern–process relation-

ships, including SERs. However, it remains to be

tested whether these datasets of different resolutions

can lead to different conclusions. Our specific goal

was to assess if, and to what extent, spatial and

thematic resolutions of data on urban spatial structure

affect observed SERs. We pursue a better understand-

ing of influencing factors of urban GHG emissions

with the objective to provide valuable suggestions for

urban planning and management seeking GHG

mitigation.

Materials and methods

Study cities and data

We used a unique GHG emission dataset compiled by

Baur et al. (2015a) to analyze the SERs for 52 cities

across Europe. This dataset combined comparable

GHG information per capita during 2007-09, includ-

ing emissions from both residential and non-residen-

tial sources, and corrected for the between-nation

variation of energy production methods (Supplemen-

tary Table 1, see Baur et al. 2015a for detailed

information).

For all studied cities, we collected 6 publicly

available datasets that provide information on land

use/cover on a continental or global scale, with spatial

resolutions ranging from 10 to 1000 m (Table 1).

These datasets were produced from various data

sources including remotely sensed images, topo-

graphic maps, population distribution data, and nav-

igation data. Of those, the Urban Atlas (UA, 10 m

resolution) dataset contains information on (Euro-

pean) urban areas only. The estimated accuracy of

ULUC mapping ranges from circa 70 to 100%. For the

multi-temporal CORINE land cover (100 m resolu-

tion) and GlobCover (300 m resolution) datasets, we

selected data for the year 2006 and 2009, accordingly,

to provide for the closest temporal conformity with the

GHG emission data. Although the temporal coverage

of these ULUC datasets (ranging between 2003 and

2010) does not completely coincide with that of the

analyzed GHG, they are useful for our study, as no

significant change is expected in the overall urban

layout of the much-developed European cities during

this time period. Indeed, a comparison between the

ESA CCI land cover 2003 and 2010 data shows

that[ 92% of the urban areas remained stable for 50

out of the 52 studied cities.

The UA and CORINE are different from the other

ULUC datasets in the sense that they have the four-

level hierarchical classification system, corresponding

to four thematic scales (Fig. 1). In contrast, the other

four ULUC datasets have only one single ULUC class.

Another important difference between these datasets

pertains to the definition of urban area. For the four

datasets other than UA and CORINE, urban areas,

labeled ‘Artificial surfaces and associated areas’ or

‘Urban,’ respectively, are referred to as non-vegetated

features that are made by humans. In contrast, for the

UA and CORINE datasets, urban lands are defined as

‘Artificial Surfaces’ encompassing non-sealed green

urban areas dominated by vegetation. We thus

excluded such green urban areas from the UA and

CORINE data (class 1.4.1) to make them consistent

with other ULUC datasets. To avoid any confusion, in

this study, we use the term ‘urban’ to refer to those that

are dominated ([ 50% in cover) by non-vegetated,

human-made elements (also defined as ‘built-up areas’

in Liu et al. 2014).

Landscape metrics

We selected 16 landscape metrics to characterize

urban landscape structure. Of those, 9 metrics were

previously defined as ‘urban structure indicators’ by
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Baur et al. (2015a), including Number of Patches

(NumP), Total Edge (TE), Class Area (CA), Percent-

age of Landscape (PLAND), Mean Patch Size (MPS),

Mean Patch Edge (MPE), Edge Density (ED), Patch

Density (PD), and Mean patch shape index (MSI).

Most of them are considered as ‘simple and easily

interpretable indices with predictable responses to

changes in scale’ (Šı́mová and Gdulová 2012, p. 385).

Some of them significantly correlated with GHG

emissions (Baur et al. 2015a). We decided to adopt an

excessive number of metrics from those frequently

used to quantify urban landscape structure (Wu et al.

2002; Buyantuyev et al. 2010; Schwarz 2010; Ou et al.

