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Abstract A notorious problem in mathematics and physics is to create a solvable model for
random sequential adsorption of non-overlapping congruent spheres in the d-dimensional
Euclidean space with d � 2. Spheres arrive sequentially at uniformly chosen locations in
space and are accepted only when there is no overlap with previously deposited spheres.
Due to spatial correlations, characterizing the fraction of accepted spheres remains largely
intractable. We study this fraction by taking a novel approach that compares random sequen-
tial adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered
random graphs. This random network model can be thought of as a corrected mean-field
model for the interaction graph between the attempted spheres. Using functional limit theo-
rems, we characterize the fraction of accepted spheres and its fluctuations.

Keywords Random geometric graph · Random sequential adsorption · Jamming fraction ·
Functional limit theorems · Mean-field analysis

1 Introduction

Random sequential adsorption of congruent spheres in the d-dimensional Euclidean space
has been a topic of great interest across the sciences, serving as basic models in condensed
matter and quantum physics [21,28,35,37], nanotechnology [11,14], information theory
and optimization problems [20,24,40]. Random sequential adsorption also arises naturally
in experimental settings, ranging from the deposition of nano-scale particles on polymer
surfaces, adsorption of proteins on solid surfaces to the creation of logic gates for quantum
computing, andmanymore applications in domains as diverse biology, ecology and sociology,
see [10,45,46] for extensive surveys. We refer with random sequential adsorption (rsa) to
the dynamic process defined as follows: At each time epoch, a point appears at a uniformly
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Fig. 1 a Random sequential adsorption in 2D with density c = 15. Dots indicate the centers of accepted
(red) and discarded (blue) spheres. b rgg(15, 2) graph with 1000 vertices: Two vertices share an edge if they
are less than 2r distance apart, where r is such that a vertex has on average c = 15 neighbors. Notice the
many local clusters. a rsa in 2D b rgg network (Color figure online)

chosen location in space, and an attempt is made to place a sphere of radius rwith the chosen
point as its center. The new sphere must either fit in the empty area without overlap with the
spheres deposited earlier, or its deposition attempt is discarded. After n deposition attempts,
the quantity of interest is the proportionof accepted spheres, or equivalently, the volume
covered by the accepted spheres. Figure 1a illustrates an instance of this rsa process in 2D.

Equivalently, we may think of the interaction network of the n chosen centers of spheres
by drawing an edge between two points if they are at most 2r distance apart. This is because a
deposition attempt can block another deposition attempt if and only if the centers are at most
2r distance apart. The obtained random graph is known as the random geometric graph (rgg)
[32]. The fraction of accepted spheres can be obtained via the following greedy algorithm
to find independent sets of rgg: Given a graph G, initially, all the vertices are declared
inactive. Sequentially activate uniformly chosen inactive vertices of the graph and block
the neighborhood until all the inactive vertices are exhausted. We refer to the above greedy
algorithm as rsa on the graph G. If G has the same distribution as rgg on n vertices, then
the final set of active vertices has the same distribution as the number of accepted spheres in
the continuum after n deposition attempts. Thus, we one can equivalently study rsa on rgg
to obtain the fraction of accepted spheres when rsa is applied in continuum.

The precise setting in this paper considers rsa in a finite-volume box [0, 1]d with periodic
boundary, filled with ‘small’ spheres of radius r and volume Vd(r) [34,36,37]. Since the
volume of [0, 1]d is 1, the probability that two randomly chosen vertices share an edge in
the interaction network is equal to the volume of a sphere of radius 2r given by Vd(2r) =
πd/2(2r)d/Γ(1 + d/2). Thus the average vertex degree in the rgg is c = nVd(2r), and
since c is also the average number of overlaps per sphere, with all other attempted spheres,
we interchangeably use the terms density and average degree for c. We operate in the sparse
regime, where both r → 0 and n → ∞, so that c � 0 is an arbitrary but fixed constant.
In fact, maintaining a constant density c in the large-network limit is necessary to observe a
non-degenerate limit of the fraction of accepted spheres. In other words, as we will see, the
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jamming fraction converges to 1 or 0 when c converges to 0 or infinity. Thus, in order for c

to remain fixed as n → ∞, the radius should scale as a function of n according to

r = r(n) =
1
2

[
cΓ(1+ d/2)

nπd/2

]1/d

. (1.1)

Notice that it is equivalent to consider the deposition of spheres with fixed radii into a box of
growing volume. We parameterize the rggmodel by the density c and the dimension d, and
henceforth write this as rgg(c,d). A typical instance of rgg(5, 2) with n = 1000 vertices
is shown in Fig. 1b. Let Jn(c,d) be the fraction of active vertices in the rgg(c,d)model on
n vertices.

In the classical setting, one keeps adding spheres until there is no place left to add another
sphere and studies the fraction of area Nn(d) covered by the accepted spheres. Detailed
results about Nn(d) involving law of large numbers and Gaussian fluctuations have been
obtained in [33,38]. The settings under consideration in this paper, however, are known
as fixed or finite input packing in the literature. It was shown in [34] that there exist con-

stants J(c,d) and V(c,d) such that Jn(c,d)
P−→ J(c,d) and

√
n(Jn(c,d) − J(c,d))

d−→
Normal(0,V(c,d)). More detailed results about the point process of locations of accepted
spheres and the number of accepted spheres have been obtained in [4–6,17,39]. This includes
both moderate and large deviation results for Nn(d). To the best of our knowledge, find-
ing an explicit quantitative characterization of J(c,d) for dimensions � 2 remains an
open problem, although numerical estimates have been obtained through extensive simu-
lations [3,13,19,41,44,47,51].

In this paper, we do not aim to analyze the rsa process on rgg’s directly. Rather, we
introduce an approximate approach for studying J(c,d) and V(c,d) by considering rsa
on a clustered random graph model, designed to match the local spatial properties of the
rgg model in terms of average degree and clustering. Exact analysis of this random graph
model leads to expressions for the limiting jamming fraction and its fluctuations, in turn
providing approximations for J(c,d) and V(c,d). Using simulations we show that these
approximations are accurate. havior of rsa on rgg and our proposed random graph model
via. extensive simulation.

The paper is structured as follows: Sect. 2 introduces the clustered random graph and the
correspondence with the random geometric graph. Section 3 presents the main results for the
jamming fraction in the mean-field regime. We also show through extensive simulations that
the mean-field approximations are accurate for all densities and dimensions. Sections 4, 5,
and 6 contain all the proofs, and we conclude in Sect. 7 with a discussion.

