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Abstract In this paper, results on the strong convergence of subgradients of convex
functions along a given direction are presented; that is, the relative compactness (with
respect to the norm) of the union of subdifferentials of a convex function along a given
direction is investigated.
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1 Introduction

There are several results on the strong convergence of subgradients of a sequence of
convex functions defined on a Banach space. The most celebrated result is the Attouch
theorem; see, for example, [1], where the equivalence of Mosco convergence of lower
semicontinuous convex functions to the Painleve–Kuratowski graph convergence of
their subdifferentials is established on reflexive Banach space. There are also results
extending the Attouch theorem to general Banach spaces; see, for example, [2–7] and
references therein. To the best of our knowledge all known results are of the form:
there are sequences of points and subgradients such that the strong limits of sequences
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of subgradients exist (limits with respect to the norm of the space); see, for example,
Theorem 3.1 in [7]. This is inconvenient. Simply we want to have subgradients with
a desired property. The postulate of existence (“there are”) does not allow one to
guarantee that the subgradients are as good as it is needed. This disadvantage can
be observed also, when the directional derivative is calculated. Namely, the differ-
ence quotients form sequences of functions with respect to directions, whenever we
consider the limit over a discrete subset. It is natural to ask about the convergence
of subgradients of this functions; see, for example, Giannessi’s questions, which are
recalled in (5). The question, about the existence of a convergent subsequence (at least)
for this sequence of function, is the question on the existence of a convergent sequence
of subgradients along a direction. In a finite-dimensional case, the existence of con-
vergent subsequences is guaranteed by the continuity of the convex function under
investigation. However, there can be subsequences with different limits; see [8]; see
also [9–11]. It turns out that the set of “wrong directions” (there in no unique limit) has
the Lebesgue measure equal zero; see Lemma 3.1. In infinite-dimensional setting, it is
hard to expect the convergence. Thus, the basic question in this case, concerning direc-
tional convergence of subgradients, is:when does the union of subdifferentials along a
given direction form a relatively compact set (with respect to the norm topology)? We
should also ask about the uniqueness of the limit, which is the essence of Giannessi’s
questions in the finite-dimensional setting. In the infinite-dimensional case, results of
this type are rather unknown, but it would be convenient to have such results at hand.
For instance, when the limit exists, then the limiting subgradients inherit properties
of a convergent sequence, like: size of norm, being in a specified closed set, a good
behaving with respect to the weak convergence of arguments, and so on. In Sect. 3, we
present a result which guarantees the relative compactness for some special classes
of convex functions; see Theorem 3.1. In Lemmas 2.2 (in the Hilbert space setting)
and 3.2 (in the reflexive Banach space setting) examples of functions from the class
are provided too.

2 Preliminaries

In this section, some basic notions and their properties are gathered.
In the sequel, (X, ‖ · ‖) stands for a real normed space, X∗ for its dual space andH

for a real Hilbert space (with a real inner product). The weak convergence is denoted

by
weak−→, and the limit from the right is denoted by t ↓ a, which means that t > a and

t −→ a.
For every real r > 0 and every x ∈ X we denote by BX (x, r) (resp. BX [x, r ])

the open (resp. closed) ball centered at x and of radius r , the sphere is denoted by
SX [x, r ] := {y ∈ X : ‖y − x‖ = r} and SX := SX [0, 1], “cl ” stands for the
topological closure. A point x is an interior point of D if there exists an open ball
centered at x which is completely contained in D, all interior points of D are denoted
by int D. For given x, y ∈ X we put

[x, y] := {t x + (1 − t)y : t ∈ [0, 1]}
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and

]x, y[:= {t x + (1 − t)y : t ∈]0, 1[}.

Following [12, page 2] spanM stands for the linear hull of M and it is the smallest (in
the sense of inclusion) linear subspace of X containing M . We call the set

D[x, x + μ0BX [w0, β0]] := conv(x ∪ (x + μ0BX [w0, β0]))

drop, where μ0 > 0, β0 > 0, x ∈ X and w0 ∈ X \ {0} are given; we refer to [13] and
references therein for information on drops. For a given function f : X −→ R∪{+∞}
the domain of f is defined by

dom f := {x ∈ X : f (x) < +∞}.

Wesay that f : X −→ R∪{+∞} isM0-Lipschitz continuous on a subset D ⊂ dom f ,
whenever | f (u) − f (v)| ≤ M0‖u − v‖ for all u, v ∈ D.

