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Abstract
The main goal of this paper is to give some primal and dual Karush–Kuhn–Tucker
second-order necessary conditions for the existence of a strict local Pareto minimum
of order two for an inequality-constrained multiobjective optimization problem. Dual
Karush–Kuhn–Tucker second-order sufficient conditions are provided too. We sup-
pose that the objective function and the active inequality constraints are only locally
Lipschitz in the primal necessary conditions and only strictly differentiable in sense
of Clarke at the extremum point in the dual conditions. Examples illustrate the appli-
cability of the obtained results.

Keywords Nonsmooth multiobjective optimization · Karush–Kuhn–Tucker dual
optimality conditions · Strict local Pareto minimum of order two · Second-order
efficiency conditions
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1 Introduction

Nonsmooth multiobjective optimization receives a lot of attention nowadays (see,
for instance, [1–8]) because it has practical applications to mathematical sciences,
economics, engineering, etc.

In this paper, we derive second-order optimality conditions for a nonsmooth mul-
tiobjective optimization problem (P) with inequality constraints.

This problem has been considered in many recent papers, but the data are at least
continuously differentiable (for instance, in [9–17]). The papers, which deal with
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optimization problems with locally Lipschitz data, give first-order optimality condi-
tions [1,6,18,19]. The articles concerning second-order conditions for optimization
problems with locally Lipschitz data are scarce and deal mostly with scalar problems
[2,4,5,20–23].

We give primal and dual second-order necessary conditions and dual second-order
sufficient conditions for a strict local Pareto minimum of order two for problem (P)
with locally Lipschitz data. We get our optimality conditions without assuming any
kind of second-order differentiability.

Thus, we extend to locally Lipschitz multiobjective optimization problems and
improve the second-order necessary conditions for a local minimum and for a
strict (or isolated) local minimum of order two of Constantin [21] for inequality-
constrained scalar problems with locally Lipschitz data, and of Ivanov [23] for
inequality-constrained scalar problems with locally Lipschitz data and some second-
order Hadamard differentiable data.

Our necessary conditions for a strict local Paretominimumof order two are obtained
in terms of the second-order Zangwill constraint qualification (ZSCQ). This constraint
qualification was introduced by Ivanov [14], where continuously differentiable func-
tions have been studied. It was generalized to locally Lipschitz functions in terms of
Páles and Zeidan’s second-order directional derivative by Xiao et al. [5]. We show by
means of examples that (ZSCQ) is not related to several regularity conditions intro-
duced in [1,18,19]. Our dual necessary conditions are of Karush–Kuhn–Tucker type
(i.e., the multipliers in the dual necessary conditions are not all equal to zero), and
they are obtained under an hypothesis inspired by a condition due to Luu [4].

We derive Karush–Kuhn–Tucker dual sufficient conditions for a strict local Pareto
of order two under weaker hypotheses than the ones required in the recent sufficient
conditions due to Feng–Li [10].

After some preliminaries in Sect. 2, we give primal necessary conditions in Sect. 3,
dual necessary conditions in Sect. 4, and dual sufficient conditions in Sect. 5.

2 Preliminaries

2.1 AboutWeak Solutions

In this section, we will discuss some applications of weak Pareto solutions to bioin-
formatics and computational biology. The paper [24] reviews five different contexts
that give rise to multiple objectives in biology. It outlines the wide applicability of
multiobjective optimization in biological problem domains (see sections 4–8, [24]).
In [24], the optimum solutions to the multiobjective problemsmodeling those contexts
are Pareto solutions. One of those five contexts concerns alignment problems (sections
3.2 and 6, [24]). Reference [25] deals with a particular type of alignment problem,
namely the structural RNA sequence alignment, which is also known as an inverse
problem of the RNA folding, or the RNA inverse folding (see [26]).

The ribonucleic acid (RNA) and the deoxyribonucleic acid (DNA) are nucleic
acids present in all living cells. The principal role of RNA is to act as a messenger
carrying instructions from DNA for controlling the synthesis of proteins. In some
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viruses, RNA rather than DNA carries the genetic information. Such a virus is SARS-
CoV-2 as it is written in [27] “the existence of SARS-CoV-2 in aerosol samples was
determined through the quantification of its genetic material (RNA).” The presence of
RNA belonging to SARS-CoV-2 allowed the authors of [27] to propose that SARS-
CoV-2 may have the potential to be transmitted via aerosols.

“Sequence alignment is a fundamental technology for various biological analyses
such as gene prediction andphylogenetic inference” [25]. It has been applied to protein,
DNA, and RNA. The structural RNA sequence alignment is important due to the
“increase in the number of known biological functions of noncoding RNAs” [25], and
also due to the need “to create artificial RNAmolecules which have a desired function.
In such artificial applications of RNA sequence, we have to design an RNA sequence
that folds into a desired structure (target structure) to realize a desired function” [26].

The structural RNA sequence alignment problem is a multi-objective optimization
problem because it involves two competing objective functions, sequence similarity
score s and secondary structure score P (see section 2.1, [25]). As explained in [25],
those objective functions are competing because “at a low sequence similarity, it is
difficult to discriminate an accidental sequence similarity and evolutionary conserved
nucleotides; hence, nonstructural alignment methods can give an inaccurate alignment
due to accidental matches of nucleotides; on the other hand, if we construct an RNA
alignment by maximizing a secondary structure score alone, the alignment can have a
reduced sequence similarity score compared to the alignment obtained by a nonstruc-
tural alignment method.” The secondary structure score is also known as structure
stability score (see [26]).

In [25,26], the author finds useful theweak Pareto optimal solutions of the structural
RNA sequence alignment problem. The reason is that “the solutions with the highest
P or highest s are of interest. For example, when multiple solutions have the highest
P in a solution set and they have values of s different from each other, only one
solution (with the highest s) of the solutions with the highest P is included in Pareto
optimal solutions, whereas weak Pareto optimal solutions contain all solutions with
the highest P in the solution set. When we align RNA sequences with a very low
sequence identity, the solutions with a low s and the highest P also can contain a good
alignment since the sequence identity becomes less reliable in such a case” ([25], pp.
2384).

It is further emphasized in [26] that “not only very stable RNA structures, but also
those with a lower stability can be candidates for artificial functional RNA sequences.”
In [26], the similarity score ranges from 0 to 1.0, and a similarity score of 1.0 indicates
a perfect consensus between two structures. To obtain a set of the RNA sequences
that fold into the target structure, and have a wide range of stability scores, the
weak Pareto optimal solutions are useful. “In weak Pareto optimal solutions of the
RNA sequence alignment problem, multiple solutions are allowed to have a similarity
score of 1.0 in contrast to the case of the Pareto optimal solutions, where only one
solution is allowed to have a similarity score of 1.0. Thus, weak Pareto optimal solu-
tions can give more a comprehensive solution set for RNA inverse folding” ([26], pp.
10).
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2.2 Notations and Definitions

In this paper, we deal with the following multiobjective optimization problem

Minimize f (x) subject to x ∈ D = {x ∈ U : gi (x) ≤ 0, i = 1, 2, ...,m}, (P)

where X is a Banach space, f = ( f1, ..., f p) : U → R
p, gi : U → R, i = 1, ...,m,

and U is an open set in X .
In this paper, we accept 0 × (−∞) = 0 and 0 × ∞ = 0.
Denote I := {1, 2, . . . ,m}, K := {1, 2, . . . , p}. For a subset A, cl A and conv A

denote the closure of A, and the convex hull of A, respectively.