2013), including Area-Weighted Mean Shape Index

(AWMSI), Mean Patch Fractal Dimension (MPFD),

Area-Weighted Mean Patch Fractal Dimension

Table 1 Urban land use/cover datasets used for spatial scaling analyses

Dataset Data producer Nomenclature

of urban area

Spatial

resolution

Temporal

coverage

Data source for

dataset production

Accuracy

for urban

area

References

Urban Atlas European

Environment

Agency

(EEA)

Artificial

Surfaces

10 m

(1:10,000)

2006

(± 1 year)

Remotely sensed

data (EO data),

Topographic

maps, COTS

navigation data

[= 85% http://www.eea.

europa.eu/

data-and-

maps/data/

urban-atlas

EEA (2010)

GlobeLand30 National

Geomatics

Centre of

China

(NGCC)

Artificial

Surface and

Associated

Areas

30 m 2010 Remotely sensed

data (Landsat

TM/ETM ? ,

HJ-1

multispectral

images)

[ 80% http://www.

geodoi.ac.cn/

WebCn/doi.

aspx?Id=163

Chen et al.

(2015, 2016)

CORINE

Land Cover

(CLC)

2006

version

18.5.1

European

Environment

Agency

(EEA)

Artificial

Surfaces

100 m 2006

(± 1 year)

Remotely sensed

data (SPOT-4/5,

IRS P6 LISS III)

[= 85% https://www.

eea.europa.eu/

data-and-

maps/data/

clc-2006-

raster-4/

EEA (2016)

GlobCover

2009

European Space

Agency

(ESA)

Artificial

Surfaces and

Associated

Areas

300 m 2009 Remotely sensed

data (MERIS)

69% http://due.esrin.

esa.int/page_

globcover.php

ESA (2008)

GLCNMO

version 2

International

Steering

Committee

For Global

Mapping

(ISCGM)

Urban 500 m 2008 Population data,

DMSP/OLS

data, ISA data,

MODIS NDVI

data

100% http://www.

iscgm.org/gm/

glcnmo.html

Tateishi et al.

(2014)

GLCNMO

version 1

ISCGM Urban 1000 m 2003 Population data,

DMSP/OLS

data, ISA data,

MODIS NDVI

data

84.8% http://www.

iscgm.org/gm/

glcnmo.html

Tateishi et al.

(2011)

EO earth observation, COTS commercial off-the-shelf, SPOT systeme pour l’observation de la terre’s, IRS Indian remote sensing

satellite, MERIS medium resolution imaging spectroradiometer, MODIS moderate resolution imaging spectroradiometer, NDVI

normalized difference vegetation index, DMSP/OLS defense meteorological satellite programme’s operational line scanner, ISA

impervious surface area data
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(AWMPFD), Largest Patch Index (LPI), Patch Size

Coefficient of Variation (PSCoV), Patch Size Stan-

dard Deviation (PSSD), and Mean Perimeter Area

Ratio (MPAR) (see supplementary Table 2 for metric

descriptions). Landscape-level metrics were used

when multiple ULUC classes were present (i.e.,

thematic resolution[ 1).

We computed landscape metrics for areas within

administrative city boundaries because such spatial

extents were also used as the basis for the estimations

of GHG emissions (Baur et al. 2013). Administrative

boundaries were obtained from the Census Units 2011

dataset, a part of the Eurostat’s geographical informa-

tion system ‘GISCO’ (Eurostat 2015). Landscape

metrics were computed using the Patch Analyst

package (Rempel et al. 2012) for ArcGIS 10.2 (ESRI

2013).

Scaling analyses

Thematic and spatial scaling analyses commonly

followed two steps. We first computed landscape

metrics using the ULUC data for each studied city at

different thematic/spatial scales. We then performed

pairwise Pearson’s correlation analysis between each

resulting landscape metric and per capita GHG

emissions, as well as multiple regression analysis, to

investigate how these relationships vary with changing

thematic/spatial resolution.