2 Clustered Random Graphs

Random graphs serve to model large networked systems, but are typically unfit for capturing
local clustering in the form of relatively many short cycles. This can be resolved by locally
adding so-called households or small dense graphs [2,12,23,29,42,43,48,49]. Vertices in a
household have amuch denser connectivity to all (or many) other householdmembers, which
enforces local clustering. We now introduce a specific household model, called clustered
random graph model (crg), designed for the purpose of analyzing the rsa problem. An
arbitrary vertex in the crgmodel has local or short-distance connectionswith nearby vertices,
and global or long-distance connections with the other vertices. When pairing vertices, the
local and global connections are formed according to different statistical rules. The degree
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Fig. 2 Example topology
generated by the crg(c,α)
model

distribution of a typical vertex is taken to be Poisson(c) (approximately) in both the rgg
and crg model. Thus a typical vertex, when activated, blocks approximately Poisson(c)
other vertices. In the crg(c,α) model however, the total mass of connectivity measured in
the density parameter c, is split into αc to account for direct local blocking and (1 − α)c

to incorporate the propagation of spatial correlations over longer distances. The crg(c,α)
model with n vertices is then defined as follows (see Fig. 2):

• Partition then vertices into random households of size 1+Poisson(αc). This can be done
by sequentially selecting 1 + Poisson(αc) vertices uniformly at random and declaring
themas a household, and repeat this procedure until at somepoint the next 1+Poisson(αc)

random variable is at most the number of remaining vertices. All the remaining vertices
are then declared a household too, and the household formation process is completed.

• Now that all vertices are declared members of some household, the random graph is
constructed according to a local and a global rule. The local rule says that all vertices
in the same household get connected by an edge, leading to complete graphs of size
1+Poisson(αc). The global rule adds a connection between any two vertices belonging
to two different households with probability (1− α)c/n.

This creates a class of random networks with average degree c and tunable level of clustering
via the free parameter α. With the goal to design a solvable model for the rsa process, the
crg(c,α) model has nc/2 connections to build a random structure that mimics the local
spatial structure of the rgg(c,d) model on n vertices.

Seen as the topology underlying the rsa problem, the crg(c,α) model incorporates
local clusters of overlapping spheres, which occur naturally in random geometric graphs; see
Fig. 1b.We can now also consider rsa on the crg(c,α)model, by using the greedy algorithm
that constructs an independent set on the graph by sequentially selecting vertices uniformly
at random, and placing them in the independent set unless they are adjacent to some vertex
already chosen. The jamming fraction J�

n(c,α) is then the size of the greedy independent set
divided by the network size n. From a high-level perspective, we will solve the rsa problem
on the crg(c,α) model, and translate this solution into an equivalent result for rsa on the
rgg(c,d).

Our ansatz is that for large enoughn, a unique relation can be established between dimen-
siond inrgg and the parameterα = αd incrg, so that the jamming fractions are comparable,
i.e., Jn(c,d) ≈ J�

n(c,αd), and virtually indistinguishable in the large network limit. In order
to do so, we map the crg(c,α) model onto the rgg(c,d) model by imposing two natural
conditions. The first conditionmatches the average degrees in both topologies, i.e., c is chosen
to be equal to nVd(2r). The second condition tunes the local clustering.
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Table 1 αd for dimensions 1 to
5

d 1 2 3 4 5

αd 0.750000 0.586503 0.468750 0.379755 0.310547

Let us first describe the clustering in the rgg model. Consider two points chosen uni-
formly at random in a d-dimensional hypersphere of radius 2r. Then what is the probability
that these two points are themselves at most 2r distance apart? From the rgg perspective,
this corresponds to the probability that, conditional on two vertices u and v being neighbors,
a uniformly chosen neighbor w of u is also a neighbor of v, which is known as the local
clustering coefficient [30]. In the crg(c,α) model, on the other hand, the relevant measure
of clustering is α, the probability that a randomly chosen neighbor is a neighbor of one of its
household members. We then choose the unique α-value that equates to the clustering coeffi-
cient of rgg. Denote this unique value by αd, to express its dependence on the dimension d.
In Sect. 6, we show that

αd = d

∫1

0
xd−1I

1−x2
4

(d + 1
2

,
1
2

)
dx (2.1)

with Iz(a,b) the normalized incomplete beta integral. Table 1 shows the numerical values
of αd for dimensions 1 to 5. With the uniquely characterized αd in (2.1), the crg(c,αd)

model can now serve as a generator of random topologies for guiding the rsa process. By
extending the mean-field techniques recently developed for analyzing rsa on random graph
models [7,9,16,36], it turns out that rsa on the crg(c,αd) model is analytically solvable,
even at later times when the filled space becomes more dense (large c).

The main goal of these works was to find greedy independent sets (or colorings) of
large random networks. All these results, however, were obtained for non-geometric random
graphs, typically used as first approximations for sparse interaction networks in the absence
of any known geometry.

3 Main Results

3.1 Limiting Jamming Fraction

For the crg(c,α) model on n vertices, recall that J�
n(c,α) denotes the fraction of active

vertices at the end of the rsa process. We then have the following result, which characterize
the limiting fraction:

Theorem 3.1 (Limiting jamming fraction) For any c > 0 and α ∈ [0, 1], as n → ∞,
J�
n(c,α) converges in probability to J�(c,α), where J�(c,α) is the smallest nonnegative root
of the deterministic function x(t) described by the integral equation

x(t) = 1− t −

∫t

0

(
x(s)αc

1− (αc + 1)s
+ (1− α)cx(s)

)
ds. (3.1)

The ODE (3.1) can be understood intuitively in terms of the algorithmic description in
Sect. 4.1 that sequentially explores the graph while activating the allowed vertices. Rescale
time by n, so that after rescaling the algorithm has to end before time t = 1 (because the
network size isn). Now think of x(t) as the fraction of neutral vertices at time t. Then clearly
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Fig. 3 Validation of the mean-field limit J�(c,α2) with the simulation results from crg(c,α2), and
rgg(c, 2) with 1000 vertices for 0 � c � 30
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Fig. 4 Simulation with 1000 vertices of rgg(c,d) and the value of J�(c,αd) for 0 � c � 30 and
d = 3, 4, 5. a 3D b 4D c 5D

x(0) = 1, and the drift−t says that one vertex activates per time unit.Upon activation, a vertex
on average blocks itsαc householdmembers and (1−α)c other vertices outside its household.
At time t, the fraction of vertices that are not members of any discovered households equals
on average (1−(1+αc)t) and all vertices which are not part of any discovered households,
are potential household members of the newly active vertex (irrespective of whether it is
blocked or not). Since household members are uniformly selected at random, only a fraction
x(t)/(1 − (1 + αc)t) of the new αc household members will belong to the set of neutral
vertices. Moreover, since all x(t)n vertices are being blocked by the newly active vertex
with probability (1 − α)c/n, on average (1 − α)cx(t) neutral vertices will be blocked due
to distant connections. Notice that the graph will be maximally packed when x(t) becomes
zero, i.e., there are no neutral vertices that can become active. This explains why J�(c,α)
should be the time t when x(t) = 0, i.e., smallest root of (3.1).

