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Abstract
We prove local convergence results for rerooted conditioned multi-type Galton–
Watson trees. The limit objects are multitype variants of the random sin-tree
constructed by Aldous (1991), and differ according to which types recur infinitely
often along the backwards growing spine.

Keywords Multi-type Galton–Watson trees · Fringe distributions · Local
convergence

1 Introduction

The study of multi-type branching processes has received growing attention in recent
literature, see [1,5,7,9,13,14,18,24]. The reducible case received particular attention in
the line of research by [6,9,11,25–28].Multi-typeGalton–Watson trees are also related
to numerous examples of randomgraphs and discrete structures, see [12,15,19,20,22].1

In the present work, we prove concentration inequalities for the number of extended
fringe subtrees for conditioned multi-type Galton–Watson trees, see Lemma 1. This
allows us to establish local convergence for conditioned multi-type Galton–Watson
trees rerooted at a random location under general assumptions, see Theorems 1, 2, and
3. The limit objects aremulti-type generalization of Aldous’ invariant random sin-tree,
and hence generalize similar objects for monotype trees, see [2,10,21]. Such trees
consist of a root-vertex with an infinite line of ancestors, called the spine, from which
further random trees branch off. Depending on the branchingmechanism, certain types
recur infinitely often along the spine, and others do not.

We apply our results to the following four settings:

1 The results of [22] were initially part of the present work. The paper was split during the review process
following a referee’s recommendation.
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1. Sesqui-type trees, whose offspring distribution is critical and has finite variance,
conditioned having a total number n of vertices, regardless of their type. See The-
orem 4.

2. Reducible multi-type Galton–Watson trees conditioned on having n vertices. See
Theorem 5.

3. Irreducible regular criticalmulti-typeGalton–Watson trees conditionedon the event
that a fixed linear combination of the sub-populations by type equals n. See Theo-
rem 6.

4. Irreducible critical multi-type Galton–Watson trees conditioned on having a vector
k(n) ∈ N

d
0 as total population by types. See Theorem 7.

Notation

We let N0 = {0, 1, 2, . . .} denote the collection of non-negative integers. The ran-
dom variables in this paper are either canonical or defined some probability space
(Ω,F , P). The law of a random variable X : Ω → S with values in some measurable
space S is denoted by L(X). If Y : Ω → S′ is a random variable with values in some
measurable space S′, we let L(X | Y ) denote the conditional law of X given Y . All
unspecified limits are taken as n → ∞. Convergence in probability and distribution

are denoted by
p−→ and

d−→ . Almost sure convergence is denoted by
a.s.−→ . We say

an event holds with high probability if its probability tends to 1 as n becomes large. For
any sequence an > 0 we let op(an) denote an unspecified random variable Zn such

that Zn/an
p−→ 0. Likewise, Op(an) denotes a random variable Zn such that Zn/an

is stochastically bounded.

Index of Terminology

The following list summarizes frequently used terminology.

G A collection of vertex types, page 3.
σ An ordered G-offspring distribution with σ = (σ i )i∈G, page 6.
ξ The unordered G-offspring distribution ξ = (ξ i )i∈G corresponding to σ ,
page 6.
#i (·) Number of vertices of type i ∈ G, page 4.
#(·) Total number of vertices, page 4.
T A σ -Galton–Watson tree with random root type α, page 6.
Tα Like T , but non-root vertices of type κ receive no offspring, page 7.
T κ Like Tα , but root has type κ , page 7.
NT (·) Number of occurrences of some tree T as a fringe subtree, page 7.
T (κ) Like T , but root has type κ , page 8.
Tn The tree T conditioned on some event En , page 8.
T̂

κ
A random tree with a marked leaf of type κ . Distributed like T κ biased by

the number of vertices with type κ , page 10.
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T̂ (κ) A random infinite tree with a marked vertex of type κ and a spine that
grows backwards, page 10.
T̂

κ,γ
A random tree with root type κ and a marked vertex of type γ . Obtained

by biasing T κ by the number of vertices of type γ , page 11.
T̂ (κ, γ ) A random infinite tree with a marked vertex of type γ and a spine that
grows backwards, page 12.

2 Basic Definitions

2.1 Multi-type Plane Trees

Suppose we are given a countable non-empty set G whose elements we call types. A
G-type plane tree is a plane tree together with a map that assigns to each vertex a type
from G.

In the present work we only consider trees where each vertex has a finite number
of children. Such trees are called locally finite. In a locally finite G-type tree, the
offspring of any vertex is encoded by a word from the free monoid

〈G〉 = ∪n≥0G
n . (1)

Here G0 = {∅} corresponds to the case where there is no offspring at all.
To any word from 〈G〉 we may assign a vector from the coproduct N

(G)
0 , that is,

the collection of all functions G → N0 that are zero everywhere except for a finite
number of types. Here the j th coordinate of the vector corresponds to the number
of occurrences of a type j ∈ G in the word. (For example, if G = {a, b, c} is a
three-element set, then the word (a, c, c, a, b, a) ∈ 〈G〉 corresponds to the vector
(xi )i∈{a,b,c} ∈ N

(G)
0 with xa = 3, xb = 1, and xc = 2.)

For any G-tree T and any type i ∈ G we let

#i T ∈ N0 ∪ {∞} (2)

denote the number of vertices of type i in T . Furthermore,

#T :=
∑

i∈G
#i T (3)

denotes the total number of vertices. We say T is finite, if #T < ∞.

2.2 Marked Trees

Let T denote a locally finite G-type tree and let v ∈ T be one of its vertices. We say
the tree T is marked at v. The pair (T , v) is called a marked tree. The directed path
from v to the root of T is called the spine. The tree f (T , v) formed by v and all its
descendants is called the fringe subtree of T at v. For any k ≥ 0 we let f [k](T , v)
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Fig. 1 The left-hand side illustrates a finite marked plane tree (T , v), and the right-hand side its extended
fringe subtree f [1](T , v)

denote the fringe subtree of the kth ancestor of v, marked at the vertex corresponding to
v. (In the case k = 0, the kth ancestor of v is the vertex v itself, and the marked vertex
of f [0](T , v) coincides with its root vertex.) If the kth ancestor of v does not exist,
then we set f [k](T , v) to some place-holder value. We call f [k](T , v) an extended
fringe subtree. See Fig. 1 for an illustration.

We may also consider locally finiteG-type plane trees with a marked vertex having
a countably infinite number of ancestors. Such a plane tree has hence an infinite
backwards growing spine and no root. See [2,21] for related notions in the monotype
setting. The notion of extended fringe subtrees extends naturally to this setting.

Let Xf denote the collection of all finite marked G-type trees. Let X denote the
union of Xf and the collection of all marked plane trees with an infinite spine such
that all extended fringe subtrees are finite. We may endow X with a metric

dX(T •
1 , T •

2 ) =
{
2, f (T •

1 ) �= f (T •
2 )

2− sup{h≥0| f [h](T •
1 )= f [h](T •

2 )}, f (T •
1 ) = f (T •

2 )
, T •

1 , T •
2 ∈ X.

(4)

Proposition 1 The space (X, dX) is Polish and Xf ⊂ X is a countable dense subset.

Proof The space is complete: If (T •
n )n≥1 is a Cauchy sequence in (X, dX), then for

each integer h ≥ 1 there is an integer Nh ≥ 1 such that for all n ≥ Nh we have
f [h](T •

n ) = f [h](T •
Nh

). We may define a tree T • ∈ X such that f [h](T •) = f [h](T •
Nh

)

for all h ≥ 1. This tree satisfies limn→∞ dX(T •, T •
n ) = 0.

The space is separable andXf is a countable dense subset: There are countablymany
finite plane trees. As G is countable, each finite tree has a countable number of type
configurations. Hence, there are countably many finite G-type trees. Each has a finite
number of locations for a marked vertex. Hence, Xf is countable. Moreover, for any
integerh ≥ 0 and anyT • ∈ X\Xf it holds that f [h](T •) ∈ Xf anddX(T •, f [h](T •)) =
2−h . We may force this distance to be arbitrarily small by taking h sufficiently large.