Thematic scaling

Thematic scaling was performed on the basis of the

UA dataset that contains information on 20 land

use/cover classes. The UA dataset organizes ULUC

classes into 4 hierarchies, corresponding to 4 thematic

resolutions (Fig. 1). The coarsest thematic resolution

has 4 classes including Artificial Surfaces, Agricul-

tural/Semi-natural Areas/Wetlands, Forests, and

Water. Only Artificial surfaces, with green urban

areas excluded for consistency across all ULUC

datasets, were included in the analysis because we

focus on man-made components only. Starting from

the finest thematic resolution (referred to as Level IV),

land use/cover classes were aggregated at three

consequent steps to coarser resolutions (i.e., Level

1.1.2.1
Discontinuou

s Dense 
Urban Fabric

1.1.1
Continuous 

Dense Urban 
Fabric

1.1.3
Isolated 

Structures

1
Artificial Surfaces

1.2.1
Industrial, 

Commercial, 
Public, Military 

and Private Units

1.2.2
Roads and rail 
network and 
associated 

land

1.2.3
Port 
area

s

1.2.4
Airports

1.1.2
Discontinuous 
Urban Fabric

1.3.1
Mineral 

extraction 
and dump 

sites

1.3.3
Construction 

sites

1.3.4
Land 

without 
current 

use

1.1.2.2
Discontinuou

s Medium 
Density U.F

1.1.2.3
Discontinuou
s Low Density 

U.F

1.1.2.4
Discontinuou
s Very Low 

Density U. F

1.1

Urban Fabric

1.2
Industrial, Commercial, 
Public, Military, Private 

and Transport Units

1.3
Mine, Dump and 

Construction Sites

Level I

Level II

Level III

Level IV
1.2.2.1

Fast transit 
roads and 
associated 

land

1.2.2.2
Other roads 

and associated 
land

1.2.2.3
Railways and 

associated 
land

Fig. 1 The four-level hierarchical classification system of

urban land use/cover in the Urban Atlas dataset. Green urban

areas are excluded from the analyses to facilitate comparison

with other urban land use/cover datasets. The code for each land

use/cover class is adopted from the mapping guide of the Urban

Atlas dataset (EEA 2011)
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III, II, and I consequently). The resulting landscape

maps were used to calculate the landscape metrics

accordingly.

Spatial scaling

Spatial scale has two inherent dimensions, the grain size

(spatial resolution) and the spatial extent. In our study,

however, spatial scaling was performed on the basis of

grain size only because the spatial extent of each city

was fixed within its administrative boundary, where the

GHG emissions were estimated. We employed the

following two approaches for spatial scaling.

In the first approach, the UA dataset at the fine

spatial resolution of 10 m was used as a basis. It was

then sequentially aggregated to the resolutions of 30,

100, 300, 500, and 1000 m, which coincide with

resolutions of those selected coarser grained standard

ULUC datasets. To this end, the UA data were

converted to a binary raster format, distinguishing

between urban and non-urban areas. The majority rule

(i.e., the type of the coarse-grained output cell is

determined by the most dominant type of 10-m-

resolution input cells) was used for data aggregation.

The resulting maps of urban areas at different spatial

resolutions were used to compute landscape metrics.

This approach has been adopted by previous scaling

studies (e.g., Wu et al. 2002), allowing for systematic

analyses of scaling behavior and construction of

scalograms (based on correlation coefficient) within

a pre-defined spatial scale domain.

In the second approach, we studied the effects of

spatial scale by comparing between selected global

standard ULUC datasets that are produced at the

spatial resolutions of 10, 30, 100, 300, 500, and

1000 m (Table 1). Doing so, we can investigate the

spatial scale effect in a more realistic context,

considering that these standard datasets had been

frequently used for quantifying landscape patterns

worldwide.

Pearson’s correlations were used to test the pair-

wise relationships between single landscape metrics

and GHG emissions per capita (one data point for each

city, n = 52). Variables were log-transformed, where

necessary, to approach normal distributions (Supple-

mentary Tables 3–6). We conducted multiple linear

regression and used adjusted R2 of full models to

assess the overall power of the 16 selected landscape

metrics (as explanatory variables) for explaining the

GHG emissions per capita (as response variable) at

each studied scale. The multicollinearity between the

landscape metrics would not bias the explanatory

power (Cohen et al. 2003). We also used linear

regression to assess the relative importance of land-

scape metrics at each studied scale. To reduce

uncertainty from single model inference (for instance,

inference based on stepwise regression), we used the

model averaging technique, which takes into account

all possible regression models (Burnham and Ander-

son 2002). We constructed all possible models with all

combinations of the 16 landscape metrics as regres-

sors, and then discarded those with the variance

inflation factor[ 5 (considered as strong multi-

collinearity, which can lead to strongly biased esti-

mation of coefficients, Zuur et al. 2009). The relative

importance of a given metric is calculated as the sum

of the Akaike weights of models where the metric is

included (Burnham and Anderson 2002). Statistical

analyses were performed with R 3.3.1 (R Core Team

2016). Model averaging was performed with the R

package ‘‘MuMIn’’ (Bartoń 2018).