Upon substituting α = αd, J�(c,αd) = limn→∞ J�
n(c,αd) is completely characterized

by (3.1) and serves an approximation for the intractable counterpart J(c,d), the limiting
jammed fraction for the rgg(c,d) model. The choice of αd, as discussed earlier, is given
by (2.1) and shown in Table 1. Figure 3 validates the mean-field limit for the crg model,
and shows the theoretical values J�(c,α2) from Theorem 3.1, along with the simulated
values of Jn(c, 2) on the rgg(c, 2) model for values of c ranging from 0 to 30. Figure 4
shows further comparisons between J�(c,αd) and Jn(c,d) for dimensions d = 3, 4, 5, and
densities 0 � c � 30. All simulations use n = 1000 vertices. The remarkable agreement of
the J�(c,αd)-curves with the simulated results across all dimensions shows that the integral
equation (3.1) accurately describes themean-field large-network behavior of the rsa process,
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not only for the crg model, but also for the rgg model. The following result is a direct
consequence of Theorem 3.1, and gives a simple law to describe the asymptotic fraction
J�(c,αd) in the large density (c → ∞) regime.

Corollary 3.1 As c → ∞, J�(c,αd) ∼ (1+ αdc)−1.

Hence, for large enough c, J�(c,αd) ≈ (1 + αdc)−1 serves as an approximation for all
dimensions.Due to the accurate prediction provided by thecrgmodel, the total scaled volume
cJ(c,d)/2d covered by the deposited spheres in dimension d can be well approximated.
Indeed, for large c, Corollary 3.1 yields J�(c,αd) ∼ 1/(αdc), and in any dimension d, our
model leads to a precise characterization of the covered volume given by

J�(c,αd) × c

2d
=

1
2dαd

. (3.2)

Notice thatαd → 0 asd → ∞. Thus, the interaction network described by thecrg(c,αd)

model becomes almost like the (pure) mean-field Erdős-Rényi random graph model, which
supports the widely believed conjecture that in high dimensions the interaction network
associated with the random geometric graph loses its local clustering property [15].

3.2 Fluctuations of the Jamming Fraction

The next theorem characterizes the fluctuations of J�
n(c,α) around its mean:

Theorem 3.2 (CLT for jamming fraction) As n → ∞,
√

n(J�
n(c,α) − J�(c,α))

d−→ Z,

where Z has a normal distribution with mean zero and variance V�(c,α). Here J�(c,α) is
given by Theorem 3.1, and V�(c,α) = σxx(J

�(c,α)) with σxx(t) being the unique solution
of the system of differential equations, for 0 � t < 1/μ,

dσxx(t)

dt
= 2σxx(t)f(t) + 2σxy(t)g(t) + β(t),

dσxy(t)

dt
= σxy(t)f(t) + tg(t)σ2 +

√
β(t)σρ(t)

(3.3)

with

y(t) = 1− μt, f(t) = −
μ − 1
y(t)

− λ, g(t) =
(μ − 1)x(t)

y(t)2
,

β(t) =

[
(μ − 1)
y(t)

+ λ

]
x(t), ρ(t) =

σ√
β(t)

x(t)

y(t)
.

(3.4)

Figure 5a confirms that the asymptotic analytical variance given in (3.3) and (3.4) is a sharp
approximation for the crg model with only 2000 vertices. Table 2 shows numerical values
of V�(c,αd) and compares the analytically obtained values of J�(c,αd) and V�(c,αd),
and simulated mean and variance for the random geometric graph ensemble. The agreement
again confirms the appropriateness of the crg(c,αd)model formodeling the continuum rsa.
Furthermore, V�(c,αd) serves as an approximation for the value of V(c,d), the asymptotic
variance of J(c,d) (suitably rescaled). Figure 5b shows the density function of the random
variable based on theGaussian approximation in Theorem 3.2.We observe that both themean
and the fluctuations around the mean decrease with c. Indeed, the variance-to-mean ratio has
been typically observed to be smaller than one for rsa in the continuum, and it is generally
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Fig. 5 a Fitted normal curve for 2000 repetitions of the crg(20,α2) model with 1000 vertices. The solid
curve represents the normal density with properly scaled theoretical variance V�(c,α2), centered around
the sample mean. b Fitted normal curves for the crg(c,α2)model for increasing c values 10, 20, and 30. As
c increases, the curve become more sub-Poissonian. a Fitted normal curve b Effect of density on variance

Table 2 Comparison between
the observed mean and scaled
variance nVar(Jn(c, 2)) for the
rgg model, and the theoretical
mean and variance from
Theorem 3.2 in dimension 2. The
sample means and variances for
the rgg model are calculated
over 150 samples

rgg crg

n c Jn(c, 2) Vn(c, 2) J�(c,α2) V�(c,α2)

200 10 0.1618 0.0166 0.1454 0.0178

500 10 0.1608 0.0158

1000 10 0.1623 0.0155

200 20 0.0887 0.0062 0.0786 0.0057

500 20 0.0892 0.0068

1000 20 0.0890 0.0067

200 30 0.0619 0.0039 0.0538 0.0032

500 30 0.0620 0.0041

1000 30 0.0615 0.0043

believed that the jamming fractions are typically of sub-Poissonian nature with fluctuations
that are not as large as for a Poisson distribution; see for instance the Mandel Q parameter in
quantum physics [36]. So, while a closed-form expression remains out of reach (as for the
Mandel Q parameter [36]), our solvable model gives a way to describe approximately the
variance-to-mean ratio as V�(c,αd)/J�(c,αd).

4 Proof of Theorem 3.1

In this section we analyze several asymptotic properties of rsa on the crg(c,α) model.
In particular, we will prove Theorem 3.1. We first introduce an algorithm that sequentially
activates the vertices while obeying the hard-core exclusion constraint, and then analyze
the exploration algorithm (see [8,9,16] for similar analyses in various other contexts). The
idea is to keep track of the number of vertices that are not neighbors of already actives
vertices (termed unexplored vertices), so that when this number becomes zero, no vertex
can be activated further. The number of unexplored vertices can then be decomposed into
a drift part which converges to a deterministic function and a fluctuation or martingale part
which becomes asymptotically negligible in the mean-filed case (Theorem 3.1) but gives rise
to the a system of SDEs with variance (3.3). The proof crucially relies on the Functional
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Laws of Large Numbers (FLLN) and the Functional Central Limit Theorem (FCLT). The
key challenge here is that the process that keeps track of the number of unexplored vertices
while the exploration algorithm is running does not yield a Markov process, so we have to
introduce another process to make the system Markovian and analyze this two-dimensional
system.