�
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2.3 Annealed and Quenched Convergence of RandomTrees

Suppose that (Tn)n≥1 is a sequence of random finiteG-type plane trees. Let G0 ⊂ G
be a non-empty subset so that

P

⎛

⎝
∑

i∈G0

#iTn > 0

⎞

⎠ → 1 (5)

as n → ∞.Wemay select a vertex vn from Tn uniformly at random among all vertices
of Tn whose type lies in G0. That is, if vertices of such types are present, otherwise
we set vn to some placeholder value.

Annealed convergence of (Tn, vn) refers to distributional convergence in the usual
sense, that is

(Tn, vn)
d−→ T• (6)

for some random variable T• with values in X. This is equivalent to requiring

P( f [h](Tn, vn) = T •) → P( f [h](T•) = T •) (7)

for any integer h ≥ 0 and any finite marked tree T • ∈ Xf .
Let M1(X) denote the Polish space of Borel probability measures on X. Given a

finite G-type tree T having at least one vertex with type in G0, we may consider the
probability measure PT ∈ M1(X) that corresponds to the uniformmeasure on all pairs
(T , v), with v a vertex of T having type in G0. Thus,

PTn

d=L((Tn, vn) | Tn). (8)

We say (Tn, vn) converges in the quenched sense to T•, if

PTn

p−→L(T•). (9)

This is equivalent to requiring that for any integer h ≥ 0 and any finite marked tree
T • ∈ Xf , with the marked vertex having type in G0, it holds that

|{v ∈ Tn | f [h](Tn, v) = T •}|∑
i∈G0

#iTn

p−→ P( f [h](T•) = T •). (10)

3 RerootedMulti-type Galton–Watson Trees

Let G denote a countable non-empty set of types. Let σ = (σ i )i∈G denote an inde-
pendent family with σ i a random word from 〈G〉 for each type i ∈ G. We let ξ i
denote the random vector corresponding to σ i . That is, ξ i takes values in N

(G)
0 , and
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for each j ∈ G the j-th coordinate of ξ i is equal to the number of occurrences of
the letter j in the random word σ i . Let ξ = (ξ i )i∈G. By abuse of notation, we call
σ an ordered G-type offspring distribution, and ξ the associated (unordered) G-type
offspring distribution.

A G-type branching process with offspring distribution σ starts with a single indi-
vidual whose type is determined by an independent random variable α with values in
G. Any individual of type i ∈ G receives offspring according to an independent copy
of σ i , with the j-th coordinate of the copy corresponding to the number of children
with type j .

We let T denote the G-type plane tree that encodes the genealogical structure of
the G-type branching process, and say T is a σ -Galton–Watson tree.

We will always make the assumption that

P(#iT �= 0) > 0 for all i ∈ G. (11)

We may do so without loss of generality, since we may shrink the set G to exclude
irrelevant types. Furthermore, we only consider offspring distributions for which

T isalmostsurely f ini te. (12)

See for example [3, Thm. 2 on page 186] for conditions ensuring this.

3.1 Fringe Subtrees

Let us fix a type κ ∈ G. We let Tα denote a random multi-type tree defined similarly
to T (with the root type determined according to an α-distributed choice), only that
non-root vertices of type κ receive no offspring. This way, T may be generated by
starting with Tα and inserting at each non-root vertex of type κ an independent copy
of T conditioned on having root type κ . We let T κ be defined analogously to Tα ,
but we start with a root having a fixed type κ . Moreover, we let T κ

1 , T
κ
2 , . . . denote

independent copies of T κ . Assumption (12) entails that

P(#κT < ∞) = 1. (13)

It follows by the standard depth-first-search exploration that the multi-type Galton–
Watson tree T may be constructed from a sequence

(Tα, T κ
1 , . . . , T

κ
L) (14)

with L ≥ 0 the smallest non-negative integer for which

#κTα − 1α=κ +
L∑

i=1

(
#κT κ

i − 1
) = L. (15)
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In particular,

#κT = L + 1α=κ . (16)

Let T be a finite G-type tree whose root has type κ . We may decompose T in the
same way, so that it corresponds to a sequence of trees (T1, . . . , Tk). We let NT (·)
denote a function that takes a finite G-type tree as input and returns the number of
occurrences of T as a fringe subtree. We letψ(·) denote a function that takes as input a
finite ordered sequence ofG-type trees and returns as output the number of occurrences
of (T1, . . . , Tk) as a consecutive substring. Generating T from the sequence in (14),
we may write

NT (T ) = ψ(Tα, T κ
1 , . . . , T

κ
L). (17)

Note that occurrences of (T1, . . . , Tk)may not overlap: since (T1, . . . , Tk) corresponds
to a tree, no proper initial segment (T1, . . . , Ti ) with 1 ≤ i < k may be equal to a
proper tail segment (Tk−i+1, . . . , Tk). Hence, changing one coordinate of the input of
the function ψ changes its value by at most 1.2 It follows by McDiarmid’s inequality
that for any integer � ≥ 1

P
(∣∣ψ(Tα, T κ

1 , . . . , T
κ
� ) − E

[
ψ(Tα, T κ

1 , . . . , T
κ
� )

]∣∣ ≥ x
) ≤ 2 exp

(
− 2x2

� + 1

)
.

(18)

Moreover,

E
[
ψ(Tα, T κ

1 , . . . , T
κ
� )

] = O(1) + �

k∏

s=1

P(T κ = Ts), (19)

with the O(1) term having a deterministic absolute bound that depends only on T .
Letting T (κ) denote a σ -Galton–Watson tree started at a vertex with type κ , it holds
that

k∏

s=1

P(T κ = Ts) = P(T (κ) = T ). (20)

Lemma 1 We consider the conditioned multi-type Galton–Watson tree

Tn := (T | En), (21)

2 Here is a helpful analogy: Suppose we count how often the string “and” occurs in a book as consecutive
substring. Such occurrences cannot overlap, because no proper initial segment of the string is equal to a tail
segment. Hence, if we change one letter of the book, the total number of occurrences may increase by 1,
decrease by 1, or stay the same.
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for some family of events En satisfying P(En) > 0 for all n. Suppose that there is a
deterministic sequence sn → ∞ satisfying for all ε > 0

exp(−εsn) = o(P(En)) and P(#κTn ≥ sn) → 1. (22)

Then for any finite G-type tree T with root type κ

NT (Tn)

#κTn

p−→ P(T (κ) = T ). (23)

Let f (Tn, v
κ
n ) denote the fringe subtree in Tn encountered at a uniformly selected

type κ vertex vκ
n of Tn. Then

L( f (Tn, v
κ
n ) | Tn)

p−→L(T (κ)). (24)

Here we interpret the conditional law L( f (Tn, v
κ
n ) | Tn) as a random Borel prob-

ability measure on the countable space of finite G-type plane trees equipped with the
discrete topology.

Proof of Lemma 1 Using Eqs. (16) and (17), we obtain for any ε > 0

P

(∣∣∣∣
NT (Tn)

#κTn
− P(T (κ) = T )

∣∣∣∣ ≥ ε

)

≤ P(L < sn − 1 | En)
+ P(En)−1

∑

�≥sn−1

P

(∣∣∣∣
NT (T )

#κT
− P(T (κ) = T )

∣∣∣∣ ≥ ε, L = �

)

≤ P(#κTn < sn)

+ P(En)−1
∑

�≥sn−1

P

(∣∣∣∣
ψ(Tα, T κ

1 , . . . , T
κ
� )

� + 1α=κ

− P(T (κ) = T )

∣∣∣∣ ≥ ε

)
.