Let p : ]0,∞[ ×{1, 2, 3, . . .} −→ R be a function. Observe that

lim inf
θ↓0 lim inf

i−→∞ p(θ, i) ≥ lim inf
i−→∞,θ↓0 p(θ, i), (1)

where

lim inf
i−→∞,θ↓0 p(θ, i) := sup

ε>0,k∈N
inf

0<θ<ε,k<i
p(θ, i).

For every nonempty set S ⊂ H the distance function from the set S is denoted by
dS(·), that is,

dS(x) = inf
u∈S ‖u − x‖, ∀x ∈ X.

Let us assume that x ∈ X and {si }i∈N is a sequence of points from a subset S ⊂ X
such that limi−→∞ ‖x−si‖ = dS(x). It is valuable to have results preserving a relative
compactness of the sequence, see, for example, Proposition 3.1 in [14]. Below a result
of this kind is presented in the Hilbert space setting.

Lemma 2.1 Let H be a Hilbert space with a dimension greater than one, W be a
closed subspace of H (thus W is a Hilbert space too), S ⊂ H be a nonempty subset
and x /∈ cl S. Suppose that y /∈ cl S, ‖y − x‖ = dS(x), 〈w, x − y〉 = 0 for all w ∈ W
and that for some t ∈]0, 1] and all u ∈ H such that

u − (1 − t)x − t y ∈ BW+span {x−y} [0, t‖x − y‖]

we have

dS(u) ≥ ‖u − y‖.
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Then, if {si }i∈N is a sequence of points from a subset S ⊂ X such that

lim
i−→∞ ‖x − si‖ = dS(x),

then
lim

i−→∞ sup
w∈SW

〈w, x − si 〉 = 0. (2)

Proof Let assume the contrary, that is for some ε > 0 and for all i ∈ N there are
wi ∈ SW such that

lim sup
i−→∞

〈wi , x − si 〉 > 0.

Choose in, kn ∈ N such that

lim
n−→∞min{in, kn} = ∞ and lim

n−→∞〈win , x − sin 〉 > 0,

and ‖x − sin‖2 ≤ k−2
n + ‖x − y‖2 for all n ∈ N. Let us define

un := x − tkn
−1‖x − y‖win + tkn

−2(y − x)

and observe that

‖un − y‖2 =
(
1 − 2tkn

−2 + t2kn
−4 + t2kn

−2
)

‖x − y‖2

and

‖un − (1 − t) x − t y‖2 =
(
t2 − t2kn

−2 + t2kn
−4

)
‖x − y‖2.

Moreover,

d2S(un) ≤ ‖un − sin‖2 = ‖x − tkn
−1‖x − y‖win + tkn

−2(y − x) − sin‖2
≤ k−2

n +
(
1 + t2kn

−2 + t2kn
−4

)
‖x − y‖2 − 2tkn

−1‖x − y‖〈win , x − sin 〉
+2tkn

−2〈y − x, x − sin 〉.

Hence, for n ∈ N large enough we get

dS(un) < ‖un − y‖ and un − (1 − t)x − t y ∈ BW+span {x−y} [0, t‖x − y‖] ,

which contradicts the assumptions of the lemma. ��
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The Asplund function, see [15, (1) page 234], is a good tool to investigate the
distance function since its convexity, that is the function

fS : H −→ R ∪ {+∞}

defined as follows

∀x ∈ H, fS(x) := 2−1
(
‖x‖2 − d2S(x)

)
= sup

s∈S
〈s, x〉 − 2−1‖s‖2, (3)

where S ⊂ H is a given subset. Below a directional behaving of this function is
characterized.

Lemma 2.2 Let a sequence {ti }i∈N be such that ti > 0 for all i ∈ N and ti ↓ 0, and
let H be a Hilbert space with a dimension greater than two, W be a closed subspace
of H, S ⊂ H be a nonempty subset and x /∈ cl S, h ∈ SH, Sh ⊂ S, μ > 0 be such that
dS(x+ ti h) = dSh (x+ ti h) for all ti ∈ [0, μ]. Suppose that y /∈ cl S, ‖y−x‖ = dS(x),
〈w, x − y〉 = 0 for all w ∈ W and that for some t ∈]0, 1] and all u ∈ H such that

u − (1 − t)x − t y ∈ BW+span {x−y} [0, t‖x − y‖]

we have

dSh (u) ≥ ‖u − y‖.