Definition 2.1 (a) A point x̄ ∈ D is a weak local Pareto minimum, if there exists a
neighborhood V of x̄ such that no x ∈ V ∩ D satisfies fk(x) < fk(x̄) for all
k = 1, . . . , p.

(b) (Jiménez [29]) A point x̄ ∈ D is a strict local Pareto minimum of order two for
(P), or of f on D, if there exists a constant α > 0 and a neighborhood V of x̄ such
that ( f (x) + R

p
+) ∩ B( f (x̄), α‖x − x̄‖2) = ∅, ∀ x ∈ D ∩ V , x 
= x̄ .

(c) (Jimenez [29]) A point x̄ ∈ D is a strict local Pareto minimum for (P), if there
exists a neighborhood V of x̄ such that f (x)− f (x̄) /∈ −R

p
+, ∀ x ∈ D∩V , x 
= x̄ .

Here, B( f (x̄), α‖x − x̄‖2) denotes the open ball of center f (x̄) and radius α‖x −
x̄‖2, Rp denotes the p-dimensional Euclidean space, and R

p
+ = {x = (x1, . . . , xp) ∈

R
p : xk ≥ 0, k = 1, . . . , p}.
If x̄ is a strict local Pareto minimum of order two, then x̄ is a strict local Pareto

minimum, and thus, x̄ is a weak local Pareto minimum.

Definition 2.2 Let F be a real-valued locally Lipschitz mapping on an open set U of
X , and x ∈ U . Then,

(a) [30] Clarke’s generalized derivative of F at x is defined by

F◦(x; v) := lim sup
(u,t)→(x,0+)

F(u + tv) − F(u)

t
, v ∈ X .

(b) [31] Páles and Zeidan’s second-order upper generalized directional derivative of
F at x is defined as an element of R = R ∪ {∞} ∪ {−∞} by

F◦◦(x; v) := lim sup
t→0+

2
F(x + tv) − F(x) − t F◦(x; v)

t2
, v ∈ X .

(c) [23] Ivanov’s second-order lower generalized directional derivative of F at x in
the direction v ∈ X is defined as an element of R by

(F)′′−(x; v) := lim inf
(t,v′)→(0+,v)

2
F(x + tv′) − F(x) − t F◦(x; v)

t2
.
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(d) Ivanov’s second-order upper generalized directional derivative of F at x in the
direction v ∈ X is defined as an element of R by

(F)′′+(x; v) := lim sup
(t,v′)→(0+,v)

2
F(x + tv′) − F(x) − t F◦(x; v)

t2
.

Under the hypotheses of Definition 2.2, F◦(x̄; v) is finite for all v ∈ X . Thus,
the second-order upper and lower generalized derivatives considered above are well
defined as elements of R.

Definition 2.3 Let F map the Banach space X to another Banach space Y . Then, F
is strictly differentiable at x̄ (in sense of Clarke) [30], if there exists an element of the
space L(X,Y) of continuous linear functionals from X to Y denoted by ∇F(x̄), such
that for each v, the following holds

lim
(x,t)→(x̄,0+)

F(x + tv) − F(x)

t
= ∇F(x̄)(v),

and the convergence is uniform for v in compact sets. (This last condition is automatic
if F is Lipschitz near x̄ .)

If F is strictly differentiable at x , then F is Lipschitz near x (Proposition 2.2.1,
[30]). If F is continuously Gâteaux differentiable at x , then F is strictly differentiable
at x , and hence, F is Lipschitz near x [30]. In general, the pointwise notions of Fréchet
and strict differentiability are not comparable. Strict differentiability implies Fréchet
differentiability when X is finite-dimensional, but this implication vanishes when X
is infinite-dimensional.

Remark 2.1 If F : U → R is locallyLipschitz near x , regular in the sense ofClarke and
Gâteaux differentiable at x with the Gâteaux derivative F ′(x)(v), then by Proposition
2.3.6, [30], Clarke’s subdifferential of F at x reduces to a singleton. So, by Proposition
2.2.4, [30], F is strictly differentiable in sense of Clarke. If, in addition, X is a finite-
dimensional normed space, then F is Fréchet differentiable at x , and F◦(x; v) =
∇F(x)(v) = F ′(x)(v), for all v ∈ X .

The contingent cone Tx̄ S to a set S ⊆ X at x̄ ∈ cl S is defined by

Tx̄ S := {v ∈ X : ∃ tn → 0+ ∃ xn → x̄ such that x̄ + tnxn ∈ S, ∀ n ≥ 1}.

For any x̄ ∈ D, let I (x̄) := {i ∈ I : gi (x̄) = 0} be the set of active constraints.
The functions fk , k ∈ K , and gi , i ∈ I (x̄), are assumed to be locally Lipschitz on

U . For fixed vectors x̄ ∈ U and v ∈ X , let us denote
I (x̄; v) := {i ∈ I (x̄) : g◦

i (x̄; v) = 0}, and K (x̄; v) := {k ∈ K : f ◦
k (x̄; v) = 0}.

A direction v is called critical at the point x̄ ∈ D, if f ◦
k (x̄; v) ≤ 0 for all k ∈ K

and g◦
i (x̄; v) ≤ 0 for all i ∈ I (x̄).

In Xiao et al. [5] the Zingwill second-order constraint qualification (ZSCQ) has
been considered: B(x̄, v) ⊆ cl A(x̄, v),
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where x̄ is a feasible point for (P), v is a direction in X ,

A(x̄, v) := {w ∈ X : ∀ i ∈ I (x̄; v) ∃ εi > 0 gi

(
x̄ + tv + 1

2
t2w

)
≤ 0, ∀ t ∈]0, εi [},

B(x̄, v) := {w ∈ X : g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤ 0, ∀ i ∈ I (x̄; v)}.

By definition, A(x̄, v) = B(x̄, v) = X if I (x̄; v) = ∅.
In [21], we applied the condition B(x̄, v) ⊆ A0(x̄, v) where the set A0(x̄, v) was

defined like A(x̄, v) with I (x̄) instead of I (x̄; v). It is a generalization of a condition
introduced in [13] for functions that are differentiable and second-order direction-
ally differentiable. Clearly, the condition B(x̄, v) ⊆ A0(x̄, v) implies the constraint
qualification (ZSCQ).

