Skip to main content
Log in

Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials

Metal perchlorates with carbohydrazide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal kinetic performance and storage life of tris(carbohydrazide)manganese(II) perchlorate (GTM), tris(carbohydrazide)nickel(II) perchlorate (GTN), tris(carbohydrazide)zinc(II) perchlorate (GTX), and tris(carbohydrazide)cadmium(II) perchlorate (GTG), as important high-energy and green materials, were carried out by the DSC, (thermogravimetric) TG, and a dynamic pressure measuring thermal analysis (DPTA) method. The thermal behavior, kinetics, thermal safety, and storage life of them were investigated. The results show that there are three mass-loss stages in TG curves, and one endothermic peak and two exothermic peaks in DSC curve for them. The first mass-loss stages are the melting processes, and the thermal decompositions have happened in this stage. The kinetic data were obtained from the DSC and TG curves by integral and differential methods. The most probable kinetic models and kinetic equations were suggested by polynomial fitting the kinetic data. The specific heat capacity was determined with theoretical calculation method, and then self-accelerating decomposition temperature (T SADT), thermal ignition temperature (T TIT), critical temperatures of thermal explosion (T b), and the adiabatic time-to-explosion (t TIAD) are calculated, respectively. The storage lives of 0.01 % conversion rate for GTM, GTN, GTX, and GTG at 25 °C are 4.52a (annual), 9.26a 10.75a, and 7.57a. GTX is the most excellent carbohydrazide perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chavez DE. The development of environmentally sustainable manufacturing technologies for energetic materials. Green Energ Mater. 2014;235–258.

  2. Olah GA, Squire DR. Chemistry of energetic materials. Waltham: Academic press; 1991.

    Google Scholar 

  3. Furman D, Kosloff R, Dubnikova F, Zybin SV, Goddard WA III, Rom N, et al. Decomposition of condensed phase energetic materials: interplay between uni-and bimolecular mechanisms. J Am Chem Soc. 2014;136(11):4192–200.

    Article  CAS  Google Scholar 

  4. Zhang Q, Shreeve JnM. Metal-organic frameworks as high explosives: a new concept for energetic materials. Angew Chem Int Ed. 2014;53(10):2540–2.

    Article  CAS  Google Scholar 

  5. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD. A review of energetic materials synthesis. Thermochim Acta. 2002;384(1):187–204.

    Article  CAS  Google Scholar 

  6. Sikder A, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112(1):1–15.

    Article  CAS  Google Scholar 

  7. Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151(2):289–305.

    Article  CAS  Google Scholar 

  8. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, et al. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161(2):589–607.

    Article  CAS  Google Scholar 

  9. Figen AK, Atali PY, Pişkin MB. Thermal properties and kinetics of new-generation posterior bulk fill composite cured light-emitting diodes. J Therm Anal Calorim. 1–12.

  10. Deng J, Wang K, Zhang Y, Yang H. Study on the kinetics and reactivity at the ignition temperature of Jurassic coal in North Shaanxi. J Therm Anal Calorim. 1–7.

  11. Gil A, Barreneche C, Moreno P, Solé C, Inés Fernández A, Cabeza LF. Thermal behaviour of d-mannitol when used as PCM: comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Appl Energy. 2013;111:1107–13.

    Article  CAS  Google Scholar 

  12. López-González D, Fernandez-Lopez M, Valverde J, Sanchez-Silva L. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Appl Energy. 2014;114:227–37.

    Article  Google Scholar 

  13. Tang Z, Ren Y, Yang L, Zhang T, Qiao X, Zhang J, et al. Researches on thermal decomposition kinetics of composite modified double-base propellants. Chin J Chem. 2011;29(3):411–4.

    Article  CAS  Google Scholar 

  14. Wang S, Yang L, Zhang T, Zhang G, Zhang J, Zhou Z. Synthesis, crystal structure, thermal decomposition, and explosive properties of Bi(tza)(3) (n) (tza = tetrazole acetic acid). J Coord Chem. 2011;64(15):2583–91.

    Article  CAS  Google Scholar 

  15. Wu B, Wang S, Yang L, Zhang T, Zhang J, Zhou Z, et al. Preparation, crystal structures, thermal decomposition and explosive properties of two novel energetic compounds M (IMI) 4 (N3) 2 (M = CuII and NiII, IMI = Imidazole): the new high-nitrogen materials (N > 46 %). Eur J Inorg Chem. 2011;2011(16):2616–23.

