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Abstract Recently, remarkably simple exact results were presented about the dynamics
of heat transport in the local Luttinger model for nonequilibrium initial states defined by
position-dependent temperature profiles. We present mathematical details on how these
results were obtained. We also give an alternative derivation using only algebraic relations
involving the energy-momentum tensor which hold true in any unitary conformal field theory
(CFT). This establishes a simple universal correspondence between initial temperature pro-
files and the resulting heat-wave propagation in CFT.We extend these results to larger classes
of nonequilibrium states. It is proposed that such universal CFT relations provide benchmarks
to identify nonuniversal properties of nonequilibrium dynamics in other models.

Keywords Nonequilibrium dynamics · Conformal field theory · Heat and charge transport ·
Luttinger model

1 Introduction

The study of heat, mass, charge, or spin transport in classical and quantum one-dimensional
systems has a long history, see, e.g., [1–10]. Among problems that continue to make
this an active field are questions concerning presence of diffusion, effects of integra-
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bility, interactions, or disorder, universality, and behaviors after quantum quenches, to
mention a few. Studies of such questions were further spurred by experiments on ultra-
cold atomic gases [11,12] which recently triggered a rapid development of this field,
see, e.g., [13–23]. Let us specifically mention the use of methods of conformal field the-
ory (CFT) to gain better understanding of nonequilibrium steady states and transport in
critical quantum 1d systems, see [24–27] and references therein, [28] for an operator-
algebraic approach, and [29–32] that are particularly close to the context of the present
paper.

In [33] two of us (E.L. and P.M.) together with Joel L. Lebowitz and Vieri Mastropietro
studied in the Luttinger model the dynamics of heat transport starting from a particular class
of nonequilibrium initial states. These states were given by position-dependent temperature
profiles 1/β(x) > 0, and the time evolution was determined by the standard translation
invariant Hamiltonian

H =
∫ L/2

−L/2
E(x)dx, (1.1)

where E(x) is the energy density operator on a circle S1 with circumference L parameterized
by the coordinate x ∈ [−L/2, L/2]. E(x) together with the heat current operator J (x)
satisfy the continuity equation

∂tE + ∂xJ = 0 (1.2)

with the usual Heisenberg time evolutionO(t) = eiHtOe−iHt for observablesO = E(x) and
J (x). (The units are such that h̄ = kB = e = 1.) We computed the evolution of the energy
density and the heat current, 〈E(x, t)〉neq and 〈J (x, t)〉neq, using the following definition of
nonequilibrium expectation values:1

〈
O
〉
neq = Tr(e−GO)

Tr(e−G)
, G =

∫ L/2

−L/2
β(x)E(x)dx . (1.3)

Note that the special case of constant β(x) = β0 corresponds to the standard Gibbs equilib-
rium expectations 〈

O
〉
β0

= Tr(e−β0HO)

Tr(e−β0H )
(1.4)

at temperature 1/β0, and it is therefore natural to interpret 1/β(x) as a position-dependent
temperature profile. We stick to this interpretation throughout this paper, although a more
common definition of the local temperature would link it directly to 〈E(x, t)〉neq. Other
interpretations of β(x) are possible, in particular if the states in (1.3) arise as equilib-
ria for dynamics defined by inhomogeneous Hamiltonians, as will be briefly discussed
at the end of the paper. The setup considered in [33] resembled that of inhomoge-
neous quantum quenches [34] except that the evolution was studied after quenches
from mixed states of (1.3) and it was analyzed directly in real rather than imaginary
time.

To study heat transport we were particularly interested in kink-like profiles 1/β(x) inter-
polating between temperatures 1/βL to the far left and 1/βR to the far right, see Fig. 1.
The smooth temperature profile protocol described above allows one to analytically compute
the nontrivial behavior of the energy density and the heat current around the location of the
kink at early times and their subsequent development into heat waves moving ballistically
to the right and left. This should be contrasted with the results of the CFT description of

1 This definition differs from 〈O〉 in [33] in that the thermodynamic limit is not taken in (1.3).
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Fig. 1 Temperature profile for a the subsystem on a finite interval [−�, �] with L � � > 0 and b the full
system with periodic boundary conditions. Note that, in addition to the kink at x = 0, there is an opposite one
at x = ±L/2, which is necessary to have a smooth periodic function. As explained in Sect. 2, the effect of
this second kink is eliminated in the thermodynamic limit L → ∞

the dynamics in the partitioning protocol employed in similar previous studies, see [27]
and references therein. In such a description, argued to be valid after a transient time, the
ballistic heat waves are compressed to simple jumps (shocks) without internal structure mov-
ing away from the contact point. In the smooth initial states that we consider, this happens
only in the limit when t and x are sent to infinity at the same rate, as such a limit wipes
out the nontrivial internal structure of the heat waves. The evolution of the energy density
and the heat current obtained in [33] permits then to better understand the shortcomings
of the partitioning protocol. It also sheds a new interesting light on transport in integrable
systems and, in particular, on how its universal features [35] emerge at long times for a
large class of nonequilibrium initial states, see [36] and also Sect. 4.3 below for a related
discussion of charge transport in the Luttinger model. As a representative example, we plot
〈E(x, t)〉neq and 〈J (x, t)〉neq in Fig. 2 at four times for the Luttinger model with local interac-
tions (defined in more detail below) starting from the kink-like temperature profile in Fig. 1.
Note a peak and a dip in the energy density at time t = 0 in the region where the temper-
ature changes and how this local shape evolves into heat waves. This is accompanied by a
universal heat current building up in the region between the two heat-wave fronts. We note
that, for local interactions, the wave fronts preserve their shapes in time. For the Luttinger
model with nonlocal interactions, there are additional dispersive effects, which, however,
eventually become unobservable in any finite region as the wave fronts leave such regions in
finite time, see Fig. 1 in [33]. In the remainder of this paper we restrict our discussion to the
local case.
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Fig. 2 Plots of the energy density e(x, t) = v[〈E(x, t)〉∞neq − 〈E(x, t)〉∞̄
β

]/J and the heat current

j (x, t) = 〈J (x, t)〉∞neq/J for the Luttinger model in a finite interval [−�, �] around x = 0 rescaled by

J = limt→∞〈J (x, t)〉∞neq = (π/12)(β−2
L − β−2

R ) for different times in the nonequilibrium state with the
inverse-temperature profile given by (2.1) and (2.3). The parameters are βL = 19.9, βR = 20.1, δ/� = 0.06,
and v/� = 0.025

In the local Luttinger model, the energy density is given formally by2

E(x) =
∑
r=±

vF

2
:[ψ†

r (x)(−ir∂x )ψr (x) + H.c.
]:+ λ

∑
r,r ′=±

:ψ†
r (x)ψr (x): :ψ†

r ′(x)ψr ′(x): − E0

(1.5)
with fermionic field operators ψ±(x) (with antiperiodic boundary conditions) obeying the
usual canonical anticommutation relations {ψr (x), ψ

†
r ′(y)} = δr,r ′δ(x− y), etc., :· · ·: denot-

ing Wick (normal) ordering, the bare Fermi velocity vF > 0, and the coupling strength
λ > −πvF/2. The (diverging) constant E0 subtracts the ground-state energy density up to
the finite contribution −πv/(6L2) left for later convenience. The heat current is given by
J (x) = v2P(x) with the momentum density operator

P(x) =
∑
r=±

1

2
:[ψ†

r (x)(−i∂x )ψr (x) + H.c.
]: (1.6)

and the plasmon velocity v = vF
√
1 + 2λ/(πvF ) [36,39]. We found in [33] the following

exact expectation values of the energy density and the heat current in the thermodynamic
limit marked by the superscript ∞ on the expectations:3

〈
E(x, t)

〉∞
neq = 1

2

[
F(x−) + F(x+)

]
,
〈
J (x, t)

〉∞
neq = v

2

[
F(x−) − F(x+)

]
, (1.7)

2 One canmake thismathematically precise by considering the analogous expression for a nonlocal interaction
and then taking the local limit [37] in an appropriate bosonized Fock space, see, e.g., [38].
3 The symbols E , F , and f here correspond to H, G, and g in [33].
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where x± = x ± vt are the light-cone coordinates and the function

F(x) = π

6v

1

β(x)2
+ v

12π

(
β ′′(x)
β(x)

− 1

2

(
β ′(x)
β(x)

)2
)

(1.8)

is determined by the temperature profile. We also observed that F(x) can be written in terms
of the Schwarzian derivative

(S f )(x) = f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

(1.9)

of the function

f (x) =
∫ x

0

β0

β(x ′)
dx ′ (1.10)

as
F(x) = π

6vβ2
0

f ′(x)2 − v

12π
(S f )(x) (1.11)

for some constant β0 > 0. Noting that Schwarzian derivatives appear in CFT [40] and that
the local Luttinger model is a CFT, we also argued that it should be possible to obtain the
result in (1.7) and (1.8) in a simpler way using conformal transformations, and that it may
be possible to also obtain expectation values of other observables in that way [33]. Our main
result in this paper is to show that this is indeed the case.