3 Primal Necessary Conditions

In this section, we give primal second-order necessary conditions for a strict local
Pareto minimum of order two.

Theorem 3.1 Suppose that x̄ ∈ D is a strict local Pareto minimum of order two for
problem (P), the functions gi , i /∈ I (x̄) are continuous at x̄ , and the functions fk ,
k ∈ K and gi , i ∈ I (x̄) are locally Lipschitz on U. Then, for every nonzero critical
direction v ∈ X satisfying B(x̄, v) ⊆ cl A(x̄, v), it follows that there is no w ∈ X
which solves the system

{
f ◦
k (x̄;w) + f ◦◦

k (x̄; v) ≤ 0, k ∈ K (x̄; v),

g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤ 0, i ∈ I (x̄; v).
(3.1)

Proof Suppose the contrary that there exists a nonzero critical direction v satisfying
B(x̄, v) ⊆ cl A(x̄, v), such that system (3.1) has a solution w ∈ X . Consider the three
possible cases concerning the constraints:

(1) For every i ∈ I (x̄; v), we have g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤ 0. Thus, w ∈ B(x̄, v).
Due to the assumption B(x̄, v) ⊆ cl A(x̄, v), there exists a sequence wr → w with
wr ∈ A(x̄; v). Let us fix a nonnegative integer r . Then, there exists εri > 0 such that

for all t ∈]0, εri [, gi (x̄ + tv + 1

2
t2wr ) ≤ 0.

(2) For every i ∈ I (x̄) \ I (x̄; v), we have g◦
i (x̄; v) < 0. Then, there exists εri > 0

such that for all t ∈]0, εri [, gi (x̄ + tv + t2

2
wr ) < gi (x̄) = 0. To show this inequality,

we suppose by contradiction that, for any ε > 0, there is 0 < t(ε) < ε such that

gi (x̄ + t(ε)v + t2(ε)

2
wr ) ≥ gi (x̄). Let {εn}n≥1 be a sequence, εn → 0+ as n → ∞,

and tn ∈]0, εn[ with gi (x̄ + tnv + t2n
2

wr ) − gi (x̄) ≥ 0. Then,
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0 ≤ lim sup
n→∞

gi (x̄ + tnv + t2n
2

wr ) − gi (x̄)

tn

≤ lim sup
n→∞

1

tn
[gi (x̄ + tnv) − gi (x̄)]

+ lim sup
n→∞

1

tn

[
gi

(
x̄ + tnv + t2n

2
wr

)
− gi (x̄ + tnv)

]
.

Then, 0 ≤ g◦
i (x̄; v) + lim sup

n→∞
1

2
Li tn‖wr‖, as gi is locally Lipschitz of constant

Li > 0. Therefore, g◦
i (x̄; v) ≥ 0, which contradicts i /∈ I (x̄; v).

(3) For every i ∈ I \ I (x̄), gi (x̄) < 0. Hence, by continuity, there exists εri > 0

such that gi (x̄ + tv + 1

2
t2wr ) < 0, for all t ∈]0, εri [.

Cases (1), (2), and (3) imply that gi (x̄+ tv+ 1

2
t2wr ) ≤ 0, for all i ∈ {1, 2, . . . ,m},

and for all t ∈]0, ε̃[, where ε̃ = min
i∈{1,2,...,m} ε

r
i . Thus, the point x̄ + tv + 1

2
t2wr is

feasible for all t ∈]0, ε̃[.
Since x̄ is a strict local Pareto minimum of order two of f on D, by Theorem 3.7, a)

[29], there existα > 0, Ū a neighborhood of x̄ , and atmost p sets Vk , k ∈ K ′ ⊂ K such
that {Vk : k ∈ K ′} is a covering of D∩Ū \{x̄} and fk(x) > fk(x̄)+α‖x− x̄‖2,∀ x ∈
D̄k \ {x̄}, where D̄k = (D ∩ Ū ∩ Vk) ∪ {x̄}.

For every positive sequence {tn}n≥1, tn → 0+ as n → ∞, there exists an index
k ∈ K ′ ⊂ K and an infinite subsequence, which we can denote again by {tn}n≥1, such

that x̄ + tnv + t2n
2

wr ∈ D̄k for any positive integer n ≥ n̄ for some n̄ ≥ 1 because

{Vk : k ∈ K ′} is a covering of D ∩ Ū \ {x̄}.
Then, for all n ≥ n̄, we have

fk(x̄ + tnv + t2n
2

wr ) > fk(x̄) + α‖tnv + t2n
2

wr‖2. (3.2)

There are two possible cases concerning a function fk , k ∈ K ′:
(i) If k ∈ K ′ and k /∈ K (x̄; v), then there exists ñ ≥ n̄ such that

fk

(
x̄ + tnv + t2n

2
wr

)
< fk(x̄), ∀ n ≥ ñ. (3.3)

To show this, suppose by contradiction that there exists a subsequence of {tn}n≥n̄ ,
which, for simplicity, we denote by {tn}n≥n̄ too, such that

fk(x̄ + tnv + t2n
2

wr ) ≥ fk(x̄), for all n ≥ n̄. From the previous inequality, as in case

2), we get f ◦
k (x̄; v) ≥ 0, and then f ◦

k (x̄; v) = 0 because v is a critical direction. This
contradicts k /∈ K (x̄; v). Thus, inequality (3.3) holds, which contradicts inequality
(3.2).
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(ii) If k ∈ K ′ and k ∈ K (x̄; v), we have f ◦
k (x̄; v) = 0. Inequality (3.2) implies that

the following inequality holds for all n ≥ n̄

αt2n‖v + tn
2

wr‖2 ≤ t2n
2

[
2

t2n

(
fk(x̄ + tnv + t2n

2
wr

)
− fk(x̄ + tnv))

]

+ t2n
2

[
2

t2n
( fk(x̄ + tnv) − fk(x̄) − tn f

◦
k (x̄; v))

]
.

Since v 
= 0 and α > 0, after dividing the above inequality by t2n /2 and taking the
upper limit as n → ∞, we obtain

0 < 2α‖v‖2 ≤ lim sup
n→∞

{[
2

t2n

(
fk(x̄ + tnv + t2n

2
wr

)
− fk(x̄ + tnv))

]

+
[
2

t2n
( fk(x̄ + tnv) − fk(x̄) − tn f

◦
k (x̄; v))

]}

≤ lim sup
n→∞

[
2

t2n
( fk

(
x̄ + tnv + t2n

2
wr

)
− fk(x̄ + tnv))

]

+ lim sup
n→∞

[
2

t2n
( fk(x̄ + tnv) − fk(x̄) − tn f

◦
k (x̄; v))

]
≤ f ◦

k (x̄;wr ) + f ◦◦
k (x̄; v).

