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Abstract
The Haldane model is a paradigmatic 2d lattice model exhibiting the integer quantum Hall
effect. We consider an interacting version of the model, and prove that for short-range inter-
actions, smaller than the bandwidth, the Hall conductivity is quantized, for all the values of
the parameters outside two critical curves, across which the model undergoes a ‘topological’
phase transition: the Hall coefficient remains integer and constant as long as we continuously
deform the parameters without crossing the curves; when this happens, the Hall coefficient
jumps abruptly to a different integer. Previous works were limited to the perturbative regime,
in which the interaction is much smaller than the bare gap, so they were restricted to regions
far from the critical lines. The non-renormalization of the Hall conductivity arises as a con-
sequence of lattice conservation laws and of the regularity properties of the current–current
correlations.Ourmethodprovides a full construction of the critical curves,which aremodified
(‘dressed’) by the electron–electron interaction. The shift of the transition curves manifests
itself via apparent infrared divergences in the naive perturbative series, which we resolve via
renormalization group methods.

Keywords Haldane model · Interacting fermions · Integer quantum Hall effect ·
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1 Introduction

One of the remarkable features of the Integer Quantum Hall Effect (QHE) is the impressive
precision of the quantization of the plateaus observed in the experiments. While the experi-
mental samples have a very complex microscopic structure, depending on a huge number of
non-universal details related to molecular forces and the atomic structure, the conductance
appears to be quantized at a very high precision, and the result only depends on fundamental
constants. The understanding of this phenomenon, via a connection between the Hall con-
ductivity and a topological invariant [4,40] was a major success of theoretical condensed
matter in the 80s. The argument was later generalized to non-interacting disordered systems
[1,5,9,10] and to clean multi-particle systems [3,37]: however, the definition of conductivity
in the interacting case required the presence of an unphysical averaging over fluxes, expected
to be unimportant in the thermodynamic limit, but a proof remained elusive for many years.
Arguments based on Ward Identities for Quantum ElectroDynamics in (2 + 1)-dimensions
[12,24,30], or on the properties of anomalies [15], offered an alternative view on the QHE:
they indicated that quantization should persists in the presence of many body interaction,
but such conclusions were based on manipulations of divergent series, or of effective actions
arising in a formal scaling limit.

The problem of a mathematical proof of the quantization of the Hall conductivity in
the presence of many-body interactions remained open for several years. After the works
[1,3,5,9,10,37], itwas dormant formore than a decade, and then, in recent years, itwas actively
reconsidered again, starting from [27], which proved the quantization of theHall conductance
of an interacting electron system using quasi-adiabatic evolution of the groundstate around a
flux-torus, under the assumption of a volume-independent spectral gap. In [22] we followed
a different approach, and proved the quantization of the interacting Hall conductivity by
writing it as a convergent series, and by showing that all the interaction corrections cancel
exactly, thanks to Ward Identities. Our result holds for interacting fermionic Hamiltonians
of the form H0 + UV , where H0 is quadratic and gapped, with the chemical potential in
the middle of a spectral gap of width �0, V is a many body interaction, and |U | � �0;
this smallness condition is assumed to ensure the convergence of the power series expansion
in U of the Euclidean correlations. The same result also follows from [27], in combination
with a proof of the stability of the spectral gap for such fermionic Hamiltonians [13,26].
See also [6,7] for alternative proofs of the main theorem in [27]. Recently, the bulk-edge
correspondence for a class of weakly interacting fermionic systems displaying single-mode
chiral edge currents was also proved [2].

Given these results on the quantization of the Hall conductivity in weakly interacting sys-
tems (i.e., with interaction strength smaller than the gap), one naturallywonderswhat happens
for stronger interactions. We focus on the interacting extension of the spinful Haldane model
[23], which has been recently realized in cold atoms experiments [31] and can be used as
the building block of more general topological insulators [25]. Extensions to related sys-
tems is straightforward, in particular to the interacting, spin-conserving, Kane–Mele model,
for which the quantization of the edge conductivity has been recently established [34]. We
recall that, in the absence of interactions, the phase diagram of the spinful Haldane model
consists of two ‘trivial’ insulating phases, with vanishing transverse conductivity, and two
quantum Hall phases, with transverse conductivity σ12 = ± 2e2/h, separated by two criti-
cal curves. By [22], we know that, away from the critical lines, for interactions U smaller
than the spectral gap, the Hall conductivity is quantized and independent of U . However,
what happens close to the critical lines, in cases where the interaction is much larger than
the gap? This question, and in particular the possible emergence of new quantum phases,
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has been extensively investigated in the literature, mainly via mean-field, variational, and
numerical studies, see [28,29,38,41,42] and references therein. These works show evidence
for the appearance of a new interaction-induced phase with σ12 = ± e2/h, but the numerics
is inconclusive on whether this phase, in the thermodynamic limit, emerges at arbitrarily
small, positive, interactions or, rather, above a finite threshold. The main result of this work
excludes the first possibility: no new phases appear close to the transition lines, as long as the
interaction strength is sufficiently small, compared with the bandwidth t0. More precisely,
we compute the Hall conductivity for |U | � t0 and all the values of the parameters outside
two critical curves, across which the model undergoes a ‘topological’ phase transition: the
Hall coefficient remains integer and constant as long as we continuously deform the param-
eters without crossing the curves; when this happens, the Hall coefficient jumps abruptly to
a different integer. The main difficulties in proving such results are related to the fact that
the critical lines are non-universal (i.e., interaction-dependent), thus making a naive pertur-
bative approach ineffective. The ‘dressing’ of the critical lines is analogous to what happens
in the theory of second order phase transitions, where the critical temperature is modified
by the interaction, and one needs to appropriately tune the temperature as the interaction is
switched on, in order to stay at criticality. Technically, we proceed in a similar way: we do
not expand around the non-interacting Hamiltonian but, rather, around a reference quadratic
Hamiltonian, characterized by the same gap as the interacting system, whose value is fixed
self-consistently.

Note that our problem H0 + UV naturally comes with three energy scales: the spectral
gap �0 of H0; the bandwidth t0 of H0; and the interaction strength U . Our methods are
not applicable in the regime of non-perturbatively strong interactions, |U | � t0: they are
limited to the case where U is smaller than t0 but, as remarked above, they are allowed to
be much larger than �0. Even in this regime, the interaction can induce drastic changes of
the physical properties of the system, as well known in the context of interacting, gapless,
2D electron gases, where weak interactions can in general produce quantum (e.g., super-
conducting) instabilities. The reason why this does not happen in our case is due to a key
feature of the model under investigation, namely that the critical, gapless, Hamiltonian has
energy bands with conical intersections: this ensures that the interaction is irrelevant in a
Renormalization Group sense, uniformly in �0. In more general cases, the interaction may
be marginal, as in the case of the anisotropic Hofstadter model, recently considered in [33]:
in this case, the gaps with integer label are stable, but new gaps corresponding to fractional
labels are expected to open. It would be, of course, very interesting to further investigate
such cases, where fractional Hall conductances may potentially appear, as well as to include
disorder effects, which are essential for the very existence of Hall plateaus.

Our results extend and complement those of [19], where we considered the samemodel (in
the special case of ultra-local interactions) and we proved: (i) existence of the critical curves,
but without an explicit control on their regularity properties, and (ii) universality of the jump
in the Hall coefficient across the critical curves, but without a proof that the coefficient
remains constant in each connected component of the complement of the critical curves.
Combining the results of [19] with those presented here, we have a complete construction of
the topological phase diagram of the interacting Haldane model.

Our presentation is organized as follows: in Sect. 2 we define the class of interacting
Haldane models that we are going to consider, and we state our main result. In Sect. 3 we
prove the quantization of the Hall coefficient, under suitable regularity assumptions on the
Euclidean correlation functions of the interacting model; we stress that this part of the proof
holds in great generality, for a class of interacting fermionic systems much larger than the
interacting Haldane model. In Sect. 4 we prove the regularity assumptions on the correlations

123



Quantization of the Interacting Hall Conductivity... 335

for the model at hand, via rigorous renormalization group methods. In Sect. 5 we put things
together and complete the proof of our main result.

2 Main Result

2.1 TheModel

The Haldane model describes spinless fermions on the honeycomb lattice hopping on nearest
and next-to-nearest neighbours, in the presence of a transverse magnetic field, with zero net
flux through the hexagonal cell, and of a staggered potential. In this section we introduce an
interacting, spinful, version of the Haldane model. Note that, in the presence of interactions,
the spin could induce a qualitatively different behaviour, as compared with the spinless case
(this is a well known fact in the context of one-dimensional fermions [14], including the edge
theory of 2D topological insulators [2,34]). Note also that the experimental realization of the
interacting Haldane model involves, indeed, spin-1/2 particles, see [31].

Let � = {�x | �x = n1 ��1 + n2 ��2, ni ∈ Z} ⊂ R
2 be the infinite triangular lattice generated

by the two basis vectors ��1 = 1
2 (3, −

√
3), ��2 = 1

2 (3,
√
3). Given L ∈ N, we also let

�L = �/L� be the corresponding finite periodic triangular lattice of side L , which will
be identified with the set �L =

{�x | �x = n1 ��1 + n2 ��2, ni ∈ Z ∩ [0, L)
}
with periodic

boundary conditions. The lattice is endowedwith the Euclidean distance on the torus, denoted
by |�x− �y|L = minm∈Z2 |�x− �y+m1 ��1L+m2 ��2L|. The number of sites of�L is |�L | = L2.
The periodic honeycomb lattice can be realized as the superposition of two periodic triangular
sublattices �A

L ≡ �L , �B
L ≡ �L + �e1, with �e1 = (1, 0) the first Euclidean basis vector.

Equivalently, we can think the honeycomb lattice as a triangular lattice, with two internal
degrees of freedom corresponding to the A, B sublattices.

It is convenient to define the model in second quantization. The one-particle Hilbert
space is the set of functions hL = { f : �L × {↑,↓} × {A, B} → C} � C

L2 ⊗ C
4.

We let the fermionic Fock space FL be the exterior algebra of hL . Notice that for fixed
L , FL is a finite-dimensional space. For a given site �x ∈ �L , we introduce fermionic
annihilation operators ψ�x,ρ,s , with ρ ∈ {A, B} the sublattice label and s ∈ {↑,↓} the
spin label, and we denote by ψ

†
�x,ρ,s their adjoint, the creation operators. They satisfy

the standard canonical anticommutation relations {ψ†
�x,ρ,s, ψ�y,ρ′,s′ } = δρ,ρ′δs,s′δ�x,�y and

{ψ†
�x,ρ,s, ψ

†
�y,ρ′,s′ } = {ψ�x,ρ,s, ψ�y,ρ′,s′ } = 0. The operators ψ�x,ρ,s are consistent with the

periodic boundary conditions on �L , ψ�x+n1L+n2L,ρ,s = ψ�x,ρ,s .
The reciprocal lattice�∗L of�L is the triangular lattice generated by the basis vectors �G1,

�G2, such that �Gi · �� j = 2πδi, j . Explicitely, �G1 = 2π
3 (1, −√3), �G2 = 2π

3 (1,
√
3).We define

the finite-volume Brillouin zone as BL :=
{�k ∈ R

2 | �k = n1
L
�G1 + n2

L
�G2, ni ∈ Z ∩ [0, L)

}
.

We define the Fourier transforms of the fermionic operators as:

ψ�x,ρ,s = 1

L2

∑

�k∈BL

e−i �k·�x ψ̂�k,ρ,s ∀�x ∈ �L ⇐⇒ ψ̂�k,ρ,s =
∑

�x∈�L

e+i �k·�xψ�x,ρ,s ∀�k ∈ BL .

(2.1)

With this definition, ψ̂�k,ρ,s is periodic over the Brillouin zone, ψ̂�k+m1 �G1+m2 �G2,ρ,s = ψ̂�k,ρ,s .
Moreover, the Fourier transforms of the fermionic operators satisfy the anticommutation rela-
tions: {ψ̂†

�k,ρ,s
, ψ̂�k′,ρ′,s′ } = L2δ�k,�k′δρ,ρ′δs,s′ and {ψ̂†

�k,ρ,s
, ψ̂

†
�k′,ρ′,s′ } = {ψ̂�k,ρ,s, ψ̂�k′,ρ′,s′ } = 0.
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Fig. 1 The honeycomb lattice of
the Haldane model. The empty
dots belong to �A

L , while the

black dots belong to �B
L . The

oval encircles the two sites of the
fundamental cell, labeled by the
position of the empty dot, i.e., of
the site of the A sublattice. The
nearest neighbor vectors �δi , are
shown explicitly, together with
the next-to-nearest neighbor
vectors �γi , and the two basis
vectors ��1,2 of �L

BA

1

2

3

δ1
δ2

δ3 2

1

The Hamiltonian of the model is:H = H0+UV , withH0 the noninteracting Hamiltonian
and V the many-body interaction of strength U . We have:

H0 = −t1
∑

�x∈�L

∑

s=↑,↓
[ψ†
�x,A,σ

ψ�x,B,s + ψ
†
�x,A,sψ�x−��1,B,s + ψ

†
�x,A,sψ�x−��2,B,s + h.c.]