For each vertex, the neighboring vertices inside and outside its own household will be
referred to as ‘household neighbors’ and ‘distant neighbors’, respectively. If H denotes
the size of the households, then H ∼ 1 + Poisson(αc). Therefore, E (H) = 1 + αc, and
Var(H) = αc. Furthermore, any two vertices belonging to two different households are con-
nected by an edge with probability pn = (1− α)c/n, so the number of distant neighbors is
a Bin(n−H−1,pn) random variable, Poisson((1−α)c) in the large n limit. As mentioned
earlier, the total number of neighbors, is then asymptotically given by a Poisson(c) random
variable. In this section we fix c > 0 and α ∈ [0, 1], and simply write J�

n and J� for J�
n(c,α)

and J�(c,α) respectively.

NotationWewill use boldfaced letters to denote stochastic processes and vectors. A sequence
of random variables {Xn}n�1 is said to beOP(f(n)), or oP(f(n)), for some function f : R →
R+, if the sequence of scaled random variables {Xn/f(n)}n�1 is tight, or converges to zero
in probability, respectively.We denote byDE[0,∞) the set of all càdlàg (right continuous left
limit exists) functions from [0,∞) to a complete, separable metric space E, endowed with the

Skorohod J1 topology, and by ‘
d−→’ and ‘

P−→’, convergence in distribution and in probability,
respectively. In particular, if the sample paths of a stochastic process X are continuous, we

write Xn = {Xn(t)}t�0
d−→ X = {X(t)}t�0, if for any T � 0,

sup
t∈[0,T ]

|Xn(t) − X(t)|
P−→ 0 as n → ∞. (4.1)

4.1 The Exploration Algorithm

Instead of fixing a particular realization of the random graph and then studying rsa on that
given graph, we introduce an algorithmwhich sequentially activates the vertices one-by-one,
explores the neighborhood of the activated vertices, and simultaneously builds the random
graph topology on the activated and explored vertices. The joint distribution of the random
graph and active vertices obtained this way is same as those obtained by first fixing the
random graph and then studying rsa . The idea of exploring in the above fashion simplifies
the whole analysis, since the evolution of the system can be described recursively in terms
of the previous states, as described below in detail.

Observe that during the process of sequential activation, until the jamming state is reached,
the vertices can be in either of three states: active, blocked, and unexplored (i.e. vertices
with future potential activation). Furthermore, there can be two types of blocked vertices: (i)
blocked due to activation of some household neighbor, or (ii) none of the household neighbors
is active, but there is an active distant neighbor. Therefore, at each time t � 0, categorize the
vertices into four sets:

• A(t): set of all vertices active.
• U(t): set of all vertices that are not active and that have not been blocked by any vertex

in A(t).
• BH(t): set of all vertices that belong to a household of some vertex in A(t).
• BO(t): set of all vertices that do not belong to a household yet, but are blocked due to

connections with some vertex in A(t) as a distant neighbor.
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Note that BH(t) ∪ BO(t) constitutes the set of all blocked vertices at time t, and BH(t) ∩
BO(t) = ∅. Initially, all vertices are unexplored, so that U(0) = V(G), the set of all n

vertices. At time step t, one vertex v is selected from U(t − 1) uniformly at random and is
transferred to A(t), i.e., one unexplored vertex becomes active.

We now explore the neighbors of v, which can be of two types: the household neighbors,
and the distant neighbors. Further observe that v can have its household neighbors only from
the set U(t− 1) ∪ BO(t− 1) \ {v}, since each vertex in BH(t− 1) already belongs to some
household. Define

H(t) ∼ min
{

Poisson(αc), |U(t − 1) ∪ BO(t − 1) \ {v}|
}

,

i.e., draw a Poisson(αc) random variable independently of any other process, and if it is
smaller than |U(t− 1)∪BO(t− 1) \ {v}|, then take it to be the value of H− 1, and otherwise
setH(t) = |U(t−1)∪BO(t−1)\{v}|. SelectH(t) vertices {u1,u2, . . . ,uH} at random from
all vertices in U(t− 1) ∪ BO(t− 1) \ {v}. These H(t) vertices together form the household
containing v, and are moved to BH(t), irrespective of the set they are selected from. To
explore the distant neighbors, select one by one, all the vertices in U(t − 1) ∪ BO(t − 1) ∪
BH(t−1)\{v,u1, . . . ,uH}, and for every such selected vertex ū, put an edge between ū and
v with probability pn. Denote the newly created distant neighbors that belonged to U(t− 1)
by {ū1, . . . , ūd}, and move these vertices to BO(t). In summary, the exploration algorithm
yields the following recursion relations:

A(t) = A(t − 1) ∪ {v},

U(t) = U(t − 1) \ {v,u1,u2, . . . ,uH, ū1, . . . , ūd},

BH(t) = BH(t − 1) ∪ {u1,u2, . . . ,uH},

BO(t) = BO(t − 1) ∪ {ū1, . . . , ūd}.

The algorithm terminates when there is no vertex left in the set U(t) (implying that all
vertices are either active or blocked), and outputs the cardinality of A(t) as the number of
active vertices in the jammed state.

4.2 State Description and Martingale Decomposition

Denote for t � 0,

Xn(t) := |U(t)|, Yn(t) := |U(t) ∪ BO(t)|.

Observe that {(Xn(t), Yn(t))}t�0 is a Markov chain. At each time step, one new vertex
becomes active, so that |A(t)| = t, and the total number of vertices in the jammed state
is given by the time step when Xn(t) hits zero, i.e., the time step when the exploration
algorithm terminates. Let us now introduce the shorthand notation μ = E[H] = 1 + αc,
σ2 = Var (H) = αc and λ = (1− α)c.

Dynamics of Xn First we make the following observations:

• Xn(t) decreases by one, when a new vertex v becomes active.
• The household neighbors of v are selected from Yn(t−1) vertices, and Xn(t) decreases

by an amount of the number of such vertices which are in U(t − 1).
• Xn(t) decreases by the number of distant neighbors of the newly active vertex that belong

to U(t − 1) (since they are transferred to BO(t)).
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Thus,
Xn(t + 1) = Xn(t) − ξn(t + 1) and Xn(0) = n (4.2)

with
ξn(t + 1) = 1+ η1(t + 1) + η2(t + 1), (4.3)

where conditionally on (Xn(t), Yn(t)),

η1(t + 1) ∼ Hypergeometric(Xn(t),Yn(t),H(t)), (4.4)

i.e., η1(t+1) has a Hypergeometric distribution with favorable outcomes Xn(t), population
size Yn(t), and sample size H(t). Further, conditionally on (Xn(t),Yn(t),η1(t + 1)),

η2(t + 1) ∼ Bin
(
Xn(t) − 1− η1(t + 1),

λ

n

)
. (4.5)

Therefore, the drift function of the Xn process satisfies

E (ξn(t + 1)|Xn(t), Yn(t)) = 1+
Xn(t)(μ − 1)

Yn(t)
+

(
Xn(t) − 1−

Xn(t)(μ − 1)
Yn(t)

)
λ

n

= 1+
Xn(t)(μ − 1)

Yn(t)
+

λXn(t)

n
+ OP(n

−1),

(4.6)
where, in the last step, we have used the fact that Xn(t) � Yn(t).

