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Abstract
We study the behaviour of an interacting particle system, related to the Bak–Sneppen model
and Jante’s law process defined in Kennerberg and Volkov (Adv Appl Probab 50:414–439,
2018). Let N ≥ 3 vertices be placed on a circle, such that each vertex has exactly two
neighbours. To each vertex assign a real number, called fitness (we use this term, as it is quite
standard for Bak–Sneppen models). Now find the vertex which fitness deviates most from
the average of the fitnesses of its two immediate neighbours (in case of a tie, draw uniformly
among such vertices), and replace it by a random value drawn independently according to
some distribution ζ . We show that in case where ζ is a finitely supported or continuous
uniform distribution, all the fitnesses except one converge to the same value.

Keywords Bak–Sneppen model · Jante’s law process · Interacting particle systems

Mathematics Subject Classification 60J05 · 60K35 · 91D10

1 Introduction

The model we study in the current paper is a “marriage” between Jante’s law process and
the Bak–Sneppen model. Jante’s law process refers to the interacting particle model studied
in [6] under the name “Keynesian beauty contest process”, and generalized in [8]. This model
runs as follows. Fix an integer N ≥ 3, d ≥ 1, and some d-dimensional random variable ζ .
Let the initial configuration consist of N arbitrary points in Rd . The process runs in discrete
time according to the following algorithm: first, compute the centre of mass μ of the given
configuration of N points; then replace the point which is the most distant from μ by a
new ζ−distributed point drawn independently each time. It was shown in [6] that if ζ has
a uniform distribution on the unit cube, then all but one points converge to some random
point in R

d . This result was further generalized in [8], by allowing ζ to have an arbitrary
distribution, and additionally removing not just 1, but K ≥ 1 points chosen to minimize
a certain functional. The term “Jante’s law process” was also coined in [8], to reflect that
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this process is reminiscent of the “Law of Jante” principle, which describes patterns of
group behaviour towards individuals within Scandinavian countries that criticises individual
success and achievement as unworthy and inappropriate; in other words, it is better to be
“like everyone else”. The origin of this “law” dates back to Aksel Sandemose [12]. Another
modification of this model in one dimension, called the p-contest, was introduced in [6,7] and
later studied e.g. in [9]. This model runs as follows: fix some constant p ∈ (0, 1) ∪ (1,∞),
and replace the point which is the farthest from pμ (rather than μ).

Finally, we want to mention that the phenomenon of conformity is observed in many large
social networks, see, for example, [4,10,13] and references therein.

Pieter Trapman (2018, personal communications) suggested to study Jante’s law model
with local interactions, thus making it somewhat similar to the famous Bak–Sneppen (BS)
model see e.g. [1]. In the BS model, N species are located around a circle, and each of them
is associated with a so-called “fitness”, which is a real number. The algorithm consists in
choosing the least fit individual, and then replacing it and both of its two closest neighbours
by a new species, with a new random and independent fitness. After a long time, there will be
a minimum fitness, below which species do not survive. The model proceeds through certain
events, called “avalanches”, until it reaches a state of relative stability where all fitnesses are
above a certain threshold level. There is a version of the model where fitnesses take only
values 0 and 1 (see [2] and [15]), but even this simplified version turns out to be notoriously
difficult to analyse, see e.g. [11]. Some more recent results can be found in [3,14].

The barycentric Bak–Sneppen model, or, equivalently, Jante’s law process with local
interactions, is defined as follows. Unlike the classical Bak–Sneppen model, our model is
based on some local phenomena, which makes it much more tractable mathematically, and
hence we are able to obtain substantial rigorous results.

Fix an integer N ≥ 3, and let S = {1, 2, . . . , N } be the set of nodes uniformly spaced
on a circle. At time t , each node i ∈ S has a certain “fitness” Xi (t) ∈ R; let X(t) =
(X1(t), . . . , XN (t)). Next, for the vector x = (x1, . . . , xN ), define

di (x) =
∣
∣
∣
∣
xi − xi+1 + xi−1

2

∣
∣
∣
∣
,

as the measure of local “non-conformity” of the fitness at node i (here and further we will
use the convention that N + 1 ≡ 1, N + 2 ≡ 2, and 1 − 1 ≡ N for indices on x). Let also
d(x) = maxi∈S di (x).

The process runs as follows. Let ζ be some fixed one-dimensional random variable. At
time t , t = 0, 1, 2, . . . , we chose the “least conformist node”1 i , i.e. the one maximizing
di (X(t)), and replace it by a ζ -distributed random variable. By j (x) we denote the index of
such a node in the configuration x = (x1, . . . , xN ), that is

dj (x)(x) = d(x)

(see Fig. 1). If there ismore than one such node, we choose any of themwith equal probability,
thus j (x) is, in general, a random variable. Also assume that all the coordinates of the initial
configuration X(0) lie in the support of ζ . We are interested in the long-term dynamics of
this process.

1 The intuition for choosing the deviance as the criteria for removal is the follows. In many Scandinavian
countries, non-conformity is considered as a very bad treat, and as a result, individuals which divert from
the average, tend to be less successful in these societies. This phenomenon is called “The Jante’s Law”. We
understand that the word “fitness” is thus somewhat misleading here, but would like to use it to keep in line
with the standard Bak–Sneppen model.
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Fig. 1 Illustration of the
distances from the average of the
two neighbours; j = 6

Fig. 2 On this graph with N = 6 vertices, only values x and y ∈ {0, 1} are updated all the time; infinitely
often half of the fitnesses equal 0, while the other half equals 1

We start with a somewhat easier version of the problem, where ζ takes finitely many
distinct values (Sect. 2), and then extend this result to the case where ζ ∼ U [0, 1] (Sect. 3).
We will show that all the fitnesses (except the one which has just been updated) converge to
the same (random) value. This will hold for each of the two models.