−t2
∑

�x∈�L

∑

α=±
j=1,2,3

∑

s=↑↓
[eiαφψ

†
�x,A,sψ�x+α �γ j ,A,s + e−iαφψ

†
�x,B,sψ�x+α �γ j ,B,s]

+W
∑

�x∈�L

[n �x,A − n �x,B] − μ
∑

�x∈�L

[n �x,A + n �x,B ] , (2.2)

with �γ1 = ��1 − ��2, �γ2 = ��2, �γ3 = −��1 and n �x,ρ =
∑

s=↑,↓ ψ
†
�x,ρ,sψ�x,ρ,s , with ρ ∈ {A, B}.

For definiteness, we assume that t1 > 0 and t2 > 0. The term proportional to t1 describes
nearest neighbor hopping on the hexagonal lattice. The term proportional to t2 describes
next-to-nearest neighbor hopping, with the complex phases e± iφ modeling the effect of
an external, transverse, magnetic field. The term proportional to W describes a staggered
potential, favoring the occupancy of the A or B sublattice, depending on whether W is
negative or positive. Finally, the term proportional to μ is the chemical potential, which
controls the average particle density in the Gibbs state. See Fig. 1. Concerning the many-
body interaction, we assume it to be a density–density interaction of the form:

V =
∑

�x,�y∈�L

∑

ρ=A,B

(n �x,ρ − 1)vρρ′(�x − �y)(n �y,ρ′ − 1) , (2.3)

where vAA(�x) = vBB(�x) = v(�x), vAB(�x) = v(�x − �e1) and vBA(�x) = v(�x + �e1), with v

a finite range, rotationally invariant, potential (we recall that �e1 is the first Euclidean basis
vector).

The noninteracting Hamiltonian can be rewritten as:

H0 =
∑

�x,�y

∑

ρ,ρ′,s
ψ

†
�x,ρ,s Hρρ′(�x − �y)ψ�y,ρ′,s , (2.4)
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where Hρρ′(�x− �y) are the matrix elements of the Haldane model; we denote by H(�x− �y) the
corresponding 2×2 block.We introduce the BlochHamiltonian Ĥ(k) =∑

�z∈�L
e−i �k·�z H(�z),

with �k ∈ BL . An explicit computation gives:

Ĥ(�k) =
(−2t2α1(�k) cosφ + m(�k)− μ −t1∗(�k)

−t1(�k) −2t2α1(�k) cosφ − m(�k)− μ

)
(2.5)

where:

α1(�k) =
3∑

j=1
cos(�k · �γ j ) , m(�k) = W − 2t2 sin φ α2(�k) ,

α2(�k) =
3∑

j=1
sin(�k · �γ j ) , (�k) = 1+ e−i �k·��1 + e−i �k·��2 .

(2.6)

The corresponding energy bands are

ε±(�k) = −2t2α1(�k) cosφ ±
√
m(�k)2 + t21 |(�k)|2 . (2.7)

The size of the bands can be bounded by max�k ε+(�k) − min�k ε−(�k), which we call the
bandwidth. To make sure that the energy bands do not overlap, we assume that t2/t1 < 1/3.
For L →∞, the two bands can touch only at the Fermi points �k±F =

( 2π
3 ,± 2π

3
√
3

)
, which are

the two zeros of (�k), around which (�k±F + �k′) � 3
2 (ik

′
1 ± k′2). The condition that the two

bands touch at �kω
F , with ω ∈ {+,−}, is that mω = 0, with

mω ≡ m(�kω
F ) = W + ω3

√
3 t2 sin φ . (2.8)

If, instead, m+ and m− are both different from zero, then the spectrum of Ĥ(�k) is gapped
for all �k, corresponding to an insulating phase.

2.2 Lattice Currents and Linear Reponse Theory

Let n �x =
∑

ρ=A,B n �x,ρ be the total density operator at �x . Its time-evolution is given by

n �x (t) = eiHt n �x e−iHt , which satisfies the following lattice continuity equation:

∂t n �x (t) = i[H, n �x (t)] ≡
∑

�y
j�x,�y(t) , (2.9)

with j�x,�y the bond current:

j�x,�y =
∑

ρ,ρ′=A,B

∑

s=↑,↓
(iψ†

�y,ρ′,s Hρ′ρ(�y − �x)ψ�x,ρ,s + h.c.) . (2.10)

Notice that j�x,�y = − j�y,�x . Thus, using that H(�x) �= 0 if and only if �x = �0,±��1,±��2,±(��1−
��2), Eq. (2.9) implies:

∂t n �x (t) =
∑

�y
j�x,�y(t) =

∑

i=1,2
[ j�x,�x+��i + j�x,�x−��i ] + j�x,�x+��1−��2 + j�x,�x−��1+��2

≡ −d1J̃1,�x − d2J̃2,�x , (2.11)
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where di f (�x) = f (�x)− f (�x − ��i ) is the lattice derivative along the ��i direction, and:
J̃1,�x = − j�x,�x+��1 − j�x,�x+��1−��2 , J̃2,�x = − j�x,�x+��2 − j�x,�x−��1+��2 . (2.12)

The operators J̃i,�x are the components along the ��i directions of the total vectorial current,
defined as

�j�x = J̃1,�x ��1 + J̃2,�x ��2 . (2.13)

Note that, given the definitions of ��1,2, the components of the lattice current along the two
reference, orthogonal, coordinate directions are:

j1,�x = 3

2
(J̃1,�x + J̃2,�x ), j2,�x =

√
3

2
(−J̃1,�x + J̃2,�x ). (2.14)

We are interested in the transport properties of the Haldane–Hubbard model, in the
linear response regime. The Gibbs state of the interacting model is defined as: 〈·〉β,L =
TrFL · e−βH/Zβ,L with Zβ,L = TrFL e

−βH the partition function. We define the conductiv-
ity matrix via the Kubo formula, for i, j = 1, 2:

σi j := 1

|��1 ∧ ��2|
lim

p0→0+
1

p0

[
− i

∫ 0

−∞
dt ep0t lim

β,L→∞
1

L2 〈[Ji ,J j (t)]〉β,L

+i lim
β,L→∞

1

L2 〈[Ji ,X j ]〉β,L

]
, (2.15)

with �J = ∑
�x∈�L

�j�x the total current operator, �X the second quantization of the position
operator 1, and where limβ,L→∞ must be understood as limβ→∞ limL→∞, i.e., thermody-
namic limit first, and then temperature to zero. Note that formally, in the thermodynamic
limit, �J = i[H, �X ], as it should. Equation (2.15) describes the linear response of the average
current at the time t = 0 to an adiabatic external potential of the form eηt �E · �X , see e.g. [17]
for a formal derivation, and [8,36,39] for a rigorous derivation in a slightly different setting.

Remark. The indices i, j labelling the elements of the conductivity matrix (2.15) refer to
the two reference, orthogonal, coordinate directions. Sometimes, a similar definition of the
Kubomatrix is given,where, instead, the indices i, j label the two lattice coordinate directions
��1, ��2 (‘adapted basis’). The two definitions are, of course, related in a simple way, via the
transformation induced by the change of basis. In particular, the transverse conductivities
defined in the orthogonal and in the adapted basis are the same, up to an overall multiplicative
factor, equal to |��1 ∧ ��2|. The longitudinal conductivities are, instead, related via a matrix
relation that mixes up the diagonal and non-diagonal components of the conductivity matrix.
For ease of comparison with experimental papers on graphene, or graphene-like materials,
we prefer to use the definition involving the orthogonal reference directions, which we find
more natural.

In the absence of interactions, the Kubo conductivity matrix of the Haldane model can be
computed explicitly. Suppose thatmω �= 0, both for ω = + and for ω = −, and let us choose
the chemical potential in the spectral gap. For instance, let μ = −2t2 cosφα1(kω

F ), which

1 There is an issue in defining the position operator on the torus. In order to avoid the problem, we interpret
the second term in (2.15) as being equal to i ∂

∂q j
〈〈〈[Ji (�q), N (−�q)]〉〉〉∞

∣∣�q=�0, where: �J (�q) = ∑
�x∈�L

�j�x ei �q �x ,
N (�q) = ∑

�x∈�L
n �x ei �q �x , 〈〈〈[Ji (�q), N (−�q)]〉〉〉∞ := limβ,L→∞ 1

L2
〈[Ji (�q(L)), N (−�q(L))]〉β,L , and �q(L) a

sequence of vectors in BL such that limL→∞ �q(L) = �q.
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corresponds to choosing the chemical potential in the ‘middle of the gap’. Then, it turns out
that [23]:

σ11 = 0 , σ12 = −σ21 = ν

2π
, ν = sign(m+)− sign(m−) . (2.16)

The integer ν is the Chern number of the Bloch bundle associated to Ĥ(�k). The zeros of
mω = W +ω3

√
3t2 sin φ, with ω ∈ {+,−}, define the critical curves of the Haldane model,

which separate the different topological phases, corresponding to different values of ν. On
the curves, the spectrum is gapless: the energy bands intersect with conical intersection, and
the system displays a quantization phenomenon of the longitudinal conductivity:

σ11 = σ22 = 1

8
, (2.17)

while σ11 = σ22 = 1
4 at the ‘graphene points’ m+ = m− = 0.

2.3 Main Result: Interacting Topological Phases and Phase Transitions

Let us now turn on the many-body interaction, U �= 0. In previous works, it was proved
that the quantization of the conductivity persists, but only for interactions of strength much
smaller than the gap of H0. Our main result, summarized in the next theorem, overcomes
this limitation.

Theorem 2.1 There exists U0 > 0, independent of W , φ, such that for |U | < U0 the
following is true. There exist two functions, d(U ,W , φ) and z(U ,W , φ), analytic in U
and continuously differentiable in W , φ, such that, if the chemical potential is fixed at
the value μ = −2t2 cosφα1(kω

F )−z(U ,W , φ), then, for all the values of W , φ such that
mR,ω(W , φ) := W+ω3

√
3t2 sin φ+ωd(U ,−ωW , φ) is different from zero, both forω = +

and for ω = −, the interacting Hall conductivity is

σ12(U ) = 1

2π

[
sign(mR,+)− sign(mR,−)

]
. (2.18)

Moreover, the conditions mR
ω(W , φ) = 0, ω ∈ {±}, define two C1 curves W = WR

ω (φ),
called ‘critical curves’, which are C1 close to the unperturbed curves W = −ω3

√
3t2 sin φ.

The two critical curves have the same qualitative properties as the unperturbed ones, in the
sense that: (i) they intersect at (W , φ) = (0, 0), (0, π); (ii) they are one the image of the
other, under the reflection W → −W; (iii) they are monotone for φ ∈ [−π

2 , π
2 ]; (iv) they

are odd in φ, and their periodic extension to R is even under the reflection φ → π − φ.

An illustration of how the interaction deforms the critical lines is shown in Fig.2.
The main improvement of the result stated in Theorem 2.1 compared to previous works

is that it establishes the quantization of the Hall conductivity for values of the coupling
constant U that are much larger than the gap of the bare Hamiltonian: it states that the
interaction does not change the value of the interacting Hall conductivity, provided we do
not cross the interacting critical curves, which we construct explicitly; this universality of
the Hall coefficient holds, in particular, arbitrarily close to the critical curves. On the critical
curves the system is massless, i.e., correlations decay algebraically at large distances, and
we do not have informations on the transverse conductivity coefficient. However, the critical
longitudinal conductivity displays the same quantization phenomenon as the non-interacting
one: namely, if W = WR

ω (φ), for either ω = + or ω = −, and φ �= 0, π , then
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Fig. 2 Illustration of the deformation of the critical lines induced by the electron–electron interaction. The
solid red curve corresponds to the non-interacting Haldane model with t1 = 1 and t2 = 0.1. The dotted and
dashed-dotted lines correspond to the interacting case, with ultra-local (on-site) interaction and U = ± 0.5;
the lines are computed by truncating perturbation theory to first order, see [19, Sect. III.E] for details. The
connected regions of the complement of the critical lines are labelled NI (resp. TI), if they correspond to the
‘normal’ (resp. ‘topological’) insulating phase. Notice that, in the considered example, repulsive interactions
have the effect of enhancing the topological insulating phase. It would be interesting to have a conceptual
understanding of this phenomenon, that is, of why repulsive interactions favor the non-trivial topological phase

σ11 = σ22 = 1

8
, (2.19)

while σ11 = σ22 = 1
4 for (W , φ) = (0, 0), (0, π); see [19] for the proof.

We remark that the proof of Theorem 2.1 is constructive: therefore, a patient reader
can extract from it an explicit bound on U0. Such a bound would certainly be far from
optimal; optimizing it would be a non-trivial, interesting, exercise, requiring a computer-
assisted proof (at least if one is interested in getting a physically significant bound). In any
case, conceptually, the only important requirement should be that U is sufficiently small,
compared to the bandwidth of H0, see the definition after (2.7).