Results

Thematic scaling relations

For the 52 studied European cities, we found both

significantly positive and negative correlations

between per capita GHG emissions and most of the

selected landscape metrics at certain thematic resolu-

tion(s) of the UA data (Fig. 2). Yet, 3 out of these 16

metrics (i.e., CA, PSSD and MPAR) did not correlate

with GHG emissions (P[ 0.05) at any thematic

resolution. For most landscape metrics, the Pearson’s

r correlation coefficient varied substantially across the

4 thematic resolutions, with the maximum range of up

to * 0.6 (for LPI). This indicates marked dependence

of SERs on thematic resolution.

The comparison between individual landscape

metrics revealed three types of scaling relations

generally occurring with respect to increasing (i.e.,

from coarse to fine) thematic resolution. Despite that

these types are roughly defined, they can help to

demonstrate the essential differences in scaling rela-

tions. The first type (hereafter referred to as Type A

thematic scaling relation) is characterized by a (close

to) monotonic trend, with the strongest correlations
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(measured by the absolute value of correlation coef-

ficient) present at the coarsest (Level I) thematic

resolution (including NumP, TE, AWMSI and

AWMPFD). The second type (Type B thematic scaling

relation hereafter) is characterized by a humped or

inverse-humped trend, where intermediate (i.e., Level

II and III) thematic resolutions presented the strongest

(including MPE, MSI, MPFD, and LPI) or weakest

(MPS, ED, PD, and PSCoV) correlations. The third

type (Type C thematic scaling relation hereafter)

illustrates a scale-invariant relation (CA and PLAND).

Collectively, the power of the 16 selected landscape

metrics showed an almost scale-invariant trend at

coarser (Levels I–III) thematic resolutions, jointly

explaining about 25% of the between-city variation of

GHG emissions. Explained variation sharply

2
0.

2
0.

6
NumP

IV III II I

*

2
0.

2
0.

6

TE

IV III II I

2
0.

2
0.

6

CA

IV III II I

2
0.

2
0.

6

PLAND

*** ***

2
0.

2
0.

6

MPS

IV III II I

* 2
0.

2
0.

6

MPE

IV III II I

**

2
0.

2
0.

6

ED

IV III II I

**
*

2
0.

2
0.

6

PD

IV III

*

2
0.

2
0.

6

LPI

IV III II I

2
0.

2
0.

6

PSCoV

IV III II I

* *

2
0.

2
0.

6

PSSD

IV III II I

2
0.

2
0.

6

MPAR

2
0.

2
0.

6

MSI

IV III II I

*

2
0.

2
0.

6

AWMSI

IV III II I

** *
2

0.
2

0.
6

MPFD

IV III II I

**

2
0.

2
0.

6

AWMPFD

** *****

***

*** ***

**

**

***
**

***

**

II I

IV III II I

IV III II I

IV III II I

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

Thematic Level of Urban Atlas data

CoarseFine

Fig. 2 Pearson’s r correlation coefficient between 16 landscape

metrics and per capita GHG emissions at 4 thematic resolutions.

I–IV indicate from coarse to fine thematic resolution of the

Urban Atlas dataset. Positive versus negative correlations are

contrasted by white and gray areas, ***P\ 0.001, **P\ 0.01,
*P\ 0.05
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increased to about 40% at the finest thematic resolu-

tion of Level IV. The relative importance of landscape

metrics was also dependent on thematic resolution

(Supplementary Fig. 1). For instance, the most impor-

tant two metrics varied across thematic resolutions:

PLAND and LPI (Level IV), PLAND and AWMPFD

(Level III), PLAND and MPE (Level II), ED and

PLAND (Level I).