Combining Eqs. (18), (19), and (20), it follows that there is a constant C > 0 that only
depends on T , such that for � ≥ sn − 1 and n large enough (so that ε� > C)

P

(∣∣∣∣
ψ(Tα, T κ

1 , . . . , T
κ
� )

� + 1α=κ

− P(T (κ) = T )

∣∣∣∣ ≥ ε

)

≤ P
(∣∣ψ(Tα, T κ

1 , . . . , T
κ
� ) − E

[
ψ(Tα, T κ

1 , . . . , T
κ
� )

]∣∣ ≥ ε� − C
)

≤ 2 exp

(
−2(ε� − C)2

� + 1

)
.
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Summing up, we obtain

P

(∣∣∣∣
NT (Tn)

#κTn
− P(T (κ) = T )

∣∣∣∣ ≥ ε

)

≤ P(#κTn < sn) + P(En)−1O(exp(−2ε2sn)). (25)

Our assumptions in (22) ensure that the upper bound in Inequality (25) tends to zero
as n becomes large. Hence, this verifies (23).

We have verified (23) for arbitrary finite T , and Assumptions (11) and (12) ensure
that T (κ) is almost surely finite. Hence, the convergence of random probability mea-
sures in (24) follows. 
�

Of course, periodicitiesmay come into play, and it is sensible to also consider events
En for which P(En) > 0 only when n is part of some infinite subset of N0. Nothing
changes in our arguments as long as we restrict n to that subset when taking limits.

Lemma 1 is rather general. Under stronger assumptions, its proof yields stronger
results:

Remark 1 We may apply Lemma 1 if

P(En) = exp(o(n)), (26)

and if there is a concentration constant c(κ) > 0 such that P(#κTn /∈ (1 ± ε)c(κ)n)

tends to zero exponentially fast for any fixed ε > 0. Using (25) it follows that

P

(∣∣∣∣
NT (Tn)

c(κ)n
− P(T (κ) = T )

∣∣∣∣ ≥ ε

)
= O(γ (ε)n) (27)

for some constant 0 < γ (ε) < 1. Hence, by the Borel–Cantelli criterium

NT (Tn)

c(κ)n
a.s.−→ P(T (κ) = T ), (28)

yielding

L( f (Tn, v
κ
n ) | Tn)

a.s.−→L(T (κ)). (29)

3.2 Multi-type Sin-trees with a Fixed Root Type

We are going to define a random infinite but locally finite multi-type tree T̂ (κ) having
an infinite spine that growth backwards.

Note that #κT (κ) is distributed like the population of a monotype Galton–Watson
tree with branching mechanism #κT κ − 1. Assumptions (11) and (12) entail that

T (κ) is almost surely finite. (30)
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This means

P(#κT κ = 1) > 0, P(#κT κ = 2) < 1, and E[#κT κ ] ≤ 2. (31)

The construction requires us to make the assumption that the κ-branching mecha-
nism is actually critical. That is, we assume in the following that

E[#κT κ ] = 2. (32)

This allows us to define the κ-biased version T̂
κ
of T κ with distribution given by

P(T̂
κ = (T κ , u)) = P(T κ = T κ) (33)

for any pair (T κ , u) of a G-type tree T κ (with the root having type κ and all non-root
vertices of type κ having no offspring) and a vertex u of T κ that is a non-root vertex of
type κ . Note that Assumption (32) is really required in order for this to be a probability
distribution.

We are now ready to construct the random infinite G-type tree T̂ (κ). We start
with a vertex u0 of type κ that is declared the start of the spine and becomes the
root of an independent copy of T (κ). The ancestor u1 of u0 becomes the root of an
independent copy of T̂

κ
. We then glue the marked vertex to u0, and all non-marked

leaves of type κ become roots of independent copies of T (κ). We proceed in this way
with an ancestor u2 of u1 and so on, yielding an infinite backwards growing spine
u0, u1, . . .. That is, the tree T̂ (κ) obtained in this way has a marked vertex u0 with
a countably infinite number of ancestors. This constitutes the multi-type analogue
of Aldous’ invariant sin-tree constructed in [2] for critical monotype Galton–Watson
trees. Here the abbreviation sin stands for single infinite path.

Given an integer h ≥ 0, we let f κ,[h](·, ·) denote a function that takes as input a
G-type tree T1 together with one of its vertices v1, and returns the fringe subtree of
T1 at the h-th ancestor of type κ of v1 together with the location v1 within it. That is,
it produces a marked tree where the root has type κ and where the path from the root
to the marked vertex contains precisely h + 1 vertices of type κ . If no such ancestor
exists, the function returns (T1, v1) together with the information that an overflow
occurred. It is immediate that

f κ,[0](T̂ (κ))
d= T (κ) (34)

and, in general, f κ,[h](T̂ (κ)) follows the distribution of T (κ) biased on the number
vertices with type κ whose joining path with the root contains precisely h+ 1 vertices
that also have type κ . That is, if T is a G-type tree whose root has type κ and if u is a
vertex of T of type κ such that the joining path with the root contains precisely h + 1
vertices of type κ , then

P( f κ,[h](T̂ (κ)) = (T , u)) = P(T (κ) = T ). (35)
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Let T denote a finiteG-type tree and let v be a vertex of T , such that there are h+1
vertices of type κ on the path from v to the root of T . Given a G-type tree T1, we let
N(T ,v)(T1) ∈ N0∪{∞} denote the number of vertices in T1 with f κ,[h](T1, u) = (T , v)

(without any overflow). It is obvious that the functions N(T ,v)(·) and NT (·) always
return the same number, hence

N(T ,v)(·) = NT (·). (36)

Together with Lemma 1 and Eq. (35) we obtain:

Theorem 1 Let Tn be as in Eq. (21). Suppose that E[#κT κ ] = 2 and that Assump-
tion (22) holds. Let vκ

n denote a uniformly selected type κ vertex of Tn. Then

L((Tn, v
κ
n ) | Tn)

p−→L(T̂ (κ)). (37)

That is, given a finite G-type tree T with root type κ and a type κ vertex v of T ,

N(T ,v)(Tn)

#κTn

p−→ P( f κ,[h](T̂ (κ)) = (T , v)), (38)

with h + 1 denoting the number of vertices of type κ on the path from the root to v in
T .

3.3 Non-recurring Types Along the Spine

Theorem 1 is a local convergence result for the vicinity of a uniformly selected vertex
of type κ satisfying the criticality constraint (32). The limit tree T̂ (κ) has the property,
that its spine has an infinite number of vertices of type κ . We are going to prove a
criterion that also encompasses types that occur only a stochastically bounded number
of times along the spine of the limit.

Suppose that we are given a type γ ∈ G \ {κ} satisfying

0 < E[#γ T κ ] < ∞. (39)

This allows us to define the size-biased version T̂
κ,γ

given by

P(T̂
κ,γ = (T , u)) = P(T κ = T )

E[#γ T κ ] (40)

for any finiteG-type tree T (with root type κ , and all non-root vertices of type κ having
no offspring) and any vertex u of T of type γ . We define T̂ (κ, γ ) like T̂ (κ), only with
a single local modification: instead of letting u0 become the root of an independent
copy of T (κ), we let it become the root of an independent copy of T̂

κ,γ
(with the

marked vertex becoming the marked vertex of T̂ (κ, γ )), and then make each of the
type κ leaves of this structure the root of an independent copy of T (κ). Note that
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T̂ (κ, γ ) may or may not have an infinite number of vertices of type γ on the spine,
depending on whether T κ has with positive probability a vertex of type γ on the path
from the root of T κ to some leaf of T κ with type κ .