Finally, concerning themodel: we expect that the specific choice of the interactingHaldane
model is not crucial for the validity of the result. The proof extends straightforwardly to strictly
related models, such as the spin-conserving Kane–Mele model. An appropriate adaptation
should apply,more generally, to any interactingHamiltonian of the formH = H0+UV , with:
(i) V a short-range, spin-independent, interaction, (ii) |U | small compared to the bandwidth,
and (iii)H0 a quadratic Hamiltonian that can become gapless as a parameter is varied: in the
gapless case, H0 has a degenerate, point-like, Fermi surface, around which the dispersion
relation has a linear, ‘graphene-like’, behavior. Note that, as discussed in the introduction, the
latter condition is needed to guarantee the irrelevance of the interaction. Even if conceptually
non problematic, the extension to such a general class of many-body Hamiltonians would
require a discussion of their symmetry properties, in connection with the classification of the
possible relevant and marginal effective coupling that can be generated under the multiscale
Renormalization Group construction of the Euclidean correlations, cf. with Sect. 4 below.
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This goes beyond the scopes of this article: for this reason, we restrict to the specific example
of the interacting Haldane model, which is physically the most relevant for applications to
2D topological insulators.

2.3.1 Strategy of the Proof

Let us give an informal summary of the main steps of the proof. For simplicity, we limit
ourselves to the generic case W �= 0, φ �= 0, the special, symmetric, complementary case
(W = 0 and/or φ = 0) being treatable analogously. Thanks to the symmetries of the model,
see Eqs.(4.7)–(4.13) below, we further restrict ourselves, without loss of generality, to the
range of parameters

W > 0, 0 < φ � π

2
, (2.20)

which corresponds to the case m+ > |m−|, where m± are defined in (2.8). Note that, under
these conditions, the amplitude of the bare gap is given by |m−|.

We expect the interaction to modify (‘renormalize’) in a non trivial way both the chemical
potential and the width of the gap2. In order to compute the interacting gap, we proceed as
follows. For the purpose of this discussion, let us denote byH0(W , φ, μ) the non-interacting
Hamiltonian (2.2), thought of as a function of the parameters (W , φ, μ), at fixed t1, t2. We
rewriteμ in the formμ = −2t2 cosφ α1(kω

F )−z, and, recalling thatW = m−+3
√
3t2 sin φ,

we rewriteW = (m−−d)+3
√
3t2 sin φ+d ≡ mR,−+3

√
3t2 sin φ+d, where the parameter

d will be chosen in such a way that mR,− = m− − d has the interpretation of renormalized
gap. By using these rewritings, we find:

H = H0(W , φ, μ)+UV = HR
0 (mR,−, φ)+UV + d

∑

�x∈�L

[n �x,A − n �x,B] + z
∑

�x∈�L

n �x ,

(2.21)

where

HR
0 (mR,−, φ) := H0(mR,− + 3

√
3t2 sin φ, φ,−2t2 cosφ α1(k

ω
F )).

Let us now introduce the referenceHamiltonianHR, thought of as a function of the parameters
U ,mR,−, φ, defined by

HR := HR
0 (mR,−, φ)+UV + δ(U ,mR,−, φ)

∑

�x∈�L

[n �x,A − n �x,B ] + ξ(U ,mR,−, φ)
∑

�x∈�L

n �x .

(2.22)

Note that H in (2.21) has the same form as HR in (2.22), with the important difference that
in passing from H to HR, the parameters d and z have been replaced by the two functions
δ(U ,mR,−, φ) and ξ(U ,mR,−, φ); for the moment, these two functions should be thought
of as being arbitrary: they will be conveniently fixed below. Therefore, HR is in general
different from the original Hamiltonian H. However, by construction, H = HR, provided
that μ = −2t2 cosφ α1(kω

F ) − ξ(U ,mR,−, φ), and mR,− is a solution of the fixed point
equation

mR,− = W − 3
√
3t2 sin φ − δ(U ,mR,−, φ) . (2.23)

2 Here, by ‘gap’ we mean the rate of the exponential decay of the Euclidean correlations.
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Our construction, described below, will allow us to fix the counterterms ξ(U ,mR,−, φ) and
δ(U ,mR,−, φ) in such a way that they are small, of order O(U ), and that, as anticipated
above,mR,− has the interpretation of renormalized gap: in particular, the conditionmR,− �= 0
implies that the system is massive, that is, correlations decay exponentially at large distances,
with decay rate mR,−.

Given these definitions, the main steps of the proof are the following.

(i) We introduce the Euclidean correlations and the Euclidean Hall conductivity, which are
formally obtained from the corresponding real-time formulas via a ‘Wick rotation’ of the
time variable. In Lemma 3.4, by differentiating the Ward Identities associated with the
continuity equation, and by combining the result with the Schwinger–Dyson equation,
we show that the Euclidean Hall conductivity of HR is constant in U , provided that
ξ(U ,mR,−, φ), δ(U ,mR,−, φ) are differentiable inU and that the Fourier transform of
the Euclidean correlation functions is smooth (i.e., at least of classC3) in the momenta,
for any fixed mR,− �= 0.

(ii) As a second step, we prove the assumptions of Lemma 3.4. More precisely, we prove
that there exist two functions ξ(U ,mR,−, φ) and δ(U ,mR,−, φ), analytic in U , such
that the Euclidean correlations of the model (2.22) are analytic in U and, if mR,− �= 0,
they are exponentially decaying at large space-time distances, with decay ratemR,−; in
particular, if mR,− �= 0, their Fourier transform is smooth in the momenta.

(iii) Next, we prove the equivalence between the original model and the model with Hamil-
tonian HR, anticipated above. In particular, we prove that δ is differentiable in mR,−,
with small (i.e., O(U )) derivative; therefore, eq. (2.23) can be solved via the implicit
function theorem, thus giving

mR,− = W − 3
√
3t2 sin φ−d(U ,W , φ), (2.24)

and we show that |d(U ,W , φ)| � C |U |(W + sin φ). The equation for the interacting
critical curve has the form:W = 3

√
3 t2 sin φ+δ(U , 0, φ) = (1+O(U )) 3

√
3t2 sin φ.

(iv) Finally, once we derived explicit estimates on the decay properties of the Euclidean
correlations, we infer the identity between the Euclidean and the real-time Kubo con-
ductivity, via [2, Lemma B.1].

The key technical difference with respect to the strategy in [22] is the rewriting of the
model in terms of the renormalized reference Hamiltonian HR

0 : this allows us to take into
account the renormalization of the gap and of the chemical potential, which characterizes the
interacting critical point of the theory.

3 Lattice Conservation Laws and Universality

In this section, we show how lattice conservation laws can be used to prove the universality
of the Euclidean Kubo conductivity, see step (i) above. The main result of this section is
summarized in Lemma 3.4. Before getting to this lemma, in Sect. 3.1 we introduce the
Euclidean formalism and derive the Ward identities, associated with the lattice continuity
equation (2.9), for the Euclidean correlations. In Sects. 3.1.1 and 3.1.2 we differentiate and
manipulate theWard identities, under the assumption that the current–current correlations are
sufficiently smooth in momentum space, thus getting some important identities, summarized
in Lemma 3.1 and 3.2. Finally, in Sect. 3.2, we prove Lemma 3.4, by combining these
identities with the Schwinger–Dyson equation.
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3.1 Euclidean Formalism andWard Identities

Given an operatorO onFL and t ∈ [0, β), we define the imaginary-time evolution generated
by the HamiltonianHR, Eq. (2.22), as:Ot := etH

ROe−tHR
. Notice thatOt ≡ O(−i t), with

O(t) the real-time evolution generated byHR. Given n operatorsO(1)
t1 , . . . ,O(n)

tn onFL , each
of which (i) can be written as a polynomial in the time-evolved creation and annihilation
operators ψ±

(t,�x),ρ = etH
R
ψ±�x,ρe

−tHR
, (ii) is normal-ordered, and (iii) is either even or odd

in ψ±
(t,�x),ρ , we define their time-ordered average, or Euclidean correlation function, as:

〈TO(1)
t1 · · ·O(n)

tn 〉Rβ,L :=
TrFL e

−βHR
T

{O(1)
t1 · · ·O(n)

tn

}

TrFL e
−βHR , (3.1)

where the (linear) operatorT is the fermionic time-ordering, acting on a product of fermionic
operators as:

T
{
ψ

ε1
(t1,�x1),s1 · · ·ψ

εn
(tn ,�xn),sn

} = sgn(π)ψ
επ(1)

(tπ(1),�xπ(1)),sπ(1)
· · ·ψεπ(n)

(tπ(n),�xπ(n)),sπ(n)
, (3.2)

where εi ∈ {±} (with the understanding ψ−
(t,�x),ρ,s ≡ ψ(t,�x),ρ,s and ψ+

(t,�x),ρ,s ≡ ψ
†
(t,�x),ρ,s),

and π is a permutation of {1, . . . , n} with signature sgn(π) such that tπ(1) � . . . � tπ(n).
If some operators are evaluated at the same time, the ambiguity is solved by normal
ordering. We also denote the connected Euclidean correlation function, or cumulant, by
〈TO(1)

t1 ;O(2)
t2 ; · · · ;O(n)

tn 〉Rβ,L .

Let O be a self-adjoint operator on FL . We define its time Fourier transform as: Ôp0 =∫ β

0 dt e−i p0tOt with p0 ∈ 2π
β
Z the Matsubara frequencies. Also, we denote by Ôp, for

p = (p0, p1, p2), the joint space-time Fourier transform of the operator O(t,�x):

Ôp =
∫ β

0
dt

∑

�x∈�L

e−ip·xOx,

with x = (t, x1, x2) ≡ (x0, x1, x2).
Let jμ,�x , with μ ∈ {0, 1, 2}, be the three-component operator such that j0,�x := n �x , while

ji,�x , with i ∈ {1, 2}, are the components of the total current along the reference, orthogonal,
coordinate directions, see (2.14). Note that jμ,�x is the natural current operator, associated
both with H and with HR, because i[H, n �x ] = i[HR, n �x ]. Therefore, its imaginary-time
evolution with respect toHR satisfies the analogue of the continuity equation (2.11), cf. with
(3.5) below. We define the normalized current–current correlation functions as:

K̂ β,L;R
μ1,...,μn

(p1, . . . ,pn−1) := 1

βL2 〈T ĵμ1,p1 ; ĵμ2,p2 ; · · · ; ĵμn ,−p1−...−pn−1〉Rβ,L (3.3)

forμi ∈ {0, 1, 2}. We also denote the infinite volume, zero temperature limit of the Euclidean
correlations by: K̂R

μ1,...,μn
(p1, . . . ,pn−1) := limβ→∞ limL→∞ K̂ β,L;R

μ1,...,μn (p1, . . . ,pn−1).
The Euclidean conductivity matrix for HR is

σ
E,R
i j := 1

|��1 ∧ ��2|
lim

p0→0+
1

p0

(
− K̂R

i, j

(
(−p0, �0)

)+ i〈〈〈[Ji ,X j ]〉〉〉R∞
)

, (3.4)

where, in the second term, 〈〈〈 · 〉〉〉R∞ := limβ→∞ limL→∞ 1
L2 〈·〉Rβ,L , and the expression [J j ,Xi ]

must be understood as explained in the footnote 1 above. This definition can be obtained via
a formal ‘Wick rotation’ of the time variable, t → −i t , starting from the original definition
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of the Kubo conductivity, (2.15), see, e.g., [17]. A posteriori, we will see that in our context
the two definitions coincide, see Sect. 5 below.