The method used in [33] was perturbative in a small parameter ε measuring the distance
to equilibrium in the initial state (i.e., the case ε = 0 corresponds to the Gibbs state). This
method is general, but generically one can only obtain useful low-order results. In the special
case of local interactions, however, we were able to push the computations to all orders in
ε, and, summing the resulting infinite series, we obtained the results in (1.7) and (1.8). In
this paper we give a simpler derivation of these results extending them to all unitary CFT
models, including models at finite L , and to other observables.

Our analysis is based on the Minkowskian version of CFT, and it generalizes to other
classes of nonequilibrium states. One such generalization is (1.3) but where, in addition to
the temperature profile 1/β(x), we also allow for a “velocity” profile ν(x) taking

G =
∫ L/2

−L/2
β(x) [E(x) + ν(x)P(x)] dx (1.12)

for |ν(x)| < v (this condition ensures that G is positive). Note that for constant profiles this
is a generalization [41] of the Gibbs state in (1.4) where β0H is replaced by β0(H + ν0P)

with the momentum operator

P =
∫ L/2

−L/2
P(x)dx . (1.13)

This may be also be viewed in CFT as a Lorentz boost of the ordinary Gibbs state [27]. As
will be shown, the corresponding generalization of the result in (1.7) is obtained by replacing
F(x∓) by F±(x∓) given by (1.8) with the right-hand side multiplied by the central charge c
of CFT (which is equal to 1 for the local Luttinger model) and with β(x) replaced by

β±(x) = β(x)[1 ± ν(x)/v]. (1.14)

In particular, in the long-time limit

lim
t→∞〈E(x, t)〉∞neq = πc

12v

(
β−2

+,L + β−2
−,R

)
, lim

t→∞〈J (x, t)〉∞neq = πc

12

(
β−2

+,L − β−2
−,R

)
,

(1.15)
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where β±,L and β±,R are the asymptotic values of β±(x) to the left and to the right, respec-
tively.4

Finally, for CFTs with a double U(1) current algebra (e.g., the Luttinger model itself),
we may also handle chemical-potential profiles μ±(x) in addition to temperature profiles
1/β±(x), possibly different for right and left movers. In this case, the functions F±(x) pick
up an additional term proportional to μ±(x)2. This is the largest class of nonequilibrium
states that we consider. They are defined as in (1.3) but with G in (4.40), see Sect. 4.3 for
details.

The above results show that in CFT there is a universal relation between the initial tem-
perature, velocity, and chemical-potential profiles and the resulting heat- and density-wave
propagation even at finite times.5 We believe that this provides a useful benchmark for other
models as follows. Typically, finite-time results are model-dependent, and more universal
behavior is only obtained at long times [27]. As an example, we mention the nonlocal Lut-
tinger model which exhibits finite-time dispersion effects depending on short-distance details
of the interaction potential [33]. However, these effects have some qualitative features that are
always present. We postulate that the CFT results have to be subtracted in order to identify
the effects that come from the microscopic details in the propagation of the heat or density
waves emanating from the inhomogeneities of the initial state. In addition, such a subtraction
should allow to identify the time scales when suchmodel-dependent effects are important and
when not. Moreover, it was argued in [19] that integrable systems come in two kinds: those
that are purely ballistic and those with a nonzero diffusive contribution. For heat transport, in
particular, one way to view this is through the thermal conductivity in the frequency domain

Re κth(ω) = πDthδ(ω) + Re κ
reg
th (ω), (1.16)

where a nonzero thermal Drude weight Dth indicates the presence of a ballistic contribution
and a finite nonzero value of the regular part Re κ

reg
th (ω) at ω = 0 signals the presence

of a diffusive component in the heat transport [9]. It is known that “pure” CFT captures
the ballistic part [27], with Re κ

reg
th = 0. This also follows from our results. The cause of

dispersive and diffusive effects thus must come from short-distance details, randomness, or
other relevant perturbations, see, e.g., [42] for a recent discussion of that issue within CFT.

The plan of the rest of this paper is as follows. In Sect. 2, we sketch the original derivation
of the result in (1.7) and (1.8) and explain the physical significance of the limit L → ∞ since
this is also relevant for ourmore direct CFT argument.We also present special integralswhose
exact evaluation was the key to this result and which, as we believe, are interesting in their
own right. The reader may skip the second half of Sect. 2 without loss of continuity. The CFT
derivation is given in Sect. 3. After collecting the results aboutMinkowski-space CFT that are
needed in Sect. 3.1, we show in Sect. 3.2 how to use conformal transformations to straighten
out position-dependent temperature profiles 1/β(x) on a periodic interval. This allows one to
exactly map the nonequilibrium expectations in CFT to the corresponding equilibrium ones.
We make this mapping explicit for products of the components of the energy-momentum
tensor. In Sect. 3.3, we study the thermodynamic limit of the finite-volume relations which
allows one to treat temperature profiles on the infinite line with different asymptotic values on
the left and right sides. As a byproduct, we calculate the thermal Drude weight. Section 4 is
devoted to various generalizations. In Sect. 4.1, we briefly discuss the correlators of primary
fields. In Sect. 4.2, we consider states with different temperature profiles for the right and

4 To avoid confusion, we stress that our subscripts ± refer to right (+) and left (−) movers.
5 Here we use the term “universal” as referring to the same form in different CFTs rather than to the indepen-
dence of the microscopic details of the models.
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left movers. They form a class of nonequilibrium states preserved by the Schrödinger-picture
dynamics that lead to simple examples of generalized Gibbs states at long times. In Sect. 4.3,
we extend the analysis to CFTs with a U(1) current algebra and states with temperature and
chemical-potential profiles. For the Luttinger model we discuss how this implies universality
of conductance for both the charge and axial currents, generalizing previous results in [36],
see also [43]. Finally, in Sect. 5, we make contact with [29–32], discussing the dynamics
preserving states in (1.3) and the related Euclidian CFT description.We end with conclusions
and directions for further developments in Sect. 6. TheAppendix contains somemathematical
details on the special integrals mentioned above.

2 Perturbative Derivation and Remarkable Integrals

The perturbative computation method used in [33] is based on introducing an expansion
parameter ε measuring the deviation of the temperature profile from constant temperature
1/β̄ as follows:

β(x) = β̄ [1 + εW (x)] (2.1)

with W (x) a function defined by this relation.
In [33] we were mainly interested in kink-like functions where W (x) becomes (say) 1/2

and− 1/2 to the far left and right, respectively, so that β̄ = (βL+βR)/2 and ε = (βL−βR)/β̄

in terms of the asymptotic values. On the other hand, for technical reasons, we used a model
on a circle with circumference L < ∞, which at first sight seems incompatible: a smooth
functionW (x) on the circle with a single kink is not possible, and there has to be at least one
other opposite one. As an example, consider the periodic function

W (x) = −1

2
tanh

(
L

2πδ
sin

(
2πx

L

))
(δ > 0), (2.2)

which is kink-like in the vicinity of x = 0 as desired but has an opposite kink in the vicinity
of x = ±L/2 and leads (for negative ε) to the temperature profile of Fig. 1. The effect of the
additional step around ±L/2 can be eliminated by computing results 〈O(t)〉neq for L < ∞
at finite times t , and then taking the limit L → ∞ [33] in which (2.2) turns into

W (x) = −1

2
tanh

( x
δ

)
. (2.3)

In this way technical problems with L = ∞ on the level of quantum field theory are avoided
and, at the same time, boundary conditions have no influence on the final results. The physical
interpretation is that the kink at x = ±L/2 is “behind the moon” and does not affect the
physics in any finite region at times significantly smaller than L/v, which is a time scale that
becomes infinite in the limit L → ∞.

In the rest of this section we sketch the perturbative derivation of the result in (1.7) and
(1.8), concentrating on remarkable integrals which were the key to this results. The readers
mainly interested in our CFT derivationmay pass directly to Sect. 3without loss of continuity.

With the inverse-temperature profile (2.1), one can use the Dyson series to obtain an
expansion

〈O(x, t)〉neq = 〈O(x, t)〉β̄ + ε〈O(x)〉1 + ε2〈O(x, t)〉2 + · · · (2.4)

for any local observable O(x, t), such as E(x, t) and J (x, t). The leading term in (2.4) is
the equilibrium expectation value (which is time independent, i.e., 〈O(x, t)〉β̄ = 〈O(x)〉β̄ ),
and the n-th order term is an (n + 1)-point correlation function for n = 1, 2, . . . [33]. This
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method works, in principle, for anymodel but, in practice, it is difficult to go beyond leading
order n = 1. For a quasi-free bosonic model, to which the Luttinger model reduces, one can
use general mathematical results [44–46] to replace the many-body computation by a much
simpler one-particle one, and this makes it possible to extend the calculation to all orders
[33].