    Article  Google Scholar 

  16. Comesaña R, Gómez M, Álvarez Feijoo M, Eguía P. CFD simulation of a TG–DSC furnace during the indium phase change process. Appl Energy. 2013;102:293–8.

    Article  Google Scholar 

  17. Lazaro A, Peñalosa C, Solé A, Diarce G, Haussmann T, Fois M, et al. Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Appl Energy. 2013;109:415–20.

    Article  Google Scholar 

  18. Grosso R, Matos J, Muccillo E. Thermal and spectroscopic characterization of nanostructured zirconia–scandia–dysprosia. J Therm Anal Calorim. 1–6.

  19. Brill T, Gongwer P, Williams G. Thermal decomposition of energetic materials. 66. Kinetic compensation effects in HMX, RDX, and NTO. J Phys Chem. 1994;98(47):12242–7.

    Article  CAS  Google Scholar 

  20. Fathollahi M, Mohammadi B, Mohammadi J. Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles. Fuel. 2013;104:95–100.

    Article  CAS  Google Scholar 

  21. Liu R, Zhou Z, Yin Y, Yang L, Zhang T. Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20. Thermochim Acta. 2012;537:13–9.

    Article  CAS  Google Scholar 

  22. Křižanovský L, Mentlik V. The use of thermal analysis to predict the thermal life of organic electrical insulating materials. J Therm Anal Calorim. 1978;13(3):571–80.

    Article  Google Scholar 

  23. Eroğlu MS. Thermoanalytical life time testing of energetic poly (glycidyl azide) and its precursor, poly (epichlorodydrin). Polym Bull. 1998;41(1):69–76.

    Article  Google Scholar 

  24. Yi J-H, Zhao F-Q, Wang B-Z, Liu Q, Zhou C, Hu R-Z, et al. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater. 2010;181(1):432–9.

    Article  CAS  Google Scholar 

  25. de Klerk W, vander Meer N, Eerligh R. Microcalorimetric study applied to the comparison of compatibility tests (VST and IST) of polymers and propellants. Thermochimica acta. 1995;269:231–43.

    Article  Google Scholar 

  26. Chovancová M, Zeman S. Study of initiation reactivity of some plastic explosives by vacuum stability test and non-isothermal differential thermal analysis. Thermochim Acta. 2007;460(1):67–76.

    Article  Google Scholar 

  27. Zeman S, Gazda Š, Štolcová A, Dimun A. Dependence on temperature of the results of the vacuum stability test for explosives. Thermochim Acta. 1994;247(2):447–54.

    Article  CAS  Google Scholar 

  28. Corwin AH, Reinheimer JD. The reduction of carbohydrazide. The acidity of carbohydrazide, semicarbazide and urea1. J Am Chem Soc. 1951;73(3):1184–6.

    Article  CAS  Google Scholar 

  29. Rahn PC, Siggia S. Carbohydrazide as a solid reducing agent for reaction gas chromatography. Determination of azo, nitro, and sulfonate compounds. Anal Chem. 1973;45(14):2336–41.

    Article  CAS  Google Scholar 

  30. Akiyoshi M, Nakamura H, Hara Y. The thermal behavior of the zinc complexes as a non-azide gas generant for safer driving—Zn complexes of the carbohydrazide and semicarbazide. Propell Explos Pyrot. 2000;25(1):41–6.

    Article  CAS  Google Scholar 

  31. Dutta R, Sarkar A. A study of metal complexes of carbohydrazide. J Inorg Nucl Chem. 1981;43(10):2557–9.

    Article  CAS  Google Scholar 

  32. Mansour AK, Eid MM, Khalil NS. Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules. 2003;8(10):744–55.

    Article  CAS  Google Scholar 

  33. Kon’kova T, Matyushin Y, Sidnitskii V. Thermodynamics of coordination Co (II), Ni (II), Zn, and Cd compounds with carbohydrazide. Chem Phys Rep. 1995;14(6):865.

    Google Scholar 

  34. Akiyoshi M, Hirata N, Nakamura H, Hara Y. The thermal behavior of the carbohydrazide complexes of certain metals (1): The synthesis and the thermal analysis. Kayak Gakkaishi. 1996;57(6):238–43.