Remark 1 One can naturally extend this model to any finite connected non-oriented graph
G with vertex set V , as follows. For any two vertices v, u ∈ V that are connected by an
edge we write u ∼ v. To each vertex v assign a fitness xv ∈ R, and define the measure of
non-conformity of this vertex as

dv(x) =
∣
∣
∣
∣
xv −

∑

u: u∼v xu
Nv

∣
∣
∣
∣
,

where Nv = |u ∈ V : u ∼ v| denotes the number of neighbours of v, and the replacement
algorithm runs exactly as it is described earlier.

In particular, ifG is a cycle graph, we obtain the model studied in the current paper. On the
other hand, if G is a complete graph, we obtain the model equivalent to that studied in [6,8].

Remark 2 Unfortunately, our results cannot be extended to a general model, described in
Remark 1. Indeed, assume that supp ζ = {0, 1}. It is not hard to show that if for some v we
have Nv = 1, then the statement of Theorem 1 does not have to hold.

Moreover, it turns out that even when all the vertices have at least two neighbours (i.e.,
Nv ≥ 2 for all v ∈ V ), then there are still counterexamples: please see Fig. 2.

The rest of the paper is organized as follows. In Sect. 2 we study the easier, discrete, case.
We show the convergence by explicitly finding all the absorbing classes for the finite-state
Markov chain.

Section 3 contains the main result of our paper, Theorem 2, which shows that all but one
fitness converge to the same (random) limit, similarly to the main result of [6].

2 Discrete Case

In this Section we study the case when fitnesses take finitely many values, equally spaced
between each other. Due to the shift- and scale-invariance of the model, without loss of
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generality we may assume that supp ζ = {1, 2, . . . , M} =: M, and that p = min
j∈MP(ζ =

j) > 0. In this case X(t) becomes a finite state-space Markov chain on MN .
Note that if N − 1 fitnesses coincide and are equal to some a ∈ M, then it is the fitness

that differs from a that will keep being replaced, until it finally coincides with the others.
When this happens, we will have to choose randomly one among all the vertices, and replace
its fitness. The replaced fitness may or may not differ from a, and then this procedure will
repeat over and over again. Hence, to simplify the rest of the argument, we can (and will)
safely modify the process as follows:

X(t + 1) ≡ X(t) as soon as d(X(t)) = 0 i.e. all Xi (t) = a for some a ∈ M.

We will say that the process that the process is absorbed at value a.

Remark 3 The fact that the values of ζ are equally spaced is, surprisingly, crucial. Let
supp ζ = {0, 1, 5, 6} =: M and N = 8. Then the set of configurations

[0, 1, x, 5, 6, 5, y, 1], x, y ∈ M
is stable; the maximum distance from the average of the fitnesses of the neighbours is always
at nodes 3 or 7, and it equals 2 or 3, while the other distances are at most 1.5 or 2 respectively.

Theorem 1 The process X(t) gets absorbed at some value a ∈ M, regardless of its starting
configuration X(0) ∈ MN .

First, observe that since X(t), t = 0, 1, 2, . . . is a finite-state Markov chain onMN with
the set of absorbing states

O = (1, 1, . . . , 1) ∪ (2, 2, . . . , 2) ∪ . . . (M, M, . . . , M) ⊂ MN

it suffices to show that O is accessible (can be reached with a positive probability in some
number of steps) from any starting configuration X(0).

First, for x = (x1, x2, . . . , xN ) ∈ MN , define

Max(x) = max
1≤i≤N

xi ,

S(x) = {

j ∈ {1, 2, . . . , N } : x j = Max(x)
}

.

that is, the maximum of x , and the indices of x where this maximum is achieved2. Let us
also define

f (x) =
N
∑

i=1

(xi − xi+1)
2

with the convention xN+1 ≡ x1, which we will use as some sort of Lyapunov function. The
following two algebraic statements are not difficult to prove.

Claim 1 f (x) = 0 if and only if d(x) = 0.

Proof Let x = (x1, . . . , xN ). One direction is trivial: if f (x) = 0, then xi ≡ x1 for all i ∈ S
and hence di (x) = 0 for all i ∈ S ⇐⇒ d(x) = 0.

On the other hand, suppose that di (x) = 0 for all i . If not all xi ’s are equal, there must
be an index j for which x j = maxi∈S xi , and either x j−1 < x j or x j+1 < x j . This, in turn,
implies that 2d j (x) = |(x j − x j−1) + (x j − x j+1)| = (x j − x j−1) + (x j − x j+1) > 0
yielding a contradiction. �
2 For example, if x = (1, 4, 2, 4, 4, 2) then Max(x) = 4, S(x) = {2.4.5}.
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Claim 2 Let x = (x1, . . . , xi−1, xi , xi+1, . . . , xN ) and and x ′ = (x1, . . . , xi−1, a, xi+1, . . . ,

xN ) where a =
⌊
xi−1+xi+1

2

⌋

. Then

(a) f (x ′) ≤ f (x);
(b) if additionally di (x) ≥ 1 then f (x ′) ≤ f (x) − 1.

Remark 4 One may expect that there are simpler Lyapunov functions; while we can-
not rule this out, let us illustrate two natural candidates that, unfortunately, fail. First,
consider d(x); however this function does not work as the next example shows. Let
x = [1, 3, 9, 18, 24, 27, 27, 24, 18, 9, 3, 1]. Then di (x) is the largest at i = 2 and
i = 11; thus d(x) = d2(x) = 2. If we replace a “3” by “4”= (1 + 9)/2, then
x ′ = [1, 4, 9, 18, 24, 27, 27, 24, 18, 9, 3, 1] so d(x ′) = d3(x) = 2.5 > d(x).

Another possible candidate, f̃ (x) = ∑

i di (x)
2 does not work either: let x =

[1, 6, 9, 6, 1], then x ′ = [1, 6, 6, 6, 1] and f̃ (x ′) > f̃ (x), so it is not a Lyapunov func-
tion either.

