CORRECTION ## Correction to: Conservative and Semiconservative Random Walks: Recurrence and Transience Vyacheslav M. Abramov^{1,2} Published online: 19 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 ## Correction to: J Theor Probab (2018) 31:1900–1922 https://doi.org/10.1007/s10959-017-0747-3 The aim of this note is to correct the errors in the formulation and proof of Lemma 4.1 in [1] and some claims that are based on that lemma. The correct formulation of the aforementioned lemma should be as follows. **Lemma 4.1** Let the birth-and-death rates of a birth-and-death process be λ_n and μ_n all belonging to $(0, \infty)$. Then, the birth-and-death process is transient if there exist c > 1 and a value n_0 such that for all $n > n_0$ $$\frac{\lambda_n}{\mu_n} \ge 1 + \frac{1}{n} + \frac{c}{n \ln n},\tag{1}$$ and is recurrent if there exists a value n_0 such that for all $n > n_0$ $$\frac{\lambda_n}{\mu_n} \le 1 + \frac{1}{n} + \frac{1}{n \ln n}.\tag{2}$$ **Proof** Following [2], a birth-and-death process is recurrent if and only if $$\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{\mu_k}{\lambda_k} = \infty.$$ The original article can be found online at https://doi.org/10.1007/s10959-017-0747-3. School of Science, Royal Melbourne Institute of Technology, GPO Box 2476, Melbourne, VIC-3001, Australia [∨] Vyacheslav M. Abramov vabramov126@gmail.com School of Mathematical Sciences, Monash University, Wellington road, Clayton, VIC-3800, Australia Write $$\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{\mu_k}{\lambda_k} = \sum_{n=1}^{\infty} \exp\left(\sum_{k=1}^{n} \ln\left(\frac{\mu_k}{\lambda_k}\right)\right). \tag{3}$$ Now, suppose that (1) holds. Then, for sufficiently large n $$\frac{\mu_n}{\lambda_n} \le 1 - \frac{1}{n} - \frac{c}{n \ln n} + O\left(\frac{1}{n^2}\right),$$ and since the function $x \mapsto \ln x$ is increasing on $(0, \infty)$, then $$\ln\left(\frac{\mu_n}{\lambda_n}\right) \le \ln\left(1 - \frac{1}{n} - \frac{c}{n\ln n} + O\left(\frac{1}{n^2}\right)\right)$$ $$= -\frac{1}{n} - \frac{c}{n\ln n} + O\left(\frac{1}{n^2}\right).$$ Hence, for sufficiently large n $$\sum_{k=1}^{n} \ln \left(\frac{\mu_k}{\lambda_k} \right) \le -\ln n - c \ln \ln n + O(1),$$ and thus, by (3), for some constant $C < \infty$, $$\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{\mu_k}{\lambda_k} \le C \sum_{n=1}^{\infty} \frac{1}{n(\ln n)^c} < \infty,$$ provided that c > 1. The transience follows. On the other hand, suppose that (2) holds. Then, for sufficiently large n $$\frac{\mu_n}{\lambda_n} \ge 1 - \frac{1}{n} - \frac{1}{n \ln n} + O\left(\frac{1}{n^2}\right),$$ and, consequently, $$\ln\left(\frac{\mu_n}{\lambda_n}\right) \ge \ln\left(1 - \frac{1}{n} - \frac{1}{n\ln n} + O\left(\frac{1}{n^2}\right)\right).$$ Similarly to that was provided before, for some constant C', $$\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{\mu_k}{\lambda_k} \ge C' \sum_{n=1}^{\infty} \frac{1}{n \ln n} = \infty.$$ The recurrence follows. As $n \to \infty$, asymptotic expansion (4.5) obtained in the proof of Lemma 4.2 in [1] guarantees its correctness. However, the corrected version of Lemma 4.1 requires more delicate arguments in the proofs of Lemma 4.2 and Theorem 4.13 in [1]. Specifically, in the proof of Lemma 4.2 instead of limit relation (4.6) we should study the cases d=2 and $d\geq 3$ separately in terms of the present formulation of Lemma 4.1. In the formulation of Theorem 4.13 in [1], assumption (4.12) must be replaced by the stronger one: $$\frac{L_n}{M_n} \le 1 + \frac{2-d}{n} + \frac{1-\epsilon}{n \ln n},$$ for all large n and a small positive ϵ . In the proof of Theorem 4.13 in [1], we should take into account that for large n $$\frac{\lambda_n(1,d)}{\mu_n(1,d)} = 1 + \frac{d-1}{n} + O\left(\frac{1}{n^2}\right)$$ is satisfied (see the proof of Lemma 4.2), and hence, $$\frac{p_n}{1-p_n} \asymp \left[\frac{\lambda_n(1,d)}{\mu_n(1,d)} \cdot \frac{L_n}{M_n}\right] \le 1 + \frac{1}{n} + \frac{1-\epsilon}{n \ln n} + \frac{C}{n^2},$$ for a fixed constant *C* and large *n*. So, according to Lemma 4.1 the process is recurrent. Note that the statements of Lemma 4.1 are closely related to those of Theorem 3 in [3] that prove recurrence and transience for the model studied there. Acknowledgements The help of the reviewer is highly appreciated. ## References - Abramov, V.M.: Conservative and semiconservative random walks: recurrence and transience. J. Theor. Probab. 31(3), 1900–1922 (2018) - Karlin, S., McGregor, J.: The classification of the birth-and-death processes. Trans. Am. Math. Soc. 86(2), 366–400 (1957) - 3. Menshikov, M.V., Asymont, I.M., Iasnogorodskii, R.: Markov processes with asymptotically zero drifts. Probl. Inf. Transm. **31**, 248–261 (1995), translated from Problemy Peredachi Informatsii **31**, 60–75 (**in Russian**)