Letting r → ∞, and taking into account that the function u → f ◦
k (x̄; u) is locally

Lipschitz on X (Proposition 2.1.1., b), [30]), we get
0 < 2α‖v‖2 ≤ f ◦

k (x̄;w) + f ◦◦
k (x̄; v), which contradicts the assumption that w is a

solution of system (3.1).
Since we arrived at contradictions in both possible cases concerning fk , k ∈ K ′,

there is no critical direction v 
= 0 for which (3.1) has a solution. ��
The theorem below can be proved using some arguments of the proof of Theorem

3.1. This result can also be derived by means of Proposition 3.1, i), and Theorem 4.2
[5], but under the additional hypothesis K (x̄; v) 
= ∅. This hypothesis is embedded
in the definition of a critical direction used in [5], where v is a critical direction, if
it satisfies f ◦

k (x̄; v) ≤ 0 for all k ∈ K , f ◦
k (x̄; v) = 0 for at least one k ∈ K , and

g◦
i (x̄; v) ≤ 0 for all i ∈ I (x̄). Theorem 3.2 is used in Examples 3.1 and 4.1.

Theorem 3.2 Suppose that x̄ ∈ D is a weak local Pareto minimum for problem (P),
the functions gi , i /∈ I (x̄) are continuous at x̄ , and the functions fk , k ∈ K, and gi ,
i ∈ I (x̄), are locally Lipschitz on U.

Then, for every critical direction v ∈ X satisfying (ZSCQ), there is now ∈ X which
solves the system

{
f ◦
k (x̄;w) + f ◦◦

k (x̄; v) < 0, k ∈ K (x̄; v),

g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤ 0, i ∈ I (x̄; v).
(3.4)

Remark 3.1 By Corollary 1 [2], if x̄ is a local weak Pareto minimum, then K (x̄; v) ∪
I (x̄; v) 
= ∅. A strict local Pareto minimum of order two is a weak local Pareto
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minimum. Thus, under the hypotheses of Theorems 3.1 and 3.2, systems (3.1) and
(3.4) exist, respectively.

In Theorem 3.2, we generalize to the nonsmooth multiobjective inequality-
constraint optimization problem (P) with locally Lipschitz data the primal necessary
conditions of Theorem 4.1 [14] given for problem (P) with continuously differentiable
data. If the stronger assumptions of Theorem 4.1 [14] hold, then our assumptions hold
too, and the conclusion of our result is the same as the conclusion of Ivanov’s result.

The scalar case of Theorem 3.2 gives stronger second-order necessary conditions
than those in Theorem 2 [21] for scalar problems with locally Lipschitz data, and
those in Theorem 5 [11] for scalar problems with continuously differentiable data and
some second-order directionally differentiable data (see also Remark 2, [21]). The
reason is that in Theorem 2 [21] and in Theorem 5 [11], in the unsolvable system,
the inequalities corresponding to the inequality constraint functions are strict, but in
Theorem 3.2 those inequalities are nonstrict. In Theorem 3.2, we require (ZSCQ),
but in Theorem 2 [21] and Theorem 5 [11], no constraint qualification condition or
regularity condition was imposed.

Example 3.1 Let f = ( f1, f2) : R
2 → R

2, f1(x1, x2) = |x1 − 2x2| − 3x2 + x21 + 2,
f2(x1, x2) = |x1 − x2|+ (x1 − x2)2 + x62 +1, subject to x ∈ D = {x ∈ R

2 : g1(x) =
|x1| − x2 − x31 ≤ 0, g2(x) = |x2| − x1 − x42 ≤ 0}.

The point x̄ = (0, 0) ∈ D is a strict local Pareto minimum of f on D as f2(x) >

f2(x̄) for all x ∈ R
2, x 
= x̄ . The critical directions v = (v1, v2) ∈ R

2 at x̄ ∈ D verify
v1 = v2 ≥ 0. For any critical direction v, I (x̄; v) = {1, 2}, K (x̄; v) = {2} if v 
= 0,
and K (x̄; v) = {1, 2} if v = 0.

The second-order necessary conditions for a weak local Pareto minimum are veri-
fied at x̄ as for a critical direction v 
= 0, the systems in Theorem 3 [2] and in Theorem
3.2 have no solution w = (w1, w2) ∈ R

2 because they both contain the inequality
f ◦
2 (x̄;w) + f ◦◦

2 (x̄; v) = |w1 − w2| + 2(v1 − v2)
2 < 0.

Let v be any critical direction. Since g◦◦
i (x̄; v) = 0, i = 1, 2, we have B(x̄, v) =

{w ∈ R
2 : |w1| − w2 ≤ 0, |w2| − w1 ≤ 0} = {w ∈ R

2; w1 = w2 ≥ 0},
A(x̄, v) = {w ∈ R

2 : ∃ ε > 0, gi (tv + 1
2 t

2w) ≤ 0, i = 1, 2, ∀ t ∈]0, ε[}. If w

is any direction in B(x̄, v), then the inequalities in the definition of the set A(x̄, v)

become |tv1 + 1

2
t2w1| − (tv1 + 1

2
t2w1) − (tv1 + 1

2
t2w1)

3 ≤ 0 and |tv1 + 1

2
t2w1| −

(tv1 + 1

2
t2w1) − (tv1 + 1

2
t2w1)

4 ≤ 0, which are both satisfied for any t > 0 because

tv1 + 1

2
t2w1 ≥ 0. So w belongs to the set A(x̄, v) too, and thus, B(x̄, v) ⊆ A(x̄, v).

Therefore, (ZSCQ) holds for every critical direction.
For a critical direction v 
= 0, i.e., for v ∈ R

2 with v1 = v2 > 0, we can find a
vector w ∈ R

2 (for example, w = (1, 1)), which is a solution of the system formed by
the inequalities f ◦

2 (x̄;w) + f ◦◦
2 (x̄; v) = |w1 − w2| + 2(v1 − v2)

2 ≤ 0, g◦
1(x̄;w) +

g◦◦
1 (x̄; v) = |w1| − w2 ≤ 0, g◦

2(x̄;w) + g◦◦
2 (x̄; v) = |w2| − w1 ≤ 0. Thus, our

second-order necessary conditions of Theorem 3.1 are not verified, and (0, 0) is not a
strict local Pareto minimum of order two of f on D.

The primal and the dual second-order necessary conditions for a weak local Pareto
minimum for (P), given in Theorems 4.1 and 4.2 [14], Theorems 3.2 and 3.3 [12],
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Theorems 4.1 and 4.2 [16], Theorem 4.1 [17] are not applicable to Example 3.1
because the functions f1, g1, and g2 are not continuously differentiable near x̄ .

We will show by means of examples that the constraint qualification (ZSCQ) is not
related to any of the regularity conditions (GGRC) and (GARC) of [1], the (GACQ)
and (GGCQ) of [19], and the Basic Regularity Condition of [18].