Spatial scaling relations

Our first spatial scaling approach based on the

manipulation of spatial resolution revealed a variety

of scaling relations (Fig. 3). We observed three types

of spatial scaling relations that are analogous to

thematic scaling relations. A portion of landscape

metrics showed a (close to) monotonic trend with

respect to increasing spatial resolution, with strongest

correlation found at either the coarsest (including CA,

MPS, MPE, PD, and LPI) or the finest (including

PLAND and ED) spatial resolutions. We referred to

this as Type A spatial scaling relation. In most cases,

this type is characterized by gradual trends, but

occasionally it exhibited abrupt changes with respect

to increasing spatial resolution (ED and LPI). Another

interesting feature is that significantly negative and

positive correlations can both occur at the two ends of

the scale range (MPS and PD). Type B spatial scaling

relation is characterized by a hump-shaped form, with

strongest correlations found at the intermediate spatial

scales (including MSI, AWMSI, MPFD, AWMPFD,

PSCoV, and PSSD). Type C is characterized by (close

to) scale-invariant relations, with slight variations (0.1

at a maximum) in the correlation coefficient across the

observed spatial scales (NumP and TE). The overall

explanatory power of 16 landscape metrics showed a

Type B scaling trend (Fig. 5b), with the highest found

at the 500 m resolution. The relative importance of

landscape metrics showed great dependency on spatial

resolution: the most important two metrics were ED

and PLAND (10 m resolution), PLAND and LPI (30 m

resolution), PLAND and PD (100 m resolution),

MPFD and ED (300 m resolution), LPI and PLAND

(1000 m resolution), respectively (Supplementary

Fig. 2a).

In our second spatial scaling approach, the above-

mentioned Types A and B spatial scaling relations

were also observed for the available standard ULUC

datasets (Fig. 4). Compared to the manipulative

experiment in the first approach, the scaling relations

from these standard datasets generally exhibited more

erratic patterns and weaker correlations. Five land-

scape metrics (CA, MSI, MPFD, PSSD, and MPAR)

did not correlate with GHG emissions at any obser-

vational spatial scale, and the other 6 metrics (NumP,

TE, MPE, AWMSI, AWMPFD, and PSCoV) correlated

significantly at only one spatial scale. Similar to the

manipulated data in the first scaling approach, the

overall explanatory power of the metrics also showed

an erratic scaling trend, but the largest explanatory

power was found at the 300 m resolution (Fig. 5c). For

the relative importance of landscape metrics, the most

important two metrics were ED and PLAND (10 m

resolution), PLAND and LPI (30 m resolution), MPAR

and PLAND (100 m resolution), ED and PLAND

(300 m resolution), PLAND and MSI (500 m resolu-

tion), ED and LPI (1000 m resolution), respectively

(Supplementary Fig. 2b), suggesting marked depen-

dency on spatial resolution.

Interestingly, these two scaling approaches can

result in largely different SERs and scaling relation for

some landscape metrics. For instance, in the first

approach, ED was positively correlated with GHG

emissions at most spatial scales, whereas the correla-

tion became mostly negative when applied to the

standard ULUC datasets, showing apparently different

types of scaling trend as well. The overall explanatory

power and relative importance of landscape metrics

also differed substantially between the two scaling

approaches.

Discussion

Our scaling analyses clearly demonstrated that the

observed relationships between urban landscape struc-

ture and GHG emissions across the 52 European cities

depended on both thematic and spatial resolutions of

ULUC data. Strikingly, we did not find consistent

scaling relations over the observational scales in the

sense that, for different landscape metrics, the SERs

can have the largest strength at either coarse, or fine, or

intermediate scales across the observational scale

range. Characteristic, or intrinsic, scale of a landscape

is the level at which the dominant pattern (or the

dominant interaction between two spatial structures/

phenomena) emerges, giving rise to stronger correla-

tions between certain pairs of variables (Wu et al.
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2006; Buyantuyev et al. 2010; Xu et al. 2012). Such

characteristic scales are often recognized as optimal

scales for quantifying landscape patterns or pattern–

process relationships (urban spatial structure vs.