The structure correlation functions, and hence the conductivity, is severely constrained by
lattice Ward identities. These are nonperturbative implications of lattice continuity equation,
which we rewrite here in imaginary time (cf. with (2.11)):

i∂x0 j0,x + div�x �jx = 0 , (3.5)

where we used the notation div�x �jx :=
∑

i=1,2 di J̃i,x.
For instance, consider the current–current correlation function3,

〈T j0,x ; jν,y〉Rβ,L = θ(x0 − y0)〈 j0,x ; jν,y〉Rβ,L + θ(y0 − x0)〈 jν,y ; j0,x〉Rβ,L , (3.6)

where θ(t) is the Heaviside step function and the correlations in the right side are the time-
unordered ones (i.e., they are defined without the action of the time-ordering operator). Using
the continuity equation Eq. (3.5):

i∂x0〈T j0,x ; jν,y〉Rβ,L = 〈T i∂x0 j0,x ; jν,y〉Rβ,L + i〈[ j0,�x , jν,�y]〉Rβ,Lδ(x0 − y0)

= −〈T div�x �jx ; jν,y〉Rβ,L + i〈[ j0,�x , jν,�y]〉Rβ,Lδ(x0 − y0) . (3.7)

Let us now take the Fourier transform of both sides: integrating by parts w.r.t. x0 and using
(3.7), we find

p0 K̂
β,L;R
0,ν (p) = − 1

βL2

∫ β

0
dx0

∫ β

0
dy0

∑

�x,�y∈�L

e−i p0(x0−y0)e−i �p·(�x−�y)i∂x0 〈T j0,x ; jν,y〉Rβ,L

=
∑

i=1,2
(1− e−i �p·��i ) 1

βL2 〈T �̂jp ·
�Gi

2π
; ĵν,−p〉Rβ,L − i

∑

�x
e−i �p·�x 〈[ j0,�x , jν,�0]〉Rβ,L

≡
∑

i,i ′=1,2
(1− e−i �p·��i ) ( �Gi )i ′

2π
K̂ β,L;R
i ′,ν (p)+ Ŝβ,L;R

ν (p) , (3.8)

where we used that J̃i,x = �jx · �Gi
2π , with

�Gi , i = 1, 2, the vectors of the dual basis, see
definition in Sect. 2.1. More generally, denoting (0, ν2, . . . , νn) by (0, ν), one has:

p1,0 K̂
β,L;R
0,ν ({pi }n−1i=1 ) =

∑

i,i ′=1,2
(1− e−i �p1·��i ) ( �Gi )i ′

2π
K̂ β,L;R
i ′,ν ({pi }n−1i=1 )+ Ŝβ,L;R

ν ({pi }n−1i=1 ) ,

Ŝβ,L;R
ν (· · · ) := − i

βL2

n∑

j=2
〈TCν j (p1,p j ) ; ĵν2,p2 ; . . . ; ĵν j−1,p j−1 ; ĵν j+1,p j+1 ; · · · ; ĵνn ,pn 〉Rβ,L ,

(3.9)

with Cν(p1,p2) =
∫ β

0 dt e−i t(ω1+ω2)[ĵ0,(t, �p1) , ĵν,(t, �p2)] (here, with some abuse of notation,
we let ĵμ,(t, �p) be the imaginary-time evolution at time t of ĵμ, �p), and with the understanding
that pn = −p1 − . . .− pn−1. Even more generally, the identity remains valid if some of the
current operators jνi ,pi are replaced by other local operators Ôi,pi : in this case, of course,
the operators Cνi must be modified accordingly. In the following, we will be interested in
replacing one of the current operators either by the staggered density

ĵ3,p := np,A − np,B , (3.10)

3 The definition in (3.6) is only valid for x0 �= y0. However, the value at x0 = y0 has no influence on the
following formulas, in particular on (3.8), which is the main goal of the following manipulations.
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where np,ρ is the Fourier transform of n(t,�x),ρ :=
∑

σ ψ+
(t,�x),ρ,σ

ψ−
(t,�x),ρ,σ

, or by the quartic
interaction potential

V̂p :=
∫ β

0
dx0 e

−i p0x0 ∑

�x
e−i �p·�x

∑

�y,ρ,ρ′
vρ,ρ′(�x − �y)

(
(n �x,ρ − 1)(n �y,ρ′ − 1)

)
x0

. (3.11)

As we shall see below, the combination of the identity (3.9) together with the regularity
of the correlation functions has remarkable implications on the structure of the correlations.

3.1.1 Consequences of the Ward Identities for C1 Correlations

Here we start by discussing the consequences of the Ward identities for continuously differ-
entiable correlations.

Lemma 3.1 Let pβ,L ∈ 2π
β
Z × 2π

L Z
2, such that limβ,L→∞ pβ,L = p ∈ Bε(0) := {q ∈

R
2 | |q| < ε}, for some ε > 0. Suppose that K̂ R

μ,ν(p) = limβ,L→∞ K̂ β,L;R
μ,ν (pβ,L) and

ŜRj (p) = limβ,L→∞ Ŝβ,L;R
j (pβ,L) exist and that K̂ R

μ,ν(p), ŜRj (p) ∈ C1(Bε(0)). Then,

σ
E,R
i j = 1

|��1 ∧ ��2|
∂

∂ p0
K̂ R
i, j (0) . (3.12)

Proof Consider Eq. (3.8) with ν = j , in the β, L → ∞ limit. We differentiate both sides
w.r.t. pi , and take the limit p→ 0, thus getting (recall that ��i · �G j = 2πδi, j ):

0 = i K̂R
i, j (0)+

∂

∂ pi
ŜRj (0). (3.13)

Now, recall the definition of Ŝβ,L;R
j (p) from Eq. (3.8): Ŝβ,L;R

j (0) = −i ∑�x e−i �p·�x

〈[n �x , j j,�0]〉Rβ,L , where we also used that j0,�x = n �x . Taking the limit β, L → ∞ and the

derivative with respect to pi , we get ∂
∂ pi

ŜRj (0) = −〈〈〈[Xi ,J j ]〉〉〉R∞, where 〈〈〈 · 〉〉〉R∞ was defined in
(3.4), and the expression [J j ,Xi ] must be understood as explained in the footnote 1 above.
In conclusion,

K̂R
i, j (0) = i〈〈〈[J j ,Xi ]〉〉〉R∞ , (3.14)

and, if we plug this identity in (3.4), noting that 〈〈〈[J j ,Xi ]〉〉〉R∞ is even under the exchange
i←→ j , we obtain the desired identity. ��

3.1.2 Consequences of the Ward Identities for C3 Correlations

Next,wediscuss someother implications of theWard identities forC3 three-point correlations
of the current operator (twice) with either the staggered density ĵ3,p (see (3.10)), or the
interaction potential (see (3.11)), defined as

K̂ β,L;R
μ,ν,3 (p,q) := 1

βL2 〈T ĵμ,p ; ĵν,q ; ĵ3,−p−q〉β,L

K̂ β,L;R
μ,ν,V (p,q) := 1

βL2 〈T ĵμ,p ; ĵν,q ; V̂−p−q〉β,L . (3.15)

We also let

Ŝβ,L;R
j,3 (p,q) := − i

βL2 〈C j (p,q) ; ĵ3,−p−q〉Rβ,L , (3.16)
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Ŝβ,L;R
j,V (p,q) := − i

βL2 〈C j (p,q) ; V̂−p−q〉Rβ,L (3.17)

be the new Schwinger terms (recall thatC j was defined right after (3.9)). As usual, we denote

by K̂R
μ,ν,�, Ŝ

R
j,� the β, L →∞ limits of K̂ β,L;R

μ,ν,� (· · · ), Ŝβ,L;R
j,� (· · · ), with � ∈ {3, V }.

Lemma 3.2 Let � ∈ {0, 3, V }. Suppose that the limiting functions K̂ R
μ,ν,�(p,q), ŜRj,�(p,q)

exist in Bε(0)× Bε(0), and that they are of class C3 in this domain. Then:

∂

∂ p0
K̂ R
i, j,�((p0, �0), (−p0, �0)) = ∂

∂ p0

[
p20

∂2

∂ pi∂q j
K̂ R
0,0,�((p0, �0), (−p0, �0))

]
. (3.18)

In particular, the left side of Eq. (3.18) vanishes as p0 → 0.

Proof Taking the β, L →∞ limit of the Ward Identity (3.9) with ν = (0, �), we find

p0 K̂
R
0,0,�(p,q) =

∑

i,i ′=1,2
(1− e−i �p·��i ) (

�Gi )i ′

2π
K̂R
i ′,0,�(p,q) . (3.19)

Similarly, choosing ν = ( j, �)

p0 K̂
R
0, j,�(p,q) =

∑

i,i ′=1,2
(1− e−i �p·��i ) (

�Gi )i ′

2π
K̂R
i ′, j,�(p,q)+ ŜRj,�(p,q) , (3.20)

and, exchanging the roles of p and q, we also get

q0 K̂
R
i,0,�(p,q) =

∑

j, j ′=1,2
(1− e−i �q·�� j )

( �G j ) j ′

2π
K̂R
i, j ′,�(p,q)+ ŜRi,�(q,p) . (3.21)

Combining (3.19) with (3.21), we find

q0 p0 K̂
R
0,0,�(p,q) =

∑

i,i ′=1,2

[ ∑

j, j ′=1,2
(1− e−i �p·��i )(1− e−i �q·�� j )

( �Gi )i ′

2π

( �G j ) j ′

2π
K̂R
i ′, j ′,�(p,q)

+(1− e−i �p·��i ) (
�Gi )i ′

2π
ŜRi ′,�(q,p)

]
. (3.22)

We now derive w.r.t. pi , q j , and then set p = −q = (p0, �0), thus finding4:

p20
∂2

∂ p1,i∂ p2, j
K̂R
0,0,�

(
(p0, �0), (−p0, �0)

) = K̂R
i, j,�

(
(p0, �0), (−p0, �0)

)

−i ∂

∂ p1, j
ŜRi,�

(
(−p0, �0), (p0, �0)

)
. (3.23)

Finally, notice that ∂p1, j S
R
i,�

(
(−p0, �0), (p0, �0)

)
is constant in p0 (recall the definition of

Schwinger term, Eq. (3.16), and of C j , Eq. (3.9)). Therefore, after differentiation in p0, the
final claim follows. ��
4 In (3.23),we denote byp1 andp2 the first and second arguments of K̂R

0,0,�, aswell as of Ŝ
R
i,�; correspondingly,

we denote by ∂
∂ p1,i

and ∂
∂ p2,i

the derivatives with respect to the i-th components of the first and second

arguments thereof.
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3.2 Universality of the Euclidean Conductivity Matrix

Here we prove the universality of the Euclidean conductivity matrix, defined in Eq. (3.4).
We restrict to the range of parameters (2.20), as discussed at the beginning of Sect. 2.3.1. In
terms of the renormalized parameters, we restate (2.20) as

0 < φ � π

2
, mR,+ > |mR,−| , (3.24)

where

mR,+ := mR,− + 6
√
3 t2 sin φ . (3.25)

A key ingredient in the proof is the following regularity result for the correlation functions.

Proposition 3.3 There exists U0 > 0 such that, for |U | < U0 and for parameters (φ,mR,−)

in the range (3.24), the following is true. There exist functions ξ(U ,mR,−, φ), δ(U ,mR,−, φ),
analytic inU and vanishing atU = 0, such that the Euclidean correlation functions K̂ R

μ,ν(p),

K̂ R
μ,ν,�(p,q), aswell as the Schwinger terms ŜRj (p), ŜRj,�(p,q), with � ∈ {0, 3, V }, are analytic

in U; moreover, if mR,− �= 0, they are C3 in p,q ∈ Bε(0), uniformly in U and φ.

The proof of this proposition is postponed to the next section. Its content, combined
with the (consequences of the) Ward identities discussed above, immediately implies the
universality of the Euclidean conductivity matrix.

Lemma 3.4 Under the same assumptions as Proposition 3.3, if mR,− �= 0, then

σ
E,R
12 = 1

2π

[
sign(mR,+)− sign(mR,−)

]
. (3.26)

Proof (Assuming the validity of Proposition 3.3). Thanks to Proposition 3.3, we know that
the correlation functions K̂R

μ,ν(p), K̂R
μ,ν,�(p,q), and the Schwinger terms ŜRj (p), ŜRj,�(p,q),

with � ∈ {0, 3, V }, areC2 in p,q ∈ Bε(0), for |U | < U0. Therefore, we can apply Lemma 3.1
and Lemma 3.2. Using Lemma 3.1, we rewrite the Euclidean conductivity matrix as:

σ
E,R
i j = 1

|��1 ∧ ��2|
∂

∂ p0
K̂R
i, j (0) . (3.27)

Then, we rewrite K̂R
i, j in terms of the non-interacting current–current correlation associated

with HR
0 , via the following interpolation formula:

K̂R
i, j (p) = K̂R,0

i, j (p)+
∫ U

0
dU ′ d

dU ′
K̂R,U ′
i, j (p) . (3.28)

where K̂R,U ′
i, j (p) is the correlation associatedwith the (β, L →∞ limit of the)Gibbsmeasure

with Hamiltonian

HR
U ′ := HR

0 +U ′V + δ(U ′,mR,−, φ)
∑

�x∈�L

[n �x,A − n �x,B] + ξ(U ′,mR,−, φ)
∑

�x∈�L

n �x ,

(3.29)

cf. with Eq. (2.22). Computing the derivative in U ′:
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K̂R
i, j (p) = K̂R,0

i, j (p)−
∫ U

0
dU ′

[ ∂δ

∂U ′
(U ′,mR,−, φ) K̂R,U ′

i, j,3 (p,−p)

+ ∂ξ

∂U ′
(U ′,mR,−, φ) K̂R,U ′

i, j,0 (p,−p)+ K̂R,U ′
i, j,V (p,−p)

]
. (3.30)

We now take the derivative w.r.t. p0 and take p0 → 0. Using Lemma 3.2, we immediately
get:

∂

∂ p0
K̂R
i, j (0) =

∂

∂ p0
K̂R,0
i, j (0) , (3.31)

that is, σ
E,R
i j = σ

E,R
i j

∣∣∣
U=0 (we recall that σ

E,R
i j

∣∣∣
U=0 is the non-interacting Euclidean con-

ductivity associated with the quadratic Hamiltonian HR
0 at mR,−, which is assumed to be

different from zero). The final claim, Eq. (3.26), follows from a direct computation of the
non-interacting conductivity, cf. with [22, Appendix B, Eq. (B.8)]. ��

4 Proof of Proposition 3.3

The proof of Proposition 3.3 is a rather standard application of RG methods for fermions
(see, e.g., [11,16,18,32] for reviews). A similar analysis for interacting graphene, which
corresponds to the case t2 = W = 0, has been discussed in [20,21], which we refer to
for further details. See also [19], where an application to the Haldane–Hubbard model was
discussed. The RG construction of the ground-state correlation functions, uniformly in the
gap, is ultimately made possible by the fact that the many-body interaction, in the critical,
massless, case, is irrelevant in theRG sense. The only qualitative effect of the interaction,with
respect to the non-interacting theory, is a finite renormalization of the gap, of the chemical
potential, of the Fermi velocity and of the wave function renormalization.