Example 3.2 Let us consider the function f = ( f1, f2), subject to x ∈ D =
{(x1, x2) ∈ R

2 : g1(x) ≤ 0, g2(x) ≤ 0}, where f1(x) = x21 + x22 , f2(x) = x62 + x31 ,
g1(x1, x2) = |x1| − x2 − x31 , g2(x) = |x2| − x1 − x42 , and f1, f2, g1, g2 : R

2 → R.
The point x̄ = (0, 0) ∈ D is a strict local Pareto minimum of order two of f1 on

R
2 and thus on D. It follows using Proposition 3.4 [29] that x̄ is a strict local Pareto

minimum of order two of f on D.
Any critical directionvmust verify |v1|−v2 ≤ 0, |v2|−v1 ≤ 0, and so,v1 = v2 ≥ 0.

As in Example 3.1, (ZSCQ) is verified for any critical direction.
Let us find the sets Qi , i = 1, 2 considered in [19] and the sets Mi , i = 1, 2

considered in [1]. We have Q2 = M1 = {x = (x1, x2) ∈ R
2 : f1(x) ≤ 0, g1(x) ≤

0, g2(x) ≤ 0} = {x̄}, and Q1 = M2 = {x = (x1, x2) ∈ R
2 : f2(x) ≤ 0, g1(x) ≤

0, g2(x) ≤ 0}. Then, {x̄} ⊆ T (M2, x̄) ⊆ {v = (v1, v2) ∈ R
2 : v31 ≤ 0, |v1| − v2 ≤

0, |v2| − v1 ≤ 0}. So T (M2, x̄) = {x̄}. Also, T (M1, x̄) = {x̄}. We have Q =
M = M1 ∩ M2, L(M, x̄) = {v ∈ R

2 : f ◦
1 (x̄; v) ≤ 0, f ◦

2 (x̄; v) ≤ 0, g◦
1(x̄; v) ≤

0, g◦
2(x̄; v) ≤ 0}, and L(Q, x̄) = L(M, x̄) = {v = (v1, v2) ∈ R

2 : v1 = v2 ≥ 0}.
It follows L(M, x̄) � cl conv T (M1, x̄) and L(M, x̄) � cl conv T (M2, x̄). So

(GGRC) introduced in [1] does not hold at x̄ . Also, L(M; x̄) � ∩2
i=1T (Mi , x̄). Thus,

(GARC) introduced in [1] is not verified at x̄ .
Since L(Q, x̄) � ∩2

i=1T (Qi , x̄), (GACQ) of [19] is not satisfied at x̄ . Also,
L(Q, x̄) � ∩2

i=1 cl conv T (Qi , x̄). Thus, (GGCQ) of [19] is not verified at x̄ .
In this example, the Basic Regularity Condition introduced by Chandra et. al. ((4)

in [18]) is not satisfied at x̄ as for any k ∈ {1, 2} = K , there exist nonzero λl ≥ 0,
l ∈ {1, 2}, l 
= k, and μi ≥ 0, i ∈ I (x̄) such that 0 ∈ ∑

l∈K , l 
=k λl∂ fl(x̄) +∑
i∈I (x̄) μi∂gi (x̄). Here, for a locally Lipschitz function F : R

2 → R, ∂F(x̄) :=
{ξ ∈ R

2 : < ξ, v >≤ F◦(x̄; v), ∀ v ∈ R
2}, and < ξ, v > denotes the dot product

of ξ and v. For k = 1, λ2 = 1 > 0 and μ1 = μ2 = 1

2
satisfy 0 ∈ λ2∇ f2(x̄) +

μ1∂g1(x̄) + μ2∂g2(x̄). Similarly, for k = 2, λ1 = 1 > 0 and μ1 = μ2 = 1

2
satisfy

0 ∈ λ1∇ f1(x̄) + μ1∂g1(x̄) + μ2∂g2(x̄).

Example 3.3 Let us consider the function f = ( f1, f2) : R
2 → R

2, subject to x ∈
D = {(x1, x2) ∈ R

2 : g1(x) ≤ 0}, where g1(x1, x2) = |x1| − x2 − x31 , f1(x) = |x2|,
and f2(x) = 2x2 + x22 + 5x1.

The point x̄ = (0, 0) ∈ D is a local Pareto minimum of f on D. We get L(M, x̄) =
{v ∈ R

2 : f ◦
1 (x̄; v) ≤ 0, f ◦

2 (x̄; v) ≤ 0, g◦
1(x̄; v) ≤ 0} = {x̄}, and L(Q, x̄) =

L(M, x̄). Since x̄ ∈ T (S, x̄) for any set S 
= ∅ with x̄ ∈ S, the regularity conditions
(GGRC), (GARC) we introduced in [1], and the regularity conditions (GACQ) and
(GGCQ) due to Giorgi et al. [19] are verified at x̄ .

The Basic Regularity Condition due to Chandra et al. [18] holds at x̄ because for
k = 1, 0 ∈ λ2∇ f2(x̄) + μ1∂g1(x̄) only if λ2 = μ1 = 0.
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The only critical direction at x̄ is v = (0, 0). We have
B(x̄, v) = {w = (w1, w2) ∈ R

2 : |w1| − w2 ≤ 0}. Let w̄ = (−2, 2) ∈ B(x̄, v). We
show that w̄ /∈ cl A(x̄, v). Suppose by contradiction that there exists wn ∈ A(x̄, v)

such that lim
n→∞ wn = w̄. We have that there exists ε̄ > 0 such that |w1n| − w2n −

1

4
t4w3

1n ≤ 0, ∀ t ∈]0, ε̄[. Letting n → ∞, we obtain 2t4 ≤ 0, ∀ t ∈]0, ε̄[, and we

arrived at a contradiction. Thus, w̄ /∈ cl A(x̄, v). Therefore, B(x̄, v) � cl A(x̄, v),
i.e., (ZSCQ) does not hold at x̄ in the direction v.

4 Dual Necessary Conditions

In this section, we derive dual second-order necessary conditions for a strict local
Pareto minimum of order two.

Let the functions fk , k ∈ K , gi , i ∈ I (x̄) locally Lipschitz on U .
We consider the hypotheses below that we introduced in [2]:

(H1): f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v), g◦◦

i (x̄; v) < ∞, i ∈ I (x̄; v).
(H2): We say that a given direction v ∈ X verifies hypothesis (H2), if there exists a

vector w ∈ X such that g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤ 0, for all i ∈ I (x̄; v).

Hypothesis (H2) is a modification of the constraint qualification (CQ1) due to Luu
[4], which extended to locally Lipschitz functions the Ben-Tal constraint qualification
[28] for twice continuously differentiable functions.

Theorem 4.1 Consider problem (P) with X a finite-dimensional normed space. Sup-
pose that x̄ ∈ D is a strict local Pareto minimum of order two for problem (P), the
functions gi , i /∈ I (x̄) are continuous at x̄ , and the functions fk , k ∈ K, and gi ,
i ∈ I (x̄), are strictly differentiable at x̄ .