The representation (14) entails that, since γ �= κ ,

#γ T = #γ Tα +
#κT−1α=κ∑

i=1

#γ T κ
i . (41)

Hence, if the events En are reasonably well behaved, Assumption (39) and Eq. (41)
will ensure that #γ T concentrates around E[#γ T κ ]#κT . This motivates the following
local convergence result for the vicinity of a typical vertex with type γ :

Theorem 2 Let Tn be as in Eq. (21). Suppose that E[#κT κ ] = 2 and that Assump-
tion (22) holds. Furthermore, assume that 0 < E[#γ T κ ] < ∞. Then for any finite
G-type tree T with root type κ and a type γ vertex v of T it holds that

N(T ,v)(Tn)

E[#γ T κ ]#κTn

p−→ P( f κ,[h](T̂ (κ, γ )) = (T , v)) (42)

with h + 1 denoting the number of vertices of type κ on the path from the root to v in
T . Let vγ

n denote a uniformly selected type γ vertex of Tn. If

#γ Tn

#κTn

p−→ E[#γ T κ ], (43)

then

L((Tn, v
γ
n ) | Tn)

p−→L(T̂ (κ, γ )). (44)

Proof Equation (42) readily follows from (23), (36), and the definition of T̂ (κ, γ ).
Having Eq. (42) and Assumption (43) at hand, (44) readily follows by Slutsky’s the-
orem. 
�
Remark 2 Note that Theorem 2 also applies to the case γ = κ if we replace E[#γ T κ ]
by 1 in the definition of T̂ (κ, γ ) and in Assumption (43).

Proposition 2 Theorem 2 still holds if we relax Eq. (43) to

#γ Tn

#κTn
≤ E[#γ T κ ] + op(1). (45)

Proof Let (T , v) be an arbitrary pointed tree where T has root type κ and v has type
γ and height h ≥ 0. If P( f κ,[h](T̂ (κ, γ )) = (T , v)) = 0, then N(T ,v)(Tn) = 0 for all
n, hence it suffices to verify
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N(T ,v)(Tn)

#γ Tn

p−→ P( f κ,[h](T̂ (κ, γ )) = (T , v)) (46)

for the cases where P( f κ,[h](T̂ (κ, γ )) = (T , v)) > 0. Let Ω denote the collection of
all such (T , v). Equations (45) and (42) imply that

N(T ,v)(Tn)

#γ Tn
≥ P( f κ,[h](T̂ (κ, γ )) = (T , v)) − op(1). (47)

That is, for any ε > 0 it holds with high probability that

N(T ,v)(Tn)

#γ Tn
≥ P( f κ,[h](T̂ (κ, γ )) = (T , v))(1 − ε). (48)

Suppose that there exists (T0, v0) ∈ Ω and ε0, δ0 > 0 and a subsequence (nk)k with

P

(
N(T0,v0)(Tn)

#γ Tn
≥ P( f κ,[h](T̂ (κ, γ )) = (T0, v0))(1 + ε0)

)
> δ0

for all n in that subsequence. Letting Ω ′ ⊂ Ω denote a finite subset with
P( f κ,[h](T̂ (κ, γ )) ∈ Ω ′)) > 1 − ε and (T0, v0) ∈ Ω ′, it follows that with proba-
bility at least δ0 + o(1) for all n in that subsequence

1 ≥
∑

(T ,v)∈Ω ′

N(T ,v)(Tn)

#γ Tn
≥ (1 − ε)2 + (ε + ε0)P( f κ,[h](T̂ (κ, γ )) = (T0, v0)).

Taking ε small enough, this yields a contradiction. This verifies (46) for all (T , v) ∈ Ω

and completes the proof. 
�

3.4 Mixtures of Types

Lemma 2 gives a criterium for local convergence describing the vicinity of random
verticeswith a fixed type.We aim to prove limits for the conditioned tree T n describing
the local structure near a specified vertex that may have different types.

Given an integer h ≥ 0, we let f [h](·, ·) denote a function that takes as input a
G-type tree together with one of its vertices, and returns the fringe subtree at the h-th
ancestor of that vertex together with the location of the vertex within it (yielding a
marked tree where the root and the marked vertex have distance h from each other).
If no such ancestor exists, the function returns the marked tree together with the
information, that an overflow occurred.

The following observation follows directly from Theorem 2 and Remark 2.

Theorem 3 Let Tn be as in Eq. (21). Suppose that E[#κT κ ] = 2 and that Assump-
tion (22) holds. Let G0 ⊂ G be a non-empty subset such that

#γ Tn

#κTn

p−→ E[#γ T κ ] ∈]0,∞[ (49)
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for each γ ∈ G0 \ {κ}. Let vn be a vertex of Tn drawn uniformly at random from all
vertices with type in G0. We set p(γ ) = E[#γ T κ ] for γ ∈ G0 \ {κ}, and p(κ) = 1 in
case κ ∈ G0. If

1

#κTn

∑

γ∈G0

#γ Tn
p−→

∑

γ∈G0

p(γ ) < ∞, (50)

then

L((Tn, vn) | Tn)
p−→L(T̂ (κ, η)) (51)

for an independent random type η from G0, with distribution given by

P(η = γ ′) = p(γ ′)/
∑

γ∈G0

p(γ ), γ ′ ∈ G0. (52)

Note that if G0 is finite, then (50) readily follows from (49). We provide an appli-
cation of Theorem 3 to critical sesqui-type trees in Sect. 4.2 and to critical irreducible
Galton–Watson trees in Sect. 4.4

Note that using Theorem1wemay still establish local convergence if the proportion
of vertices of a certain type concentrates at different values as in Eq. (49), but this
works only for types that recur infinitely often on the spine in the limit.

4 Applications

We are going to illustrate the general results of the previous section by some examples.

4.1 Lattices and the Gnedenko Local Limit Theorem

Before we start, let us discuss a few relevant concepts. Given an integer d ≥ 1, a
lattice in Z

d is a subset of the form

La,A = {a + Ax | x ∈ Z
d}

for a ∈ Z
d and A ∈ Z

d×d . For any b ∈ La,A it holds that La,A = Lb,A. In particular, if
we shift a lattice by the negative of any of its elements, we obtain aZ-linear submodule
of Z

d . Note that the matrix A is not uniquely determined by the lattice. Any matrix
whose columns form a Z-linear generating set of {Ax | x ∈ Z

d} will do.
Given a non-empty subset Ω ⊂ Z

d there is smallest lattice in Z
d containing Ω:

We may select a ∈ Ω and let Λ denote the Z-span of Ω − a. Any Z-submodule of
Z
d has rank at most d, hence there is at least one matrix A ∈ Z

d×d with Λ = {Ax |
x ∈ Z

d}. Hence, La,A is a lattice containing Ω . Moreover, La,A is a subset of any
lattice containing Ω: If S = Lb,B is another lattice containing Ω , then a ∈ S and
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consequently S = La,B . This entails that the Z-module S − a must contain Ω − a,
and therefore Λ is a submodule of S − a. Hence, La,A ⊂ S.

We say a random vector X with values in an abelian group F � Z
d is aperiodic,

if the smallest subgroup F0 of F that contains the support supp(X) satisfies F0 = F .
Note that this not really a restriction, since the structure theorem for finitely generated
modules over a principal ideal domain ensures that F0 � Z

d ′
for some 0 ≤ d ′ ≤ d.We

say X (and the associated randomwalk with step distribution X) is strongly aperiodic,
if the smallest semi-group (a subset closed under addition that contains 0) F1 of F
that contains supp(X) satisfies F1 = F . This is an actual restriction. For example,
if X is 2-dimensional with support {(1, 0), (0, 1), (1, 2)}, then it is aperiodic, but not
strongly aperiodic (although the support is not even contained on any straight line).

Proposition 3 ([30, Prop. 1]) Let X be a random vector in Z
d . Let a + DZ

d be the
smallest lattice containing the support of X . Suppose that a ∈ supp(X) and that D has
full rank, so that m := | det D| is a positive integer. Let (X i )i≥1 denote independent
copies of X and set

Sn :=
n∑

i=1

X i . (53)

Then:

1. The support of Sm generates DZ
d as additive group.

2. For all k ≥ 1 and 1 ≤ j ≤ m it holds that P(Skm+ j ∈ ja + DZ
d) = 1.

The following is a strengthened and generalized multi-dimensional version of Gne-
denko’s local limit theorem, that applies to the case of lattice distributed random
variables that are aperiodic but not necessarily strongly aperiodic.