We recall once more that we restrict the discussion to the range of parameters (3.24).
Moreover, we assume that W is not too large, W � M0, for a pre-fixed constant M0, the
case of large W being substantially simpler, and left to the reader (for large W , the system is
massive and is in a trivial, non-topological, insulating phase, as it follows from the proof of
[22]). Finally, for simplicity, we set t1 = 1, that is, we set the scale of the bandwidth equal
to one.

Proof The starting point is the well-known representation of the Euclidean correlation in
terms of Grassmann integrals (see, for instance, [20,22]). The generating functional of the
correlations is denoted by W( f , A), with f an external Grassmann field coupled to the
fermionic fields, and A a (five-component) external complex field conjugated to the lattice
currents and the quartic interaction. We have:

eW( f ,A) =
∫
P(d�)e−V (�)+(�, f )+(J ,A)

∫
P(d�)e−V (�)

, (4.1)

where:�±
x,s , with x = (x0, �x) ∈ [0, β)×�L and s ∈ {↑,↓}, is a two-component Grassmann

spinor, whose components will be denoted by�±
x,ρ,s , with ρ = A, B; P(d�) is the fermionic

Gaussian integration with propagator

gs,s′(x, y) = δs,s′

βL2

∑

k0∈ 2π
β

(Z+ 1
2 )

∑

�k∈ 2π
L Z

2
L

e−ik(x−y)ĝ(k), (4.2)
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where ZL = Z/LZ and, letting

R(�k) = −2t2 cosφ
(
α1(�k)− α1(�k±F )

)
, mR(�k) = mR,− + 2t2(α2(k)− α2(k

−
F )) sin φ,

and recalling that we set t1 = 1,

ĝ(k) =
( −ik0 + R(�k)+ mR(�k) −∗(�k)

−(�k) −ik0 + R(�k)− mR(�k)
)−1

,

with the understanding that, at contact, g(x, x) should be interpreted as limε→0+[g(x +
(ε, �0), x)+ g(x − (ε, �0), x)];

V (�) =
∫ β

0
dx0

∑

�x∈�L

[
U

∑

�y∈�L

∑

ρ,ρ′=A,B

nx,ρvρ,ρ′(�x − �y)n(x0,�y),ρ′

+δ(U ,mR,−, φ)(nx,A − nx,B)+ ξ(U ,mR,−, φ)nx
]
, (4.3)

where nx,ρ = ∑
s=↑,↓�+

x,ρ,s�
−
x,ρ,s is the Grassmann counterpart of the density operator,

and nx =∑
ρ=A,B nx,ρ ; finally,

(�, f ) =
∫ β

0
dx0

∑

�x∈�L

∑

s=↑↓
(�+

x,s f
−
x,s + f +x,s�−

x,s),

(J , A) = 1

βL2

∑

p0∈ 2π
β
Z

∑

�p∈ 2π
L Z2

4∑

μ=0
Âp,μ Ĵp,μ,

where Ĵp,μ =
∫ β

0 dx0
∑
�x∈�L

e−ip·x Jx,μ and: Jx,0 = nx is the Grassmann counterpart of
the density; Jx,1, Jx,2 are the Grassmann counterparts of the two components of the lattice
current,

Jx,1 = 3

2
( J̃x,1 + J̃x,2), Jx,2 =

√
3

2
(− J̃x,1 + J̃x,2),

with

J̃x,1 = −J�x,�x+��1 − J�x,�x+��1−��2 , J̃x,2 = −J�x,�x+��2 − J�x,�x−��1+��2 ,

and

J�x,�y =
∑

s=↑,↓

[
i�+

�y,s H(�y − �x)�−
�x,s − i�+

�x,s H(�x − �y)�−
�y,s

] ;

Jx,3 = nx,A − nx,B is the Grassmann counterpart of the staggered density; Jx,4 is the Grass-
mann counterpart of the quartic interaction,

Jx,4 =
∑

�y,ρ,ρ′
nx,ρvρ,ρ′(�x − �y)n(x0,�y),ρ′ . (4.4)

The derivatives of the generating functional computed at zero external fields equal the
Euclidean correlation functions, cf. with, e.g., [19, Eq. (27), (28)]. Needless to say, the
Euclidean correlations satisfy non trivial Ward Identities, following from the lattice continu-
ity equation. For an example, cf. with [19, Eq. (19),(20)]. ��
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In order to compute the generating functionalW( f , A) in Eq. (4.1), we use an expansion
in U , which is convergent uniformly in the volume and temperature, and uniformly close
to (and even on) the critical lines mR,± = 0. Note that, in the parameter range (3.24) the
propagator ĝ(k) is singular only when mR,− = 0, in which case the singularity is located
at k−F := (0, �k−F ), with �k±F =

( 2π
3 ,± 2π

3
√
3

)
. Due to this singularity, the Grassmann integral

has, a priori, an infrared problem, which we resolve by a multi-scale re-summation of the
corresponding singularities.

The multi-scale computation of the generating function proceeds as follows. First of
all, we distinguish the ultraviolet modes, corresponding to large values of the Matsubara
frequency, from the infrared ones, by introducing two compactly supported cut-off functions,
χ±(k), supported in the vicinity of the Fermi points k±F = (0, �k±F ); more precisely, we let
χ±(k) = χ0(k − k±F ), where χ0 is a smooth characteristic function of the ball of radius a0,
with a0 equal to, say, 1/3) and by letting χuv(k) = 1 −∑

ω=± χω(k). We correspondingly
split the propagator in its ultraviolet and infrared components:

g(x, y) = g(1)(x, y)+
∑

ω=±
e−i �kω

F (�x−�y)g(�0)
ω (x, y) (4.5)

where g(1)(x, y) and g(�0)
ω (x, y) are defined in a way similar to Eq.(4.2), with ĝ(k) replaced

by χuv(k)ĝ(k) and by χ0(k)ĝ(k+ kω
F ), respectively. We then split the Grassmann field as a

sum of two independent fields, with propagators g(1) and g(�0):

�±
x,s = �±(1)

x,s +
∑

ω=±
e±i �kω

F �x�±(�0)
x,s,ω

and we rewrite the Grassmann Gaussian integration as the product of two independent Gaus-
sians: P(d�) = P(d�(�0))P(d�(1)). By construction, the integration of the ‘ultraviolet’
field�(1) does not have any infrared singularity and, therefore, can be performed in a straight-
forwardmanner, thus allowing us to rewrite the generating functionW( f , A) as the logarithm
of

eW
(0)( f ,A)

N0

∫
P(d�(�0))e−V (0)(�(�0))+B(0)(�(�0), f ,A), (4.6)

where V (0) and B(0) are, respectively, the effective potential and the effective source: they
are defined by the conditions that V (0)(0) = 0 and B(0)(0, f , A) = B(0)(�, 0, 0) = 0.
The normalization constantN0 is fixed in such a way thatN0 =

∫
P(d�(�0))e−V (0)(�(�0)).

All W(0), V (0) and B(0) are expressed as series of monomials in the �, f , A fields, whose
kernels (given by the sum of all possible Feynman diagrams with fixed number and fixed
space-time location of the external legs) are analytic functions of the interaction strength,
for U sufficiently small. The precise statement and the proof of these claims are essentially
identical to those of [20, Lemma 2], see also [22, Lemma 5.2] or [17, Section 6]; details will
not belabored here and are left to the reader.

In order to integrate the infrared scales, one has to exploit certain lattice symmetries of
the model (which replace those of [20, Lemma 1]), which allow us to reduce the number
of independent relevant and marginal terms generated by the multi-scale integration. In
particular, the symmetries under which the effective potential V (0)(�) is invariant are the
following [19, Sect. III.B].
(1) Discrete rotation:

�̂−
k′,s,ω → eiω

2π
3 n−e−i �k′· ��2 n−�̂−

Tk′,s,ω , �̂+
k′,s,ω → �̂+

Tk′,s,ωe
i �k′· ��2 n−e−iω

2π
3 n− (4.7)
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where, denoting the Pauli matrices by σ1, σ2, σ3, we defined

n− = (1− σ3)/2 , Tk′ = (k′0, e−i
2π
3 σ2 �k′) ; (4.8)

that is, T is the spatial rotation by 2π/3 in the counter-clockwise direction.
(2) Complex conjugation:

�̂±
k′,s,ω → �̂±

−k′,s,−ω
, c→ c∗ , φ →−φ , (4.9)

where c ∈ C is a generic constant appearing in P(d�) or in V (ψ) and c∗ is its complex
conjugate.
(3) Horizontal reflections:

�̂−
k′,s,ω → σ1�̂

−
Rhk′,s,ω , �̂+

k′,s,ω → �̂+
Rhk′,s,ωσ1 , (W , φ) → (−W ,−φ) (4.10)

where Rhk′ = (k′0,−k′1, k′2).
(4) Vertical reflections:

�̂±
k′,s,ω → �̂±

Rvk′,s,−ω
, φ →−φ. (4.11)

where Rvk′ = (k′0, k′1,−k′2).
(5) Particle-hole:

�̂−
k′,s,ω → i�̂+,T

Pk′,s,−ω
, �̂+

k′,s,ω → i�̂−,T
Pk′,s,−ω

, φ →−φ . (4.12)

where Pk′ = (k′0,−k′1,−k′2).
(6) Magnetic reflections:

�̂−
k′,s,ω →−iσ1σ3�̂−

−Rvk′,s,ω , �̂+
k′,s,ω →−i�̂+

−Rvk′,s,ωσ3σ1 , φ → π − φ. (4.13)

These symmetries have nonperturbative consequences on the structure of the effective
interaction action V (0). At fixed W , φ, the theory is invariant under the transformations (1),
(2)+(4), and (2)+(5). In particular, these transformations leave the quadratic part

Q(0)(�) =
∑

s,ω

∫
dk′

2π |B| �̂
+
k′,s,ωŴ

(0)
2;ω(k′)�̂−

k′,s,ω (4.14)

of the effective potential V (0)(�) invariant (in (4.14),
∫ dk′

2π |B| is a shorthand for the Riemann

sum (βL2)−1
∑

k0∈ 2π
β
Z

∑
�k∈BL

). This means that:

Ŵ (0)
2;ω(k′) = e−i(ω

2π
3 +�k′· ��1)n− Ŵ (0)

2;ω(T−1k′)ei(ω
2π
3 +�k′· ��1)n−

= [
Ŵ (0)

2;ω(−k′0,−k′1, k′2)
]∗ = [

Ŵ (0)
2;ω(−k′0, k′1, k′2)

]†
. (4.15)

The values of Ŵ (0)
2;ω(k′) and of its derivatives at k′ = 0 define the effective coupling constants.

By computing Eq. (4.15) at k′ = 0, we find, for ω = ±,

Ŵ (0)
2;ω(0) = e−i

2π
3 ωn− Ŵ (0)

2;ω(0)ei
2π
3 ωn− = [

Ŵ (0)
2;ω(0)

]∗ = [
Ŵ (0)

2;ω(0)
]†

. (4.16)

This implies:

Ŵ (0)
2;ω(0) = ξω,0 + δω,0σ3, (4.17)
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for two real constants ξω,0 and δω,0. Let us now discuss the structure of the derivative of the
kernel of the quadratic terms. By taking the derivative of Eq. (4.15) w.r.t. k′ and then setting
k′ = 0, we get:

∂k′ Ŵ
(0)
2;ω(0) = e−i

2π
3 ωn−T ∂k′ Ŵ

(0)
2;ω(0)ei

2π
3 ωn− = (−Rv)∂k′ Ŵ

(0)∗
2;ω (0)

= (−P)∂k′ Ŵ
(0)†
2;ω (0), (4.18)

where Rv (resp. P) is the diagonal matrix with diagonal elements (1, 1,−1) (resp.
(1,−1,−1)). 4.18) implies that:

k′∂k′ Ŵ (0)
2;ω(0) =

( −i z1,ωk′0 −uω(−ik′1 + ωk′2)−uω(ik′1 + ωk′2) −i z2,ωk′0

)
, (4.19)

where uω, z1,ω, z2,ω are real constants.