Then, for every nonzero critical direction v verifying (ZSCQ) and (H1), there exist
nonnegative multipliers λk , k ∈ K, μi , i ∈ I , {λk, μi : k ∈ K , i ∈ I (x̄)} not all
zeroes, such that μi gi (x̄) = 0, i ∈ I ,

∑
k∈K

λk∇ fk(x̄) +
∑
i∈I (x̄)

μi∇gi (x̄) = 0, (4.1)

μi∇gi (x̄)(v) = 0, i ∈ I (x̄), λk∇ fk(x̄)(v) = 0, k ∈ K , (4.2)∑
k∈K

λk f
◦◦
k (x̄; v) +

∑
i∈I (x̄)

μi g
◦◦
i (x̄; v) > 0. (4.3)

Moreover, for any nonzero critical direction v verifying (H1), (H2) and (ZSCQ), the
multipliers {λk : k ∈ K } are not all equal to zero.
Proof Let v 
= 0 be an arbitrary fixed critical direction satisfying (ZSCQ) and (H1).
By Theorem 3.1, the system below is inconsistent:

{∇ fk(x̄)(w) + f ◦◦
k (x̄; v) ≤ 0, k ∈ K (x̄; v),

∇gi (x̄)(w) + g◦◦
i (x̄; v) ≤ 0, i ∈ I (x̄; v).
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We remove all the inequalities from the above system for which the corresponding
second-order upper generalized directional derivative is −∞.

Consider the matrix A with the rows {∇ fk(x̄) : k ∈ K (x̄, v)} and {∇gi (x̄) :
i ∈ I (x̄, v)}, and the vector b with the components { f ◦◦

k (x̄; v) : k ∈ K (x̄; v)} and
{g◦◦

i (x̄; v) : i ∈ I (x̄; v)}.
With these notations, it follows that the linear system Az + b � 0 has no solution

w ∈ X , which is equivalent to the fact that the linear program min{y : Aw + b � ŷ},
where by ŷ is denoted the vector with all the components equal to y, has a positive
optimal solution, according to condition (H1). An equivalent form of the last program
is min{y : −Aw + ŷ � b}. By the duality theorem, the dual program max{bT δ :
−AT δ = 0,

∑
δi = 1, δi ≥ 0} has a positive optimal value, which means that

the system AT δ = 0, bT δ > 0, δ � 0, δ 
= 0, has a solution. Here, the vector
δ = (λ,μ) has the same dimension as the vector b (say n), λ has the components
{λk : k ∈ K (x̄; v)}, μ has the components {μi : i ∈ I (x̄; v)}, AT is the transpose of
the matrix A, and δ = (δ1, . . . , δn) � 0 means δl ≥ 0 for all l ∈ {1, . . . , n}.

We obtained that there exist λk ≥ 0, k ∈ K (x̄; v), μi ≥ 0, i ∈ I (x̄; v), {λk, μi :
k ∈ K (x̄; v), i ∈ I (x̄; v)} not all equal to zero, such that

∑
k∈K (x̄;v)

λk∇ fk(x̄) +
∑

i∈I (x̄;v)

μi∇gi (x̄) = AT = 0, (4.4)

∑
k∈K (x̄;v)

λk f
◦◦
k (x̄; v) +

∑
i∈I (x̄;v)

μi g
◦◦
i (x̄; v) = bT > 0. (4.5)

We take λk = 0 for k ∈ K \ K (x̄; v), and μi = 0 for i ∈ I (x̄) \ I (x̄; v) and for
i /∈ I (x̄). Also, we take λk = 0 and μi = 0 if k ∈ K (x̄; v), i ∈ I (x̄; v), and the
corresponding second-order generalized derivative is equal to −∞.

The multipliers λ1, . . . , λp verify the equation λk∇ fk(x̄)(v) = 0, for all k ∈
K because λk = 0 for k ∈ K \ K (x̄; v), and if k ∈ K (x̄; v), then according to
the definition of the set K (x̄; v), we have ∇ fk(x̄)(v) = f ◦

k (x̄; v) = 0 because the
functions fk , k ∈ K are assumed to be strictly differentiable at x̄ . For similar reasons,
the multipliers μ1, . . . , μm verify μi∇gi (x̄)(v) = 0, i ∈ I (x̄).

Next, we want to show that, for any nonzero critical direction v verifying (H1),
(H2), and (ZSCQ), at least one of the multipliers λk , k ∈ K is positive. Suppose the
contrary, i.e., that there exists such a critical direction v for which all {λk : k ∈ K }
are equal to zero. Let w be the vector guaranteed by (H2). From (4.1) and (4.3), the
inequality below follows

∑
k∈K

λk(∇ fk(x̄)(w) + f ◦◦
k (x̄; v)) +

∑
i∈I (x̄)

μi (∇gi (x̄)(w) + g◦◦
i (x̄; v)) > 0.

If we suppose that all {λk : k ∈ K } are equal to zero, then
∑
i∈I (x̄)

μi (∇gi (x̄)(w) + g◦◦
i (x̄; v)) > 0.
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Since μi = 0 for i ∈ I (x̄) \ I (x̄; v) and {λk, μi : k ∈ K (x̄; v), i ∈ I (x̄; v)} are
not all equal to zero, it follows that, for the critical direction v as above, at least one
μi , i ∈ I (x̄; v) must be positive. Then, due to (H2), we arrive at a contradiction. ��
Remark 4.1 Theorem 3.1 extends to locally Lipschitz multiobjective problems the
primal second-order necessary conditions of Theorem 3 [13] and Theorem 6 [23]
for scalar optimization problems. In Theorem 3 [13], all functions are continuously
differentiable data, and the active inequality constraint functions are second-order
directionally differentiable at x̄ in every critical direction. In Theorem 6 [23], the
objective function and the active inequality constraint functions are locally Lipschitz
near x̄ , regular and Gâteaux differentiable at x̄ , and the active inequality constraint
functions are second-order Hadamard differentiable at x̄ in every critical direction.

In view of Remark 2.1, the scalar cases of Theorems 3.1 and 4.1 improve Theorems
5 and 6, Constantin [21], respectively. In Theorem 6 [21], the objective function and
the active inequality constraint functions are locally Lipschitz near x̄ , regular and
Gâteaux differentiable at x̄ . If the stronger hypotheses of Theorems 5 and 6 [21] hold,
then the hypotheses of the scalar cases of Theorems 3.1 and 4.1 hold, respectively, and
the conclusions of the corresponding results are the same. In addition, in Theorem 4.1,
we derive conditions for at least one of the multipliers corresponding to the objective
functions to be strictly positive, but in Theorem 6 [21], we did not give conditions that
guarantee that the objective coefficient is different from zero. In Theorems 3.1 and 4.1,
we require the weaker condition B(x̄, v) ⊆ cl A(x̄, v) to be satisfied for some critical
directions v 
= 0, but in Theorems 5 and 6 [21], we required the stronger condition
B(x̄, v) ⊆ A0(x̄, v) to hold for any critical direction v 
= 0.