Then, f ′
S(x; h) = f ′

Sh
(x; h) and

0 ≥ lim sup
θ↓0

lim sup
i−→∞

supz∈BY [0,θ] p(ti , z)
θ

≥ lim inf
i−→∞, θ↓0

supz∈BY [0,θ] p(ti , z)
θ

, (4)

where Y := {w ∈ W : 〈w, h〉 = 0 and 〈w, x〉 = 0} and

p(ti , z) := fSh (x + ti (h + z)) − fSh (x + ti h)

ti
,

and fSh is the Asplund function for the set Sh, that is, for all y ∈ H we put fSh (y) :=
2−1(‖y‖2 − d2Sh (y)); see (3).

Proof Fix θ > 0 and sequences {si }i∈N, {zi }i∈N such that si ∈ Sh ,

zi ∈ BY [0, θ ] \ {0}, ‖x + ti (h + zi ) − si‖2 ≤ d2Sh (x + ti (h + zi )) + t2i ‖z2i ‖
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for all i ∈ N, and ti ↓ 0. We have

p(ti , zi ) = ‖x + ti (h + zi )‖2 − ‖x + ti h‖2
2ti

+d2Sh (x + ti h) − d2Sh (x + ti (h + z))

2ti
≤ ti‖zi‖2

+‖x + ti h − si‖2 − ‖x + ti (h + zi ) − si‖2
2ti

= 2−1ti‖zi‖2 − 〈zi , x − si 〉.

It follows from (2) that (4) holds true, whenever the inequality in (1) is taken into
account. ��

Let f : X −→ R ∪ {+∞} be a lower semicontinuous convex function, which is
finite at x ∈ X . The subdifferential of f at x ∈ X is defined by

∂ f (x) := {x∗ ∈ X∗ : ∀h ∈ X, 〈x∗, h〉 ≤ f (x + h) − f (x)}.

3 Relative Compactness of Sets of Subgradients

Let us recall Giannessi’s questions; see [8], see also [9–11] for examples of convex
functions in two-dimensional spaces, for which the limit in (5) does not exist:

Let f : Rn −→ R, with n ≥ 2, be a convex function, and set

x(t) := (t, 0, . . . , 0) ∈ R
n,

with t ∈ R. Assume that ∇ f (x(t)) exists for every t > 0, and consider the following
limit:

lim
t↓0 ∇ f (x(t)). (5)

We conjecture that the above limit may not exist. Hence, however, the question is
still open. The above question can be generalized in several ways. For instance, x(t)
may represent a curve having the origin as endpoint instead of a ray; Rn may be
replaced with an infinite-dimensional space.

Below directions along which we have the weak∗ convergence of subgradients are
indicated.

Lemma 3.1 Let (X, ‖ · ‖) be a reflexive Banach space and f : X −→ R ∪ {+∞} be
a convex lower semicontinuous function, x ∈ dom f and M ≥ 0, w0 ∈ X, x∗ ∈ X∗
be given. If f ′(x;w0) is a finite real number (the directional derivative at x along w0
is finite) such that

∀h ∈ SX , lim
t↓0

f ′(x;w0 + th) − f ′(x;w0) − 〈x∗, th〉
t

= 0, (6)
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then for all sequences {ti }i∈N such that ti > 0, BX∗ [0, M] ∩ ∂ f (x + tiw0) �= ∅ for all
i ∈ N, and ti ↓ 0 we have

w − lim
i−→∞BX∗ [0, M] ∩ ∂ f (x + tiw0) = {x∗}, (7)

and consequently

w − lim
t↓0 BX∗ [0, M] ∩ ∂ f (x + tw0) = {x∗}, (8)

whenever BX∗ [0, M] ∩ ∂ f (x + tw0) �= ∅ for all t ∈]0, δ[ for some δ > 0, where

w − lim
i−→∞BX∗ [0, M] ∩ ∂ f (x + tiw0) := {y∗ ∈ X∗ : x∗

i
weak−→y∗,

with x∗
i ∈ BX∗ [0, M] ∩ ∂ f (x + tiw0) for all i ∈ N}.

Moreover,
f ′(x;w0) = 〈x∗, w0〉. (9)

Proof Let us assume that (6) holds true. The equality

f ′(x;w0) = 〈x∗, w0〉

is easy to verify by a simple algebra. In fact for all t > 0 we have

f ′(x;w0 + th)− f ′(x;w0)−〈x∗, th〉≤ f ′(x;w0)+ f ′(x; th) − f ′(x;w0)−〈x∗, th〉.