Proof of Claim 2 From simple algebra it follows that

f (x ′) − f (x)

2
= (a − xi )(a + xi − xi−1 − xi+1)

=
(

a − xi−1 + xi+1

2

)2

−
(

xi − xi−1 + xi+1

2

)2

= di (x
′)2 − di (x)

2 =: (∗).

Note that if di (x) = 0 or di (x) = 1/2 , then di (x ′) = di (x) and thus (∗) = 0. On the other
hand, if di (x) ≥ 1, since di (x ′) ≤ 1/2, we get (∗) ≤ −1/2. �

To simplify notations, denote

jt = j (X(t)), �t = d(X(t)), ft = f (X(t)).

Nowwe are going to construct an explicit path through which X(t) can reach O starting from
any initial state. Let

At = { Xjt (t) is replaced by Xjt (t + 1) =
⌊
Xjt−1(t) + Xjt+1(t)

2

⌋

,

and jt ∈ S(X(t)) if possible} .

Note that the second condition is always possible to satisfy when �t = 1/2. Indeed, if
�t = 1/2 for X(t) = x , then theremust be a j such that x j = Max(x)but x j+1 ≤ Max(x)−1.
As a result, d j (x) ≥ 1/2 and hence x j is one of the points which can be potentially replaced.

Now the statement of Theorem 1 will follow from the following Lemma.

Lemma 1 For any X(0) there is a T ≥ 0 such that on the event

A0 ∩ A1 ∩ ... ∩ AT

we have X(T ) ∈ O.

This Lemma, in turn, immediately follows from the next statement and the observation
that 0 ≤ f (x) ≤ M2N , as well as the fact that f (XT ) = 0 ⇐⇒ �T = 0 ⇐⇒ XT ∈ O (see
Claim 1).

Claim 3 If fs > 0 then fs+N−2 ≤ fs − 1 on As ∩ As+1 ∩ · · · ∩ As+N−2.
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Fig. 3 A configuration with �t = 1/2 (note the periodic boundary conditions), M = {1, 2, . . . , 13} and
N = 24. Observe that if �t = 1/2 then there will be a number of “plateaus” each containing at least two
maximal fitnesses; moreover, any two such plateaus will be separated by at least two non-maximal fitnesses

Proof Note that �t can take only values {0, 1
2 , 1,

3
2 , 2, . . . }. W.l.o.g. we assume that s = 0.

First, if �t = 0 for some 0 ≤ t ≤ N − 2, then ft = 0 by Claim 1 and by Claim 2(a)
and the fact that f0 ≥ 1, we have fN−2 ≤ 0 = ft ≤ f0 − 1. From now on suppose that
min0≤t≤N−2 �t ≥ 1/2.

We will show that it is impossible to have �t = 1
2 simultaneously for all t =

0, 1, 2, . . . , N −3 (observe that the case �t = 1/2 contains, quite counter-intuitively, a very
rich set of states, see Fig. 3). Indeed, the set S(X(t)) of indices of themaximumfitnessesmust
contain between 2 and N − 2 elements3. However, on At we have S(X(t + 1)) ⊂ S(X(t))
and |S(X(t + 1))| = |S(X(t))| − 1 by construction. Since S(X(0)) ≤ N − 2, the value �t

cannot stay equal to 1/2 for N − 2 consecutive steps, and thus this case is impossible.
As a result, we conclude that �t ≥ 1 for some t ∈ {0, 1, . . . , N − 3}. Then ft+1 ≤ ft − 1

by Claim 2(b). As a result, fN−2 ≤ ft+1 ≤ ft − 1 ≤ f0 by Claim 2(a). �
Remark 5 We have actually shown that T in Lemma 1 can be chosen no larger than M2N ×
(N − 2), i.e. P(X(M2N (N − 2)) ∈ O | X(0) = x) > 0 for any x ∈ MN .

Remark 6 It would be interesting to find the distribution of the limiting absorbing configu-
ration, i.e. ξ := limt→∞ Xi (t); clearly it will depend on X(0). This is quite hard problem,
and we can present only results based on simulations. Figure 4 shows the histograms of the
distribution of ξ for different values of M and N , starting from a random initial condition,
i.e. Xi (0) are i.i.d. random variable uniformly distributed on M.

3 Continuous Case

Throughout this section, we assume that ζ ∼ U [0, 1], and Xi (t) ∈ [0, 1] for all i ∈ S and
t = 0, 1, 2, . . . . We also assume that X(0) is such that j (X(0)) is non-random.

Theorem 2 There exists a.s. a random variable X̄ ∈ [0, 1] such that as t → ∞
(X1(t), X2(t), . . . , Xj (X(t))−1(t), Xj (X(t))+1(t), . . . , XN (t))

→ (X̄ , X̄ , . . . , X̄) ∈ [0, 1]N−1 a.s.

3 A single maximum would imply �t ≥ 1, the same holds if there are N − 1 coinciding maxima; finally,
|S(X(t))| = N would imply that �t = 0.
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Fig. 4 Distribution of ξ based on simulations, for (N , M) = (20, 20), (20, 100), and (200, 10) respectively.
Uniform random initial conditions

The proof of this theorem will consists of two parts. Firstly (see Lemma 8), we will
show that the properly defined “spread” between the values X1(t), . . . , XN (t) converges to
zero. This does not, however, imply the the desired result, as hypothetically we can have the
situation best described by the “Dance of the Little Swans” fromTchaikovsky’s “SwanLake”:
while the mutual distances between the Xi ’s decrease or even some stay 0, their common
location changes with time, and thus does not converge to a single point in [0, 1]. This can
happen, for example, if the diameter of the configuration converges to zero too slowly.

The second part of the proof will show that not only the distances between the Xi ’s
decrease, but they all (but the most recently changed one) converge to the same random limit.
Please note that the similar strategy was used in [6], however, in our case both steps require
much more work.