Example 4.1 Let us consider the function f = ( f1, f2), subject to x ∈ D =
{(x1, x2) ∈ R

2 : g1(x) ≤ 0}, where f1(x) = (x1 − x2)2 + x41 + 2, f2(x) =
−x4/31 − x6/52 + x62 + x1, g1(x1, x2) = x1 − x2 − x41 , and f1, f2 : R

2 → R.
The point x̄ = (0, 0) ∈ D is a strict local Pareto minimum of f on R

2, and thus,
on D as f1(x) > f1(x̄) for all x ∈ R

2, x 
= x̄ . We want to show that x̄ is not a strict
local Pareto minimum of order two of f on D.

We have I (x̄) = {1}. The functions f1, f2, and g1 are strictly differentiable at
x̄ , because they are continuously differentiable near x̄ . The function f2 is not twice
differentiable at x̄ .

The critical directions at x̄ are the vectors v = (v1, v2) ∈ R
2 with v1 ≤ v2, v1 ≤ 0.

We get K (x̄, v) = {1} if v1 
= 0 and K (x̄, v) = {1, 2} if v1 = 0.
For any critical direction v, we have ( fk)◦◦(x̄; v) < +∞, k ∈ K (x̄, v) and

(gi )◦◦(x̄; v) < +∞, i ∈ I (x̄, v) as f1 and g1 are twice differentiable, ( f2)◦◦(x̄; v) =
−∞ if v 
= 0, and ( f2)◦◦(x̄; v) = 0 if v = 0. The point x̄ verifies

∑
k∈K λk∇ fk(x̄)+∑

i∈∪I (x̄)
μi∇gi (x̄) = 0, λk∇ fk(x̄)(v) = 0, k ∈ K , and μi∇gi (x̄)(v) = 0, i ∈ I (x̄)

with any λ1 > 0, λ2 = 0, and μ1 = 0.
Let v be a nonzero critical direction such that v1 = v2. Then, I (x̄, v) = {1}.

We have B(x̄, v) = {w = (w1, w2) ∈ R
2 : w1 − w2 ≤ 0} as g◦◦

1 (x̄; v) = 0.

Also, A(x̄, v) = {w ∈ R
2 : ∃δ > 0, g1(tv + 1

2
t2w) ≤ 0 ∀ t ∈]0, δ[}. If w

is any direction in B(x̄, v), then the inequality in the definition of the set A(x̄, v)
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becomes (tv1 + 1

2
t2w1) − (tv2 + 1

2
t2w2) − (tv1 + 1

2
t2w1)

4 ≤ 0, which is obviously

satisfied for any t > 0. Thus, w ∈ A(x̄, v), and so B(x̄, v) ⊆ A(x̄, v). Therefore,
B(x̄, v) ⊆ cl A(x̄, v) for any nonzero critical direction with v1 = v2. (ZSCQ) holds
for a critical direction v with v1 < v2 as I (x̄, v) = ∅.

The first-order necessary conditions for a weak local Pareto minimum are satisfied
at x̄ , as the systems of Theorems 4.1 [5] and Theorem 2 [2] have no solution v ∈ R

2

because they both contain the inequality f ◦
1 (x̄; v) < 0. The second-order necessary

conditions for a weak local Pareto minimum are verified at x̄ , as for a critical direction
v 
= 0, the systems of Theorem 3 [2] and of Theorem 3.2 have no solution w ∈ R

2

because they both contain the inequality f ◦
1 (x̄;w) + f ◦◦

1 (x̄; v) = 2(v1 − v2)
2 < 0.

Our second-order necessary condition for a strict local Paretominimumof order two
of Theorem 4.1 is not verified as the second-order expression

∑
k∈K λk( fk)

◦◦(x̄; v)+∑
i∈I (x̄) μi (gi )

◦◦(x̄; v) = 2λ1(v1−v2)
2 is not strictly positive for any nonzero critical

direction v with B(x̄, v) ⊆ clA(x̄, v) because 2λ1(v1 − v2)
2 = 0 for any nonzero

critical direction v with v1 = v2. Therefore, x̄ is not a strict local Pareto minimum of
order two of f on D.

In this example, condition (C) of [14] is not verified because for v = (0, v2), v2 > 0,
which verifies ∇ f2(x̄)(v) = 0, the second-order directional derivative f ′′

2 (x̄, v) :=
lim
t→0+

2

t2
[ f2(x̄ + tv) − f2(x̄) − t∇ f2(x̄(v)] = −∞, so f ′′

2 (x̄, v) does not exist as an

element of R. Thus, the dual necessary conditions of Theorem 4.2 [14] for a weak
local Pareto minimum of problem (P) with inequality constraints and continuously
differentiable data are not applicable here. ��

5 Sufficient Conditions

In this section, we obtain second-order sufficient conditions for a strict local Pareto
minimum of order two.

Theorem 5.1 Consider problem (P) with X a finite-dimensional normed space. Sup-
pose that x̄ ∈ D, the functions gi , i /∈ I (x̄) are continuous at x̄ , and the functions fk ,
k ∈ K, and gi , i ∈ I (x̄), are strictly differentiable at x̄ . Suppose that for every nonzero
critical direction v ∈ Tx̄ D, it holds ( fk)′′+(x̄; v) < ∞, for all k ∈ K, (gi )′′+(x̄; v) < ∞
for all i ∈ I (x̄), and there exist nonnegative multipliers λk , k ∈ K, and μi , i ∈ I , not
all {λk : k ∈ K } equal to zero with

∑
k∈K

λk∇ fk(x̄) +
∑
i∈I (x̄)

μi∇gi (x̄) = 0, (5.1)

∑
k∈K

λk( fk)
′′−(x̄; v) +

∑
i∈I (x̄)

μi (gi )
′′−(x̄; v) > 0. (5.2)

Then, x̄ is a strict local Pareto minimum of order two for problem (P).
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Proof Suppose by contradiction that x̄ ∈ D is not a strict local Pareto minimum
of order two for problem (P). By Proposition 3.5, b) [29], there exists a sequence

{xn}n≥1 ⊂ D \ {x̄}, xn → x̄ , such that lim
n→∞

xn − x̄

‖xn − x̄‖ = v, v ∈ Tx̄ D, ‖v‖ = 1, and

lim
n→∞

f (xn) − f (x̄)

‖xn − x̄‖2 = d ∈ [−∞, 0]p.

We denote tn = ‖xn − x̄‖ → 0+, and vn = xn − x̄

‖xn − x̄‖ → v. It follows that

xn = x̄ + tnvn ∈ D. Then, for d = (d1, . . . , dp) and k ∈ K , it holds

lim
n→∞

fk(xn) − fk(x̄)

‖xn − x̄‖2 = dk ∈ [−∞, 0].