The integration of �
(�0)
ω is performed iteratively. One rewrites �

(�0)
ω = ∑

h�0 �
(h)
ω , for

suitable single-scale fields �
(h)
ω . The covariance ĝ(h)

ω of �
(h)
ω , supported for quasi-momenta

k′ such that a02h−1 � |k′| � a02h+1, will be defined inductively. We consider two different
regimes. The first corresponds to scales h � h∗1, with

h∗1 := min{0, �log2 mR,+�}, (4.20)

and the rest to scales h∗1 � h � h∗2 with h∗2 := min{0, �log2 |mR,−|�} (recall that we are
focusing on the case that mR,+ > |mR,−|.). We describe the iteration in an inductive way.
Assume that the fields �(0), �(−1), . . . , �(h+1), h � h∗1, have been integrated out and that
after their integration the generating function has the following structure, analogous to the
one at scale 0:

eW( f ,A) = eW(h)( f ,A)

Nh

∫
P(d�(�h))e−V (h)(�(�h))+B(h)(�(�h), f ,A), (4.21)

where V (h) and B(h) are, respectively, the effective potential and source terms, satisfying
the conditions that V (h)(0) = 0 and B(h)(0, f , A) = B(h)(�, 0, 0) = 0. The normalization
constant Nh is fixed in such a way that Nh =

∫
P(d�(�h))e−V (h)(�(�h)). Here, P(d�(�h))

is the Grassmann Gaussian integration with propagator (diagonal in the s and ω indices)

g(�h)
ω (x, y) =

∫
P(d�(�h))�−(�h)

x,s,ω �+(�h)
y,s,ω =

∫
dk′

(2π)3
e−ik′(x−y)ĝ(�h)

ω (k′),

where, letting

rω(�k′) = R(�k′ + �kω
F ), sω(�k′) = −[(�k′ + �k ω

F )− 3

2
(ik′1 + ωk′2)], (4.22)

m−(�k′) = mR,− + 2t2
(
α2(�k′ + �k−F )− α2(�k−F )

)
sin φ, (4.23)

m+(�k′) = mR,− + 6
√
3t2 sin φ + 2t2

(
α2(�k′ + �k+F )− α2(�k+F )

)
sin φ, (4.24)

and χh(k′) = χ0(2−hk′),

ĝ(�h)
ω (k′) = χh(k′)

(
a1,ω,h(k′) b∗ω,h(k

′)
bω,h(k′) a2,ω,h(k′)

)−1
, (4.25)

with
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aρ,ω,h(k) = −ik0Zρ,ω,h + rω(�k′)+ (−1)ρ−1mω(�k′),
bω,h(k′) = −vω,h(ik

′
1 + ωk′2)+ sω(�k′) , (4.26)

and the understanding that (−1)ρ−1 is equal to +1, if ρ = A, and equal to −1, if ρ = B.
The quantities Zρ,ω,h and vω,h are real, and they have, respectively, the meaning of wave
function renormalizations and of effective velocities. Note that rω(�k′) and sω(�k′) are both of
order O(|�k′|2), while the mass satisfies (again, recall that mR,+ = mR,− + 6

√
3t2 sin φ):

mω(�k′) = mR,ω + tω(�k′), with tω(�k′) = O(|�k′|2).
By definition, the representation above is valid at the initial step, h = 0. In order to inductively
prove its validity at the generic step, let us discuss how to pass from scale h to scale h−1, that
is, how to integrate out the field �(h), and how to re-express the resulting effective theory in
the form (4.21), with h replaced by h−1. Before integrating the �(h) field out, we split V (h)

and B(h) into their local and irrelevant parts (here, for simplicity, we spell out the definitions
only in the f = 0 case): V (h) = LV (h)+RV (h) and B(h) = LB(h)+RB(h), where, denoting
the quadratic part of V (h) by

Q(h)(�) =
∑

ω,s

∫
dk′

(2π)3
�̂+

k′,s,ωŴ
(h)
2;ω(k′)�̂−

k′,s,ω,

and the part of B(h) of order (2, 0, 1) in (ψ, f , A) by

Q(h)(�, A) =
∑

ω,s,μ

∫
dp

(2π)3

∫
dk′

(2π)3
Âp,μ�̂+

k′+p,s,ωŴ
(h)
2,1;μ,ω

(k′,p)�̂−
k′,s,ω

we let:

LV (h)(�) =
∑

ω,s

∫
dk′

(2π)3
�̂+

k′,s,ω[Ŵ (h)
2;ω(0)+ k′∂k′ Ŵ (h)

2;ω(0)
]
�̂−

k′,s,ω,

and

LB(h)(�, 0, A) =
∑

ω,s,μ

∫
dp

(2π)3

∫
dk′

(2π)3
Âp,μ�̂+

k′+p,s,ωŴ
(h)
2,1;μ,ω

(0, 0)�̂−
k′,s,ω.

By the symmetries of the model,

LV (h)(�) =
∑

ω,s

∫
dk′

(2π)3

[
2hξω,h�̂

+
k′,s,ω�̂−

k′,s,ω + 2hδω,h�̂
+
k′,s,ωσ3�̂

−
k′,s,ω

+�̂+
k′,s,ω

( −i z1,ω,hk0 −uω,h(−ik′1 + ωk′2)−uω,h(ik′1 + ωk′2) −i z2,ω,hk0

)
�̂−

k′,s,ω

]
, (4.27)

where ξω,h, δω,h, zρ,ω,h, uω,h are real constants and σ3 is the third Pauli matrix. We

also denote by γμ,ω,h := Ŵ (h)
2,1;μ,ω

(0, 0) the vertex functions, entering the definition of

LB(h)(�, 0, A). Notice that their structure is constrained by the Ward Identities. E.g.,
using [19, Eq. (20)], one finds that γ0,ω,h = −∑2

ρ=1(Zρ,ω,h + zρ,ω,h)nρ (where nρ =
(1+ (−1)ρ−1σ3)/2), γ1,ω,h = −(vω,h + uω,h)σ2, and γ2,ω,h = −ω(vω,h + uω,h)σ1. How-
ever, in the following,wewill neither need these identities, nor to identify any special structure
of γμ,ω,h , with μ = 3, 4.

Once the effective potential and source have been split into local and irrelevant parts,
we combine the part of LV (h) in the second line of (4.27) with the Gaussian integration
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P(d�(�h)), thus defining a dressed measure P̃(d�(�h)) whose propagator g̃(�h)
ω (x, y) is

analogous to g(�h)
ω (x, y), with the only difference that the functions aρ,ω,h , bω,h in (4.25)-

(4.26) are replaced by

ãρ,ω,h−1(k) = −ik0 Z̃ρ,ω,h−1(k′)+ rω(�k′)+ (−1)ρ−1mω(�k′),
b̃ω,h−1(k′) = −ṽω,h−1(k′)(ik′1 + ωk′2)+ sω(�k′),

with

Z̃ρ,ω,h−1(k′) = Zρ,ω,h + zρ,ω,h χh(k′),
ṽω,h−1(k′) = vω,h + uω,h χh(k′).

Now, by rewriting the support function χh(k′) in the definition of g̃(�h)
ω (x, y) as χh(k′) =

fh(k′) + χh−1(k′), we correspondingly rewrite: g̃(�h)
ω (x, y) = g̃(h)

ω (x, y) + g(�h−1)
ω (x, y),

where g(�h−1)
ω (x, y) is defined exactly as in (4.25), (4.26), with h replaced by h − 1, and

Zρ,ω,h−1, vω,h−1 defined by the flow equations:

Zρ,ω,h−1 = Zρ,ω,h + zρ,ω,h, vω,h−1 = vω,h + uω,h .

We are now ready to integrate the fields on scale h. We define:

e−V (h−1)(�)+B(h−1)(�, f ,A)+w(h)( f ,A)

= Ch

∫
P̃(d�(h))e−F (h)

ξ (�(h)+�)−F (h)
δ (�(h)+�) ×

×e−RV (h)(�(h)+�)+LB(h)(�(h)+�, f ,A)+RB(h)(�(h)+�, f ,A), (4.28)

where P̃(d�(h)) is the Gaussian integration with propagator g̃(h)
ω ,

F (h)
ξ (�) =

∑

ω,s

2hξω,h

∫
dk′

(2π)3
�̂+

k′,s,ω�̂−
k′,s,ω,

F (h)
δ (�) =

∑

ω,s

2hδω,h

∫
dk′

(2π)3
�̂+

k′,s,ωσ3�̂
−
k′,s,ω,

and C−1h = ∫
P̃(d�(h))e−F (h)

ξ (�(h))+RV (h)(�(h)). Finally, lettingW(h−1) =W(h) +w(h), we
obtain the same expression as (4.21), with h replaced by h − 1. This concludes the proof of
the inductive step, corresponding to the integration of the fields on scale h, with h � h∗1. By
construction, the running coupling constants �τh = (ξω,h, δω,h, ZA,ω,h, ZB,ω,h, vω,h)ω∈{±}
verify the following recursive equations:

ξω,h−1 = 2ξω,h + β
ξ
ω,h(U , �τh, . . . , �τ0),

δω,h−1 = 2δω,h + βδ
ω,h(U , �τh, . . . , �τ0),

Zρ,ω,h−1 = Zρ,ω,h + β
Z ,ρ
ω,h (U , �τh, . . . , �τ0),

vω,h−1 = vω,h + βv
ω,h(U , �τh, . . . , �τ0), (4.29)

for suitable functions β
�
ω,h , known as the (components of the) beta function. Note that the

initial data ξω,0, δω,0, Zρ,ω,0, vω,0 are analytically close to ξ, δ, 1, 3
2 , respectively; they are

not exactly independent of the indices ρ, ω, due to the effect of the ultraviolet integration.
However, for small values ofmR,+, the difference between the initial data, for different values
of the indices, differ at most by O(UmR,+) (note that mR,+ = O(|mR,+| + sin φ)). As we
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shall see below, the running coupling constants remain analytically close to their initial data,
for all h � 0. Similarly, the vertex functions satisfy recursive equations driven by the running
coupling constants themselves:

γμ,ω,h−1 = γμ,ω,h +
0∑

h′=h
γμ,ω,h′ β̃

γ

μ,ω,h′(U , �τh, . . . , �τ0) ,

whose solution remains analytically close to the corresponding initial data, for all h � 0.
From the structure and properties of the effective propagator on scale h, see (4.25) and

following lines, one recognizes that the effective theory at scale h is a lattice regularization
of a theory of relativistic fermions with masses mR,±. As anticipated above, Zρ,ω,h and vω,h

remain analytically close to their initial data 1, 3
2 , for all h � 0: therefore, it is straightforward

to check that the single scale propagator satisfies

|g(h)
ω (x, y)| � CN

22h

1+ (2h |x − y|)N , ∀N � 1 . (4.30)

Moreover, the single-scale propagator admits the decomposition:

g(h)
ω (x, y) = G(h)

ω (x, y)+ g(h)
ω,r (x, y) (4.31)

where G(h)
ω (x, y) is obtained from g(h)

ω (x, y) by setting mR,ω = 0, and where the remainder
term g(h)

ω,r satisfies the same bound as g(h)
ω times an extra factor mR,ω2−h , which is small, for

all scales larger than h∗1.
Due to the fact that mR,+ � |mR,−|, once we reach the scale h = h∗1, the infrared

propagator of the field corresponding to ω = + satisfies the following bound:

|g(�h∗1)+ (x, y)| � CN
22h

∗
1

1+ (2h
∗
1 |x − y|)N ; (4.32)

that is, it admits the same qualitative bound as the corresponding single scale propagator on
scale h = h∗1. For this reason, it can be integrated in a single step, without any further need
for a multiscale analysis. We do so and, after its integration, we are left with an effective

theory on scales h � h∗1, depending only on �
(�h∗1)− , which we integrate in a multiscale

fashion, similar to the one described above, until the scale h = h∗2 is reached. At that point,
the infrared propagator g

(�h∗2)− satisfies a bound similar to (4.32), with h∗1 replaced by h∗2, and
the corresponding field can be integrated in a single step. The outcome of the final integration
is the desired generating function.

The iterative integration procedure described aboveprovides an explicit algorithm for com-
puting the kernels of the effective potential and sources. In particular, they can be represented
as sums ofGallavotti–Nicolò trees, identical to those of [20, Section 3], modulo the following
minor differences. The endpoints v on scale hv = +1 are associated either with F (0)

ξ (�(�0)),

or with F (0)
δ (�(�0)), or with LB(0)(�(�0), f , A), or with one of the terms inRV(0)(�(�0))

or inRB(0)(�(�0), f , A); the endpoints on scale hv � 0 are, instead, associated either with
F (hv−1)

ξ (�(�hv−1)), or with F (hv−1)
δ (�(�hv−1)), or with LB(hv−1)(�(�hv−1), f , A). The

most important novelty of the present construction, as compared with [20], is the presence
of the relevant couplings ξω,h, δω,h , whose flow must be controlled by properly choosing
the counterterms ξ and δ, see discussion below. Recall that the flows of ξ+,h and δ+,h stop
at scale h∗1; for smaller scales, we let ξ+,h′ = δ+,h′ = 0, ∀h′ < h∗1. Similarly, we let the
other running coupling constants with ω = +, that is, Zρ,+,h and v+,h , be zero for scales
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smaller than h∗1. It turns out that the tree expansion is absolutely convergent, provided that
U is small enough and the relevant couplings remain small, uniformly in the scale h � 0.
More precisely, the kernels of the effective potential satisfy the following bound (a similar
statement is valid, of course, for the kernels of the effective source). Notation-wise, we let
W (h)

n (x1, . . . , xn) be the kernel of the effective potential V(h)(�) associated with the mono-
mial in � of order n; of course,W (h)

n is non zero only if n is even. The arguments x1, . . . , xn
are the space-time coordinates of the Grassmann fields; the kernel implicitly depends also
on the ρ, ω indices of the external fields, but we do not spell out their dependence explic-
itly. We also let ‖W (h)

n ‖1 :=
∫
dx2 · · · dxn |W (h)

n (x1, . . . , xn)| (here
∫
dx is a shorthand for

∫ β

0 dx0
∑
�x∈�L

), which is independent of x1, due to translational invariance.