In particular, for the local Luttinger model, after taking the limit L → ∞, this method
gives (1.7) with

F(x) = π

6vβ̄2
+

∞∑
n=1

εn Fn(x), (2.5)

where

Fn(x) = v

4π

∫
Rn

In(q1, . . . , qn)

⎛
⎝ n∏

j=1

Ŵ (q j )e
iq j x

⎞
⎠ dnq

(2π)n
, (2.6)

In(q1, . . . , qn) = 2

vβ̄

∫
R

∑
ν∈(2π/β̄)Z

⎛
⎝ n∏

j=0

v(p + Q j )

iν − v(p + Q j )

⎞
⎠ dp, (2.7)

Ŵ (q) =
∫
R

W (x)e−iqx dx, Q j =
n∑

k= j+1

qk . (2.8)

It is interesting to note that the limit L → ∞ is not only useful to eliminate the effect of
boundary conditions (as explained) but also computationally: this limit turns Riemann sums
into integrals and eliminates zero-mode contributionswhichwould bemore difficult to handle
[33].

The integrals in (2.7) are certainly nontrivial, but we found that they all can be computed
exactly, giving the result in Lemma 2.1, and this was the key that led to (1.8).

Lemma 2.1 For all n = 1, 2, . . .,

In(q1, . . . , qn)

= (− 1)n
{
n + 1

6

(
2π

vβ̄

)2
+ 2

(n + 1)(n + 2)

n∑
j=0

Q2
j −

4

n(n + 1)(n + 2)

∑
0≤ j<k≤n

Q j Qk

}

(2.9)

with Q j defined in (2.8).

A proof can be found in the Appendix.
It is remarkable that the result are even second order polynomials in the variables q j . It

is clear from (2.6) that the constant term leads to contributions to Fn(x) which are propor-
tional to W (x)n , whereas the terms with q2j and q jqk , j �= k, lead to W (x)n−2W ′′(x) and
W (x)n−2W ′(x)2, respectively. Thus, the special form of the integrals in Lemma 2.1 implies
that we get at most terms involving second derivatives of W (x). The explicit expression
of these integrals allows one to compute Fn(x) exactly, and the result is simple enough to
analytically sum the series in (2.5), which gives the result in (1.8) [33].

We describe this computation above since it allows one to interpret the argument in the
next section as a partial proof of Lemma 2.1. Such a proof is only partial since all terms with
q2j are identified with (say) q21 , and all terms with q jqk for j �= k are identified with q1q2.
This identification is also useful in order to explicitly derive (1.8) from Lemma 2.1, see Eq.

123



Finite-Time Universality in Nonequilibrium CFT 361

(A4) in [33], which is implied by (2.9). Thus, the exact integrals in Lemma 2.1 contain more
information than the result in (1.8). Since nontrivial integrals that can be computed exactly
are rare and often not only have one but several applications in physics, we prove (2.9) in
this paper. Moreover, since our derivation of (1.7) and (1.8) in the next section works even
for finite L , it suggests interesting Riemann sum generalizations of the exact integrals in
Lemma 2.1. We believe it would be interesting to work them out, but this is left for a future
study.

We finally mention that our argument in the next section allows one to interpret the
computation described above as a derivation of the conformal anomaly in CFT by a direct
computation, see (3.7).

3 CFT Derivation

3.1 CFT in Minkowski Space

We consider the Minkowskian version of a unitary two-dimensional CFT where space is a
circle S1 parameterized by the periodic coordinate x with the basic range −L/2 ≤ x ≤ L/2
and where t ∈ R is time.We keep the propagation speed v in our equations to clearly indicate
how it effects the (otherwise) universal law relating the temperature profiles to the heat-wave
dynamics.

The basic objects of such a CFT are the periodic light-cone components T±(x∓) =
T±(x∓ + L) of the energy-momentum tensor6 where, as before, x± = x ± vt . They are
distributions with values in the self-adjoint operators on the Hilbert space of states of the
theory that satisfy the equal-time commutation relations

[T±(x), T±(y)] = ∓2iδ′(x − y)T±(y) ± iδ(x − y)T ′±(y) ± c

24π
iδ′′′(x − y), (3.1)

[T±(x), T∓(y)] = 0, (3.2)

where δ(x) stands for the L-periodized δ-function. The real number c is the central charge
of the theory. In terms of the Fourier modes,

T±(x) = 2π

L2

∞∑
n=−∞

e± 2π inx
L

(
L±
n − c

24
δn,0

)
, (3.3)

the commutation relations in (3.1) and (3.2) reduce to those of the Virasoro algebra,

[L±
n , L±

m] = (n − m)L±
n+m + c

12
(n3 − n)δn+m,0, [L±

n , L∓
m] = 0. (3.4)

Technically, we assume that the Hilbert space of the theory is a (possibly infinite) direct sum
of unitary highest-weight representations of two commuting copies of the Virasoro algebra.
The local Luttinger model is an example with c = 1 of such a theory where

T±(x) = π :ρ̃±(x)2 : − π

12L2 , ρ̃±(x) = ρ±(x) cosh ϕ − ρ∓(x) sinh ϕ (3.5)

6 In the more standard notation for the energy-momentum tensor components in light-cone coordinates,
T+ = T−−, T− = T++ and T+− = 0 = T−+.
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with the fermion densities ρ±(x) = :ψ†
±(x)ψ±(x): and tanh 2ϕ = −λ/(πvF +λ). A related

quantity describing the interactions is the Luttinger parameter7 K = e2ϕ . The effective
densities ρ̃± act in a direct sum of bosonic Fock spaces that contains the interacting vacuum
|�〉 and theWick ordering in (3.5) is with respect to |�〉 [37,38]. In the following arguments,
the explicit form of the operators T±(x) is not used.

Let D̃iff+(S1) denote the covering group of the groupDiff+(S1) of orientation-preserving
diffeomorphisms of the circle. The elements of D̃iff+(S1) are represented by smooth func-
tions x → f (x) on R such that f (x + L) = f (x) + L and f ′(x) > 0, with functions
f (x) and f (x)+nL corresponding to the same diffeomorphism in Diff+(S1). The operator-
valued distributions T± generate two commuting projective unitary representations U± of
D̃iff+(S1) on the Hilbert space of the theory such that for infinitesimal diffeomorphisms
f (x) = x + εζ(x) one has

U±( f ) = I ∓ iε
∫ L/2

−L/2
ζ(x)T±(x) dx + o(ε) (3.6)

and under the adjoint action

U±( f )T±(x)U±( f )−1 = f ′(x)2T±( f (x)) − c

24π
(S f )(x) (3.7)

with the Schwarzian derivative (S f )(x) given by (1.9). This was proven in [47] for the unitary
highest-weight representations of the Virasoro algebra and carries over to the present context.
The adjoint action of U±( f ) preserves T∓.

The energy-momentum tensor determines the Hamiltonian,

H = v

∫ L/2

−L/2

[
T+(x) + T−(x)

]
dx, (3.8)

and under the Heisenberg picture evolution, T±(x, t) = T±(x∓) as claimed above. The
energy and momentum density operators

E(x, t) = v
[
T+(x−) + T−(x+)

]
, P(x, t) = T+(x−) − T−(x+) (3.9)

satisfy the continuity equations

∂tE + v2∂xP = 0, ∂tP + ∂xE = 0. (3.10)

As we shall see, the finite-volume nonequilibrium expectation values in (1.3) for O = E(x)
and J (x) = v2P(x) are well defined for any such CFT provided the inverse-temperature
profile is periodic.

3.2 Relating Nonequilibrium to Equilibrium Expectations

From the above, it is clear that the calculation of the time evolution of the nonequilibrium
expectation values of the energy density and current operators is equivalent to computing
〈T±(x∓)〉neq.

Let us denoteU ( f ) = U+( f )U−( f ) for f ∈ D̃iff+(S1). The key observation is that it is
possible to find an f such that

U ( f )GU ( f )−1 = β0H + const (3.11)

7 Equation (3.5) holds also for the local Luttinger model with two coupling constants g2 and g4 [39] with
K = e2ϕ dependent on g2 and g4.
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for some constant β0 > 0. In order to see this, take the function f given by (1.10) with the
constant β0 determined by

1

β0
= 1

L

∫ L/2

−L/2

1

β(x ′)
dx ′. (3.12)

The above choice of β0 ensures that f (x+L) = f (x)+L and thus that f defines an element
in D̃iff+(S1). Using this function f , it follows from (1.3), (3.7), and (3.9) that

U ( f )GU ( f )−1 = v

∫ L/2

−L/2
β(x)

[
U+( f )T+(x)U+( f )−1 +U−( f )T−(x)U−( f )−1] dx

= v

∫ L/2

−L/2
β(x) f ′(x)2

[
T+( f (x)) + T−( f (x))

]
dx − cv

12π

∫ L/2

−L/2
β(x)(S f )(x) dx .

(3.13)

Upon using the relation f ′(x) = β0/β(x) for the derivative of f , this reduces to

U ( f )GU ( f )−1 = vβ0

∫ L/2

−L/2
f ′(x)

[
T+( f (x)) + T−( f (x))

]
dx

− cv

12π

∫ L/2

−L/2
β(x)(S f )(x) dx

= vβ0

∫ L/2

−L/2

[
T+(y) + T−(y)

]
dy − cv

12π

∫ L/2

−L/2
β(x)(S f )(x) dx, (3.14)

where the last equality follows by the change of variables y = f (x). This establishes (3.11).
In short, the conjugation with U ( f ) straightens out the temperature profile.

