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We provide corrections and complements to [1, §4]: Formulas (29) and, especially, (31) must
be amended, as explained in Sects. 3 and 4 below. An argument to replace the Cr norm of
the weight by a supremum was missing at the end of the proof of Theorem 4.1 (see Sect. 2
below). Sections 1, 5, and 6 below give minor clarifications. None of the main statements are
changed, except that:

• In Lemma 4.2 and Theorem 4.1, the condition −(r −1) < s < −t < 0 must be replaced
by t − (r − 1) < s < −t < 0. (See Sect. 4 below.)

• The bound (25) on the essential spectral radius in Theorem 4.1 is only proved up to an
(arbitrarily small) ε > 0 and for a “zoomed” version of the space U t,s

1 (R) for some large
R(ε). (See (1) in Sect. 2 below.)

1 Details for the Leafwise Young Inequality (38)

To prove (38) on p. 542, notice that, for � ≥ 1 and x ∈ R
ds , Fubini implies

(
ψ

(ds )
�

)Op
[
(ϕ ∗ ψ̂) ◦ π−1

�

]
(x)

=
[(

ψ
(ds )
�

)Op
∫

ψ̂(z)ϕ
(
π−1

� (·) − z
)
dz

]
(x)

I thank M. Jézéquel, who found several unclear points in [1] and helped to clarify them.

The original article can be found online at https://doi.org/10.1007/s10955-016-1663-0.
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=
[
(
ψ

(ds )
�

)Op
∫

ψ̂(z)ϕ
(
π−1

�−z(·)
)
dz

]
(x)

=
∫

Rn
ψ̂(z)

(
ψ

(ds )
�

)Op[
ϕ ◦ π−1

�−z

]
(x)dz.

Since ‖ ∫
Rn ψ̂(z)�z(·)dz‖L p(Rds ) ≤ ‖ψ̂‖L1(Rd ) supz ‖�z(·)‖L p(Rds ) by the Minkowski inte-

gral inequality, we find,
∥
∥
∥∥
(
ψ

(ds )
�

)Op [
(ϕ ∗ ψ̂) ◦ π−1

�

]
∥
∥
∥∥
L p(Rds )

� ‖ψ̂‖L1(Rd ) sup
�̃∈F

∥
∥(

ψ
(ds )
�

)Op[
ϕ ◦ π−1

�̃

]∥∥
L p(Rds )

.

2 Proof of Theorem 4.1

The bound (43) is correct as stated, but to prove Theorem 4.1 we would need it for weights
f̃m(x) = ∏m−1

j=0 (θ
(m)

�ω g(T− j (x)), where
∑

�ω θ
(m)

�ω ≡ 1 is a smooth partition of unity adapted
to Tm (independently of �), taking into account the fact that minimal sub-covers are needed
for thermodynamic estimates. The bound (43) does not seem to always hold for such f̃m .
Hence, Theorem 4.1 is only proved if we add (arbitrarily small) ε > 0 to the expression (25),
and if we replace U t,s

1 by its R-zoomed version U t,s
1 (R)(as in [3, §2.3]), for R depending on

ε:
We recall the construction in [3, §2.3]. Our charts are κω : Uω → Vω ⊂ M with Uω ∈

R
d and ω ∈ �. Fix a C∞ function α : R

d → [0, 1] with α(z) = 0 if |z| ≥ d , and∑
m∈Zd α(z − m) = 1. For R ≥ 1 and

(ω,m) ∈ Z(R) := {(ω,m) | ω ∈ �, m ∈ (R ·Uω) ∩ Z
d},

define α̂R
ω,m : M → [0, 1] by α̂R

ω,m(x) = 0 if x /∈ Vω, and

α̂R
ω,m(x) = α

[
R · (

κ−1
ω (x)

) − m
]
, ∀x ∈ Vω.

This gives a partition of unity in the sense that
∑

m∈(R·Uω)∩Zd α̂R
ω,m(x) = 1 for all x ∈ Vω.

(The intersection multiplicity of this partition of unity is bounded, uniformly in R.) Finally,
fixing s, t ∈ R and R ≥ 1, we write κ R

ω (z) = κω(z/R), and we set for ϕ ∈ L∞(M),1

‖ϕ‖U t,s
1 (R) =

∑

(ω,m)∈Z(R)

∥∥(
α̂R

ω,m · ϕ
) ◦ κ R

ω

∥∥U t,s
1

≤ ∞. (1)

The space U t,s
p (R) is the closure of L∞(M) for the norm ‖ϕ‖U t,s

p (R).

Since ‖ f̃ Rm ‖Cr ≤ 2 sup | f̃ Rm |, for f̃m(z) = f̃m(z/R), if R ≥ 1 is large enough (depending
on m), we may then prove Theorem 4.1 up to adding ε > 0 to (25) and replacing U t,s

1 by
U t,s
1 (R) for suitable R(ε).
Finally, the last sentence in the proof of Theorem 4.1 on p. 543 must be shortened to:

“We just mention here that, in the present case, the “fragmentation lemma” (used to expand
along a partition of unity) is just the triangle inequality, while the “reconstitution lemma”
(used to regroup the terms from a partition of unity) is the trivial inequality

∑ |akek | ≤
(
∑ |ak |) sup |ek |.” Footnote 18 on the same page must be suppressed.