It turns out that it is much easier to work with the embedded process, for which either
the non-conformity of the node at which the value is replaced, is smaller than the initial
non-conformity, or at least the location of the “worst” node (i.e. the one where di is the
largest) has changed, whichever comes first. Formally, let ν0 = 0 and recursively define for
k = 0, 1, 2, . . .

νk+1 = inf {t > νk : j (X(t)) �= j (X(νk)) or d(X(t)) < d(X(νk))} .

Note that due to the continuity of ζ each j (X(t)) is uniquely defined a.s., and that all νk are
finite a.s..

Example (a) x = (. . . 0.5, 0.6, 0.5, 0.3, . . . ). The “worst” node is the second one (with the
fitness of 0.6) and d = d2(x) = 0.1; it is replaced, say, by 0.32. Now the configuration
becomes

x ′ = (. . . , 0.5, 0.32, 0.5, 0.3, . . . )

and the worst node is the third one with d(x ′) = d3(x ′) = 0.19 > 0.1 = d(x);
(b) x is the same as in (a), but x2 is replaced by 0.58. Now the configuration becomes

x = (. . . , 0.5, 0.58, 0.5, 0.3, . . . )

and the worst node is still the second one with d(x ′) = d2(x ′) = 0.08 < 0.1 = d(x).

Now let X̃(s) = X(νs) and F̃s = σ
(

X̃(1), . . . , X̃(s)
)

be the filtrations associated with

this embedded process. Since throughout time [νk, νk+1) the value j remains constant at jνk

and only Xjνk
is updated, we have

Xi (t) = Xi (νk) for all i �= j (X(t))
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for t ∈ [νk, νk+1).Moreover, the process X̃ evolves as aMarkov process butwith the “update”
distribution restricted from the full range, since a uniform distribution conditioned to be in
some subinterval is still uniform (this will be used later in Lemma 2). Hence Theorem 2
follows immediately from

Theorem 3 There exists a.s. a random variable X̄ ∈ [0, 1] such that as s → ∞
(X̃1(s), X̃2(s), . . . , X̃ N (s)) → (X̄ , X̄ , . . . , X̄) ∈ [0, 1]N a.s.

(Moreover, this convergence happens exponentially fast: there is an s0 = s0(ω) < ∞ and a

non-random γ ∈ (0, 1) such that
∣
∣
∣X̃i (s) − X̄

∣
∣
∣ ≤ γ s for all i ∈ S and s ≥ s0.)

Remark 7 In what follows, we assume that N ≥ 5. The cases N = 3 and N = 4 can be
studied somewhat easier, and we leave this as an exercise.

We will use the Lyapunov functions method, with a clever choice of the function. For
x = (x1, x2, . . . , xN ) define

h(x) = 2 ·
∑

i∈S
(xi − xi+1)

2 +
∑

i∈S
(xi − xi+2)

2 = 2
∑

i∈S

(

3x2i − 2xi xi+1 − xi xi+2
)

.

We start by showing that h(X̃(s)) is a non-negative supermartingale (Lemma 2), hence
it must converge a.s. Then we show that this limit is actually 0 (Lemma 8). Combined with
the fact that h(X̃(s)), as a metric, is equivalent to maxi, j |X̃i (t) − X̃ j (t)|, (see Lemma 3)
this ensures that eventually all X̃i become very close to each other, thus establishing the first
necessary ingredient of the proof of the main theorem.

Lemma 2 ξ(s) = h
(

X̃(s)
)

is a non-negative supermartingale.

Proof The non-negativity of ξ(s) is obvious. To show that it is a supermartingale, assume
that X̃(s) = (x1, x2, x3, x4, x5, . . . ) and w.l.o.g. that j (X̃(s)) = 3. Suppose that the allowed
range (i.e., for which either d decreases or the location of the minimum changes) for the
newly sampled point is [a, b] ⊆ [0, 1]. Assuming the newly sampled point is uniformly
distributed on [a, b] (since a restriction of the uniform distribution to a subinterval is also
uniform), we get

� := E(ξ(s + 1) − ξ(s)|F̃s) =
∫ b

a

{

2(x2 − u)2 + 2(u − x4)
2 + (x1 − u)2 + (u − x5)

2

− [2(x2 − x3)
2 + 2(x3 − x4)

2 + (x1 − x3)
2 + (x3 − x5)

2]} du

b − a

= 2(a2 + b2 + ab) + (2x3 − a − b)(x1 + 2x2 + 2x4 + x5) − 6x23 . (3.1)

Now we need to compute the appropriate a and b, and then show that � ≤ 0.
W.l.o.g. we can assume that x3 > x2+x4

2 , the case x3 < x2+x4
2 is equivalent to (1− x3) >

(1−x2)+(1−x4)
2 . Now setting X̃i = 1 − xi for all i yields identical calculations.

Suppose that the fitness at node 3 is replaced by some value X(νs + 1) =: u, let the new
value of the non-conformity at node 3 be d ′

3 = d3(x1, x2, u, x4, x5, . . . ) = d3(X(νs + 1)).

• If x3 is replaced by u > x3, then this value will be “rejected”, in the sense that d has
only increased while the argmaxi∈S di is still at the same node (i.e., 3). Indeed, when x3
increases by some δ > 0, so does d3, while d2 and d4 can potentially increase only by
δ/2 and thus cannot overtake d3.

123



A Local Barycentric Version of the Bak–Sneppen Model Page 9 of 17 42

• When u ∈ ( x2+x4
2 , x3

)

, d ′
3 is definitely smaller than the original d3.

Assume from now on that u ∈ (

0, x2+x4
2

)

. When x3 is replaced by u, it might happen
that while the new d3 is larger than the original one, the value of d2 or d4 overtakes d3.