    CAS  Google Scholar 

  35. Bustos C, Burckhardt O, Schrebler R, Carrillo D, Arif A, Cowley A, et al. Synthesis, characterization, and electrochemistry of cis-dioxomolybdenum (VI) complexes of Schiff bases derived from carbohydrazide, thiocarbohydrazide, and salicylaldehyde. Crystal structures of [MoO2 (o-OC6H4CH: NN: CSNHN: CHC6H4OH-o) Me2SO] and [(MoO2)2 (o-OC6H4CH: NN: CONN: CHC6H4O-o)(Me2SO)2]. cntdot. 0.5 Me2SO. Inorg Chem. 1990;29(20):3996–4001.

    Article  CAS  Google Scholar 

  36. Bushuyev OS, Arguelles FA, Brown P, Weeks BL, Hope-Weeks LJ. New energetic complexes of copper (II) and the acetone carbohydrazide schiff base as potential flame colorants for pyrotechnic mixtures. Eur J Inorg Chem. 2011;2011(29):4622–5.

    Article  CAS  Google Scholar 

  37. Ivanov M, Kalinichenko I. Some complexes of metal nitrates, sulfates and chlorides with carbohydrazide. Russ J Inorg Chem. 1981;26(8):2134–7.

    CAS  Google Scholar 

  38. Ivanov M, Kalinichenko I, Savitskii A. Complexes of manganese (II), cobalt (II), nickel (II), cadmium and zinc with carbohydrazide. Russ J Coord Chem. 1985;11(1):45–8.

    CAS  Google Scholar 

  39. Sinditskii V, Fogelzang A, Dutov M, Sokol V, Serushkin V, Svetlov B, et al. Structure of complex compounds of metal chlorides, sulfates, nitrates and perchlorates with carbohydrazide. Zh Neorg Khim (Russ J Inorg Chem). 1987;32(8):1944–9.

    CAS  Google Scholar 

  40. Sindiskii V, Vernidub TY, Fogelzang A. Metal azide complexes with carbohydrazide. Zn Neorgan Khim (Russ J Inorg Chem). 1990;35(3):685–8.

    Google Scholar 

  41. Sinditskii V, Serushkin V. Design and combustion behaviour of explosive coordination compounds. Def Sci J (Def Sci J). 1996;46(5):371–83.

    Article  Google Scholar 

  42. Akiyoshi M, Hirata N, Nakamura H, Hara Y. The thermal behavior of the carbohydrazide complexes of certain metals (3): the gas evolved in the decomposition of the Mg complex. Kayak Gakkaishi. 1997;58(2):68–75.

    CAS  Google Scholar 

  43. Akiyoshi M, Nakamura H, Hara Y. The thermal behavior of the zinc complexes as a non-azide gas generant for safer driving—zn complexes of the carbohydrazide and semicarbazide. Propellants Explos Pyrotech. 2000;25(1):41–6.

    Article  CAS  Google Scholar 

  44. Akiyoshi M, Nakamura H, Hara Y. The strontium complex nitrates of carbohydrazide as a non-azide gas generator for safer driving–the thermal behavior of the sr complex with various oxidizing agents. Propellants Explos Pyrotech. 2000;25(5):224–9.

    Article  CAS  Google Scholar 

  45. Talawar M, Agrawal A, Chhabra J, Asthana S. Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide. J Hazard Mater. 2004;113(1):57–65.

    Article  CAS  Google Scholar 

  46. Sonawane S, Gore G, Polke B, Nazare A, Asthana S. Transition metal carbohydrazide nitrates: burn-rate modifiers for propellants. Def Sci J. 2006;56(3):391–8.

    Article  CAS  Google Scholar 

  47. Wei Z, Zhang T, Lu C, Yu K. A study of preparation and molecular structure of [Cd (NH2NHCONHNH2)(3)](ClO4)(2). Chin J Inorg Chem. 1999;15(4):482–6.

    CAS  Google Scholar 

  48. Qi S, Li Z, Zhang T, Zhou Z, Yang L, Zhang J, et al. Crystal structure, thermal analysis and sensitivity property of Zn(CHZ)3(ClO4)2. Acta Chim Sin. 2011;69(8):987–92.

    CAS  Google Scholar 

  49. Huang H, Zhang T, Zhang J, Wang L. A screened hybrid density functional study on energetic complexes: cobalt, nickel and copper carbohydrazide perchlorates. J Hazard Mater. 2010;179(1–3):21–7.