Dynamics of Yn The value of Yn does not change due to the creation of distant neighbors.
At time t, it can only decrease due to an activation of a vertex v (since it is moved to A(t)),
and the formation of a household, since all the vertices that make the household of v, were
in U(t− 1)∪BO(t− 1), and are moved to BH(t). Thus, at each time step, Yn(t) decreases
on average by an amount μ = 1 + αc, the expected household size, except at the final step
when the residual number of vertices can be smaller than the household size. But this will
not affect our asymptotic results in any way, and we will ignore it. Hence,

Yn(t + 1) = Yn(t) − ζn(t + 1) and Yn(0) = n, (4.7)

where
E (ζn(t + 1)|Xn(t), Yn(t)) = μ. (4.8)

Martingale decomposition Using the Doob-Meyer decomposition [22, Theorem 4.10]
of Xn, (4.6) yields the following martingale decomposition

Xn(t) =n −

t
∑

i=1

ξn(i) = n + MX
n(t) − t

−

t
∑

i=1

[
Xn(i − 1)(μ − 1)

Yn(i − 1)
+

λXn(i − 1)
n

+ OP(n
−1)

]
,

whereMX
n = {MX

n(t)}t�1 is a square-integrable martingale with respect to the usual filtra-
tion generated by the exploration algorithm. Let us now define the scaled processes

xn(t) :=
Xn(	nt
)

n
and yn(t) :=

Yn(	nt
)
n

.
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Also define
δ(x,y) := (μ − 1)

x

y
+ λx, for 0 � x � y, y > 0. (4.9)

Thus, we can write

xn(t) = 1+
MX

n(	nt
)
n

−
	nt

n

−
1
n

�nt�
∑

i=1

δ

(
Xn(i − 1)

n
,
Yn(i − 1)

n

)
+ OP(n

−1)

= 1+
MX

n(	nt
)
n

− t −

∫t

0
δ(xn(s),yn(s))ds + OP(n

−1).

(4.10)
Similar arguments yield

yn(t) = 1+
MY

n(	nt
)
n

− μt + OP(n
−1), (4.11)

whereMY
n = {MY

n(t)}t�1 is a square-integrable martingale with respect to a suitable filtra-
tion. We write xn and yn to denote the processes (xn(t))t�0 an (yn(t))t�0 respectively.

4.3 Quadratic Variation and Covariation

To investigate the scaling behavior of the martingales, we will now compute the respective
quadratic variation and covariation terms. For convenience in notation, denote by Pt,Et,
Vart, Covt, the conditional probability, expectation, variance and covariance, respectively,
conditioned on (Xn(t), Yn(t)). Notice that, for the martingalesMX

n andMY
n, the quadratic

variation and covariation terms are given by

〈MX
n〉(	nt
) =

�nt�
∑

i=1

Vari−1(ξn(i)),

〈MY
n〉(	nt
) =

�nt�
∑

i=1

Vari−1(ζn(i)),

〈MX
n,M

Y
n〉(	nt
) =

�nt�
∑

i=1

Covi−1(ζn(i), ξn(i)).

(4.12)

Thus, the quantities of interest are Vart(ξn(t + 1)), Vart(ζn(t + 1)) and Covt(ξn(t +

1), ζn(t + 1)), which we derive in the three successive claims.

Claim 1 For any t � 1,
Vart(ζn(t + 1)) = σ2. (4.13)

Proof The proof is immediate by observing that the random variable denoting the household
size has variance σ2. 
�

Claim 2 For any t � 1,

Vart (ξn(t + 1)) =
Xn(t)(μ − 1)

Yn(t)
+

λXn(t)

n
+ OP(n

−1). (4.14)
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Proof From the definition of ξn in (4.3), the computation of Vart(ξn(t + 1)) requires
computation of Vart(η1(t+ 1)), Covt(η1(t+ 1),η2(t+ 1)) and Vart(η2(t+ 1)). Since η1
follows a Hypergeometric distribution,

Et (η1(t + 1)(η1(t + 1) − 1)|H) =
Xn(t)(Xn(t) − 1)(H − 1)(H − 2)

Yn(t)(Yn(t) − 1)
(4.15)

and

Vart (η1(t + 1)) =
Xn(t)(Xn(t) − 1)E ((H − 1)(H − 2))

Yn(t)(Yn(t) − 1)

+ Et (η1(t + 1)) − E
2
t (η1(t + 1))

=
X2

n(t)

Y2
n(t)

(σ2 + μ2 − 3μ + 2) +
Xn(t)

Yn(t)
(μ − 1)

−
X2

n(t)

Y2
n(t)

(μ − 1)2 + OP(n
−1)

=
X2

n(t)

Y2
n(t)

(σ2 − μ + 1) +
Xn(t)

Yn(t)
(μ − 1) + OP(n

−1)

=
Xn(t)

Yn(t)
(μ − 1) + OP(n

−1),

(4.16)

since σ2 = μ − 1 = αc. Also, we have

Et (η2(t + 1)(η2(t + 1) − 1))

=
[
(Xn(t) − 1)(Xn(t) − 2) − Et (η1(t + 1)) [2Xn(t) − 3] + Et

(
η2
1(t + 1)

) ]( λ

n

)2

=
λ2X2

n(t)

n2 + OP(n
−1)

(4.17)
and therefore

Vart(η2(t + 1)) =
λXn(t)

n
+ OP(n

−1). (4.18)

Further,

Et (η1(t + 1)η2(t + 1)) = Et

(
η1(t + 1)(Xn(t) − 1− η1(t + 1))

λ

n

)

=
λ

n

[
(Xn(t) − 1)Et(η1(t + 1)) − Et(η

2
1(t + 1))

]

=
λXn(t)

n

Xn(t)(μ − 1)
Yn(t)

+ OP(n
−1).

(4.19)

Now, from (4.4), (4.5),

Et(η1(t + 1)) =
λXn(t)

n
+ OP(n

−1) and Et(η2(t + 1)) =
Xn(t)(μ − 1)

Yn(t)
+ OP(n

−1),

which implies that
Covt(η1(t + 1),η2(t + 1)) = OP(n

−1). (4.20)

Combining (4.16), (4.18) and (4.20), gives (4.14). 
�
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Claim 3 For any t � 1,

Covt (ζn(t + 1), ξn(t + 1)) =
Xn(t)

Yn(t)
σ2 + OP(n

−1). (4.21)

Proof Observe that

Et (ζn(t + 1)η1(t + 1)) = Et (ζn(t + 1)Et (η1(t + 1)|ζn(t + 1)))

=
Xn(t)

Yn(t)
Et (ζn(t + 1)(ζn(t + 1) − 1)) =

Xn(t)

Yn(t)
(σ2 + μ2 − μ),

(4.22)

and therefore,

Covt(ζn(t + 1),η1(t + 1)) =
Xn(t)

Yn(t)
σ2. (4.23)

Thus,

Et (ζn(t + 1)η2(t + 1)) = Et (ζn(t + 1)Et (η2(t + 1)|η1(t + 1), ζn(t + 1)))

= Et

(
ζn(t + 1)(Xn(t) − 1− η1(t + 1))

λ

n

)
= λμ

Xn(t)

n
+ OP(n

−1)
(4.24)

and hence
Covt (ζn(t + 1),η2(t + 1)) = OP(n

−1). (4.25)

Combining (4.23) and (4.25) yields (4.21). 
�
Based on the quadratic variation and covariation results above, the following lemma shows

that the martingales when scaled by n, converge to the zero-process.