• When u ∈ (0, x2+x4
2

)

the condition that d ′
3 < d3 is equivalent to

x2 + x4
2

− u < x3 − x2 + x4
2

⇐⇒ u > x2 + x4 − x3 =: Q0.

• For d2 to overtake d3, we need

∣
∣
∣
∣
x2 − x1 + u

2

∣
∣
∣
∣
>

x2 + x4
2

− u ⇐⇒

⎧

⎪⎨

⎪⎩

u > x1 − x2 + x4 =: Q1

or

u > −x1+3x2+x4
3 =: Q2

• For d4 to overtake d3, we need

∣
∣
∣
∣
x4 − u + x5

2

∣
∣
∣
∣
>

x2 + x4
2

− u ⇐⇒

⎧

⎪⎨

⎪⎩

u > x2 − x4 + x5 =: Q3

or

u >
x2+3x4−x5

3 =: Q4

As a result, the condition for d3 to be overtaken by some other node, or d ′
3 < d3 is

u > min
j=0,1,2,3,4

Q j .

Consequently, we must set

a = max {0,min{Q0, Q1, Q2, Q3, Q4}}
= max

{

0,min

{

x2 + x4 − x3, x1 − x2 + x4,
−x1 + 3x2 + x4

3
, x2 − x4

+x5,
x2 + 3x4 − x5

3

}}

,

b = x3.

Note that we are guaranteed that a ≤ b. This is trivial when a = 0; on the other hand, when
a > 0 we have

a ≤ x2 + x4 − x3 = x2 + x4
2

−
[

x3 − x2 + x4
2

]

<
x2 + x4

2
< x3 = b

since x3 > x2+x4
2 .

By substituting b = x3 into the expression for the drift (3.1), we get

� = (x3 − a)(x1 + 2x2 − 4x3 + 2x4 + x5 − 2a)

and to establish � ≤ 0 it suffices to show

x1 + 2x2 − 4x3 + 2x4 + x5 ≤ 2a = 2max{0,min{Q0, Q1, Q2, Q3, Q4}} (3.2)

under the assumption that

x3 − x2 + x4
2

> max

{∣
∣
∣
∣
x2 − x1 + x3

2

∣
∣
∣
∣
,

∣
∣
∣
∣
x4 − x3 + x5

2

∣
∣
∣
∣

}

that is, equivalently,

x3 > max{Q1, Q2, Q3, Q4}. (3.3)
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In order to show (3.2) we consider a number of cases. First, assume that x2 + x4 < x3. Then
Q0 < 0 and a = 0. From (3.3) we get that 2x3 > Q1 + Q3 = x1 + x5, thus

x1 + 2x2 − 4x3 + 2x4 + x5 = (x1 + x5 − 2x3) + 2(x2 + x4 − x3) < 0 = a

and (3.2) is fulfilled.
The next case is when x2+x4

2 < x3 < x2 + x4. We need to verify if all of the following
holds:

x1 + 2x2 − 4x3 + 2x4 + x5 − 2Q j ≤ 0 subject to

Q0 ≥ 0, x3 ≥ Q1 ≥ 0, x3 ≥ Q2 ≥ 0, x3 ≥ Q3 ≥ 0, x3 ≥ Q4 ≥ 0

and

x1 + 2x2 − 4x3 + 2x4 + x5 ≤ 0 subject to

Q j ≤ 0, x3 ≥ Q1, x3 ≥ Q2, x3 ≥ Q3, x3 ≥ Q4

for j = 0, 1, 2, 3, 4. This can be done using Linear Programming method. Thus � ≤ 0. �
The next statement shows that the metrics provided by h(x), d(x), and maxi∈S |xi −xi−1|,

where x ∈ R
N are, in fact, equivalent.

Lemma 3 Let x = (x1, . . . , xN ) and �i (x) := xi − xi−1, i ∈ S. Then

d(x) ≤ max
i∈S |�i | ≤ Nd(x),

2 d(x)2 ≤ h(x) ≤ 6 N 3 d(x)2.

Proof Note that �1 + · · · + �N = 0 and

h(x) =
∑

i∈S

[

2�2
i + (�i + �i+1)

2] ,

d(x) = 1

2
max
i∈S |�i+1 − �i | .

Let j be such that d j (x) = d(x), then by the triangle inequality

|� j+1| + |� j | ≥ |� j+1 − � j | = 2d(x)

so at least one of the two terms on the LHS ≥ d(x), hence maxi∈S |�i | ≥ d(x).
Now we will show that maxi∈S |�i | ≤ Nd(x). Indeed, suppose that this is not the case,

and w.l.o.g. �1 > Nd(x). For all i we have |�i+1 − �i | ≤ 2d(x), hence by induction and
the triangle inequality we get

�2 > (N − 2) d(x),

�3 > (N − 4) d(x),

. . . ,

�N−1 > (N − 2(N − 2)) d(x),

�N > (N − 2(N − 1)) d(x).

As a result, �1 + �2 + · · · + �N >
[

N 2 − 2(1 + 2 + · · · + (N − 1))
]

d(x) = Nd(x) ≥ 0,
which yields a contradiction, since the LHS is identically equal to 0.

Thus |�i | ≤ Nd(x), and so |�i + �i+1| ≤ 2Nd(x) for all i ∈ S. Consequently, h(x) ≤
2N (Nd(x))2 + N (2Nd(x))2 = 6N 3d(x)2. On the other hand, h(x) ≥ max

i∈S 2�2
i ≥ 2d(x)2.

�
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The following four statements (Lemmas 4 and 5 andCorollaries 1 and 2) show that ξ(t) can
actually decrease by a non-trivial factorwith a positive (and bounded frombelow) probability.