    Article  CAS  Google Scholar 

  50. Sun Y, Zhang T, Zhang J, Qiao X, Yang L. Flash pyrolysis study of zinc carbohydrazide perchlorate using T-jump/FTIR spectroscopy. Combust Flame. 2006;145(3):643–6.

    Article  CAS  Google Scholar 

  51. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  52. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  53. Nong W, Chen X, Wang L, Liang J, Zhong L, Tong Z. Nonisothermal decomposition kinetics of abietic acid in argon atmosphere. Ind Eng Chem Res. 2011;50(24):13727–31.

    Article  CAS  Google Scholar 

  54. Chen Z, Chai Q, Liao S, He Y, Li Y, Wu W, et al. Application of simplified version of advanced isoconversional procedure in non-isothermal kinetic study. J Therm Anal Calorim. 2013;113(2):649–57.

    Article  CAS  Google Scholar 

  55. Jankovic B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139(1):128–35.

    Article  CAS  Google Scholar 

  56. Huang M-X, Zhou C-R, Han X-W. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113(2):589–93.

    Article  CAS  Google Scholar 

  57. Jankovic B, Mentus SP. A kinetic study of the nonisothermal decomposition of palladium acetylacetonate investigated by thermogravimetric and x-ray diffraction analysis determination of distributed reactivity model. Metall Mater Trans a-Phys Metall Mater Sci. 2009;40A(3):609–24.

    Article  CAS  Google Scholar 

  58. Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: role of the surface product layer. J Phys Chem A. 2013;117(9):1880–9.

    Article  CAS  Google Scholar 

  59. Hu RZ, Chen SP, Gao SL, Zhao FQ, Luo Y, Gao HX, et al. Thermal decomposition kinetics of the Pb0.25Ba0.75(TNR)center dot H2O complex. J Hazard Mater. 2005;117(2–3):103–10.

    Article  CAS  Google Scholar 

  60. Xu K-Z, Zhang H, Liu P, Huang J, Ren Y-H, Wang B-Z, et al. Structural and thermal characterization of a novel high nitrogen energetic material: (NH4)2DNMT. Propellants Explos Pyrotech. 2012;37(6):653–61.

    Article  CAS  Google Scholar 

  61. Ren Y-H, Li W, Zhao F-Q, Yi J-H, Yan B, Ma H-X, et al. Crystal structure and thermal behaviors for 3,5-dinitrobenzoic acid of 3,5-diamino-1,2,4-triazole. J Anal Appl Pyrol. 2013;102:89–96.

    Article  CAS  Google Scholar 

  62. Dong H, Hu R, Yao P, Zhang X. Thermograms of energetic materials. Beijing: Natl Def Ind Press; 2002. p. 276–300.

    Google Scholar 

  63. Holl G, Klapotke TM, Polborn K, Rienacker C. Structure and bonding in 2-diazo-4,6-dinitrophenol (DDNP). Propellants Explos Pyrotech. 2003;28(3):153–6.

    Article  CAS  Google Scholar 

  64. Yang Z-W, Liu Y-C, Liu D-C, Yan L-W, Chen J. Synthesis and characterization of spherical 2-diazo-4,6-dinitrophenol (DDNP). J Hazard Mater. 2010;177(1–3):938–43.

    Article  CAS  Google Scholar 

  65. Xu K, Song J, Zhao F, Ma H, Gao H, Chang C, et al. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158(2–3):333–9.

    Article  CAS  Google Scholar 

  66. Liu R, Zhang T, Yang L, Zhou Z, Hu X. Research on thermal decomposition of trinitrophloroglucinol salts by DSC, TG and DVST. Cent Eur J Chem. 2013;11(5):774–81.

    Article  CAS  Google Scholar 

  67. Y-h Sun, Zhang T-L, Zhang J-G, Yang L. The flash pyrolysis process of [Zn (CHZ)3](CIO4)2 monitored with T-jump/FTIR spectroscopy. Initiat Pyrotech. 2005;3(104):18.

    Google Scholar 

  68. Hu R-Z, Shi Q-Z. Thermal analysis kinetics, vol. 56. Beijing: Science Press; 2001. p. 67.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Technology fund on Applied Physical Chemistry Laboratory of China (9140C3703051105 and 9140C370303120C37142) and State Key Laboratory of Explosion Science and Technology (QNKT12-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, YT., Zhang, TL. et al. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim 119, 659–670 (2015). https://doi.org/10.1007/s10973-014-4180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4180-x

Keywords

Navigation