GHG emissions in our case). Our results suggest that

within the studied scale domain, there were no

consistently ‘optimal’ thematic or spatial scales for

quantifying SERs based on the selected set of

landscape metrics. For each studied city, the GHG

emission has a fixed value for different thematic/

spatial resolutions, leaving scale dependence of

landscape metrics as the direct explanation for the

scale dependence of SERs.

The effect of thematic resolution on landscape

pattern and processes has been increasingly recog-

nized during the past ten years (Bailey et al. 2007a, b;

Buyantuyev and Wu 2007; Buyantuyev et al. 2010;

Zhou et al. 2014). Previous systematic thematic

scaling analyses have shown that many landscape

metrics present monotonically increasing, decreasing,

2
0.

2
0.

6
NumP

10m 30m 100m 500m

* * * *

2
0.

2
0.

6

TE

** ** ***

2
0.

2
0.

6

CA

* ** **

2
0.

2
0.

6

PLAND

*** *** ** ** *

2
0.

2
0.

6

MPS

*

*
2

0.
2

0.
6

MPE

* **

2
0.

2
0.

6

ED

** **

2
0.

2
0.

6

PD

*

*

2
0.

2
0.

6

LPI

2
0.

2
0.

6

PSCoV

* * **

2
0.

2
0.

6

PSSD

**

2
0.

2
0.

6

MPAR

2
0.

2
0.

6

MSI

** * *

2
0.

2
0.

6

AWMSI

*** *** ** *
2

0.
2

0.
6

MPFD

*

2
0.

2
0.

6

AWMPFD

** ** *

300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m

10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m

10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m

10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m 10m 30m 100m 500m300m 1000m

**** ***

*** ****

***

**

**

**

*** ****** ***

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

Spatial Resolution of Urban Atlas data
CoarseFine

***

***
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or humped behaviors with respect to increasing

thematic resolution (Buyantuyev and Wu 2007;

Buyantuyev et al. 2010). Furthermore, it has been

shown that strong correlations between landscape

metrics and physical (Zhou et al. 2014), biological

(Bailey et al. 2007a, b), and socioeconomic (Buyan-

tuyev et al. 2010) variables can arise at a variety of

thematic resolutions, suggesting that various land-

scape processes that interact with different facets of

landscape structure can be better reflected by corre-

spondingly different classification schemes and the-

matic resolutions of landscape maps. In our study, we

also observed such diverse thematic scaling behaviors

of SERs, indicating that complexity can arise from

even a single specific landscape variable, such as GHG

emissions, in response to variation of thematic reso-

lution. The scale-invariant behavior ofCA andPLAND

can be explained by the fact that these two metrics
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measuring, respectively, absolute and relative city size

remain constant at any thematic resolution. It makes

intuitive sense that the strongest collective explana-

tory power of landscape metrics was observed at the

finest thematic resolution. GHG emissions are associ-

ated with specific urban functioning in human daily

life. Finer land use/cover classification schemes can

well distinguish between these functioning, therefore,

better capture the link with GHG emissions.

In line with previous spatial scaling analyses of real

and contrived landscapes (Wu et al. 2002; Shen et al.

2004; Wu 2004), we found monotonic, humped, and

invariant behaviors with respect to increasing spatial

scale. Despite the agreement, our results had some

major differences from previous studies. In contrast to

the previous finding that different scaling relations

could be attributed to different categories of landscape

metrics (e.g., compositional vs. shape metrics) (Bailey

et al. 2007a, b), a surprising finding here is that

confounding trends can be sometimes detected even

for landscape metrics that are intentionally used to

measure same structural attributes. For example, very

similar shape metrics, such as MSI vs. AWMSI and

MPFD vs. AWMPFD, had contrasting (negative vs.

positive) correlations with GHG emissions, and very

different thematic scaling relations (monotonic vs.

humped). This suggests that SERs are rather metric-

sensitive. Another surprising finding is that opposite,

but both significant, correlations can be observed at

the coarsest and finest spatial resolutions. This may

imply that there exists more than one characteristic

scale in the system, corresponding with different

interactions between urban spatial structure and GHG

distribution at these scales. While the scaling behav-

iors of some simple and easily interpretable landscape

metrics can be well understood (for example, with

coarsening spatial resolution, small patches would

merge into larger ones with more simplified shapes in

general, resulting in lower values of NumP and TE,

Wu et al. 2002; Wu 2004; Šı́mová and Gdulová 2012),

metric–emission association showed more compli-

cated scaling trends, which are beyond our

speculation.
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The spatial scaling issue appears even more com-

plex when it comes to available standard ULUC data.