Thus, it follows from (6) that for all h ∈ X we have

0 ≤ f ′(x; h) − 〈x∗, h〉.

Again using (6) we get 0 ≤ − f ′(x;w0) + 〈x∗, w0〉, which implies (9).
If w0 = 0, then ∂ f (x) = {x∗} and we are done. Assume that w0 �= 0. Take

sequences {ti }i∈N such that ti > 0 for all i ∈ N and {x∗
i }i∈N such that x∗

i ∈ BX∗ [0, M]∩
∂ f (x + tiw0) for all i ∈ N. Using the Eberlein–S̆hmulyan theorem; see Appendix to
Chapter V, Section, page 141 in [16], we may assume that the sequence {x∗

i }i∈N is
weakly convergent to some y∗ ∈ ∂ f (x), otherwise we choose a proper subsequence.
Fix ε > 0, h ∈ SX and take t > 0 such that

f ′(x;w0 + th) − f ′(x;w0) − 〈x∗, th〉
t

≤ ε.
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Notice that

〈y∗, h〉 = lim
i−→∞(〈y∗, t−1w0 + h〉 − 〈x∗

i , t−1w0〉)

≤ lim
i−→∞

f (x + ti (w0 + th)) − f (x) − ( f (x + tiw0) − f (x))

ti t

≤ f ′(x;w0 + th) − f ′(x;w0)

t
≤ 〈x∗, h〉 + ε, (10)

thus, since h ∈ SX is arbitrary, we get y∗ = x∗, which translates (7) and the equality

w − lim
t↓0 BX∗ [0, M] ∩ ∂ f (x + tw0) = {x∗}.

��

Notice that the weak convergence implies the strong one, whenever X = R
n , thus

using Lemma 3.1 we can pick directions along which the strong convergence is pre-
served and consequently the limit in (5) exists. Below we provide a property which
ensures the strong convergence of subgradients. Roughly speaking the union of subd-
ifferentials along the “good” direction forms a relatively compact set with respect to
the norm topology. This property is unexpected in the infinite-dimensional setting. Let
us distinguish a family of auxiliary functions. Namely, for a given sequence {ti }i∈N
such that ti > 0 for all i ∈ N, and ti ↓ 0, a given closed subspace Y ⊂ X and a given
positive number ρ > 0 let us put

F({ti }i∈N, ρ,Y ) := {p : {0, t1, t2, t3, . . .} × BY [0, ρ] −→ [0,∞[ : such that

∀s ∈ BY [0, ρ], p(0, s) = 0, lim inf
i−→∞, θ↓0

sups∈BY [0,θ] p(ti , s)
θ

≤ 0

and p(ti , ·) is upper semicontinuous on BY [0, ρ] for all i ∈ N}. (11)

Our first example of function from the class define above is the function p defined in
Lemma 2.2, see (4). Observe that the continuity of the Asplund function ensures that
(11) is fulfilled for all ρ > 0 and all sequences {ti }i∈N such that ti > 0 for all i ∈ N,
and ti ↓ 0, whenever we put p(0, ·) = 0. Below it is shown that weak continuous
convex functions can be also used to construct functions from the class.

Lemma 3.2 Let (X, ‖ ·‖) be a reflexive Banach space and f : X −→ R∪{+∞} be a
convex lower semicontinuous function. Assume that f is M0−Lipschitz continuous on
the set D[x, x + μ0BX [h, β0]], where x ∈ dom f , h ∈ SX , M0 ≥ 0, μ0 > 0, β0 > 0,
x ∈ dom f are given. If Y ⊂ X is a subspace such that f is weak continuous on the
set D[x, x + μ0BY [h, β0]] and

inf
μ>0

sup
z∈BY [0,μ]

f ′(x; h + z) − f ′(x; h)

μ
= 0, (12)
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then the function p defined on [0,∞[×BY [0, ρ], with ρ ∈]0, β0], as follows

p(t, s) :=
{

f (x+t (h+s))− f (x)
t − f ′(x; h), whenever t > 0, s ∈ BY [0, ρ];

0, whenever t = 0, s ∈ BY [0, ρ], (13)

satisfies

0 ≥ lim inf
θ↓0 lim sup

i−→∞
sups∈BY [0,θ] p(ti , s)

θ
≥ lim inf

i−→∞, θ↓0
sups∈BY [0,θ] p(ti , s)

θ

for all sequences {ti }i∈N such that ti > 0 for all i ∈ N, and ti ↓ 0; thus, p ∈
F({ti }i∈N, ρ,Y ) for all ρ ∈]0, β0[.