Lemma 4 Suppose that X(t) = x = (x1, x2, x3, x4, x5, . . . ), andd3(x) ≥ max {d2(x), d4(x)}.
Let μ = x2+x4

2 and δ = |x3 − μ| = d3(x). If x3 is replaced by some u ∈ [μ − δ/6, μ + δ/6]
then �h := h(X(t + 1)) − h(X(t)) ≤ − 5

6δ
2. (Note that the Lebesgue measure of

[μ − δ/6, μ + δ/6]⋂[0, 1] is always at least δ/6; also after this replacement d3 must
decrease.)

Proof Note that the change in h equals

�h = −2(x3 − u)(3u + A), where A = 3x3 − x1 − 2x2 − 2x4 − x5.

W.l.o.g. assume x3 > μ. Then

x3 − u ≥ μ + δ −
(

μ + δ

6

)

= 5

6
δ.

At the same time, recalling that d3(x) ≥ max{d2(x), d4(x)}, we obtain that

min
x1,...,x5≥0

A subject to x3 − μ > max

{∣
∣
∣
∣
x2 − x1 + x3

2

∣
∣
∣
∣
,

∣
∣
∣
∣
x4 − x3 + x5

2

∣
∣
∣
∣

}

equals −3μ + δ. Hence

3u + A ≥ 3

(

μ − δ

6

)

− 3μ + δ = δ

2

and thus �h ≤ −2 5δ
6 · δ

2 . �
Lemma 5 Suppose that X(t) = x = (x1, x2, x3, x4, x5, . . . ), and d3(x) = d(x). Let μ =
x2+x4

2 and δ = |x3−μ| = d3(x). Given that x3 > μ, if x3 is replaced by some u /∈ [μ−3δ, x3]
thend3(x ′) > d3(x)andd3(x ′) is still the largest of di (x ′), where x ′ = (x1, x2, u, x4, x5, . . . ).
The same conclusion holds if x3 < μ and x3 is replaced by some u /∈ [x3, μ + 3δ].

Before presenting the proof of Lemma 5, we state the obvious

Corollary 1 Let δ = d(X̃(s)). If i = j (X̃(s)) then

X̃i (s + 1) ∈ [X̃i (s) − 4δ, X̃i (s) + 4δ]
(and if i �= j (X̃(s)) then trivially Xi (s + 1) = Xi (s)). Hence we always have

max
i∈S

∣
∣
∣X̃i (s + 1) − X̃i (s)

∣
∣
∣ ≤ 4δ.

(Note that in Corollary 1 we have 4δ for the following reason: the newly accepted point
can deviate from μ by at most 3δ by Lemma 5, while |X̃i (s) − μ| = δ.)

The next implication of Lemma 5 requires a bit of work.

Corollary 2 Let ρ = 1 − 5
36 N3 < 1. Then

P
(

ξ(s + 1) ≤ ρξ(s) | F̃s
) ≥ 1

48
.
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Proof of Corollary 2 From Corollary 1 we know that given x = X̃(s), the allowed range for
the newly sampled point to be in X̃(s + 1) is at most 8δ where δ = d(x). At the same time if
the newly sampled point falls into the interval [μ−δ/6, μ+δ/6] (see Lemma 5), at least half
of which lies in [0, 1], then ξ(s + 1) − ξ(s) ≤ − 5

6δ
2; the probability of this event is no less

than δ/6
8δ = 1

48 . Since ξ(s) = h(x) and by Lemma 3 we have d(x)2 ≥ h(x)
6N3 , the inequality

ξ(s + 1) − ξ(s) ≤ − 5
6δ

2 implies ξ(s + 1) − ξ(s) ≤ − 5
36N3 ξ(s). �

Proof of Lemma 5 By symmetry, it suffices to show just the first part of the statement. First,
observe that

d j (x
′) = d j (x) ≤ d3(x) for j ∈ S \ {2, 3, 4};

d2(x
′) =

∣
∣
∣
∣

(
x1 + x3

2
− x2

)

+ u − x3
2

∣
∣
∣
∣
≤ d2(x) +

∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
≤ d3(x) +

∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
. (3.4)

If u > x3 > μ, then from (3.4)

d3(x
′) = u − x2 + x4

2
> x3 − x2 + x4

2
= d3(x);

d2(x
′) ≤ d3(x) +

∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
= d3(x

′) − (u − x3) +
∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
= d3(x

′) −
∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
< d3(x

′);
d4(x

′) < d3(x
′) (by the same argument as d2)

so indeed d3(x) < d3(x ′) = maxi∈S di (x ′).
On the other hand, if u < μ − 3δ < x3 = μ + δ, then d j for j ∈ S \ {2, 3, 4} still remain

unchanged, but

d3(x
′) = μ − u > 3δ > d3(x);

d2(x
′) ≤ d3(x) +

∣
∣
∣
∣

u − x3
2

∣
∣
∣
∣
= δ + x3 − u

2
= δ + x3 − μ

2
+ μ − u

2
= 3δ

2
+ μ − u

2

<
μ − u

2
+ μ − u

2
= d3(x

′);
d4(x

′) < d3(x
′) (by the same argument as d2)

hence d3(x) < d3(x ′) = maxi∈S di (x ′) in this case as well. �

At the same time, it turns out that ξ(t) cannot increase too much in one step, as follows
from

Lemma 6 There is a non-random r > 0 such that for all s we have ξ(s + 1) ≤ rξ(s).