Proposition 4 (Strengthened local central limit theorem for lattice distributions) Let
X , m, a, D and Sn be as in Proposition 3. Suppose that X has a finite covariance
matrix Σ . Our assumptions imply that Σ is positive-definite. Let

ϕ0,Σ ( y) = 1√
(2π)d detΣ

exp

(
−1

2
yΣ−1 y

)

be the density of the normal distribution N (0,Σ). Set

an = nE[X] and Bn = √
n,

so that B−1
n (Sn − an)

d−→N (0,Σ). Set

Rn(x) = max
(
1, ‖B−1

n (x − an)‖22
)

.

Then for each integer 1 ≤ j ≤ m

lim
n→∞

n∈ j+mZ

sup
x∈ ja+DZd

Rn(x)|Bd
n P(Sn = x) − mϕ0,Σ

(
B−1
n (x − an)

)
| = 0. (54)
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The one-dimensional local limit theorem by [8] was generalized by [16] to the lattice
case of strongly aperiodic multi-dimensional random walk. This was further gener-
alized by [30, Prop. 2] to the setting considered here, where X is aperiodic but not
necessarily strongly aperiodic. Furthermore, the version stated in Proposition 4 is
strengthened by the factor Rn(x) in Eq. (54). This is stronger than the original state-
ment when x deviates sufficiently from E[Sn]. Such a strengthening was obtained
by [17, Statement P10, page 79] for the strongly aperiodic case by modifying the
proof. This strengthened version in the strongly aperiodic setting may be generalized
to Proposition 4 analogously as in [30].

4.2 Sesqui-type Trees

We start with the simplest model of a non-monotype branching type process which
already has interesting applications. Consider a 2-type branching tree T where only
vertices of the first type are fertile and receive offspring according to an ordered
branchingmechanismσ 1.We let ξ1 = (ξ, ζ )denote the correspondingvector counting
the number of occurrences of type 1 and type 2 vertices in the random word σ 1. Of
course we only consider the case where the root of T is fertile.

In order to avoid degenerate cases we assume that

P(ξ = 0) > 0 and P(ξ ≥ 2) > 0. (55)

As the mono-type case is already well-understood, we additionally assume that the
support

supp(ξ1) := {v ∈ Z
2 | P(ξ1 = v) > 0} (56)

of ξ1 is not contained on a straight line, that is

supp(ξ1) � a + Rv for all a, v ∈ R
2. (57)

If the support of ξ1 is contained in a straight line we can reduce every question about
T to the study of a mono-type ξ -Galton–Watson tree. Hence, this is not much of a
restriction.

We consider the tree Tn obtained by conditioning T on having n vertices in total.
We would like to establish a limit describing the vicinity of a uniformly at random
selected vertex vn . Due to possible periodicities, n may need to be restricted so some
infinite subset of the positive integers in order for this to make sense:

Lemma 2 Let supp(#T ) ⊂ N denote the support of the number of vertices of the tree
T . Setting

a := min(supp(#T )) and D := gcd (supp(#T ) − a) , (58)

123



Journal of Theoretical Probability (2022) 35:653–684 669

it holds that supp(#T ) ⊂ a + DN. Conversely, for all sufficiently large integers
n ∈ a + DN

P(#T = n) > 0. (59)

Proof It is clear by construction that supp(#T ) ⊂ a+DN. The difficult and important
part is the converse direction. The generating series Z(z) := E[z#T ] satisfies the
recursion

Z(z) = z f (Z(z), z) (60)

with f (x, y) := E[xξ yζ ]. We may rewrite this as

Z(z) =
∑

k≥0

Ek(z)Z(z)k (61)

for power series (Ek(z))k≥0 with non-negative coefficients uniquely determined by
z f (y, z) = ∑

k≥0 Ek(z)yk . Let Fk denote the collection of integers i such that the
coefficient of themonomial zi in Ek(z) is positive.We are going to use the commutative
operation

I + J := {i + j | i ∈ I , j ∈ J }

for subsets I , J ⊂ Z, and set k+ J := {k}+ J for any integer k. Note that by definition
I + ∅ = ∅. It was shown by [4, Lem. 25] that

D = gcd
⋃

k≥0

Sk (62)

for

Sk := (k − 1)a + Fk, k ≥ 0. (63)

Note that Sk = ∅ whenever Fk = ∅. Moreover, note that

P((ξ, ζ ) = (k, b − 1)) > 0 (64)

for all k ≥ 0 and b ∈ Fk . We are going to argue that

D = gcd

⎛

⎝S1 ∪
⋃

k≥2

(Sk + S0)

⎞

⎠ . (65)

It is clear that D | Sk for all k ≥ 0 by (62), so clearly D divides the right-hand side
of Eq. (65). Conversely, let r be a divisor of the right-hand side of this Equation. As
0 ∈ S0 it follows that r | Sk for all k ≥ 1. Moreover, we assumed that there exists
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k ≥ 2 with P(ξ = k) > 0, implying Sk �= ∅. As r | Sk + S0 and r | Sk �= ∅ it follows
that r | S0. Hence, r | Sk for all k ≥ 0 and hence, by Eq. (62), r | D. This completes
the verification of Eq. (65).

It follows by Schur’s theorem, stated in [29, Thm. 3.24], that there exists M ≥ 1
such that for all m ≥ M

mD ∈ N0S1 +
∑

k≥2

N0(Sk + S0).

That is, mD may be expressed as a finite sum of terms of the form λt with t ∈ S1,
λ ∈ N, and terms of the form μ(s + r) with s ∈ Sk for some k ≥ 2, r ∈ S0, and
μ ∈ N. We are going to argue that there is a tree T with a + Dm vertices that satisfies

P(#T = T ) > 0. (66)

To this end, note that

a = 1 + min{i ≥ 0 | P((ξ, ζ ) = (0, i)) > 0} = min F0. (67)

We start the growth construction of T with a single root vertex that we declare as
marked. We iterate over the finitely many terms in the sum expression of mD, and
each step takes as input a tree with a single marked leaf and outputs a bigger tree with
a single marked leaf:

1. If the summand is of the form λt with λ ∈ N and t ∈ S1, then the marked leaf
receives t − 1 type 2 offspring vertices and a single type 1 offspring vertex that
becomes the new marked leaf. Note that the outdegree (1, t − 1) lies in the support
of ξ1 by Eq. (64). We do this precisely λ many times. Hence in total we added λt
vertices.

2. If the summand is of the form μ(r + s) with μ ∈ N, r ∈ Sk for some k ≥ 1 and
s ∈ S0, we do the following. By Eq. (63) there is b ∈ Fk and c ∈ F0 such that

r + s = (k − 1)a + b − a + c

= (k − 2)(a − 1) + (c − 1) + k + (b − 1).

Themarked leaf receivesmixed offspring according to (k, b−1). The first offspring
of type 1 becomes the new marked leaf. The second offspring of type 1 receives
offspring (0, c − 1). The remaining k − 2 offspring vertices of type 1 each receive
offspring (0, a−1). Note that by Eq. (64) all non-marked vertices have an outdegree
that lies in the support of ξ1. We perform this precisely μ many times. Hence in
total we added μ(r + s) vertices.