From the definition in (1.3) and the relation in (3.11), we infer that

〈
O
〉
neq = Tr(e−U ( f )GU ( f )−1

U ( f )OU ( f )−1)

Tr(e−U ( f )GU ( f )−1
)

= 〈U ( f )OU ( f )−1〉
β0

. (3.15)

This translates the nonequilibrium expectations to the equilibrium ones defined by (1.4). For
x−r = x − rvt and

O =
∏
j

Tr j (x
−r j
j ) (3.16)

(with noncoincident points), using again (3.7), we obtain the relation
〈∏

j

Tr j (x
−r j
j )

〉
neq

=
〈∏

j

(
f ′(x−r j

j )2Tr j ( f (x
−r j
j )) − c

24π
(S f )(x

−r j
j )

) 〉
β0

(3.17)

for f given by (1.10) and (3.12). In particular,

〈
T±(x∓)

〉
neq = f ′(x∓)2

〈
T±( f (x∓))

〉
β0

− c

24π
(S f )(x∓). (3.18)

The Gibbs state is translation invariant so that the expectations
〈
T±(y)

〉
β0

do not depend on

y, but they depend, in general, on vβ0 and L . By scaling, however, (vβ0)
2
〈
T±(y)

〉
β0

depends
only on vβ0/L but in a way dependent on the representation content of the CFT. As we
shall see, what is universal, depending only on the central charge, is the L → ∞ limit of
(vβ0)

2
〈
T±(y)

〉
β0
.
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3.3 Thermodynamic Limit

Let us consider the limit L → ∞ of the nonequilibrium expectations in (3.17). For a large
class of kink-like β(x) profiles (not necessarily symmetric) with an antikink around ±L/2,

β−1
0 = 1

2

(
β−1
L + β−1

R
)

+ O(L−1), (3.19)

where βL and βR are the asymptotic values of the plateau to the left and to the right of the
kink.8 Similarly, for fixed x , β(x) will stabilize up to O(L−1) terms with any trace of the
antikink gradually wiped out, and so does the function f given by (1.10). The question about
the large-L limit of the nonequilibrium expectations in (3.17) then boils down to the one
for the equilibrium expectations

〈∏
j Tr j (x j )

〉
β0
, where, by rescaling, β0 may be set to its

asymptotic value and the insertion points are allowed to have O(L−1) variations.
In CFT the control of the thermodynamic limit of the equilibrium expectations is an easy

exercise. The thermal expectations like those mentioned above may be viewed as the ones in
the Euclidean theory on the torus S1 × S1 where the circles have circumferences L and vβ0,
respectively. In a modular invariant CFT [40], they also have a dual representation〈∏

j

Tr j (x j )
〉
β0

=
〈
T
∏
j

(−Tr j (ir j x j )
)〉

L/v
(3.20)

as the equilibrium expectations with inverse temperature L/v in the theory on the circle
with circumference vβ0. The components of the energy-momentum tensor with complex
arguments on the right-hand side are defined by

T±(x ± ivτ) = eτHT±(x)e−τH (3.21)

and T orders x j increasingly from the right to the left. The identity in (3.20) comes from
swapping the two circles that play a symmetric role in the Euclidean version of the theory.
It still holds for the Luttinger model if the finite-volume theory corresponds to antiperiodic
boundary conditions for the fermionic fieldsψ±(x), as we assumed, even if the corresponding
CFT does not have full modular invariance.

When L → ∞, the right-hand side of (3.20) tends to the vacuum expectations providing
the dual representation of the equilibrium expectations in the thermodynamic limit:〈∏

j

Tr j (x j )
〉∞
β0

= 〈0∣∣T ∏
j

(−Tr j (ir j x j )
)∣∣0〉. (3.22)

Besides, such vacuum expectations are universal because they receive contribution only from
the tensor product of the two vacuum highest-weight representations of the Virasoro algebra.
They factorize according to
〈
0
∣∣T ∏

j

(−Tr j (ir j x j )
)∣∣0〉 = 〈0∣∣T ∏

j : r j=+

(−T+(ix j )
)∣∣0〉〈0∣∣T ∏

j : r j=−

(−T−(−ix j )
)∣∣0〉. (3.23)

In the theory on the circle with circumference vβ0,
〈
0
∣∣T±(±ix1)

∣∣0〉 = − πc

12(vβ0)2
, (3.24)

〈
0
∣∣T T±(±ix1)T±(±ix2)

∣∣0〉 =
(

πc

12(vβ0)2

)2

+ π2c

8(vβ0)4 sinh4
(

π
vβ0

(x1 − x2)
) , (3.25)

8 Note that the constant β0 defined by (3.12) differs from β̄ in (2.1) by an O(ε2) term.
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〈
0
∣∣T T±(±ix1)T∓(∓ix2)

∣∣0〉 =
(

πc

12(vβ0)2

)2

. (3.26)

We infer that the identity in (3.17) holds in the thermodynamic limit for infinite-volume
profiles β(x) > 0 with arbitrary asymptotic values βL and βR and the function f defined by
(1.10). By scaling, the right-hand side is then independent of the choice of β0. In particular,
(3.18) together with (3.24) show that in the limit L → ∞,

〈
T±(x∓)

〉∞
neq = f ′(x∓)2

πc

12(vβ0)2
− c

24π
(S f )(x∓) = πc

12(vβ(x∓))2
− c

24π
(S f )(x∓).

(3.27)
This is equivalent to (1.7) with F given by the right-hand side of (1.8) multiplied by the
central charge c.

The above result allows one to easily extract the value of the thermal Drude weight Dth,
see (1.16), which may be obtained [18,48] from

Dth = −β2
0 lim

βL,R→β0

1

�β
lim
t→∞

1

t

∫ 〈
J (x, t)

〉∞
neq dx, (3.28)

where the nonequilibrium expectation is calculated for the inverse-temperature profile β(x)
interpolating between the asymptotic values βL and βR with�β = βL−βR. The factor−β2

0
is there to relate Dth to the response to temperature rather than inverse-temperature change.
The space integral receives the contribution from the region of length ≈ 2vt between the
two ballistically separating heat waves where the heat current takes the long-time value
(πc/12)(β−2

L − β−2
R ). This yields

Dth = πvc

3β0
(3.29)

which is proportional to the temperature 1/β0. The result may be also obtained using the
partitioning protocol that leads to the same steady state. It agrees with the calculation of the
thermal conductivity by the Green–Kubo formula,

κth(ω) = β0

∫ ∞

0
eiωt dt

∫ β0

0
dτ

∫ 〈
J (x, t)J (0, iτ)

〉∞
β0

dx

= π2c

8β3
0

∫ ∞

0
eiωt dt

∫ β0

0
dτ

∫ ∑
r=±

sinh−4
(

π(x − rvt + r ivτ)

vβ0

)
dx

= πvc

4β0

∫ ∞

0
eiωt dt

∫
cosh−4(y) dy = πvc

3β0

(
πδ(ω) + i PV

1

ω

)
, (3.30)

where we used (3.25) and (3.26) to express the infinite-volume 2-point correlation function
of the heat current. Note that the regular part of Re κth(ω) vanishes, confirming the absence
of diffusive heat transport in nonequilibrium CFT.

4 Generalizations

4.1 Other Correlators

Thefinite-volume relation in (3.15) between the nonequilibriumand equilibriumexpectations
may be rendered explicit also for observables
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O =
∏
j

� j (x
−
j , x+

j ), (4.1)

where � j (x
−
j , x+

j ) are primary fields whose transformation laws under the D̃iff+(S1) sym-
metry take the form

U+( f )U−( f )� j (x
−, x+)U−( f )−1U+( f )−1 = f ′(x−)

�+
� j f ′(x+)

�−
� j � j

(
f (x−), f (x+)

)
(4.2)

with the conformal weights �±
� j

≥ 0. It then follows from (3.15) that

〈∏
j

� j (x
−
j , x+

j )
〉
neq

=
〈∏

j

(
f ′(x−

j )
�+

� j f ′(x+
j )

�−
� j � j

(
f (x−

j ), f (x+
j )
)) 〉

β0
(4.3)

for f given by (1.10) andβ0 by (3.12).Note that these are simpler relations than for the energy-
momentum tensor components T± since those fail to be primary fieldswith conformalweights
(2, 0) and (0, 2) due to the Schwarzian derivative term in (3.7) reflecting the conformal
anomaly. In a similar way as for observables built from the operators T±, the relations (4.3)
hold also in the thermodynamic limit which may be controlled like before. Also, as before,
β0 may be taken arbitrary in the infinite volume.