First, spatial scaling relations fluctuated significantly

and unpredictably. Second, the standard and manip-

ulated data could manifest very different (e.g., positive

vs. negative) SERs and scaling behaviors for same

landscape metrics. The generation of standard ULUC

datasets often involves a variety of geospatial data

(remotely sensed data, topographic maps, navigation

data, census data, etc.) with different minimum

mapping units, which could have significant influ-

ences on behaviors of landscape metrics (Šı́mová and

Gdulová 2012). Such confounding factors related to

ULUC data production practices may partly explain

why we could not observe a coherent spatial scaling

trend. However, detailed information on these con-

founding factors are often lacking, hindering further

analyses on their role in influencing the scaling trends.

In addition, accuracy of the ULUC data is likely

playing an important role in causing these perplexing

patterns. When cascading to a series of intricate

analyses, even small errors in remote sensing products

could be largely amplified and lead to biased results

(e.g., Xu et al. 2015). Referring to the simplest

common metric of overall classification accuracy,

most datasets used in our study have accuracies for

urban areas higher than the generally accepted

threshold of 85% (Thomlinson et al. 1999; Congalton

and Green 2009). However, this may not be sufficient

for eliminating uncertainties in the resulting SERs,

calling attention to in-depth sensitivity analyses in

future studies.

It has been well recognized that landscape metrics

and scale can give rise to a series of complex issues in

characterization of landscape pattern, as well as

pattern–process relationships (Tischendorf 2001; Li

and Wu 2004). Our work highlights such complexities

associated with SERs, calling attention to the impor-

tance of estimation of uncertainties that need to be

recognized by practitioners engaged in drafting urban

planning policies towards GHG mitigation. To reduce

uncertainties in our understanding of SERs, further

studies need to address both socioeconomic and

spatial driving mechanisms of urban GHG emissions,

ideally in combination with fine-scale spatial data of

GHG emissions. More in-depth analyses focusing on

both thematic and spatial scales (for instance, perform

scaling analyses on all thematic resolutions) should

facilitate a more comprehensive understanding. It is

also necessary to quantify SERs for other regions to

ascertain whether the observed scaling relations are

specific to Europe. One important caveat should not be

forgotten while conducting such analyses: spatial and

thematic scales are inter-related, in the sense that

modifying one may often inadvertently affect the

other. For example, finer thematic resolution would

often require finer spatial resolution to be able to

depict classes characterized by small patches. Also,

increasing/decreasing thematic resolution may result

in patch coalesces and other unpredictable arrange-

ment of patches.

In summary, despite the consensus on positive

effects of compact spatial structure of urban areas on

mitigating GHG emissions, our results demonstrate

that detection of such effects is highly sensitive to

spatial and thematic resolutions of landscape data, thus

providing justification for multi-scale approaches in

further studies quantifying SERs. Important caveats

should be taken when it comes to interpretations based

on single landscape metrics. Particular consideration

may be given to those metrics that are easily

interpretable, have predictable scaling behaviors (in

terms of metric response to scale, as well as their

resulting SERs response to scale), and are possibly

important for shaping SERs. PLAND, ED, and LPI

among some others are found to have all those

qualities. Metrics that could lead to contradictory

scaling relations (e.g., MSI, AWMSI, MPFD, and

AWMPFD) should be used with caution or avoided. It

is imperative to quantify SERs over theoretically and

practically meaningful ranges of spatial/thematic

scales that allow for a systematic investigation on

scaling behaviors and detection of characteristic

scales. These are essential for exploratory analyses

of SERs, because arbitrary selection of metrics and

scales can easily lead to biased conclusions. Overall,

our work suggests that there is no simple answer to the

question ‘What are the optimal thematic/spatial

scales?’ in this context. Inappropriate cross-scale

extrapolation of statistical relationships may cause

the so-called problem of ‘ecological fallacy’ (Open-

shaw and Taylor 1979; Wu 2004).
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