After iterating over all summands we are left with a tree having 1 + mD vertices
(remember that we also have to count the root vertex) that has a marked leaf. All
non-marked vertices have an outdegree that lies in the support of ξ1. The marked
vertex receives offspring (0, a − 1), resulting in a tree T with a + mD vertices that
satisfies (66). As we may perform this construction for all m ≥ M this completes the
proof. 
�
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Setting κ = 1, the tree T κ consists of a root of type 1 with offspring according to
ξ1 and no further descendants. Hence in order to apply Theorem 3 we need to assume
that

E[ξ ] = 1 and 0 < E[ζ ] < ∞. (68)

It holds trivially that #T ≥ #1T , and #1T is distributed like the total progeny of a
ξ -Galton–Watson process. As we assume thatE[ξ ] = 1, it follows that P(#1T = n) =
exp(o(n)) (see [10, Thm. 18.1]) and consequently:

P(#T = n) = exp(o(n)). (69)

Hence, the only prerequisite that we still need to check in order to apply Theorem 3
is that

(#1T | #T = n)

n

p−→ 1

1 + E[ζ ] . (70)

Indeed, if (70) is verified, then (22) holds for sn := cn for some fixed constant

0 < c < 1/(1−E[ζ ]). Furthermore, (70) and #T = #1T+#2T imply #2Tn
n

p−→ E[ζ ]
1+E[ζ ]

and hence #2Tn
#1Tn

p−→ E[ζ ], thus verifying (49) for γ := 2.

We verify Eq. (70) in the case that (ξ, ζ ) has a finite covariance matrix Σ . The fol-
lowing is an extension of [19, Lem. 22], where a combinatorial setting was considered
that is related to the case where one additionally assumes that a = 1 and that (ξ, ζ )

has finite exponential moments.

Lemma 3 Assume that P(ξ = 0) > 0, P(ξ ≥ 2) > 0, and that the support of (ξ, ζ )

is not contained on a straight line. Suppose that E[ξ ] = 1 and that (ξ, ζ ) has a finite
covariance matrix Σ . Let a, D ≥ 1 be defined as in Eq. (58).

1. There is a rank 2 matrix D ∈ Z
2×2 such that the support of (ξ, ζ )ᵀ is contained in

the lattice (0, a − 1)ᵀ + DZ
2 and in no proper sublattice. It holds that

d := | det D|
D

∈ N. (71)

2. As n ∈ a + DZ tends to infinity, we have

P(#T = n) ∼ D

√
1 + E[ζ ]
2πV[ξ ] n

−3/2. (72)

3. Set

μ = 1

1 + E[ζ ] and σ 2 = detΣ

V[ξ ](1 + E[ζ ])3 . (73)
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There is a sequence ( jn)n with values in {1, . . . , d} with the following property. As
n ∈ a + DZ tends to infinity,

√
nP(#1T = � | #T = n) = d

σ
√
2π

exp

(
− x2

2σ 2

)
+ o(1) (74)

uniformly for all x satisfying

� := μn + x
√
n ∈ jn + dZ. (75)

The probability in (74) equals zero when � /∈ jn + dZ. Hence

(#1T | #T = n) − nμ√
n

d−→N (0, σ 2). (76)

Proof We set

X :=
(

ξ − 1
ζ + 1

)
(77)

and let

X i =
(

ξi − 1
ζi + 1

)
, i ≥ 1 (78)

denote independent copies of X . We also set

S� =
�∑

i=1

X i and yn =
(−1

n

)
. (79)

Equations (15) and (16) tell us that for � ≥ 1

P(#T = n, #1T = �) = P

(
S� = yn,

k∑

i=1

ξi ≥ k for 0 < k < �

)
, (80)

with (ξi , ζi )i≥1 denoting independent copies of (ξ, ζ ). By the cycle lemma (see for
example [23]), this simplifies to

P(#T = n, #1T = �) = 1

�
P

(
S� = yn

)
. (81)

The support of ξ1 was assumed to be not contained in a straight line, hence the same
goes for (ξ − 1, ζ + 1). Hence, the covariance matrix Σ (of both ξ1 and the shifted
version (ξ − 1, ζ + 1)) is positive definite. Furthermore, there is a rank 2 matrix
D ∈ Z

2 such that the support of (ξ − 1, ζ + 1)ᵀ is contained in the lattice a + DZ
2,
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with a := (−1, a)ᵀ, and in no proper sublattice. (Recall that (0, a − 1) lies in the
support of ξ1 by Eq. (67).) We set

m := | det D|. (82)

Let n ∈ a+DZ be sufficiently large so that P(#T = n) > 0 by Lemma 2. By Eq. (81)
this means that for at least one 1 ≤ � ≤ n it holds that yn lies in the support of S�. By
Proposition 3 it follows that there is at least one integer 1 ≤ jn ≤ m with

yn ∈ jna + DZ
2. (83)

Note that for all j, j ′ ∈ Z the following statements are equivalent:

1. ( ja + DZ
2) ∩ ( j ′a + DZ

2) �= ∅.
2. 0 ∈ ( j − j ′)a + DZ

2.
3. ( j − j ′)a ∈ DZ

2.
4. ja + DZ

2 = j ′a + DZ
2.

The set of all j ∈ Z with ja ∈ DZ
2 is a subgroup of the integers. By Proposition 3 it

contains m. Hence, it is generated by some integer d ≥ 1 satisfying

d|m. (84)

We will postpone showing that we assume that dmay be chosen as in (71). Moreover,
we have

yn ∈ ja + DZ
2 if and only if j ∈ jn + dZ. (85)

Hence, from now on we may assume additionally that 1 ≤ jn ≤ d. By Eq. (81) it
follows that any integer � ≥ 1 with P(#T = n, #1T = �) > 0 must lie in the lattice
jn + dZ. It is clear that not the entire lattice has this property. However, we will argue
that this is true for all � ∈ jn + dZ that concentrate in a

√
n range around μn. Given

� ∈ jn + dZ with � ≥ 1 we may write

� = μn + x�

√
n. (86)

Let M > 0 be a fixed constant. It holds uniformly for all � with |x�| < M that

1√
�

(
yn − �E[X]) =

(
0

−x�(1 + E[ζ ])3/2
)

+ o(1). (87)

Hence

− 1

2�
( yn − �E [X])ᵀΣ−1( yn − �E [X])

= −1

2
(0,−x�(1 + E[ζ ])3/2)

(
V[ξ ] Cov(ξ, ζ )

Cov(ξ, ζ ) V[ζ ]
)−1 (

0
−x�(1 + E[ζ ])3/2

)
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+ o(1)

= − x2� V[ξ ](1 + E[ζ ])3
2 detΣ

+ o(1).

It follows from the multivariate local limit theorem in Proposition 4 that

1

�
P(S� = yn) ∼ (1 + E [ζ ])2m

n22π
√
detΣ

exp

(
− x2�
2σ 2

)
.

Let ϕ0,σ 2(·) denote the density of the centered normal distribution with variance σ 2.
By Eq. (81) it follows that

P(#T = n, #1T = �) ∼ 1

n2

√
1 + E[ζ ]
2πV[ξ ] mϕ0,σ 2(x�) (88)

uniformly for |x�| < M . Setting

pn := m

d
n−3/2

√
1 + E[ζ ]
2πV[ξ ] , (89)

this entails that for any fixed real numbers a1 < a2

p−1
n P

(
#T = n, a1 ≤ #1T − nμ√

n
≤ a2

)

∼ d√
n

∑

�∈ jn+dZ
a1≤x�≤a2

ϕ0,σ 2(x�) ∼
∫ a2

a1
ϕ0,σ 2(x) dx . (90)

We are going to argue that for each ε > 0 we may choose M > 0 so that for all
sufficiently large n

p−1
n P

(
#T = n, |#1T − nμ| ≥ M

√
n
) ≤ ε. (91)

To this end, suppose that 1 ≤ � ≤ n satisfies � ∈ jn + dZ and |x�| ≥ M . The
multivariate local limit theorem in Proposition 4 entails that there is a constant C > 0
that does not depend on � such that

P
(
S� = yn

) ≤ C

nx2�
. (92)

Hence

n3/2
∑

1≤�≤n
|x�|≥M

1

�
P

(
S� = yn

) ≤ √
n

∑

1≤�≤n
|x�|≥M

C

�x2�
. (93)
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If we restrict to summands with |x�| ≥ n1/4+δ for any fixed 0 < δ < 1/4, we may be
bound this by

n−2δ
∑

1≤�≤n

C

�
= o(1). (94)

If we restrict to summands with M ≤ |x�| ≤ n1/4+δ instead, then � = Θ(n) and we
obtain the bound

O(n−1/2)
∑

1≤�≤n
M≤|x�|≤n1/4+δ

1

x2�
= O(1)

∫ ∞

M

1

x2
dx . (95)

Taking M large enough, this bound is smaller than ε/2. This verifies Eq. (91).
Combining Eqs. (90) and (91) we obtain

P(#T = n) ∼ pn = m

d

√
1 + E[ζ ]
2πV[ξ ] n

−3/2. (96)

Using (88) it follows that

√
nP(#1T = � | #T = n) = d

σ
√
2π

exp

(
− x2

2σ 2

)
+ o(1) (97)

uniformly for � ∈ jn + dZ with |x�| ≤ M . Using (91), it follows that this remains true
if we remove the condition that |x�| needs to be bounded.