For example, the Luttinger model has a conserved U(1) current with the light-cone
components J±(x∓) = √

K ρ̃±(x∓), see (3.5), with conformal weights (1, 0) and (0, 1),
respectively, and (renormalized) fermionic fields ψ±(x−, x+) with conformal weights

(
�+

ψ+ ,�−
ψ+

)
=
(

(K + 1)2

8K
,
(K − 1)2

8K

)
,
(
�+

ψ− ,�−
ψ−

)
=
(

(K − 1)2

8K
,
(K + 1)2

8K

)

(4.4)
accompanied by their Hermitian conjugates ψ

†
±(x−, x+) with the same conformal weights.9

Their infinite-volume equilibrium 2-point correlation functions have the form

〈
J±(x∓)J±(y∓)

〉∞
β0

= − K

4(vβ0)2 sinh2
(

π
vβ0

(x∓ − y∓)
) (4.5)

and

〈
ψ±(x−, x+)ψ

†
±(y−, y+)

〉∞
β0

= eπ i
[
�+

ψ± sgn(x−−y−)−�−
ψ± sgn(x+−y+)

]

2π
(

vβ0
π

sinh
(

π
vβ0

|x− − y−|
))2�+

ψ±
(

vβ0
π

sinh
(

π
vβ0

|x+ − y+|
))2�−

ψ±
. (4.6)

Thus, it follows from (4.3) that the corresponding nonequilibrium correlation functions are

〈
J±(x∓)J±(y∓)

〉∞
neq = − K

4v2β(x∓)β(y∓) sinh2
(∫ x∓

y∓ π
vβ(x ′)dx

′
) (4.7)

9 The fermionic fields are represented as vertex operators related to the bosonic fields ρ̃±. Such operators
require Wick ordering that provides their multiplicative renormalization, see, e.g., [38].
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and

〈
ψ±(x−, x+)ψ

†
±(y−, y+)

〉∞
neq

= eπ i
[
�+

ψ± sgn
(
β0
∫ x−
y− β(x ′)−1dx ′)−�−

ψ± sgn
(
β0
∫ x+
y+ β(x ′)−1dx ′)]

2π

(
v
√

β(x−)β(y−)

π
sinh

∣∣∫ x−
y− π

vβ(x ′)dx
′∣∣
)2�+

ψ±
(

v
√

β(x+)β(y+)

π
sinh

∣∣∫ x+
y+ π

vβ(x ′)dx
′∣∣
)2�−

ψ±
.

(4.8)

We note that the latter agrees with Eq. (19) in [33] to first order in the expansion parameter
ε in (2.1) and exactly reproduces Eq. (10) in [33] in the long-time limit.

4.2 Temperature and Velocity Profiles

It is straightforward to generalize the argument of Sect. 3.2 to nonequilibrium states as in
(1.3) with G given by (1.12), which is more conveniently written as

G = v

∫ L/2

−L/2

[
β+(x)T+(x) + β−(x)T−(x)

]
dx, β±(x) = β(x) [1 ± ν(x)/v] . (4.9)

Our argument above goes through as it stands but with U ( f ) replaced by U ( f+, f−) =
U+( f+)U−( f−) with two different diffeomorphisms f±. Choosing them as

f±(x) =
∫ x

0

β0,±
β±(x ′)

dx ′, 1

β0,±
= 1

L

∫ L/2

−L/2

1

β±(x)
dx, (4.10)

one straightens out both profiles 1/β±(x), replacing (3.15) by the identity
〈
O
〉
neq = 〈U ( f+, f−)OU ( f+, f−)−1〉

β0,+,β0,− , (4.11)

where

〈
O
〉
β0,+,β0,− = Tr

(
e−β0,+H+−β0,−H−O

)
Tr
(
e−β0,+H+−β0,−H−

) , H± = v

∫ L/2

−L/2
T±(x) dx, (4.12)

define the expectations in a simple example of a generalized Gibbs state with different
temperatures for the right and the left movers. In particular, (3.17) becomes
〈∏

j

Tr j (x
−r j
j )

〉
neq

=
〈∏

j

(
f ′
r j (x

−r j
j )2 Tr j ( fr j (x

−r j
j )) − c

24π
(S fr j )(x

−r j
j )

)〉
β0,+,β0,−

.

(4.13)
The thermodynamic limit of the expectations in (4.12) of the observables in (3.16) may still
be conveniently studied by going to the dual picturewhich, upon settingβ0,± = β0(1±ν0/v),
takes the form10

〈∏
j

Tr j (x j )

〉
β0,+,β0,−

=
〈
T
∏
j

[
− 1

(1 + r jν0/v)2
Tr j

(
ir j

x j
(1 + r jν0/v)

)]〉
L

v+ν0
, L
v−ν0

, (4.14)

where on the right-hand side the expectation is in the theory on the circle with circumference
vβ0. We infer that in the thermodynamic limit

10 This is proven using modular invariance for imaginary ν0 and continuing analytically to real ν0.
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〈∏
j

Tr j (x j )
〉∞
β0,+,β0,−

=
〈
0
∣∣T ∏

j

[
− 1

(1+r j ν0/v)2
Tr j

(
ir j

x j
(1+r j ν0/v)

)]∣∣0〉

=
〈
0
∣∣T ∏

j : r j=+

(− T+(ix j )
)∣∣0〉〈0∣∣T ∏

j : r j=−

(− T−(−ix j )
)∣∣0〉,

(4.15)

where on the right-hand side the first (second) vacuum expectation is in the theory on the
circle with circumference vβ0,+ (vβ0,−), and the last equality follows by the factorization in
(3.23) of the vacuum expectations and their rescaling. In a similar way as in Sect. 3.3, this
shows that the identity in (4.13) holds in the thermodynamic limit with the infinite-volume
profiles β±(x) > 0 with arbitrary positive asymptotic values β±,L and β±,R and f±(x) given
by the first of the equations in (4.10) with arbitrary β0,± > 0. In particular,

〈
T±(x∓)

〉∞
neq = πc

12(vβ±(x∓))2
− c

24π
(S f±)(x∓), (4.16)

implying that

〈
E(x, t)

〉∞
neq = 1

2

[
F+(x−) + F−(x+)

]
,
〈
J (x, t

〉∞
neq = v

2

[
F+(x−) − F−(x+)

]
(4.17)

with the functions

F±(x) = πc

6v

1

β±(x)2
+ vc

12π

(
β ′′±(x)

β±(x)
− 1

2

(
β ′±(x)

β±(x)

)2
)

, (4.18)

as described in Sect. 1.
There is a conceptual gain from the consideration of the nonequilibrium states with dif-

ferent temperature profiles for the right and left movers: unlike the states with equal profiles,
such states are preserved by the Schrödinger-picture dynamics. Indeed, for G given by (4.9),

e−it HGeit H = v

∫ L/2

−L/2

[
β+(x−)T+(x) + β−(x+)T−(x)

]
dx (4.19)

so that under the Schrödinger-picture evolution the profiles β±(x) move ballistically to the
right and to the left, respectively. This still holds in the thermodynamic limit andmakes it clear
why for long times such states converge to the generalized Gibbs state in (4.12) with inverse
temperatures β0,+ = β+,L and β0,− = β−,R. Conversely, we may view the nonequilibrium
states with G given by (4.9) as the generalized Gibbs state with local profiles β±(x) whose
time evolution under the Schrödinger-picture dynamics reduces to the time evolution of the
profiles governed by the equations

∂tβ± ± v∂xβ± = 0. (4.20)

This is reminiscent of the time evolution of the generalized Gibbs states with local profiles
in the generalized hydrodynamic picture of integrable models out of equilibrium [14–18,20–
23]. In CFT, however, no hydrodynamic-scale closure is needed to obtain the hydrodynamic
evolution equation (4.20) [49].

4.3 Temperature and Chemical-Potential Profiles

Suppose that our CFT possesses a U(1) symmetry generated by a conserved current with
components ρ and j satisfying

∂tρ + ∂x j = 0. (4.21)
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For instance, ρ = ρ+ + ρ− and j = Kv(ρ+ − ρ−) for the local Luttinger model, see, e.g.,
Appendix B in [36] (we recall that K is the Luttinger parameter). One may then consider
states with both temperature and chemical-potential11 profiles by taking

G =
∫ L/2

−L/2
β(x) [E(x) − μ(x)ρ(x)] dx, (4.22)

where ρ(x) is the zero time density andμ(x) is a periodic chemical-potential profile. Suppose
that the light-cone components J± = (1/2)(ρ ± v−1 j) of the current depend only on x∓,
respectively, and satisfy the U(1) current algebra:

[J±(x), J±(y)] = ± κ

2π i
δ′(x − y), [J±(x), J∓(y)] = 0, (4.23)

[T±(x), J±(y)] = ∓iδ′(x − y)J±(y) ± iδ(x − y)J ′±(y), [T±(x), J∓(y)] = 0. (4.24)

In terms of the Fourier modes,

J±(x) = 1

L

∞∑
n=−∞

e± 2π inx
L J±

n (4.25)

and the commutation relations take the form

[J±
n , J±

m ] = κnδn+m,0, [J±
n , J∓

m ] = 0, [L±
n , J±

m ] = −mJ±
n+m, [L±

n , J∓
m ] = 0.