Lemma 4.1 For any fixed T � 0, as n → ∞,

1
n

sup
t�T

|MX
n(	nt
)| P−→ 0,

1
n

sup
t�T

|MY
n(	nt
)| P−→ 0. (4.26)

Proof Observe that using (4.12) along with (4.13) and (4.14), we can claim for any T � 0,

〈MX
n〉(	nT
) = OP(n), 〈MY

n〉(	nT
) = OP(n). (4.27)

Thus, from Doob’s inequality [27, Theorem 1.9.1.3], the proof follows. 
�

4.4 Convergence of the Scaled Exploration Process

Based on the estimates fromSections 4.2, and 4.3,we nowcomplete the proof of Theorem3.1.
Recall the representations of xn, and yn from (4.10) and (4.11). Fix any 0 � T < 1/μ.
Observe that Lemma 4.1 immediately yields

sup
t�T

|yn(t) − y(t)|
P−→ 0. (4.28)

Next note that δ(x,y), as defined in (4.9), is Lipschitz continuous on [0, 1] × [ε, 1] for any
ε > 0 and we can choose this ε > 0 in such a way that y(t) � ε for all t � T (since
T < 1/μ). Therefore, the Lipschitz continuity of δ implies that there exists a constant C > 0
such that

sup
t�T

|δ(xn(t),yn(t)) − δ(x(t),y(t))| � C
(
sup
t�T

|xn(t) − x(t)| + sup
t�T

|yn(t) − y(t)|
)
.
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Thus,

sup
t�T

|xn(t) − x(t)| � sup
t�T

|MX
n(	nt
)|

n

+

∫T

0
sup
t�u

|δ(xn(t),yn(t)) − δ(x(t),y(t))|du + oP(1)

�εn + C

∫T

0
sup
t�u

|xn(t) − x(t)|du,

where, by Lemma 4.1 and (4.28),

εn := sup
t�T

|MX
n(	nt
)|

n
+ CT sup

t�T
|yn(t) − y(t)| + oP(1),

which converges in probability to zero, as n → ∞. Using Grőnwall’s inequality [18, Theo-
rem 5.1], we get

sup
t�T

|xn(t) − x(t)| � εne
CT P−→ 0. (4.29)

Finally, due to Claim 4 below we note that the smallest root of x(t) is strictly smaller than
1/μ. Also, the convergence in (4.29) holds for any T < 1/μ. This concludes the proof of
Theorem 3.1. 
�

The claim below establishes that J� < 1/μ.

Claim 4 J� < 1/μ.

Proof Recall that μ = (1+αc) and λ = (1−α)c. Notice that (3.1) gives a linear differential
equation, and the solution is given by

x(t) = e−λt(1− μt)
μ−1

μ

(
1−

∫t

0
eλs(1− μs)

−1+ 1
μ ds

)
, t <

1
μ
. (4.30)

Thus, the smallest root of the integral equation (3.1) defined as J� must be the smallest
positive solution of

I(t) =

∫t

0
eλs(1− μs)

−1+ 1
μ ds = 1. (4.31)

The integrand in the left hand side of (4.31) is positive, and tends to ∞ as t increases to 1/μ.
Therefore, the integral

∫t
0 e

λs(1 − μs)−1+1/μds tends to infinity as well. Thus, there must
exist a solution of (4.31) which is smaller that 1/μ. This in turn implies that J� < μ−1. 
�

We now complete the proof of Corollary 3.1.

Proof of Corollary 3.1 Observe from (4.30) and (4.31) that, for t < μ−1,

I(t) � 1− eλt(1− μt)
1
μ

∫t

0

ds
1− μs

� 1− e
λ
μ

[
−

1
μ
log(1− μs)

]t

0
∼ 1− e

λ
μ
1
μ
log(1− μt),

and the last term is zero when

t =
1
μ

(
1− e−μe−

λ
μ

)
∼

1
μ
as μ → ∞. (4.32)
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Since J� � (1− e−μe−
λ
μ
), the proof is complete. 
�

5 Proof of Theorem 3.2

Define the diffusion-scaled processes

X̄n(t) :=
√

n(xn(t) − x(t)), Ȳn(t) :=
√

n(yn(t) − y(t)), (5.1)

and the diffusion-scaled martingales

M̄X
n(t) :=

MX
n(	nt
)√

n
, M̄Y

n(t) :=
MY

n(	nt
)√
n

.

Now observe from (4.10) that

X̄n(t) = M̄X
n(t) − (μ − 1)

[∫t

0

X̄n(s)

yn(s)
ds +

∫t

0
x(s)

√
n

(
1

yn(s)
−

1
y(s)

)
ds

]

− λ

∫t

0
X̄n(s)ds + OP(n

−1/2)

= M̄X
n(t) − (μ − 1)

∫t

0

X̄n(s)

yn(s)
ds +

∫t

o

x(s)(μ − 1)
yn(s)y(s)

Ȳn(s)ds

− λ

∫t

0
X̄n(s)ds + oP(1).

Therefore, we can write

X̄n(t) = M̄X
n(t) +

∫t

0
fn(s)X̄n(s)ds +

∫t

0
gn(s)Ȳn(s)ds + oP(1), (5.2)

where

fn(t) = −
(μ − 1)
yn(t)

− λ, gn(t) =
(μ − 1)x(t)
yn(t)y(t)

. (5.3)

Furthermore, (4.11) yields

Ȳn(t) =
√

n(yn(t) − y(t)) = M̄Y
n(t) + oP(1). (5.4)

Based on the quadratic variation and covariation results in Sect. 4.3, the following lemma
shows that the martingales when scaled by

√
n converge to a diffusion process described by

an SDE.

Lemma 5.1 (Diffusion limit of martingales) Asn → ∞, (M̄
X

n,M̄
Y

n)
d−→ (W1,W2), where

the process (W1,W2) is described by the SDE

dW1(t) =
√

β(t)

[
ρ(t)dB1(t) +

√
1− ρ(t)2dB2(t)

]
, dW2(t) = σdB1(t) (5.5)

with B1 and B2 two independent standard Brownian motions.