By (90) we obtain

(#1T | #T = n) − nμ√
n

d−→N (0, σ 2). (98)

It remains to show that the integer d (as defined in this proof) may be chosen as in (71).
That is, we have to show that

d = m/D. (99)

Some jokes have been told about how mathematicians solve problems by reducing
them to previously solved problems, even when it’s not the most direct solution. The
following short but not necessarily direct justification of (99) might fit into this cate-
gory. For any sufficiently large K > 0 there is a random variable ξ

(K )
1 = (ξ (K ), ζ (K ))

with support supp(ξ (K )
1 ) = {x ∈ supp(ξ1) | ‖x‖2 < K } that satisfies E[ξ (K )] = 1.

Let T (K ) denote the sesqui-type tree defined for ξ (K )
1 instead of ξ1.We assume that K is

sufficiently large so that the support of ξ (K )
1 is not contained on a straight line. Lemma2

and everything we have shown so far applies to T (K ), yielding an analogon D(K ) to
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D that satisfies D(K )|D, an analogon D(K ) to D that satisfies D(K )
Z
2 ⊂ DZ

2, and
an analogon d(K ) to d that satisfies d(K )|d. The construction of these constants implies
that for K sufficiently large equality holds, meaning we have d(K ) = d, D(K ) = D,
and may assume that D = D(K ). As ξ

(K )
1 is bounded and hence has finite exponential

moments, we may apply a singularity analysis result by [4, Thm. 28], yielding

P(#T (K ) = n) ∼ D

√
1 + E[ζ (K )]
2πV[ξ (K )] n

−3/2 (100)

as n ∈ a + DZ tends to infinity. At the same time, Eq. (96) applied to T (K ) yields

P(#T (K ) = n) ∼ m

d

√
1 + E[ζ (K )]
2πV[ξ (K )] n

−3/2. (101)

It follows that

D = m

d
.

This completes the proof. 
�
In the case that (ξ, ζ ) has finite exponential moments, Eq. (72)may also be obtained

using singularity analysis methods, see [4, Thm. 28]. Here we only assumed a finite
covariance matrix.

Having assured the concentration of the proportion of types in Eq. (70), we readily
obtain by Theorem 3:

Theorem 4 Under the same assumptions as in Lemma 3, it follows that

L((Tn, vn) | Tn)
p−→L(T̂ (1, η)) (102)

as n ∈ a+ DN tends to infinity. Here η denotes the independent Bernoulli-distributed
random type from {1, 2} with distribution given by

P(η = 1) = 1

1 + E[ζ ] and P(η = 2) = E[ζ ]
1 + E[ζ ] . (103)

See also [19, Thm. 27] for a similar result in the combinatorial setting of random
unlabelled R-enriched trees where finite exponential moments were assumed.

4.3 Critical Reducible Galton–Watson Trees

Suppose that the type set is given by G = {1, . . . , d} for some integer d ≥ 2. Let σ

be an ordered d-type offspring distribution and ξ = (ξ1, . . . , ξd) the corresponding
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unordered offspring distribution with ξ i = (ξi,1, . . . , ξi,d) for all 1 ≤ i ≤ d. We
assume that almost surely

ξi, j = 0 for all i > j . (104)

That is, a particle of type i may only have offspring with types j ≥ i . We furthermore
assume that ξ1,1 satisfies P(ξ1,1 = 0) > 0, P(ξ1,1 ≥ 2) > 0, and

E[ξ1,1] = 1. (105)

Recall that for κ := 1 the random tree T1 is distributed like the σ -Galton–Watson
tree T , only that non-root vertices of type 1 receive no offspring. We set

ξ := #1T1 − 1 and ζ :=
d∑

i=2

#iT1, (106)

so that ξ + ζ is the number of non-root vertices of T1 and ξ
d= ξ1,1.

Let S denote a sesqui-type tree started at a type 1 vertex, with vertices of the first
type receiving offspring according to independent copies of (ξ, ζ ), and vertices of the
second type being infertile. It follows that

(
#1T ,

d∑

i=2

#iT

)
d= (#1S, #2S). (107)

We let Tn denote the result of conditioning T on having n vertices. This is possible
when n ∈ a + DZ is large enough, with a and D defined for (ξ, ζ ) as in Lemma 2.
Equation (107) allows us to transfer properties of sesqui-type trees:

Lemma 4 Suppose that additionally (ξ, ζ ) has a finite covariance matrix and that
its support is not contained in a straight line. Then Lemma 3 holds analogously for
the d-type reducible σ -Galton–Watson tree T , yielding an asymptotic expression for
P(#T = n) and a local limit theorem for #1Tn.

In particular,

#1Tn

n

p−→ 1

1 + E[ζ ] . (108)

We may also verify concentration for the remaining types:

Lemma 5 Under the same assumptions as in Lemma 4, it follows that

#γ Tn

n

p−→ E[#γ T1]
1 + E[ζ ] (109)

for all types 2 ≤ γ ≤ d. Here we restrict n to lie in the lattice a + DZ.
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Proof Let ε > 0 be given. Using the central limit theorem for #1Tn from Lemma 4,
we may select M > 0 large enough so that

P(#1Tn /∈ In) < ε (110)

for In := n/(1 + E[ζ ]) ± M
√
n and all large enough n. Let T1

1, T
1
2, . . . denote

independent copies of T1 and set for each i ≥ 1

ξi = #1T1
i , ρi =

∑

2≤k≤d
k �=γ

#kT1
i , and τi = #γ T1

i . (111)

Let δ > 0 be given and set Jn = (1 ± δ)
E[#γ T1]
1+E[ζ ] n. As P(#T = n) = Θ(n−3/2), we

may write

P(#1Tn ∈ In, #γ Tn /∈ Jn) = O(n3/2)P(#1T ∈ In, #γ T /∈ Jn, #T = n). (112)

Arguing analogously as for (80) and (81), it follows that

P(#1T ∈ In, #γ T /∈ Jn, #T = n)

=
∑

�∈In

1

�
P

(
�∑

i=1

(ξi − 1, ρi + τi + 1) = (−1, n),

�∑

i=1

τi /∈ Jn

)
. (113)

Consider the collection

Qn = {(−1, a, b) | a, b ∈ N0, a + b + 1 = n, b /∈ Jn}. (114)

This way,

P

(
�∑

i=1

(ξi − 1, ρi + τi + 1) = (−1, n),

�∑

i=1

τi /∈ Jn

)

= P

(
�∑

i=1

(ξi − 1, ρi , τi ) ∈ Qn

)
. (115)

Clearly Qn has at most n elements, and each vector (−1, a, b) ∈ Qn satisfies

‖(−1, a, b) − �(0, E[ρ1], E[τ1])‖2 ≥ |b − �E[τ1]| ≥ Θ(n) (116)

uniformly for � ∈ In . Using the local limit theorem in Proposition 4 for 3 dimensions,
it follows that

P

(
�∑

i=1

(ξi − 1, ρi , τi ) ∈ Qn

)
= o(n−3/2). (117)

Combining Eqs. (112), (113), (115) and (117) it follows that
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P(#1Tn ∈ In, #γ Tn /∈ Jn) → 0. (118)