Proof By Corollary 1 it follows that the worst outlier (w.l.o.g. x3) can be replaced only by
a point at most at the distance 4δ from x3 at time νs+1. Let the new value of the fitness at
node 3 be x3 + v, |v| ≤ 4δ. The change in the Lyapunov function is given by

ξ(s + 1) − ξ(s) = [

2((x3 + v) − x2)
2 + 2((x3 + v) − x4)

2

+((x3 + v) − x1)
2 + ((x3 + v) − x5)

2]

− [

2(x3 − x2)
2 + 2(x3 − x4)

2 + (x3 − x1)
2 + (x3 − x5)

2]

= (12x3 − 2x2 − 2x4 − 4x1 − 4x5) v + 6 v2 (3.5)
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Since

|12x3 − 2x2 − 2x4 − 4x1 − 4x5| =
∣
∣
∣
∣
8

(

x2 − x1 + x3
2

)

+ 8

(

x4 − x5 + x3
2

)

+20

(

x3 − x2 + x4
2

)∣
∣
∣
∣

≤ 8δ + 8δ + 20δ = 36δ

from (3.5) and the fact that δ = d(X̃(s)) ≤
√

ξ(s)
2 by Lemma 3

|ξ(s + 1) − ξ(s)| ≤ 36δ × 4δ + 6 (4δ)2 = 240δ2 ≤ 120ξ(s),

so we can take r = 121. �
Finally, we want to show that, roughly speaking, one does not have to wait for too long

before ξ(t) increases or decreases by a substantial amount.

Lemma 7 Fix some k > 1 and s0 > 0. Let τ1 = inf{s > 0 : ξ(s0 + s) ≤ ξ(s0)/k} and
τ2 = inf{s > 0 : ξ(s0 + s) ≥ kξ(s0)}. Then τ = min(τ1, τ2), given F̃s0 , is stochastically
smaller than some random variable with a finite mean, the distribution of which does not
depend on anything except N and k.

Proof Fix a positive integer L . For each t ≥ s0 define

Bt =
{

ξ(t + L) ≤ ξ(t)

k2

}

.

It suffices to show thatP(Bt |F̃t ) ≥ p for some p > 0 uniformly in t , since for j = 0, 1, 2, . . .

Bs0+ j L ⊆ {ξ(s0 + j L) < kξ(s0) and ξ(s0 + ( j + 1)L) < ξ(s0)/k} ∪ {ξ(s0 + j L) ≥ kξ(s0)}
⊆ {τ1 ≤ ( j + 1)L} ∪ {τ2 ≤ j L} ⊆ {τ ≤ ( j + 1)L}.

which, in turn, would imply that τ is stochastically smaller than L multiplied by a geometric
random variable with parameter p = p(N , k).

To show that P(Bt | F̃t ) ≥ p, note that by Corollary 2,

P(B∗
m | F̃m−1) ≥ 1

48
, where B∗

m = {ξ(m) < ρξ(m − 1)} , ρ = 1 − 5

36N 3 .

Let L be so large that ρL < 1/k2. Then, on one hand,

L
⋂

m=1

B∗
t+m ⊆ Bt whence P

(

Bt | F̃t
) ≥ P

(
L
⋂

m=1

B∗
t+m | F̃t

)

,

while on the other hand

P

(
L
⋂

m=1

B∗
t+m | F̃t

)

≥ 1

48L
=: p

which depends on N and k only.

The proof of the next statement, which completes the first part of the proof of the main
theorem, requires a bit more work than that of Lemma 2.4 in [6]. In fact, we will prove a
stronger statement (Corollary 3) later, however, it is still useful to see a fairly quick proof of
the following
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Lemma 8 ξ(s) → 0 a.s. as s → ∞ (and as a result �i (X̃(s)) → 0 a.s. and d(X̃(s)) → 0
a.s. as s → ∞).

Proof From Lemma 2 it follows that ξ(s) converges a.s. to a non-negative limit, say ξ∞. Let
us show that ξ∞ = 0. From Corollary 2 we have

P (ξ(s + 1) ≤ ρξ(s) |Fs) ≥ 1

48
. (3.6)

Fix an ε > 0 and a T ∈ N. Let σε,T = inf{s ≥ T : ξ(s) ≤ ε}. Then (3.6) implies

P(As+1 |Fs) ≥ 1s<σε,T

48
, where As+1 = {ξ(s + 1) ≤ ξ(s) − (1 − ρ)ε}

(Compare thiswith the inequality (2.18) in [6]). From the non-negativity of ξ(s), we know that
only finitely many of As can occur. By the Levy’s extension to the Borel-Cantelli lemma, we
get that

∑∞
s=T P(As+1 |Fs) < ∞ a.s., and hence

∑∞
s=T 1s<σε,T < ∞. This, in turn, implies

that σε,T < ∞ a.s. Consequently, since T is arbitrary,

lim inf
s→∞ ξ(s) ≤ ε a.s.

Since ε > 0 is also arbitrary and ξ(s) converges, lims→∞ ξ(s) = lim infs→∞ ξ(s) = 0 a.s.

The next general statement may be known, but since we could not find it in the literature,
we present its fairly short proof. We need it in order to show that ξ(t) converges to zero
quickly.

Proposition 1 Suppose that ξ(s) is a positive bounded supermartingale with respect to a
filtration F̃s . Suppose there is a constant r > 1 such that ξ(s + 1) ≤ rξ(s) a.s. and that for
all k large enough the stopping times

τs = inf{t > s : ξ(t) > kξ(s) or ξ(t) < k−1 ξ(s)}
are stochastically boundedaboveby somefinite–mean randomvariable τ̄ > 0, whichdepends
on k only (and, in particular, independent of F̃s ). Let μ = Eτ̄ < ∞. Then

lim sup
s→∞

ln ξ(s)

s
≤ − 1

4μ
< 0 a.s.