Proof The idea is to use the martingale functional central limit theorem (cf. [31, Theorem
8.1]), where the convergence of the martingales is characterized by the convergence of their
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quadratic variation process. Using Theorem 3.1, we compute the asymptotics of the quadratic
variations and covariation of M̄

X

n and M̄
Y

n. From (4.10) and (4.13), we obtain

〈M̄Y
n〉(t) = 1

n

�nt�
∑

i=1

Vari−1(ζn(i))
P−→ σ2t.

Again, (4.10), (4.14) and Theorem 3.1 yields

〈M̄X
n〉(t) = 1

n

�nt�
∑

i=1

Vari−1(ξn(i))
P−→

∫t

0

[
(μ − 1)
y(s)

+ λ

]
x(s)ds =

∫t

0
β(s)ds.

Finally, from (4.10), (4.21) and Theorem 3.1 we obtain

〈M̄X
n, M̄

Y
n〉(t) = 1

n

�nt�
∑

i=1

Covi−1(ζn(i), ξn(i))
P−→ σ2

∫t

0

x(s)

y(s)
ds =

∫t

0
ρ(s) × σ

√
β(s)ds.

From themartingale functional central limit theorem,we get that (M̄
X

n,M̄
Y

n)
d−→ (Ŵ1,Ŵ2),

where (Ŵ1,Ŵ2) are Brownian motions with zero means and quadratic covariation matrix[
∫t
0 β(s)ds

∫t
0 ρ(s) × σ

√
β(s)ds

∫t
0 ρ(s) × σ

√
β(s)ds σ2t

]
.

The proof then follows by noting the fact that (W1,W2)
d
== (Ŵ1,Ŵ2). 
�

Having proved the above convergence ofmartingales, we now establish weak convergence
of the scaled exploration process to a suitable diffusion process.

Proposition 5.2 (Functional CLT of the exploration process) As n → ∞, (X̄n, Ȳn)
d−→

(X,Y) where (X,Y) is the two-dimensional stochastic process satisfying the SDE

dX(t) =
√

β(t)

[
ρ(t)dB1(t) +

√
1− ρ(t)2dB2(t)

]
+ f(t)X(t)dt + g(t)Y(t)dt,

dY(t) = σdB1(t),

(5.6)

withB1,B2 being independent standardBrownianmotions, and f(t),g(t) andρ(t) as defined
in (3.4).

Proof First we show that ((X̄n, Ȳn))n�1 is a stochastically bounded sequence of processes.
Indeed stochastic boundedness (and in fact weak convergence) of the Ȳn process follows
from Lemma 5.1. Further observe that for any T < 1/μ, by Theorem 3.1,

sup
t�T

|fn(t) − f(t)|
P−→ 0, sup

t�T
|gn(t) − g(t)|

P−→ 0, (5.7)

where f,g are defined in (3.4). Therefore, for any T < 1/μ,

sup
t�T

|X̄n(t)| � sup
t�T

|M̄X
n(t)| + T sup

t�T
|gn(t)Ȳn(t)| + sup

t�T
|fn(t)|

∫T

0
sup
u�t

|X̄n(u)|dt,

and again using Grőnwall’s inequality, it follows that

sup
t�T

|X̄n(t)| �
(
sup
t�T

|M̄X
n(t)| + T sup

t�T
|gn(t)Ȳn(t)|

)
× exp

(
T sup

t�T
|fn(t)|

)
.
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Then stochastic boundedness of (X̄n)n�1 follows from Lemma 5.1, (5.7), and the stochastic
boundedness criterion for square-integrable martingales given in [31, Lemma 5.8].

From stochastic boundedness of the processes we can claim that any sequence (nk)k�1
has a further subsequence (n′

k)k�1 ⊆ (nk)k�1 such that

(X̄n′
k
, Ȳn′

k
)

d−→ (X′,Y ′), (5.8)

along that subsequence, where the limit (X′,Y ′) may depend on the subsequence (nk)k�1.
However, due to the convergence result in Lemma 5.1 and (5.7), the continuous mapping
theorem (see [50, Section 3.4]) implies that the limit (X′,Y ′) must satisfy (5.6). Again, the
solution to the SDE in (5.6) is unique, and therefore the limit (X′,Y ′) does not depend on
the subsequence (nk)k�1. Thus, the proof is complete. 
�

Proof of Theorem 3.2 First observe that

√
n(J�

n − J�)
d−→ X(J�) as n → ∞.

Indeed this can be seen by the application of the hitting time distribution theorem in [18,
Theorem 4.1], and noting the fact that x′(J�) = −1. Now since X is a centered Gaussian
process, in order to complete the proof of Theorem 3.2, we only need to compute Var(X(J�)).
We will use the following known result [1, Theorem 8.5.5] to calculate the variance of X(t).

Lemma 5.3 (Expectation and variance of SDE) Consider the d-dimensional stochastic dif-
ferential equation given by

dZ(t) = (A(t)Z(t) + a(t))dt +
d

∑

i=1

bi(t)dBi(t), (5.9)

where Z(0) = z0 ∈ R
d, the bi’s are R

d-valued functions, and the Bi’s are independent
standard Brownian motions, i = 1, . . . ,d. Then given Z(0) = x0, Z(t) has a normal distri-
bution with mean vector m(t) and covariance matrix V(t), where m(t) and V(t) satisfy the
recursion relations

d
dt

m(t) = A(t)m(t) + a(t),
d
dt

V(t) = A(t)V(t) + V(t)AT (t) +

d
∑

i=1

bibi(t)
T ,

(5.10)
with initial conditions m(0) = x0, and V(0) = 0.

In our case, observe from (5.6) that

A(t) =

[
f(t) g(t)

0 0

]
, a(t) =

[
0
0

]
, b1(t) =

[
ρ(t)

√
β(t)

σ

]
,

b2(t) =

[√
1− ρ(t)2

√
β(t)

0

] (5.11)

Denote the variance-covariance matrix of (X(t), Y(t)) by

V(t) =

[
σxx(t) σxy(t)

σxy(t) σyy(t)

]
. (5.12)
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Then

d
dt

V(t) =

[
σxx(t)f(t) + σxy(t)g(t) σxy(t)f(t) + σyy(t)g(t)

0 0

]

+

[
σxx(t)f(t) + σxy(t)g(t) 0
σxy(t)f(t) + σyy(t)g(t) 0

]

+

[
ρ(t)2β(t)

√
β(t)σρ(t)√

β(t)σρ(t) σ2

]
+

[
(1− ρ(t)2)β(t) 0

0 0

]

=

[
2σxx(t)f(t) + 2σxy(t)g(t) σxy(t)f(t) + σyy(t)g(t)

σxy(t)f(t) + σyy(t)g(t) 0

]

+

[
β(t)

√
β(t)σρ(t)√

β(t)σρ(t) σ2

]

Therefore, the variance of X(t) can be obtained from the solution of the recursion equations

dσxx(t)

dt
= 2(σxx(t)f(t) + σxy(t)g(t)) + β(t),

dσxy(t)

dt
= σxy(t)f(t) + σyy(t)g(t) +

√
β(t)σρ(t),

(5.13)

and the proof is thus completed by noting that σyy(t) = σ2t. 
�

6 Clustering Coefficient of Random Geometric Graphs

The clustering coefficient for the random geometric graph was derived in [13] along with
an asymptotic formula, when the dimension becomes large. Below we give an alternative
derivation. The formula (2.1) is more tractable in all dimensions compared with the formula
in [13]. Consider n uniformly chosen points on a d-dimensional box [0, 1]d and connect two
points u, v by an edge if they are at most 2r distance apart. Fix any three vertex indices u, v,
and w. We write u ↔ v to denote that u and v share an edge. The clustering coefficient for
rgg(c,d) on n vertices is then defined by

Cn(c,d) := P (v ↔ w|u ↔ v,u ↔ w) . (6.1)

The following proposition explicitly characterizes the asymptotic value of Cn(c,d) for any
density c and dimension d.