(4.26)
For concreteness, we shall restrict our discussion to the case of the local Luttinger model in
which case J± = √

K ρ̃± and κ = K , see (3.5), or to the case when J± is one of the Cartan
subalgebra components of the two current algebras of the level k WZW theory based on a
compact Lie group [40] (e.g., U(1) or SU(N )) in which case κ = k/2. It follows from [47,50]
that in these cases there exist, besides the two projective representations U± of D̃iff+(S1)
considered above for which

U±( f )J±(x)U±( f )−1 = f ′(x)J±( f (x)), U±( f )J∓(x)U±( f )−1 = J∓(x), (4.27)

also two commuting projective representations V± of the additive gauge group of periodic
smooth maps h(x) = h(x + L) on R generated infinitesimally by J±,

V±(h) = I ∓ iε
∫ L/2

−L/2
ξ(x)J±(x) dx + o(ε) (4.28)

for h(x) = εξ(x). Under the adjoint action of V±(h),

V±(h)J±(x)V±(h)−1= J±(x) + κ

2π
h′(x), V±(h)J∓(x)V±(h)−1= J∓(x),

(4.29)

V±(h)T±(x)V±(h)−1= T±(x) + h′(x)J±(x) + κ

4π
h′(x)2, V±(h)T∓(x)V±(h)−1= T∓(x).

(4.30)

Recall from Sect. 3.2 that the conjugation with operators U ( f ) = U+( f )U−( f ) for
f ∈ D̃iff(S1) satisfying (1.10) with β0 given by (3.12) was previously used to straighten out

11 The name is somewhat conventional. If ρ is charge density, rather than the particle density, then −μ(x)
would be the electric potential.
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the periodic inverse-temperature profile β(x) to a constant one given by β0. We shall keep
the function f as before and choose

h(x) = 1

v

∫ x

0

(
μ(x ′) − β0

β(x ′)
μ0

)
dx ′, μ0 = 1

L

∫ L/2

−L/2
μ(x) dx . (4.31)

Then conjugating G in (4.22) first with V (h) = V+(h)V−(h) and then withU ( f ) straightens
out the chemical-potential and inverse-temperature profiles to μ0 and β0, respectively,

U ( f )V (h)GV (h)−1U ( f )−1 =
∫ L/2

−L/2
β0 [E(y) − μ0ρ(y)] dy + const, (4.32)

leading to the identity
〈
O
〉
neq = 〈U ( f )V (h)OV (h)−1U ( f )−1〉

β0,μ0
. (4.33)

The thermodynamic limit can be controlled as before using the dual representation of the
equilibrium expectations (that involves now the theory on a circle of circumference vβ0

with twisted boundary conditions). In the infinite volume, one can again treat profiles with
arbitrary asymptotic values. Using the fact that in the theories under consideration,

〈
T±(x)

〉∞
β0,μ0

= πc

12(vβ0)2
+ κμ2

0

4πv2
,
〈
J±(x)

〉∞
β0,μ0

= κμ0

2πv
(4.34)

in the thermodynamic limit, one obtains the identities in (1.7) with

F(x) = πc

6v

1

β(x)2
+ cv

12π

(
β ′′(x)
β(x)

− 1

2

(
β ′(x)
β(x)

)2
)

+ κ

2πv
μ(x)2 (4.35)

as well as the formulas

〈
ρ(x, t)

〉∞
neq = 1

2

[
G(x−) + G(x+)

]
,
〈
j (x, t)

〉∞
neq = v

2

[
G(x−) − G(x+)

]
(4.36)

with
G(x) = κ

πv
μ(x). (4.37)

For thematrixD of theDrudeweights obtained from the nonequilibrium expectationswith
respect to states with profileswith small kinks of heights�β = βL−βR and�μ = μL−μR
around the constant values β0 and μ0 of the inverse temperature and chemical potential, the
formula in (3.28) generalizes to

D =
(
D11 D12

D21 D22

)

= lim
βL,R→β0
μL,R→μ0

lim
t→∞

1

t

∫ ⎛⎜⎝
− β2

0
�β

〈
J (x, t)

〉∞
neq

∣∣∣
�μ=0

1
�μ

〈
J (x, t)

〉∞
neq

∣∣∣
�β=0

− β2
0

�β

〈
j (x, t)

〉∞
neq

∣∣∣
�μ=0

1
�μ

〈
j (x, t)

〉∞
neq

∣∣∣
�β=0

⎞
⎟⎠ dx . (4.38)

This yields

D =
( πvc

3β0
κvμ0

π

0 κv
π

)
. (4.39)

Note that the thermal Drude weight D11 is independent of μ0 and the density Drude weight
D22 is independent of the temperature. In particular, for the Luttinger model, D22 = Kv/π .
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The lack of symmetry of D is due to the asymmetric way in which the temperature and the
chemical potential enter into the Gibbs state.12

As before, one may also consider nonequilibrium states with different local profiles β±(x)
and μ±(x) for right and left movers, which are defined by (1.3) with

G =
∫ L/2

−L/2

∑
r=±

βr (x) [vTr (x) − μr (x)Jr (x)] dx . (4.40)

This leads to the replacement of the functions F and G in (4.35) and (4.37) with

F±(x) = πc

6v

1

β±(x)2
+ cv

12π

(
β ′′±(x)

β±(x)
− 1

2

(
β ′±(x)

β±(x)

)2
)

+ κ

2πv
μ±(x)2 (4.41)

and
G±(x) = κ

πv
μ±(x), (4.42)

respectively. In this case, the expectation values are given by (4.17) for
〈
E(x, t)

〉∞
neq and〈

J (x, t)
〉∞
neq as well as

〈
ρ(x, t)

〉∞
neq = 1

2

[
G+(x−) + G−(x+)

]
,
〈
j (x, t)

〉∞
neq = v

2

[
G+(x−) − G−(x+)

]
. (4.43)

The nonequilibrium states in (4.40) form the family of generalized Gibbs states with
local profiles that correspond to the commuting conserved charges H± of (4.12) and
QJ± = ∫ L/2

−L/2 J±(x) dx . Such a family of states is again preserved by the Schrödinger evolu-
tion that displaces the local profiles β±(x) and μ±(x) ballistically. Their time evolutions are
governed by (4.20) together with

∂tμ± ± v∂xμ± = 0. (4.44)

In the long-time limit, one obtains a genuine (i.e., with constant profiles) generalized
Gibbs state which is the thermodynamic limit of the state with

G = β+,L(H+ − μ+,LQJ+) + β−,R(H− − μ−,RQJ−). (4.45)

In particular,

lim
t→∞〈E(x, t)〉∞neq = πc

12v

(
β−2

+,L + β−2
−,R

)
+ κ

4πv

(
μ2+,L + μ2−,R

)
, (4.46)

lim
t→∞〈J (x, t)〉∞neq = πc

12

(
β−2

+,L − β−2
−,R

)
+ κ

4π

(
μ2+,L − μ2−,R

)
, (4.47)

lim
t→∞〈ρ(x, t)〉∞neq = κ

2πv

(
μ+,L + μ−,R

)
, (4.48)

lim
t→∞〈 j (x, t)〉∞neq = κ

2π

(
μ+,L − μ−,R

)
(4.49)

generalizing (1.15).
As a specific example, consider the Luttinger model with the initial state given by (4.40)

with β±(x) = β0 and with μ±(x) interpolating when L → ∞ between the asymptotic
values μ±,L and μ±,R. The charges QJ± = √

K
∫

ρ̃±(x)dx are then the number operators
of right and left moving plasmons. One can also consider in that case the number operators

12 The coefficients of linear response of currentsJ and j to small −�β and �(βμ) would form a symmetric
matrix that unveils a ballistic version of the Onsager reciprocal relations.
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of electrons (and holes) Qe± = ∫ ρ±(x)dx , which are different from QJ±, although the total
charges are equal, i.e., Qe+ + Qe− = QJ+ + QJ−. Indeed, we infer from (3.5) that

QJ± = K + 1

2
Qe± − K − 1

2
Qe∓. (4.50)

Unlike for QJ±, the spectra of Qe± are composed of integers. In terms of Qe±, the generalized
Gibbs state appearing in the long-time limit of the evolution will correspond to

G = β0(H − μe+Qe+ − μe−Qe−), μe± = 1

2
(μ+,L + μ−,R) ± K

2
(μ+,L − μ−,R). (4.51)

From (4.49) we infer that the value of the permanent current in the limiting nonequilibrium
steady state is

I = K

2π

(
μ+,L − μ−,R

) = 1

2π

(
μe+ − μe−

)
. (4.52)

It was argued in [51–53] that μe± that couple in the steady state to the electron charges
correspond to the chemical potentials of free electrons of wide leads connected to a Luttinger
wire, at least if μ+(x) = μ−(x). As was discussed in [36], the second equality of (4.52)
would then provide an explanation for the experimental measurements [54] of conductance in
quantumwires that gave results close to the universal constant e2/h, equal to 1/2π in the units
h̄ = e = 1 that we are using. This universal value is different from the conductance Ke2/h
predicted in [55] which, instead, is consistent with the first equality of (4.52) that uses the
asymptotic values of the imposed chemical-potential profiles that couple in the steady state to
the plasmon charges. The above extends the derivation of the universal result obtained in [36]
to states with constant temperature and with chemical-potential profiles possibly different
for the right and left movers.13

The Luttinger model possesses also a conserved axial current with ρA = ρ+ − ρ− and
jA = (v/K )(ρ+ + ρ−) satisfying ∂tρA + ∂x jA = 0. Note that (4.48) implies that the
permanent axial current in the limiting nonequilibrium steady state considered above takes
the value

IA = 1

2π

(
μ+,L + μ−,R

) = 1

2π

(
μe+ + μe−

)
(4.53)

with the universal coefficient both when expressed in terms of the asymptotic values of the
profiles μ±(x) and in terms of μe±.