Lemma 4.1 There exist positive constants U0, θ,C0, such that the following is true. Suppose
that maxρ,ω,k�h{|Zρ,ω,k − 1|, |vω,k − 3

2 |, |ξω,k |, |δω,k |} � C |U |. Then, the kernels of the
effective potential on scale h − 1 are analytic in U for |U | � U0/(C + 1), and satisfy the
bound

‖W (h−1)
2 ‖1 � C |U |2h + C0|U |2h(1+θ) , (4.33)

‖W (h−1)
n ‖1 � Cn

0 |U |
n
2−12h(3−n+θ) , ∀n � 4 . (4.34)

The components of the beta function are analytic in U in the same domain, and satisfy:
∣∣β#

ω,h(U , �τh, . . . , �τ0)
∣∣ � C0|U |2θh . (4.35)

The proof of the lemma goes along the same lines as the proof of [20, Theorem 2], see
also the review [18], and will not be repeated here. Two key ingredients in the proof are:
the representation of the iterated truncated expectations in terms of the Brydges–Battle–
Federbush determinant formula, and the Gram-Hadamard bound. The factors 2θh appearing
in the right sides of (4.33), (4.34) and (4.35), represent a ‘dimensional gain’, as compared to
a more basic, naive, dimensional bound, proportional to 2(3−n)h , which is suggested by the
fact that the scaling dimension of the contributions to the effective potential with n external
fermionic is equal to 3 − n, in the RG jargon (we use the convention that positive/negative
scaling dimensions correspond to relevant/irrelevant operators). Such a dimensional gain is
due to theRG irrelevance of the quartic interaction (note that 3−n = −1 for n = 4) and to the
so-called short-memory property of the Gallavotti-Nicolò trees (“long trees are exponentially
suppressed”): all the contributions to the effective potential associated with trees that have
at least one endpoint on scale +1 have this additional exponentially decaying factor. The
only contributions not having such a gain are those associated with trees without endpoints
on scale +1. The key remark is that, since the running coupling constants are all associated
with quadratic contributions in the fermionic fields, such contributions are very simple and
explicit: they can all be represented as sums of linear Feynman diagrams with two external
legs (‘chain diagrams’), obtained by contracting in all possible ways the two-legged vertices
corresponding to the running coupling constants ξω,k, δω,k . Therefore, they only contribute
to the quadratic part of the effective potential, and they lead to the first term in the right side
of (4.33). Note also that such diagrams do not contribute to the beta function: in fact, the
beta function at scale h is obtained by taking the ‘local part’ of W (h)

2 , which is equal to the

value of the Fourier transform Ŵ (2)
2 at k′ = 0. If we compute the chain diagrams at k′ = 0,

we see that the quasi-momenta of all the propagators of the chain diagram are equal to zero;
therefore, the value of the diagram is zero, too, due to the compact support properties of the
single-scale propagator.
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The idea, now, is to use the bound on the beta function to inductively prove the assumption
on the running coupling constants, or, more precisely, the following improved version of the
inductive assumption:

|Zρ,ω,h − 1| � C |U |, |vω,h − 3
2 | � C |U |, ∀h∗2 � h � 0 ,

|ξ−,h | � C |U |2θh, |δ−,h | � C |U |2θh, ∀h∗2 � h � 0 ,

|ξ+,h − ξ−,h | � C |U |2h∗1−h, |δ+,h − δ−,h | � C |U |2h∗1−h, ∀h∗1 � h � 0 , (4.36)

for a suitableC > 0 (recall that, by definition, ξ+,h = δ+,h = Zρ,+,h = v+,h = 0, ∀h < h∗1).
Note that the bound on the beta function is already enough to prove the assumption for Zρ,ω,h

and vω,h . The subtle point is to control the flow of ξω,h , δω,h , provided the initial data ξ, δ

are properly chosen. This is the content of the next lemma.

Lemma 4.2 There exist positive constants U0, C, and functions δ = δ(U ,mR,−, φ), ξ =
ξ(U ,mR,−, φ), analytic in U for |U | � U0/(C + 1) and vanishing at U = 0, such that
(4.36) are verified.

Proof We solve the beta function by looking at it as a fixed point equation on a suitable space
of sequences. The fixed point equation arises by iterating the beta function equation and then
imposing that ξ−,h∗2 = δ−,h∗2 = 0. By iterating the first two equations of (4.29), we get, for
all h∗2 � h � 0,

ξω,h = 2−h
(
ξω,0 +

0∑

k=h+1
2k−1βξ

ω,k(U , �τk, . . . , �τ0)
)

δω,h = 2−h
(
δω,0 +

0∑

k=h+1
2k−1βδ

ω,k(U , �τh, . . . , �τ0)
)

, (4.37)

with the understanding that ξ+,h = δ+,h = 0, ∀h < h∗1. Consider first the case ω = −. By
imposing the condition that ξ−,h∗2 = δ−,h∗2 = 0, we find that

ξ−,0 = −
0∑

k=h+1
2k−1βξ

−,k(U , �τh, . . . , �τ0), δ−,0 = −
0∑

k=h+1
2k−1βδ−,k(U , �τh, . . . , �τ0).

(4.38)

Plugging these identities back in (4.37) with ω = − gives

ξ−,h = −
∑

h∗2<k�h

2k−h−1βξ
−,k(U , �τh, . . . , �τ0),

δ−,h = −
∑

h∗2<k�h

2k−h−1βδ−,k(U , �τh, . . . , �τ0), (4.39)

which is the desired equation for ξ−,h, δ−,h . Consider next the case ω = +. The initial data
ξ+,0, δ+,0 in the right side of (4.37) are regarded as given functions ofU , ξ−,0, δ−,0,mR,−, φ,
whose explicit form follows from the ultraviolet integration, such that both ξ+,0 − ξ−,0 and
δ+,0 − δ−,0 are of the order O(U min{mR,+, 1}). More explicitly, we write,

ξ+,0 = ξ−,0 + x̄+(U , ξ−,0, δ−,0,mR,−, φ),

δ+,0 = δ−,0 + d̄+(U , ξ−,0, δ−,0,mR,−, φ), (4.40)
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where x̄+ and d̄+ are analytic in U , ξ−,0, δ−,0 for |ξ−,0|, |δ−,0| � C |U | and |U | �
U0/(C + 1), and satisfy:

|x̄+(U , ξ−,0, δ−,0,mR,−, φ)| � C1|U |min{mR,+, 1},
|x̄+(U , ξ−,0, δ−,0,mR,−, φ)− x̄+(U , ξ ′−,0, δ

′−,0,mR,−, φ)|
� C1|U |min{mR,+, 1}(|ξ−,0 − ξ ′−,0| + |δ−,0 − δ′−,0|) , (4.41)

for some C1 > 0, and analogously for d̄+. Plugging (4.40), with ξ−,0, δ−,0 written as in
(4.38), back in (4.37) with ω = +, we get the desired equation for ξ+,h, δ+,h :

ξ+,h = 2−h
(
x̄+ +

0∑

k=h+1
2k−1(βξ

+,k − β
ξ
−,k)−

h∑

k=h∗2+1
2k−1βξ

−,k

)
,

δ+,h = 2−h
(
d̄+ +

0∑

k=h+1
2k−1(βδ+,k − βδ−,k)−

h∑

k=h∗2+1
2k−1βδ−,k

)
, (4.42)

for all h∗1 � h � 0. The equations (4.39) and (4.42), together with the analogues of (4.37)
for the running coupling constants Zρ,ω,h, vω,h , are looked at as a fixed point equation on
the space M of sequences of running coupling constants τ := {�τh∗2 , . . . , �τ0}, endowed with
the norm

‖τ‖θ = max
{
max
h�0
ω,ρ

{|Zρ,ω,h − 1|, |vω,h − 3

2
|, 2−θh |ξ−,h |, 2−θh |δ−,h |},

max
h∗1�h�0

{|ξ+,h − ξ−,h |2h−h∗1 , |δ+,h − δ−,h |2h−h∗1 }
}
. (4.43)

More precisely, the sequence of running coupling constants, solution of the flow equation
with boundary data such that ξ−,h∗2 = δ−,h∗2 = 0, is the fixed point of themap τ → τ ′ = T(τ )

that, in components, reads (we write the argument of the beta function as (U , τ ), and we do
not indicate the argument of x̄+ and d̄+, for short):

ξ ′−,h = −
h∑

k=h∗2+1
2k−h−1βξ

−,k(U , τ ), ∀h∗2 � h � 0 (4.44)

δ′−,h = −
h∑

k=h∗2+1
2k−h−1βδ−,k(U , τ ), ∀h∗2 � h � 0 (4.45)

ξ ′+,h = 2−h x̄+ +
0∑

k=h+1
2k−h−1(βξ

+,k(U , τ )− β
ξ
−,k(U , τ ))

−
h∑

k=h∗2+1
2k−h−1βξ

−,k(U , τ ), ∀h∗1 � h � 0 (4.46)

δ′+,h = 2−hd̄+ +
0∑

k=h+1
2k−h−1(βδ+,k(U , τ )− βδ−,k(U , τ ))

−
h∑

k=h∗2+1
2k−h−1βδ−,k(U , τ ), ∀h∗1 � h � 0 (4.47)
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Z ′ρ,ω,h = 1+ z̄ρ,ω +
0∑

k=h+1
β
Z ,ρ
ω,k (U , τ ), ∀h∗2 � h � 0 (4.48)

v′ω,h =
3

2
t1 + v̄ω +

0∑

k=h+1
βv

ω,k(U , τ ) , ∀h∗2 � h � 0 (4.49)

with the understanding that the running coupling constants with ω = + are zero for all
scales smaller than h∗1: ξ+,h = δ+,h = Zρ,+,h = v+,h = 0, for all h < h∗1. More-
over, in the last two lines, we rewrote Zρ,ω,0 = 1 + z̄ρ,ω and vω,0 = 3

2 + v̄ω, where
z̄ρ,ω = z̄ρ,ω(U , ξ−,0, δ−,0,mR,−, φ) and v̄ω = v̄ω(U , ξ−,0, δ−,0,mR,−, φ) are analytic in
U , ξ−,0, δ−,0 for |ξ−,0|, |δ−,0| � C |U | and |U | � U0/(C + 1), and satisfy:

|z̄ρ,ω(U , ξ−,0, δ−,0,mR,−, φ)| � C1|U |,
|z̄ρ,ω(U , ξ−,0, δ−,0,mR,−, φ)− z̄ρ,ω(U , ξ ′−,0, δ

′−,0,mR,−, φ)|
� C1|U |(|ξ−,0 − ξ ′−,0| + |δ−,0 − δ′−,0|) , (4.50)

and analogously for v̄ω. In addition, the differences z̄ρ,+− z̄ρ,− and v̄+− v̄− satisfy the same
bound as (4.41).

We want to show that the map τ → T(τ ) admits a unique fixed point in the ball B0 =
{τ ∈ M : ‖τ‖θ � C |U |}, for a suitable C > 0. In order to prove this, we show that, if
τ , τ ′ ∈ B0,

‖T(τ )‖θ � C |U |, ‖T(τ )− T(τ ′)‖θ � C |U | ‖τ − τ ′‖θ , (4.51)

for a suitable C . Once (4.51) is proved, the existence of a unique fixed point in B0 follows
via the Banach fixed point theorem, and we are done: such a fixed point defines the initial
data ξ−,0, δ−,0 generating a solution to the flow equation satisfying (4.36), as desired. Of
course, fixing ξ−,0, δ−,0 is equivalent (thanks to the analytic implicit function theorem) to
fixing ξ, δ: therefore, the existence of such a fixed point proves the statement of the lemma.