Moreover, for all t ∈]0, μ0[ we have

sup
s∈BY [0,β0]

f (x + t (h + s)) − f (x + th)

t
− p(t, s) ≤ 0.

Proof In order to establish the inequality

sup
s∈BY [0,β0]

f (x + t (h + s)) − f (x + th)

t
− p(t, s) ≤ 0,

let us observe that for all t ∈]0, μ0[ by the convexity we have

f (x + t (h + s)) − f (x + th)

t
− p(t, s) = f (x + t (h + s)) − f (x + th)

t

− f (x + t (h + s)) − f (x)

t
+ f ′(x; h)

= f (x) − f (x + th)

t
+ f ′(x; h) ≤ 0.

Let us fix ρ ∈]0, β0[ and a sequence {ti }i∈N such that ti > 0 for all i ∈ N, and
ti ↓ 0. We have

lim inf
θ↓0 lim sup

i−→∞
sups∈BY [0,θ] p(ti , s)

θ

= lim inf
θ↓0 lim sup

i−→∞

sups∈BY [0,θ]
f (x+ti (h+s))− f (x)

ti
− f ′(x; h)

θ
.

If

ε < lim inf
θ↓0 lim sup

i−→∞
sups∈BY [0,θ] p(ti , s)

θ
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for some ε > 0, then there is θ̄ ∈]0, ρ] such that for all θ ∈]0, θ̄ ] we have

ε < lim sup
i−→∞

sups∈BY [0,θ] p(ti , s)
θ

.

Fix θ ∈]0, θ̄ ] and choose in < in+1, sn ∈ BY [0, θ ] such that tin > tin+1 , and

ε <

f (x+tin (h+sn))− f (x)
tin

− f ′(x; h)

θ

for all n ∈ N and sn
weak−→s̄ ∈ BY [0, θ ] (keep in mind the reflexivity of the space). Take

m > n and observe that by the convexity and the weak continuity of f we have

ε <

f (x+tim (h+sm ))− f (x)
tim

− f ′(x; h)

θ

≤
f (x+tin (h+sm ))− f (x)

tin
− f ′(x; h)

θ
−→

f (x+tin (h+s̄))− f (x)
tin

− f ′(x; h)

θ
.

Hence,

ε ≤ f ′(x; h + s̄) − f ′(x; h)

θ
,

which contradicts (12). Hence,

0 ≥ lim inf
θ↓0 lim sup

i−→∞
sups∈BY [0,θ] p(ti , s)

θ

and we are done, whenever (1) is used. ��
Let us recall the notion of the direct sum of two closed subspaces of a Banach space

(X, ‖ · ‖); see Definition 4.20 in [17], where it was given for a vector topological
spaces. Suppose Y is a closed subspace of X . If there exists a closed subspace Z ⊂ X
such that X = Y + Z and Y ∩ Z = {0}, then Y is said to be complemented in X . In
this case, X is said to be the direct sum of Y and Z , and the notation

X = Y ⊕ Z

is used. It is known that, if Y has a finite codimension, then Y is complemented; see,
for example, Lemma 4.21 in [17] or Definition 4.1 and Theorem 5.5 in [12].

Theorem 3.1 Let (X, ‖ ·‖) be a Banach space and f : X −→ R∪{+∞} be a convex
lower semicontinuous function, M0 ≥ 0,μ0 > 0, β0 > 0, x ∈ dom f andw0 ∈ X\{0}
be given such that f is M0−Lipschitz continuous on the set D[x, x +μ0BX [w0, β0]].
Suppose that for a given sequence {ti }i∈N such that ti ∈]0, μ0[ for all i ∈ N, and

123



J Optim Theory Appl (2018) 178:411–423 421

ti ↓ 0, there exist positive numbers αn
i ∈]0, 1], where i, n ∈ N and a closed subspace

Y ⊂ X with a finite codimension, that is X = Y ⊕ Z, where Z is a vector space
with a finite dimension, and a Gδ (a countable intersection of open sets) dense subset
B ⊂ BY [0, β0] for which there are functions pn ∈ F({ti }i∈N, β0,Y ), for all n ∈ N,
such that

∀s ∈ B, ∃t (s) ∈]0, μ0[: ∃n ∈ N : ∀ti ∈]0, t (s)],∀α ∈ [0, 1],
max

{ f (x + ti (w0 + αn
i αs)) − f (x + tiw0)

tiαn
i

− pn(ti , αs),

f (x + ti (w0 − αn
i αs)) − f (x + tiw0)

tiαn
i

− pn(ti ,−αs)
}

≤ 0. (14)

If x∗
i ∈ ∂ f (x + tiw0) for all i ∈ N, then there is a subsequence {ik}k∈N such that

the subsequence {x∗
ik
}k∈N is strongly convergent to some x∗ ∈ X∗ on X and to 0 on Y .