5 Equilibrium Dynamics and Relation to Euclidian CFT

In this section, we discuss the relation between the articles [29–32] and the present paper. In
[29] itwas argued that the kernel of the 1-particle densitymatrix in the ground state of a nonrel-
ativistic high density Fermi gas in a trapmay be described onmesoscopic scales by the 2-point
function of the fermionic massless free field whose Fermi velocity varies in space. These
results were generalized in [30–32] to certain nonrelativistic systems of interacting 1d bosons
in traps. Despite similarities, there are several differences with the approach of the present
paper. First, the arguments in [29] were based on the analysis of the ground-state Euclidian-
time correlators in the presence of a trap and these were shown to correspond to Euclidian
CFT correlators in an appropriate curved metric (in [32] also the coupling to a gauge field

13 The result in [36] was more general in that it was for the Luttinger model with nonlocal interactions, but
it was only for zero temperature states and μ+(x) = μ−(x) = μ(x).
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appeared implicitly). In this paper, we consider positive temperatures, but the correspondence
of [29] generalizes to low-temperature states leading to the compactification of the Euclidian
time direction in CFT, just as for homogeneous equilibria. Hence, for specific CFTs, the states
in (1.3)may, indeed, be viewed as describing onmesoscopic scales the 1d nonrelativistic low-
temperature matter in traps, with β(x) having the interpretation of the position-dependent
Fermi velocity in appropriate units. Second, the argument of [29]was done for the equilibrium
dynamics (although some nonequilibrium situations were also considered), whereas in the
bulk of the present paper we study the dynamics generated by the homogeneous Hamiltonian
that does not preserve the states in (1.3). Our considerations may, however, be generalized
to dynamics induced by inhomogeneous Hamiltonians [56], in particular to the ones that
preserve the states in (1.3). Third, we use the Minkowski version of CFT, whereas the papers
[29–32] employed the Euclidian CFT. That is usually considered as an innocent distinction
handled by the Wick rotation. Indeed, for the primary fields, the correlators in the Euclidian
theory in the metric considered in [29–32] and with compactified time do agree, up to the
Wick rotation, with the corresponding correlators in the states of (1.3) for which the time
dependence is generated by the equilibrium dynamics. As shown below, however, that does
not hold directly for the correlators of the energy-momentum tensor components which are
of main interest in this paper. This points to the need of caution when one applies Euclidian
techniques in the study of systems that are inhomogeneous in space or/and time.

To be more concrete, let us briefly discuss the equilibrium dynamics for the states in (1.3)
that is generated by the inhomogeneous Hamiltonian H̃ = β−1

0 G. Defining

T±(x; t) = eit H̃ T±(x) e−it H̃ , � j (x; t) = eit H̃� j (x, x) e
−it H̃ , (5.1)

we immediately obtain from (3.15) and (3.11) the relations〈∏
j

Tr j (x j ; t j )
〉
neq

=
〈∏

j

(
f ′(x j )2Tr j ( f (x j )−r j ) − c

24π
(S f )(x j )

) 〉
β0

, (5.2)

〈∏
j

� j (x j ; t j )
〉
neq

=
〈∏

j

(
f ′(x j )

�+
� j f ′(x j )

�−
� j � j ( f (x j )

−, f (x j )
+)

) 〉
β0

, (5.3)

where f (x j )−r = f (x j ) − rvt j . Note the difference of the right-hand sides with those of
(3.17) and (4.3) corresponding to the dynamics generated by the homogeneous Hamiltonian
H of (3.8) which results in the time dependence in the arguments of function f .

After theWick rotation t j = −iτ j , the correlators in (5.3) become the correlation functions
of the same primary fields in the Euclidian CFT on the torus S1 × S1 parameterized by
(x mod L , τ mod β0) and equipped with the Riemannian metric

h = (dx)2 + (vβ(x)/β0)
2(dτ)2 = eσ(z,z̄)h0, (5.4)

where h0 = dzdz̄ for the complex coordinate z = f (x) + ivτ on the torus with f (x) given
by (1.10) and β0 by (3.12), and where σ(z, z̄) = −2 ln f ′(x). In other words,〈∏

j

� j (x j ,−iτ j )
〉
neq

=
〈∏

j

� j (z j , z̄ j )
〉
S1×S1, h

, (5.5)

where on the left-hand side is the Wick rotated (5.3) and on the right-hand side the Euclidian
correlation functions on the torus S1 × S1 with the Riemannian metric h of (5.4). Such a
relation is well known for f (x) = x . Its generalization to general f follows from the identity
〈∏

j

� j (z j , z̄ j )
〉
S1×S1, eσ h0

=
〈∏

j

(
e
1
2 (�+

� j
+�−

� j
)σ (z j ,z̄ j )

� j (z j , z̄ j )
)〉

S1×S1, h0
. (5.6)
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The ground-state version of the relations in (5.5) provided the basis for the use of Euclidian
CFT in the description of the trapped 1d fermions or bosons onmesoscopic scales in [29–32],
with the interpretation of vβ(x)/β0 as the position-dependent Fermi velocity clearly reflected
in the form of the metric in (5.4).

Let us pass to the discussion of the energy-momentum correlators. For f (x) = x , the
Wick-rotated correlators in (5.2) are represented by the Euclidian correlation functions of the
energy-momentum components T+ = Tzz‖(dz)2‖ and T− = Tz̄z̄‖(dz̄)2‖ on the torus S1×S1

with metric h0. However, for general f (x) one has [57], in the notation z+ = z, z− = z̄,〈∏
j

Tr j (z j , z̄ j )
〉
S1×S1, eσ h0

=
〈∏

j

(
e−σ(z j ,z̄ j )

(
Tr j − c

24π

(
∂2
zr j

σ − 1

2
(∂zr j σ)2

)
(z j , z̄ j )

)〉
S1×S1, h0

=
〈∏

j

(
f ′(x j )2Tr j (z j , z̄ j ) + c

48π

( f ′′′

f ′ −
( f ′′

f ′
)2)

(x j )
)〉

S1×S1, h0
(5.7)

and the right-hand side does not represent correctly the Schwarzian-derivative terms of the
Wick-rotated (5.2). In the Euclidian domain, the Schwarzian derivative appears in the trans-
formation law of the energy-momentum components when one deals with holomorphic
transformations z → f (z) [40,57], but this is not the case here. A closer examination
shows that〈∏

j

Tr j (x j ;−iτ j )
〉
neq

=
〈∏

j

(
− Tr j (z j , z̄ j ) − c

48π
R(z j , z̄ j )

)〉
S1×S1,eσ h0

, (5.8)

whereR(z, z̄) = −β ′′(x)/β(x) is the scalar curvature of the metric eσ h0. This substantiates
the comment made above about the need of caution.

6 Conclusions

We elaborated on the formula of [33] giving the full time evolution of the energy density
and heat current from a nonequilibrium state with a preimposed temperature profile in the
Luttinger model with local interactions. The formula was obtained in [33] by expanding the
nonequilibrium state around the equilibrium to all orders. More details on the perturbative
computation involving the exact calculation of complicated integrals, that may be interesting
in its own right, were given. The main part of the paper was devoted to showing how the
formula of [33], a result of the resummation of the perturbative series, may be obtained using
Minkowskian conformal symmetries of the local Luttinger model. The idea was to use con-
formal transformations to map spatially inhomogeneous situations to homogeneous ones,
straightening out a nonuniform temperature profile to a constant one. This led to a direct
relation between nonequilibrium and equilibrium states, yielding the remarkable formula of
[33] as a corollary. The CFT argument holds for a general class of unitary CFTs and could
be applied to a wider class of nonequilibrium states that are preserved by the Schrödinger-
picture evolution. The states in this class may be viewed as particular examples of simple
generalized Gibbs states with local profiles, and they tend to ordinary generalized Gibbs
states at long times, somewhat similarly as in the scenario recently advocated for integrable
models where the evolution at certain length and time scales could be described by general-
ized hydrodynamics [14–18,20–23]. We obtained similar results also for CFTs with a U(1)
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current algebra (including the local Luttinger model itself) where we treated nonequilibrium
states with temperature and chemical-potential profiles. Moreover, our results permit a more
detailed analysis within CFT, compared to using the partitioning protocol studied before
[27], of how a system starting in a state that looks like two different equilibria joint together
evolves in time towards a nonequilibrium steady state described by a generalized Gibbs
state.

Aswas discussed in Sect. 5, at least some families of theCFTnonequilibrium states thatwe
studied in the present paper could be interpreted as providing a mesoscopic-scale description
of dense nonrelativistic 1d matter in macroscopic traps [29–32]. The dynamical correlators
in such CFT states should similarly describe the corresponding nonrelativistic correlators at
mesoscopic time scales both for after-quench and for equilibrium dynamics. The other way
of arriving at the family of nonequilibrium CFT states that we considered is by reversing
the logic of this paper. In the periodic-volume Minkowski CFT, the conformal symmetries
(together with the gauge symmetries if a U(1) current algebra is present) are broken in the
usual equilibria that are not preserved by the symmetries. Instead, the application of the
symmetry transformations to the equilibrium states generates the family of nonequilibrium
states that were studied here.