Proposition 6.1 For any fixed c > 0, and d � 1, as n → ∞,

Cn(c,d) → C(d) = d

∫1

0
xd−1I

1−x2
4

(d + 1
2

,
1
2

)
dx. (6.2)

Proof Observe that the rgg model can be constructed by throwing points sequentially at
uniformly chosen locations independently, and then connecting to the previous vertices that
are at most 2r distance away. Since the locations of the vertices are chosen independently,
without loss of generality we assume that in the construction of the rggmodel, the locations
ofu, v,w are chosen in this respective order. Now, the event {u ↔ v,u ↔ w, v ↔ w} occurs
if and only if v falls within the 2r neighborhood ofu andw falls within the intersection region
of two spheres of radius 2r, centered at u and v, respectively. Let Bd(x, 2r) denote the d-
dimensional sphere with radius 2r, centered at x, and let Vd(2r) denote its volume. Since r is
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sufficiently small, so that Bd(x, 2r) ⊆ [0, 1]d, using translation invariance, we assume that
the location of u is 0. Let v,w denote the positions in the d-dimensional space, of vertices
v and w, respectively. Notice that, conditional on the event {v ∈ Bd(0, 2r)}, the position v

is uniformly distributed over Bd(0, 2r). Let V be a point chosen uniformly from Bd(0, 2r).
Then the above discussion yields

Cn(c,d) =
P (u ↔ v,u ↔ w, v ↔ w)

P (u ↔ v,u ↔ w)

=
1

(Vd(2r))2

∫

v∈Bd(0,2r)
P (w ∈ Bd(0, 2r) ∩ Bd(v, 2r)) dv

=
1

Vd(2r)
E[|Bd(0, 2r) ∩ Bd(V, 2r)|]. (6.3)

We shall use the following lemma to compute the expectation term in (6.3).

Lemma 6.2 [26] For any x with ‖x‖ = ρ, the intersection volume |Bd(0, 2r) ∩ Bd(x, 2r)|
depends only on ρ and r, and is given by

|Bd(0, 2r) ∩ Bd(x, 2r)| = Vd(2r) · I
1− ρ2

16r2

(d + 1
2

,
1
2

)
, (6.4)

where Iz(a,b) denotes the normalized incomplete beta integral given by

Iz(a,b) =

∫z
0 ya−1(1− y)b−1dy

∫1
0 ya−1(1− y)b−1dy

.

Observe that the Jacobian corresponding to the transformation from the Cartesian coor-
dinates (x1, . . . , xd) to the Polar coordinates (ρ, θ,φ1, . . . ,φd−2), is given by

Jd(ρ, θ,φ1, . . . ,φd−2) = ρd−1
d−2
∏

j=1

(sin(φj))
d−1−j. (6.5)

Thus, (6.3) reduces to

Cn(c,d) =
1

(Vd(2r))2

∫

x∈Bd(0,2r)
|Bd(0, 2r) ∩ Bd(x, 2r)|dx

=
1

Vd(2r)

∫

‖x‖�2r
I
1−‖x‖2

16r2

(d + 1
2

,
1
2

)
dx

=
1

Vd(2r)

∫2r

0

∫2π

0

∫π

0
. . .

∫π

0
ρd−1I

1− ρ2

16r2

(d + 1
2

,
1
2

)

×
d−2
∏

j=1

(sin(φj))
d−1−j

d−2
∏

j=1

dφjdθdρ,

and we obtain,

Cn(c,d) =
( ∫2r

0
ρd−1dρ

)−1
∫2r

0
ρd−1I

1− ρ2

16r2

(d + 1
2

,
1
2

)
dρ,

since

Vd(2r) = 2π

( d−2
∏

j=1

∫π

0
(sin(φj))

d−1−jdφj

) ∫2r

0
ρd−1dρ.
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Therefore, putting x = ρ/2r, yields

Cn(c,d) =

(
∫1

0
xd−1dx

)−1 ∫1

0
xd−1I

1−x2
4

(
d + 1
2

,
1
2

)
dx

= d

∫1

0
xd−1I

1−x2
4

(
d + 1
2

,
1
2

)
dx, (6.6)

which proves the result. 
�

7 Discussion

We introduced a clustered random graph model with tunable local clustering and a sparse
superimposed structure. The level of clustering was set to suitably match the local cluster-
ing in the topology generated by the random geometric graph. This resulted in a unique
parameter αd that for each dimension d creates a one-to-one mapping between the tractable
random network model and the intractable random geometric graph. In this way, we offer a
new perspective for understanding rsa on the continuum space in terms of rsa on random
networks with local clustering. Analysis of the random network model resulted in precise
characterizations of the limiting jamming fraction and its fluctuation. The precise results
then served, using the one-to-one mapping, as predictions for the fraction of covered volume
for rsa in the Euclidean space. Based on extensive simulations we then showed that these
prediction were remarkably accurate, irrespective of density or dimension.

In our analysis the random network model serves as a topology generator that replaces
the topology generated by the random geometric graph. While the latter is directly connected
with themetric in the Euclidian space, the only spatial information in the topologies generated
by the random networkmodel is contained in thematched average degree and clustering. One
could be inclined to think that random topology generators such as the crg(c,αd) model
may not be good enough. Indeed, this randomnetworkmodel reduces all possible interactions
among pairs of vertices to only two principal components: the local interactions due to the
clustering, and amean-field distant interaction. There is, however, building evidence that such
randomized topologies can approximate rigid spatial topologies when the local interactions
in both topologies are matched. Apart from this paper, the strongest evidence to date for this
line of reasoning is [25], where it was shown that the typical ensembles from the latent-space
geometric graph model can be modeled by an inhomogeneous random graph model that
matches with the original graph in terms of the average degree and a measure of clustering.
We should mention that [25] is restricted to one-dimensional models and does not deal with
rsa, but it shares with this paper the perspective that matching degrees and local clustering
can be sufficient for describing spatial settings.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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