Using (110) and the fact that ε > 0 was arbitrary, it follows that

P(#γ Tn /∈ Jn) → 0. (119)


�
This allows us to apply Theorem 3, yielding:

Theorem 5 Let G0 ⊂ {1, . . . , d} denote a non-empty subset. Let vn be uniformly
selected among all vertices of Tn with type in G0. We set p(i) = E[#iT1] for i ∈
G0 \ {1}, and p(1) = 1 in case 1 ∈ G0. Under the same assumptions as in Lemma 4,
it follows that

L((Tn, vn) | Tn)
p−→L(T̂ (1, η)) (120)

as n ∈ a + DN tends to infinity. Here η denotes an independent random type from
G0, with distribution given by

P(η = j) = p( j)/
∑

i∈G0

p(i), j ∈ G0. (121)

4.4 Regular Critical Irreducible Galton–Watson Trees

Suppose that the type set G = {1, . . . , d} is finite. Suppose that the ordered offspring
distribution σ corresponds to the unordered offspring distribution ξ = (ξ i )1≤i≤d with
ξ i = (ξi,1, . . . , ξi,d) for all 1 ≤ i ≤ d. The mean matrix A := (E[ξi, j ])1≤i, j≤d is said
to be finite, if each coordinate is finite. We say ξ and the associated branching process
is irreducible, if for any types i, j there is an integer k ≥ 1 such that the (i, j)th entry
of Ak is positive. The Perron–Frobenius theorem ensures that in this case the spectral
radius λ of A is also an eigenvalue. If λ = 1 (or < 1 or > 1), we say ξ / σ and the
associated branching process is critical (or subcritical or supercritical). By [3, Thm. 2
on page 186], a σ -Galton–Watson tree T is almost surely finite (regardless with which
type we start) if its critical or subcritical. If ξ is critical and has finite exponential
moments, we say it is regular critical.

Let ω = (ωi )1≤i≤d ∈ N
d
0 \ {0} be fixed. Given a type 1 ≤ κ ≤ d we are interested

in the tree Tn obtained by conditioning the tree T started with a deterministic root
type κ on the event that

|T |ω :=
d∑

i=1

ωi #iT = n. (122)

It was shown by [18, Prop. 2.2] that there is an integer D ≥ 1 such that |T |ω is
contained in some lattice of the form ακ + DZ, and conversely any sufficiently large
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integer from the lattice is contained in the support. [18, Sec. 4.3] showed furthermore
that if ξ is regular critical, then

P(|T |ω = n) ∼ cω,κn
−3/2 (123)

for some explicitly given constant cω,κ > 0 as n ∈ ακ + DZ tends to infinity. By [18,
Prop. 2.1] (see also [13]) it holds for any type 1 ≤ γ ≤ d

E[#γ Tγ ] = 2 (124)

and #γ Tγ has finite exponential moments. Moreover, [18, Lem. 6.7] showed that for
all integers 1 ≤ γ ≤ d

#γ Tn

n

p−→ cγ (125)

for a constant cγ > 0 that does not depend on κ . For any subsetG0 ⊂ {1, . . . , d} let vn
be a uniformly selected vertex of Tn with type inG0 and let η denote an independent
random type that assumes a type γ with probability proportional to cγ . Equations (123)
and (124) allow us to apply Theorem 1, yielding local convergence for the vicinity of
a random vertex of type γ . Equation (125) entails consequently local convergence for
the vicinity of vn to the corresponding mixture of limit objects:

Theorem 6 Suppose that ξ is regular critical. Then

L((Tn, vn) | Tn)
p−→L(T̂ (η)) (126)

as n ∈ ακ + DZ tends to infinity. The limit object does not depend on the type κ

with which we started the branching process. Each type recurs almost surely infinitely
many often along the backwards growing spine of the limit.

Proposition 5 If |G0| = 1 and if the vector ω has only one nonzero coordinate, then
Theorem 6 still holds if we only require ξ to be critical.

Proof Without loss of generality we may assume that ω = (1, 0, . . . , 0). It holds that

E[#iT i ] = 2 (127)

and

E[#iT j ] < ∞ (128)

for all types i, j by [18, Prop. 2.1]. If T starts with a vertex of type 1, then #1T
is distributed like the population in a critical mono-type Galton–Watson tree with
offspring distribution #1T1 − 1. In particular, P(#1T = n) = exp(o(n)). If T starts
with a vertex of a different type, then #1T is distributed like the sum of a random
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number of independent copies of populations of (#1T1 − 1)-branching processes.
Also in this case, P(#1T = n) = exp(o(n)).

For each i let vin denote a uniformly selected vertex of type i of Tn . Since #1Tn = n
and Tn is obtained from T by conditioning on an event with probability exp(o(n)),
we may apply Theorem 1 to obtain

L((Tn, v
1
n) | Tn)

p−→L(T̂ (1)). (129)

Let α denote the deterministic root type with which we started the branching process.
Let γ �= 1 be a type. It follows from Eqs. (15) and (16) that

P(#γ Tn = �) = P(#γ Tα + ∑n−1α=1
i=1 #γ T1

i = �, #1T = n)

P(#1T = n)
, (130)

with (T1
i )i≥1 denoting independent copies of T1. Truncating the summands and using

the Azuma–Hoeffding inequality (and again the fact that P(#1T = n) = exp(o(n))),
it follows that for any integer D ≥ 1 and any ε > 0 it holds with high probability that

#γ Tn

n
≥ E[#1T1

i , #1T
1
i ≤ D] − ε.

As this holds for arbitrarily large D and as E[#1T1
i ] < ∞, it follows that

#γ Tn

n
≥ E[#1T1

i ] − op(1). (131)

This allows us to apply Theorem 1 for κ = γ to obtain

L((Tn, v
γ
n ) | Tn)

p−→L(T̂ (γ )). (132)


�

4.5 Critical Galton–Watson Trees Conditioned by Typed Populations

Let the type set be given byG = {1, . . . , d} and suppose that the unordered offspring
distribution ξ corresponding to σ is irreducible and critical. Let Λ ⊂ N be an infinite
subset. Let

k(n) = (k1(n), . . . , kd(n)) (133)

be a sequence in N
d
0 satisfying

P((#iT )1≤i≤d = k(n)) > 0 (134)
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for all n ∈ Λ. We assume that

k(n)

‖k(n)‖1 → a (135)

for some a = (ai )1≤i≤d ∈ R
d≥0 \ {0} as n ∈ Λ tends to infinity. Let α be a random

type. We let Tn denote the result of conditioning the σ -Galton–Watson tree started
with a particle of type α on the event

(#iT )1≤i≤d = k(n). (136)

Let 1 ≤ κ ≤ d be a coordinate satisfying aκ > 0. By [18, Prop. 2.1] (see also [13]) it
holds

E[#κT κ ] = 2. (137)

It follows by Eqs. (15) and (16) that the event (136) implies that a random number
of critical (#κT κ − 1)-Galton–Watson trees has total size kκ(n). The total population
of a critical mono-type Galton–Watson tree assumes an integer n with probability
exp(o(n)), yielding for any ε > 0

exp(−εkκ(n)) = o(P((#iT )1≤i≤d = k(n))). (138)

This verifies Assumption (22). Let vκ
n denote a uniformly selected vertex of type κ of

the tree Tn . It follows by Theorem 1 that

L((Tn, v
κ
n ) | Tn)

p−→L(T̂ (κ)). (139)

Using (135), we deduce:

Theorem 7 Let G0 ⊂ G be a subset such that ai > 0 for at least one type i ∈ G0.
Let η be an independent random type from G0 drawn with probability P(η = i) =
ai/

∑
j∈G0

a j . Let vn denote a vertex of Tn that is uniformly selected among all
vertices with type in G0. Then

L((Tn, vn) | Tn)
p−→L(T̂ (η)). (140)

See [1, Thm. 3.1] for a limit in a similar setting that describes the asymptotic vicinity
of the root.
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