In the infinite volume, the states with kink-like profiles give access to the full counting
statistics of the energy or charge transfers through the kinks, similarly to the states arising in
the partitioning protocol [27].Although such statistics in both approaches differ at finite times,
they have the same long-time large deviations. This will be discussed elsewhere as it requires
using different boundary conditions for finite volumes that allow one to avoid the duplication
of kinks in the profiles. Finally, another interesting exercise, which was abundantly discussed
in the similar context of quantum quenches [25], concerns the evolution of the entanglement
entropy or negativity starting from states with profiles of the type consider here. By the
replica trick, the latter may be extracted from nonequilibrium correlators of the twist primary
fields in the replicated theory, to which our approach gives direct access. The analysis of the
corresponding formulas is left for future research.
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Appendix

In this appendix we give a proof of Lemma 2.1.
We find it convenient to write the integrals in (2.7) as

In(q1, . . . , qn) = 2

vβ̄

∫
R

∑
ν∈(2π/β̄)Z

n∏
j=0

fν(p + Q j ) dp, fν(p) = vp

iν − vp
. (A.1)
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To compute these integrals we insert the Taylor series

fν(p + Q j ) = fν(p) + f (1)(p)Q j + 1

2
f (2)(p)Q2

j + . . . , f ( j≥1)
ν (p) = j !v j iν

(iν − vp) j+1

(A.2)
into the integrand and obtain

In(q1, . . . , qn) = I (n+1)
n + I (n,1)

n

n∑
j=0

Q j + 1

2
I (n,0,1)
n

n∑
j=0

Q2
j + I (n,2)

n

∑
0≤ j<k≤n

Q j Qk + Rn

(A.3)
with the integrals

I (m0,m1,...,mk )
n = 2

vβ̄

∫
R

∑
ν∈(2π/β̄)Z

fν(p)
m0 f (1)

ν (p)m1 . . . f (k)
ν (p)mk dp, (A.4)

where m j = 1, 2, . . . for j = 0, 1, . . . , k such that
∑

j m j = n + 1, and Rn a linear
combination of terms

I (m0,m1,...,mk )
n

k∏
j=1

Q j
� j,1

. . . Q j
� j,m j

(A.5)

with indices 1 ≤ � j,1 < · · · < � j,m j ≤ n for j = 1, 2, . . . , k and {m j } such that∑
j jm j ≥ 3.
To compute the integrals in (A.4) we define M = ∑

j jm j and insert the derivatives of
fν(p) from (A.2). This gives

I (m0,m1,...,mk )
n

=2! · · · k!
∫
R

2vM+m0−1 1

β̄

∑
ν∈(2π/β̄)Z

pm0(iν)n−m0+1

(iν − vp)n+M+1 dp

=2! . . . k!
∫
R

n−m0+1∑
�

(
n − m0 + 1

�

)
2vM+m0+�−1 1

β̄

∑
ν∈(2π/β̄)Z

pm0+�

(iν − vp)M+m0+�
dp

=2! . . . k!
∫
R

n−m0+1∑
�=0

(
n − m0 + 1

�

)
(vβ̄)M−2sm0+�

(M + m0 + � − 1)!
dM+m0+�−1

dsM+m0+�−1

(
coth

(1
2
s
))

ds.

(A.6)

In the second equality we wrote (iν)n−m0+1 = (iν − vp + vp)n−m0+1 to expand into a
binomial series, and in the third we summed the bosonic Matsubara frequencies ν using the
Mittag–Leffler series of coth(vβ̄ p/2) and changed variables to s = vβ̄ p. We note that, for
M ≥ 1, the integrand of the last integral is singular, but the singularity is removable, i.e., one
can replace coth(s/2) by coth(s/2) − 2/s without changing the result. To further compute
these integrals we use partial integrations. We find that the integrals in (A.6) are zero for
M ≥ 3, which implies Rn = 0. The remaining integrals I (n+1)

n , I (n,1)
n , I (n,0,1)

n , and I (n−1,2)
n

are found by straightforward computations. Inserting them into (A.3) we obtain the result in
Lemma 2.1.

123



Finite-Time Universality in Nonequilibrium CFT 377

References

1. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state.
J. Math. Phys. 8, 1073 (1967)

2. Spohn, H., Lebowitz, J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun.
Math. Phys. 54, 97 (1977)

3. Zotos, X., Naef, F., Prelovsek, P.: Transport and conservation laws. Phys. Rev. B 55, 11029 (1997)
4. Ho, T.G., Araki, H.: Asymptotic time evolution of a partitioned infinite two-sided isotropic XY -chain.

Tr. Mat. Inst. Steklova 228, 203 (2000)
5. Ogata, Y.: Nonequilibrium properties in the transverse XX chain. Phys. Rev. E 66, 016135 (2002)
6. Aschbacher, W.H., Pillet, C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153

(2003)
7. Giamarchi, T.: Quantum Physics in One Dimension. Oxford University Press, Oxford (2004)
8. Zotos, X.: Issues on the transport of one dimensional systems. J. Phys. Soc. Jpn. Suppl. 74, 173 (2005)
9. Sirker, J., Pereira, R.G., Affleck, I.: Diffusion and ballistic transport in one-dimensional quantum systems.

Phys. Rev. Lett. 103, 216602 (2009)
10. Sirker, J., Pereira, R.G., Affleck, I.: Conservation laws, integrability, and transport in one-dimensional

quantum systems. Phys. Rev. B 83, 035115 (2011)
11. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885

(2008)
12. Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M.: Colloquium: nonequilibrium dynamics of

closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011)
13. Cazalilla, M.A., Chung, M.-C.: Quantum quenches in the Luttinger model and its close relatives. J. Stat.

Mech. 064004 (2016)
14. Bertini, B., Collura, M., De Nardis, J., Fagotti, M.: Transport in out-of-equilibrium XX Z chains: exact

profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016)
15. Castro-Alvaredo, O.A., Doyon, B., Yoshimura, T.: Emergent hydrodynamics in integrable quantum sys-

tems out of equilibrium. Phys. Rev. X 6, 041065 (2016)
16. Bulchandani, V.B., Vasseur, R., Karrasch, C., Moore, J.E.: Bethe–Boltzmann hydrodynamics and spin

transport in the XXZ chain. arXiv:1702.06146 [cond-mat.stat-mech] (2017)
17. Doyon, B., Spohn, H., Yoshimura, T.: A geometric viewpoint on generalized hydrodynamics.

arXiv:1704.04409 [cond-mat.stat-mech] (2017)
18. Doyon, B., Spohn, H.: Drude weight for the Lieb–Liniger Bose gas. arXiv:1705.08141 [cond-mat.stat-

mech] (2017)
19. Spohn, H.: Interacting and noninteracting integrable systems. arXiv:1707.02159 [cond-mat.stat-mech]

(2017)
20. Doyon, B., Yoshimura, T.: A note on generalized hydrodynamics: inhomogeneous fields and other con-

cepts. SciPost Phys. 2, 014 (2017)
21. Ilievski, E., De Nardis, J.: Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic

approach. Phys. Rev. B 96, 081118(R) (2017)
22. Caux, J.-S., Doyon, B., Dubail, J., Konik, R., Yoshimura, T.: Hydrodynamics of the interacting Bose gas

in the Quantum Newton Cradle setup. arXiv:1711.00873 [cond-mat.stat-mech] (2017)
23. Doyon, B.: Exact large-scale correlations in integrable systems out of equilibrium. arXiv:1711.04568

[math-ph] (2017)
24. Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys.

Rev. Lett. 96, 136801 (2006)
25. Calabrese, P., Cardy, J.: Quantum quenches in 1+1 dimensional conformal field theories. J. Stat. Mech.

064003 (2016)
26. Bernard, D., Doyon, B.: Energy flow in non-equilibrium conformal field theory. J. Phys. A 45, 362001

(2012)
27. Bernard, D., Doyon, B.: Conformal field theory out of equilibrium: a review. J. Stat. Mech. 064005 (2016)
28. Hollands, S., Longo, R.: Non-equilibrium thermodynamics and conformal field theory. Commun. Math.

Phys. 357, 43 (2018)
29. Dubail, J., Stéphan, J.-M., Viti, J., Calabrese, P.: Conformal field theory for inhomogeneous one-

dimensional quantum systems: the example of non-interacting Fermi gases. SciPost Phys. 2, 002 (2017)
30. Brun, Y., Dubail, J.: One-particle density matrix of trapped one-dimensional impenetrable bosons from

conformal invariance. SciPost Phys. 2, 012 (2017)
31. Dubail, J., Stéphan, J.-M., Calabrese, P.: Emergence of curved light-cones in a class of inhomogeneous

Luttinger liquids. SciPost Phys. 3, 019 (2017)

123

http://arxiv.org/abs/1702.06146
http://arxiv.org/abs/1704.04409
http://arxiv.org/abs/1705.08141
http://arxiv.org/abs/1707.02159
http://arxiv.org/abs/1711.00873
http://arxiv.org/abs/1711.04568


378 K. Gawędzki et al.
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