Proof There are sequences {ti }i∈N such that μ0 > ti > 0 for all i ∈ N, ti ↓ 0, and
{x∗

i }i∈N such that x∗
i ∈ ∂ f (x+tiw0) for all i ∈ N, and (14) is fulfilled for a sequence of

functions {pn}∈N from F({ti }i∈N, β0,Y ) and positive numbers {αn
i }i,n∈N from ]0, 1].

For all n, i ∈ N define closed sets (keep in mind the Lipschitz continuity of f and
the upper semicontinuity of pn)

Dn
i := {s ∈ BY [0, β0] :

∀α ∈ [0, 1], max
{ f (x + ti (w0 + αn

i αs)) − f (x + tiw0)

tiαn
i

− pn(ti , αs),

f (x + ti (w0 − αn
i αs)) − f (x + tiw0)

tiαn
i

− pn(ti ,−αs)
}

≤ 0}.

Let us notice that by (14) we have

B ⊂
⋃

n,k∈N

⋂
i≥k

Dn
i

and that Fn
k := ⋂

i≥k D
n
i are closed symmetric sets. If int Fn

k = ∅ for all n, k ∈ N ,
then Gn

k := BY (0, β0) \ Fn
k are open and dense, so

⋂
n,k∈N Gn

k is a dense Gδ subset
of BY [0, β0] and B ∩ ⋂

n,k∈N Gn
k = ∅, which is impossible by the Baire category

theorem. There are k0, n0, δ0 > 0, s0 ∈ BY [0, β0] such that

BY [s0, δ0] ∪ BY [−s0, δ0] ⊂
⋂
i≥k0

Dn0
i ,

which implies
〈x∗

i , αs〉 ≤ sup
z∈BY [0,αβ0]

pn0(ti , z),
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for all s ∈ BY [s0, δ0] ∪ BY [−s0, δ0], α ∈]0, 1] and i ≥ k0. Thus,

∀s ∈ BY [0, δ0],∀i ≥ k0,∀θ ∈]0, β0], 〈x∗
i , s〉 ≤ β0

supz∈BY [0,θ] pn0(ti , z)
θ

.

Hence, by (11) we get

lim inf
i−→∞ sup

s∈BY [0,δ0]
〈x∗

i , s〉 ≤ β0 lim inf
i−→∞,θ↓0

sups∈BY [0,θ] pn0(ti , s)
θ

≤ 0,

which implies that the sequence {xi }i∈N has a strongly convergent subsequence to 0 on
Y , say that {x∗

ik
}k∈N is the subsequence.We recall that X = Y⊕Z ,Y is closed subspace

of X and Z is a finite-dimensional subspace. In order to get the strong convergence of
some subsequence of {x∗

ik
}k∈N on X it is enough to observe that

∀i ∈ N, ‖x∗
i ‖ ≤ M0 < ∞

and we have possibility to choose a strongly convergent subsequence on Z , since the
dimension of Z is finite. Having the strong convergence on Y and Z , we have the
convergence on X , since X = Y ⊕ Z . ��

4 Conclusions

1. It is shown that, for some convex functions and some direction, it is possible to
find a convergent sequence of subgradients along a direction, namely they belong
to subdifferentials at points of some segment (a convergent sequence of points)
and they form a convergent sequence of functionals, see Theorem 3.1.

2. Examples of convex functions and directions forwhichTheorem3.1 can be applied
are delivered, see Lemmas 2.2 and 3.2.

3. InLemma3.1 an answer to question:weask for conditions underwhich the limit (5)
exists is provided. In fact, under assumptions of Lemma 3.1 we have not only the
existence of the limit, even for subgradients, but it says, due to the Rademacher
Theorem, that the set of directions with the property that the limit in (5) exists is
a set of full measure in the finite-dimensional setting, and it is a dense Gδ subset
in the weak Asplund space, whenever the weak convergence is postulated instead
of the strong one. Thus, Theorem 3.1, together with Lemma 3.1, gives an answer
to Giannessi’s question in the infinite-dimensional setting.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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