We are left with proving (4.51). If τ ∈ B0, by using the bound (4.35) on the beta function,
as well as the assumptions (4.41), (4.50) on the initial data (together with their analogues for
d̄+, v̄ω), it is immediate to check that

|Z ′ρ,ω,h − 1| � C |U |, |v′ω,h −
3

2
| � C |U |, |ξ ′−,h | � C |U |2θh, |δ′−,h | � C |U |2θh,

(4.52)

for all h∗2 � h � 0 and a suitable constant C . Therefore, in order to check that
‖T(τ )‖θ � C |U |, we are left with proving that max{|ξ ′+,h − ξ ′−,h |, |δ′+,h − δ′−,h |} �
C |U |2h∗1−h , for all h∗1 � h � 0. We spell out the argument for ξ ′+,h − ξ ′−,h , the proof
for δ′+,h − δ′−,h being exactly the same. By using (4.44)–(4.46), we have: ξ ′+,h − ξ ′−,h =
2−h x̄+ +∑0

k=h+1 2k−h−1(β
ξ
+,k(U , τ ) − β

ξ
−,k(U , τ )). Now, the first term in the right side

is bounded by 2−h |x̄+| � 2C1|U |, for all h � h∗1, by (4.41) and the very definition of h∗1,
(4.20). In order to bound the sum

∑0
k=h+1 2k−h−1(β

ξ
+,k(U , τ )− β

ξ
−,k(U , τ )), we note that

β
ξ
+,k −β

ξ
−,k can be expressed as a sum over trees with root on scale k, at least an endpoint on

scale +1 (recall the discussion after the statement of Lemma (4.1)) and: either an endpoint
corresponding to a difference ξ+,k′ − ξ−,k′ , or an endpoint corresponding to δ+,k′ − δ−,k′ ,

or a propagator g(k′)
+ − g(k′)

− , with k′ � k. The propagator g(k′)
+ − g(k′)

− admits a dimensional

bound that is the same as g(k′)
ω times a gain factor 2h

∗
1−k′ ; the differences ξ+,k′ − ξ−,k′ and
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δ+,k′ − δ−,k′ are proportional to the same gain factor, due to the assumption that τ ∈ B0.
All in all, recalling the basic bound on the beta function, (4.35), we find a similar bound,
improved by the gain factor 2h

∗
1−k :

∣∣βξ
+,k(U , τ )− β

ξ
−,k(U , τ )

∣∣ � 2C0|U |2h∗1−k2θk .

This, together with the bound on 2−h x̄+, implies the desired bound, |ξ ′+,h − ξ ′−,h | �
C |U |2h∗1−h , for all h∗1 � h � 0 and C sufficiently large. Exactly the same argument implies
the desired bound for δ′+,h − δ′−,h .

The proof of the second of (4.51) goes along the same lines, and we only sketch it here.
A similar argument, discussed in all details, can be found in [11, Section 4]. Let us focus, for
simplicity, on the first component of T(τ )− T(τ ′), which reads:

−
h∑

k=h∗2+1
2k−h−1

(
β

ξ
−,k(U , τ )− β

ξ
−,k(U , τ ′)

)
.

The difference β
ξ
−,k(U , τ )−β

ξ
−,k(U , τ ′) can be represented as a sum over trees with root on

scale k, at least an endpoint on scale+1, and: either an endpoint corresponding to a difference
ξω,k′−ξ ′

ω,k′ , or an endpoint corresponding to δω,k′−δ′
ω,k′ , or a propagator corresponding to the

difference between g(k′)
ω computed at the values (Zρ,ω,k′ , vω,k′) of the effective parameters

and the same propagator computed at (Z ′
ρ,ω,k′ , v

′
ω,k′), for some k′ � k. The difference

between the propagators computed at different values of the effective parameters can be

bounded dimensionally in the sameway as g(k′)
ω , times an additional factormaxρ,ω{|Zρ,ω,k′ −

Z ′
ρ,ω,k′ |, |vω,k′ −v′

ω,k′ |}. Therefore, recalling the basic bound on the beta function, (4.35), we
find a similar bound, multiplied by the norm of the difference between the running coupling
constants:

∣∣∣βξ
−,k(U , τ )− β

ξ
−,k(U , τ ′)

∣∣∣ � 2C0|U |2θk‖τ − τ ′‖θ , (4.53)

which implies the desired estimate on the first component ofT(τ )−T(τ ′). A similar argument
is valid for the other components, but we will not belabor the details here. ��

We now have all the ingredients to prove Proposition 3.3. In fact, in view of Lemma 4.1
and Lemma 4.2, we can fix the counterterms ξ, δ in such a way that the kernels of the effective
potential on all scales are analytic in U , uniformly in the scale, and satisfy (4.33). A simple
by-product of the proof shows that the kernelW (h)

n (x1, . . . , xn) decays faster than any power
in the tree distance among the space-time points x1, . . . , xn , with a decay length proportional
to 2−h . Analogous claims are valid for the kernels of the effective source term and of the
generating function. In particular, recalling that the scale h is always larger or equal than h∗2,
we have that the kernels of the effective potential, which are nothing else but the multi-point
correlation functions, are analytic in U and decay faster than any power in the tree distance
among their arguments, with a typical decay length of the order 2h

∗
2 ∼ |mR,−|. Therefore,

for any mR,− �= 0, the Fourier transform of any multi-point correlation of local operators is
C∞ in the momenta. In the massless case, the correlations are dimensionally bounded like
in the graphene case [20,21]: in particular, the two-point density–density, or current–current
correlations decay like |x−y|−4 at large Euclidean space-time separation. For further details
about the construction and estimate of the correlation functions, the reader is referred to, e.g.,
[16,21]. This concludes the proof of Proposition 3.3. ��
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5 Proof of Theorem 2.1

In order to conclude the proof of Theorem 2.1, we need to prove that: there exists a choice of
mR,- for which the Euclidean correlations of the reference model with Hamiltonian HR, see
(2.22), coincide with those of the original HamiltonianH; the Euclidean Kubo conductivity
coincides with the real-time one. Cf. with the last two items, (iii) and (iv), of the list after
(2.23). We also need to prove the regularity and symmetry properties of the critical curves,
stated in Theorem 2.1.

Let us start with discussing item (iii), as well as the C1 regularity of the critical curves.
In order to prove the equivalence of H and HR, it is enough to fix the counterterms as
discussed in the previous section, and choose mR,− to be the solution of (2.23). Let us then
show that (2.23) can be inverted in the form mR,− = mR,−(U ,W , φ), with mR,−(U ,W , φ)

analytic in U and C1 in W , φ. We want to appeal to the analytic implicit function theorem.
For this purpose, we need to estimate the derivative of δ(U ,mR,-, φ) w.r.t. mR,−. Recall
that δ−,0 = δ−,0(U ,mR,−, φ) satisfies the second of (4.38), and that δ(U ,mR,−, φ) and
δ−,0(U ,mR,−, φ) are analytically close (they differ only because of the effect of the ultraviolet
integration). Therefore,

δ(U ,mR,−, φ) = −
1∑

k=h∗2+1
2k−1βδ−,k(U , τ ),

where βδ−,k(U , τ ) accounts for the difference between δ and δ−,0 due to the ultraviolet
integration. Differentiating both sides with respect to the mass, we find:

∂δ(U ,mR,−, φ)

∂mR,−
= −

1∑

k=h∗2+1
2k−1

∂βδ−,k

∂mR,−
(U , τ ),

which should be looked at as (a component of) a fixed point equation for the derivatives of
the running coupling constants, analogous to the ones solved in the proof of Lemma (4.2).
When acting on the beta function, the derivative with respect to mR,− can either act on a

propagator g(k′)
ω , or on a running coupling constant. When acting on a propagator, it replaces

g(k′)
ω by ∂g(k′)

ω

∂mR,− , which is bounded dimensionally in the sameway as g(k′)
ω , times an extra factor

proportional to 2−k′ . On the other hand, the action of the derivative on a running coupling
constant should be bounded inductively, in the same spirit as the proof of Lemma 4.2. All in
all, recalling also the basic bound on the beta function, (4.35), we get

∣∣∣
∂δ(U ,mR,−, φ)

∂mR,−

∣∣∣ �
1∑

k=h∗2+1
2kC0|U |2θk2−k � C2|U |, (5.1)

for a suitable constantC2. Exactly the same argument and estimates are valid for the derivative
with respect to φ, so that

∣∣∣
∂δ(U ,mR,−, φ)

∂φ

∣∣∣ � C2|U | . (5.2)

The last estimate is optimal for small φ. For larger values of φ, one can also take advantage of
the symmetry under exchange φ → π−φ (the ‘magnetic reflections’, see (4.13)) to conclude
that the derivative of δ with respect to φ vanishes continuously as φ → (π/2)−. Moreover,
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by the symmetry properties of the model, δ(U , 0, 0) = 0. Therefore, |δ(U ,mR,−, φ)| �
2C2|U |(|mR,−| + sin φ).

Using these bounds and the implicit function theorem, we see that (2.23) can be inverted in
the form (2.24), with |d(U ,W , φ)| � C |U |(W + sin φ) for some constant C . The equation
for the critical curve in the parameter range we are considering is simply mR,- = 0, that
is W = 3

√
3t2 sin φ + δ(U , 0, φ), which is C1 in φ and, thanks to the symmetries of the

problem, it satisfies the properties stated in Theorem 2.1.
We are left with discussing item (iv), that is, the equivalence between the Euclidean

and real-time Kubo conductivities. Given our bounds on the Euclidean correlations, the
equivalence follows from result discussed in previous papers. In fact, our bounds imply that
the current–current correlations, at large space-time separations, decay either faster-than-
any-power decay, if mR,− �= 0, or like |x− y|−4, otherwise: therefore, we can repeat step by
step the proof of [22, Theorem 3.1], as the reader can easily check. For a slightly modified
and simplified proof, see also [2, Appendix B] and [35, Section 5].

This concludes the proof of Theorem 2.1. ��

5.1 Concluding Remarks

In conclusion, the universality of the Hall conductivity (i.e., its independence from the inter-
action strength) can be seen as a consequence of lattice conservation laws, combined with
the regularity properties of the correlation functions. The quantization of the interacting
Hall conductivity then follows from its quantization in the non-interacting case: however, an
important point in the proof is to compare the interacting system and its conductivity with the
right reference non-interacting system, that is, the one with the right value of the mass; this is
the reason why we introduce a reference non-interacting systemwith mass equal to the renor-
malized mass of the interacting system; in order to fix the correct value of the renormalized
mass, we need to solve a fixed point equation for it. The same strategy we proposed in the
present context can be easily extended to prove that the Hall conductivity is constant against
any deformation of the Hamiltonian, even non-translationally invariant ones, provided that
the off-diagonal decay of the Euclidean correlations in space and imaginary time is suffi-
ciently fast, in the sense specified by5 Proposition 3.3. Note that our universality result is
valid as soon as the Fourier transform of the current–current-interaction correlations are C3

inmomentum space, which corresponds to a space-time decay faster than (dist .)−6 (a critical
analysis of the proof shows that we need even less: C2+ε with ε > 0 is a sufficient condition
for our construction to work; this translates into a space-time decay faster than (dist .)−5).
This means that we do not require the existence of a spectral gap, in the strong sense of
exponential decay of correlations: sufficiently fast polynomial decay is actually enough. It
would be nice to provide a realistic example of a gapless model with fast polynomial decay
of correlations, exhibiting a non-trivial, universal behavior of the transverse conductivity; or,
in alternative, to exclude the possibility that such a model exists.

A problem connected with the one discussed in this paper, but much more challenging,
is to prove universality of the conductivity for clean massless models with slow polynomial
decay of correlations: by ‘slow’, here, we mean that Proposition 3.3 cannot be applied. A

5 Proposition 3.3 is formulated in terms of the regularity of the Fourier transform, but, by anti-trasforming and
going back to real space, the stated properties of the correlation functions can be straightforwardly translated
into a condition of sufficiently fast polynomial decay in space and imaginary time. Such a formulationwould be
the right one in order to deal with additional, possibly non-translationally invariant, perturbations, including
weak random potentials (chosen in such a way that the non-interacting spectral gap is not closed by the
randomness).
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first example is the Haldane model, considered in this paper, for values of the parameters on
the critical line. In this case, as already recalled after the statement of Theorem (2.1), one
can prove the universality of the longitudinal conductivity [19]: the proof, which generalizes
the one in [21], uses lattice Ward Identities, combined with the symmetry properties of the
current–current correlation functions. Itwould be very interesting to establish the universality,
or the violation thereof, of the transverse conductivity on the critical line.

Another context, where the issue of the universality of the conductivity naturally arises,
is the case of bulk massive systems in non-trivial domains with, say, Dirichlet conditions
imposed at the boundary. In such a setting, usually, massless edge states appear, and the
edge system is characterized by correlations with slow polynomial decay. Nevertheless,
universality holds as a consequence of a more subtle mechanism, which relies on the non-
renormalization of the edge chiral anomaly. Using these ideas, two of us proved the validity
of the bulk-edge correspondence in lattice Hall systems with single-mode chiral edge cur-
rents [2], and in the spin-conserving Kane–Mele model [34]. It would be very interesting to
generalize these findings to lattice systems with several edge modes, as well as to continuum
systems.

Finally, it would be extremely interesting to include disorder effect, even in the regime
where the interaction is smaller than the non-interacting gap. Understanding the combined
effects of disorder and interactions in the vicinity of the critical lines is a major open problem,
even from a theoretical physics perspectives. We do not expect that the phase diagram will
remain qualitatively unchanged in their presence: new quantumphasesmay in general arise in
the vicinity of unperturbed critical lines. In this sense, we expect that the stability of the phase
diagram, if valid at all, will depend on the specific features of the model under investigation.
However, as far as we know, not even the effects of disorder alone are well understood in the
vicinity of the critical lines.
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