If dk = −∞, then fk(xn) − fk(x̄) < 0, for all n sufficiently large, and
∇ fk(x̄)(v) = lim

n→∞ [t−1
n ( fk(xn) − fk(x̄))] ≤ 0. If dk ∈ R, dk ≤ 0, then ∇ fk(x̄)(v) =

( lim
n→∞ tn) lim

n→∞[t−2
n ( fk(xn) − fk(x̄))] = 0.

Moreover, due to the fact that gi (xn) ≤ 0, as xn ∈ D for all n, we get ∇gi (x̄)(v) =
lim
n→∞ t−1

n (gi (xn) − gi (x̄)) = lim
n→∞(t−1

n gi (xn)) ≤ 0. Since the functions are strict

differentiable, we get f ◦
k (x̄; v) = ∇ fk(x̄)(v) ≤ 0, for all k ∈ K , and g◦

i (x̄; v) =
∇gi (x̄)(v) ≤ 0, for all i ∈ I (x̄). So v is a critical direction. Then,

∑
k∈K

λk( fk)
′′−(x̄; v) +

∑
i∈I (x̄)

μi (gi )
′′−(x̄; v)

≤
∑
k∈K

λk lim inf
n→∞

(
2

t2n
( fk(x̄ + tnvn) − fk(x̄) − tn∇ fk(x̄)(v)

)

+
∑
i∈I (x̄)

μi lim inf
n→∞ 2t−2

n (gi (x̄ + tnvn) − gi (x̄) − tn∇gi (x̄)(v))

≤ lim inf
n→∞ 2t−2

n

[∑
k∈K

λk fk(x̄ + tnvn) −
∑

λk fk(x̄) − tn
∑
k∈K

λk∇ fk(x̄)(v)

+
∑
i∈I (x̄)

μi gi (x̄ + tnvn) −
∑
i∈I (x̄)

μi gi (x̄) − tn
∑
i∈I (x̄)

μi∇gi (x̄)(v)

⎤
⎦

= lim inf
n→∞ 2t−2

n

⎡
⎣∑
k∈K

λk fk(x̄ + tnvn) −
∑

λk fk(x̄) +
∑
i∈I (x̄)

μi gi (x̄ + tnvn)

⎤
⎦

≤ lim inf
n→∞ 2t−2

n

[∑
k∈K

λk fk(x̄ + tnvn) −
∑

λk fk(x̄)

]

=
∑
k∈K

λk

{
lim
n→∞ 2t−2

n [ fk(x̄ + tnvn) − fk(x̄)]
}

= 2
∑
k∈K

λkdk ≤ 0,
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as dk ∈ [−∞, 0], k ∈ K , and λk ≥ 0, k ∈ K . We arrived at a contradiction. ��
Remark 5.1 The existence of nonnegative multipliers λk , k ∈ K , and μi , i ∈ I ,
verifying conditions (5.1) and μi gi (x̄) = 0, i ∈ I , implies that λk∇ fk(x̄)(v) = 0,
k ∈ K and μi∇gi (x̄)(v) = 0, i ∈ I , for any critical direction v.

Remark 5.2 In view of Remark 2.1, the scalar case of Theorem 5.1 improves
Theorem 4 [23], for scalar optimization problems with locally Lipschitz, regu-
lar, and Gâteaux differentiable objective and active constraint functions, and with
second-order Hadamard differentiable active inequality constraint functions. In [23],
a locally Lipschitz function F : X → R is second-order Hadamard direction-
ally differentiable at x̄ in a direction v ∈ X , if there exists the limit F ′′

I (x; v) :=
lim

(t,v′)→(0+,v)
2t−2[F(x + tv′) − F(x) − t F◦(x; v)] as an element of R. In our results,

we do not require any of the functions to be second-order differentiable in any sense. If
the functions involved verify all the additional hypotheses of Theorem 4 [23], then the
conclusion of the scalar case of Theorem 5.1 coincides to the conclusion of Ivanov’s
result.

Recently, Feng–Li [10] have presented second-order sufficient conditions for a
strict local Paretominimumof order two formultiobjective optimization problemswith
equality and inequality constraints. In Feng–Li [10], all the functions are continuously
differentiable with stable derivatives and radial second-order directional derivatives in
any critical contingent direction. In Feng–Li [10] as in Ivanov [14], the second-order
radial directional derivative of a function f : X → R

p, that is Fréchet differentiable
at x̄ , is defined as an element of R

p by f ′′(x̄, v) := lim
t→0+ 2t−2[ f (x̄ + tv) − f (x̄) −

t∇ f (x̄)(v)]. We require only strict differentiability in sense of Clarke of the data,
so our sufficient conditions improve the ones due to Feng–Li [10] in the case of
multiobjective problems with inequality constraints.

Example 5.1 Let us consider the function f = ( f1, f2) : R
2 → R subject to x ∈

D = {x ∈ R
2 : g(x) = −x6/51 + x62 − x4/32 ≤ 0}, where f1(x) = −|x2| and

f2(x) = x21 + x22 .
Clearly, x̄ = (0, 0) is a strict local Pareto minimum of order two of f2 on R

2, and
thus, on D. The scalar case of Theorem 5.1 is applicable to the scalar problem of
minimizing f2 over D because f2 and g are continuously differentiable, so strictly
differentiable, ( f2)′′+(x̄; v) = 2v21 + 2v22 < ∞, for any v = (v1, v2) ∈ R

2, and
(g)′′+(x̄; v) = −∞ < ∞, for any v 
= 0. There exist nonnegative multipliers μ = 0
and λ any positive real number such that λ∇ f2(x̄)+μ∇g(x̄) = 0 and λ( f2)′′−(x̄; v)+
μ(g)′′−(x̄; v) = 2(v21 + v22) > 0 for any nonzero v = (v1, v2) ∈ R

2, and, in particular,
for any contingent critical direction v 
= 0. Here, μ = 0 because (g)′′−(x̄; v) = −∞
if v 
= 0, and we accept 0 × (−∞) = 0. Thus, the scalar case of Theorem 5.1 helps
us recognize x̄ as a strict local Pareto minimum of order two of f2 on D. Then, due to
Proposition 3.4 [29], x̄ is a strict local Pareto minimum of order two of f on D.

This example cannot be analyzed by means of the theory developed in Bigi [32],
because g is not twice differentiable at x̄ . The necessary and sufficient second-order
conditions due to Feng–Li (Theorems 4.1, 4.2, 5.1, 5.2, [10]) cannot be applied because
f1 is not continuously differentiable near x̄ with stable derivative at x̄ , g′′(x̄, v) does
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not exist as an element of R, and f1 does not possess a radial second-order directional
derivative. ��

6 Conclusions

We obtained optimality conditions for a strict local Pareto minimum of order two
for an inequality-constrained multiobjective problem with locally Lipschitz data. All
our conditions are of second-order and do not require the data to be second-order
differentiable in any sense. We have extended some results from [10,14,21,23]. We
analyzed examples which cannot be solved using the results from [1,2,4,12–23,32].
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