Proof First, observe that by the Optional Stopping Theorem

E(ξ(τs) | F̃s) ≤ ξ(s) (3.7)

(where τs < ∞ a.s. by the stochastic dominance condition) while, on the other hand,

E(ξ(τs) | F̃s) = E(ξ(τs), ξ(τs) > kξ(s) | F̃s) + E(ξ(τs), ξ(τs) < k−1 ξ(s) | F̃s)

≥ E(ξ(τs), ξ(τs) > kξ(s) | F̃s) ≥ kξ(s) · P(ξ(τs) > kξ(s) | F̃s). (3.8)

From (3.7) and (3.8) we conclude

p := P(ξ(τs) > kξ(s) | F̃s) <
1

k
. (3.9)

Now let us define a sequence of stopping times as follows: η0 = 0 and for n = 1, 2, . . . ,

ηn = inf
{

s > ηn−1 : ξ(s) > kξ(ηn−1) or ξ(s) < k−1 ξ(ηn−1)
}
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and let

Ns = max{n : ηn ≤ s}.
From the definition of the stopping times η, it follows

ξ(s) ≤ kξ(ηNs ), ξ(ηn+1) ≤ rkξ(ηn). (3.10)

Consider now the sequence of random variables ξ(ηn). From (3.9) and (3.10) we obtain
that logk

ξ(ηn)
ξ(ηn−1)

is stochastically bounded above by a random variable Xn ∈ {−1, 1+ logk r}
such that

1 − P(Xn = −1) = P(Xn = 1 + logk r) = 1

k

yielding

EXn = 2 + ln r
ln k

k
− 1 =: g(r , k);

we can also assume that Xn are i.i.d. One can choose k > 1 so large4 that g(r , k) < − 1
2 .

Then, by the Strong Law applied to
∑n

i=1 Xi , we get

lim sup
n→∞

logk ξ(ηn)

n
≤ lim sup

n→∞
X1 + · · · + Xn

n
< −1

2
a.s.

From the condition of the proposition we know that the differences ηn − ηn−1, n =
1, 2, . . . , are stochastically bounded by independent random variables with the distribution
of τ̄ with Eτ̄ =: μ < ∞. Then by the Strong Law for renewal processes (see e.g. [5],
Theorem I.7.3) applied to the sum of independent copies of τ̄ , we get

lim inf
s→∞

Ns

s
≥ 1

μ
a.s. �⇒ s ≤ 2μNs for all large enough s. (3.11)

Combining (3.10) and (3.11), we get

lim sup
s→∞

logk ξ(s)

s
≤ lim sup

s→∞
logk

(

kξ(ηNs )
)

s
= lim sup

s→∞
logk ξ(ηNs )

s

≤ lim sup
s→∞

logk ξ(ηNs )

2μNs
= 1

2μ
lim sup
n→∞

logk ξ(ηn)

n
≤ − 1

4μ
a.s.

since Ns → ∞ when s → ∞ a.s. �

The next statement strengthens Lemma 8.

Corollary 3 ξ(s) → 0 exponentially fast as s → ∞.

Proof The statement follows immediately from Proposition 1: the bound for r we have by
Lemma 6; the other condition follows from Lemma 7. �

Now we are ready to finish the proof of the main statement.

4 If r > 4.1, then k = ln(r) will be sufficient.
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Proof of Theorem 3 According to Corollary 3 there exist a, b > 0 which are a.s. finite and
such that ξ(t) ≤ ae−bt . If we take s0 such that ae−bs ≤ ε for all s ≥ s0 then if s0 ≤ s < t ,

|X̃i (t) − X̃i (s)| ≤
t
∑

k=s+1

4 d(X̃(k)) ≤
t
∑

k=s+1

√

8ξ(k)

≤ √
8ε

t
∑

k=s+1

e−bk/2 ≤
√
8ε

1 − e−b/2 , (3.12)

where we used Corollary 1 in the first inequality and Lemma 3 in the second inequality.
We can thus conclude that {X̄i (t)}t is a Cauchy sequence in the a.s. sense; therefore the
limit X̄i (∞) = limt→∞ X̃i (t) exists a.s. Moreover, by letting t → ∞ in (3.12), we get that
|X̃i (s) − X̃i (∞)| ≤ Ce−bs/2 for some C > 0.

Furthermore, assuming w.l.o.g. that i < j ,

|X̄i (∞) − X̄ j (∞)| = lim
t→∞ |X̃i (t) − X̃ j (t)| ≤ lim

t→∞

j
∑

k=i+1

∣
∣
∣�k(X̃(t))

∣
∣
∣ = 0

by Lemma 8, which completes the proof. �

4 Discussion and Open Problems

One may be interested in the speed of convergence, established in Theorem 3. In Lemma 6
we can take r = 121 and from the proof of Proposition 1, k = ln r = ln(121) = 2 ln(11)
will be sufficient. Then, for Lemma 7, find L such that

(

1 − 5

36N 3

)L

<
1

23
<

1

k2

We can take, e.g.,

L ≈ 7.2N 3 · ln(23) ≈ 22.6N 3

This, in turn, will provide a bound on μ = Eτ̄ ≤ L
p = L · 48L for Proposition 1, and hence

the speed of the convergence for large s:

2 [d(X̃(s))]2 ≤ h(X̃(s)) = ξ(s) ≤ k− s
4μ

≤ exp

{

− s

8 L 48L ln(11)

}

≈ exp

{

− s

433 · 1038N3

}

This bound is, however, far from the optimal one. The simulations seem to indicate that,
depending on N ,

ξ(s) ∼ e−ρN s,

where e.g. ρ5 ∈ (0.47, 0.77), ρ10 ∈ (0.14, 0.23), ρ20 ∈ (0.02, 0.03), ρ40 ∈ (0.003, 0.006),
suggesting that (a) ρN can be, in fact, random, and (b) the average value of ρN decays roughly
like 5/N 2. We leave the study of the properties of ρN for further research.

We believe that the convergence, described by Theorems 2 and 3 holds for a much more
general class of replacement distributions ζ , not just uniform; for example, for the continuous
distributions with the property that their density is uniformly bounded away from zero.
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Unfortunately, our proof is based on the construction of the Lyapunov function which cannot
be easily transferred to other cases (obviously, it will work for any ζ ∼ U [a, b], where
a < b).

One can also attempt to generalize the theorems for more general graphs as described in
Remark 1; this should be done, however, with care, as it will not work for all the distributions
(see Remark 2).
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