1 Note that for fixed R, the sum in (1) involves a uniformly bounded number of terms.
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3 Details for (40) in Sublemma 4.4 and Correcting (29)

We explain how to bound ‖ f (ϕ ◦ F)‖sp,� , by duality, giving the proof of (40) on p. 543:

Since Bs
p,∞ is the dual of b|s|

p′,1 (with 1/p′ = 1 − 1/p), setting F� = πF(�) ◦ F ◦ π−1
� , it

suffices to estimate ‖(( f h) ◦ F−1
� )| det(DF�)−1|‖

B|s|
p′,1(R

ds )
for C∞ functions h. First note

that ‖(( f h) ◦ F−1
� )| det(DF�)−1|‖L p′ (Rds ) ≤ sup | f |

| det DF� |1/p . The B|s|
p′,1(R

ds ) norm of v is

equivalent to2

‖v‖
W �|s|−1�

p′ (Rds )
+

∑

|β|=�|s|−1�

∫

Rds

1

|y|ds
‖Z(Dβv, ·, y)‖L p′ (Rds )

|y||s|−�|s|−1� dy,

where ‖v‖Wk
p′

= ∑
0≤|β|≤k ‖Dβv‖L p′ and Z(w, x, y) = w(x + y) + w(x − y) − 2w(x).

Thus, since inf |DF�| ≥ ‖F‖− ≥ 1, and using the“Zygmund derivation” in3 [4, §2]

Z( f h, x, y) = f (x)Z(h, x, y) + h(x)Z( f, x, y)

+ �+( f, x, y)�+(h, x, y) + �−( f, x, y)�−(h, x, y),

where�+(υ, x, y) = (υ(x+ y)−υ(x)) and�−(υ, x, y) = (υ(x)−υ(x− y)), and recalling
that for any noninteger σ > 0 [6, Props 2.1.2, 2.2.1]

‖v‖Wσ
p′,p′ ≤ C(p′, σ )‖v‖Bσ

p′,p′ ≤ C2(p′, |s|)‖v‖Bσ
p′,1 ,

(with Wσ
p′,p′ the Slobodeckij norm), we find for any ε > 0 constants C(F) and C(F, ε) so

that
∥∥(

( f h) ◦ F−1
�

)| det(DF�)−1|∥∥
B|s|
p′,1(R

ds )

≤ C(F)

�|s|−1�∑

j=0

j∑

�=0

1

‖F‖�−
1

| det DF�|1/p ‖h‖W �
p′

×
j−�∑

i=0

‖ f ◦ F−1
� ‖Ci ‖| det (DF−1

�

)|‖C j−�−i ‖DF−1
� ‖C j−�−i

+ C(F)

�|s|−1�∑

�=1

1

‖F‖�−
1

| det DF�|1/p ‖h‖B�
p′,1

×
�|s|−1�−�∑

i=0

‖ f ◦ F−1
� ‖Ci ‖| det (DF−1

�

)|‖C�|s|−1�−�−i ‖DF−1
� ‖C�|s|−1�−�−i

+ C(F, ε)
‖DF−1

� ‖Cε

‖F‖|s|−2ε
−

‖| det (DF−1
�

)|‖Cε

| det DF�|1/p ‖h‖
B|s|−ε

p′,1
‖ f ◦ F−1

� ‖Cε

+ C(F, ε)
1

‖F‖|s|
−

sup | f |
| det DF�|1/p ‖h‖

B|s|
p′,1

. (4̃0)

2 See e.g. [6, §2.1], with �x� the smallest integer which is ≥ x .
3 See also [4, (2.6)–(2.8)], writing | f ′

i |δ = | f ′
i || f ′

i |δ/| f ′
i | in [4, (2.5)], and noting that |(F−1

� )′|δ =
|F ′

� |δ/|F ′
� |2 so that |(F−1

� )′|δ/|(F−1
� )′| = |F ′

� |δ/|F ′
� |.

123



The Quest for the Ultimate 1245

Finally, using inf | det(DF |(C ′+)⊥)| ≥ C | det(D(F |�)|, we get (40), up to slightly amend-
ing (29) as follows (ds and p are fixed):

C(F, �, s) = C ′(F)|s|‖D(F |�)−1‖Cr−1‖| det (DF−1
�

)|‖Cr−1 . (29*)

Similarly, in (42) one should replace sup� ‖ f ◦ F−1‖Cr−1(F(�)) by

sup
�

∥
∥
∥
∥ f ◦ F−1

∥
∥
Cr−1(F(�))

∥
∥

∣
∣
∣
∣det

(
D

(
F(C ′+)⊥

)−1
)∣

∣
∣
∣

∥
∥
∥
∥
Cr−1(F(�))

.

4 Bounding ‖H�,τ
n,σ (v)‖s

p,� (Proof of Lemma 4.2): Correcting (31)

Since ‖ · ‖sp,� is not an L p norm, (38) does not suffice to deduce from (54) a bound on

‖H �,τ
n,σ (v)‖sp,� . For any compact K ⊂ R

d and any δ > 0, there exists C0 ≥ 2 so that for all

C ′
0 ≥ C0 there exists C̃0 so that for all v supported in K ,

∥
∥
∥
(
ψ

Op
� v

) ◦ π−1
�̃

∥
∥
∥
L p(Rds )

≤ C̃02
�(−s+δ)

�+[C ′
0]∑

j=0

2 j (s−δ)
∥∥∥
(
ψ

ds
j

)Op((
ψ

Op
� v

) ◦ π−1
�̃

)∥∥∥
L p(Rds )

+ C0

∞∑

j=�+[C ′
0]+1

2− jr
�+2∑

m=�−2

sup
�̂

∥∥∥
(
ψ

Op
m v

) ◦ π−1
�̂

∥∥∥
L p(Rds )

, ∀�, ∀�̃.

(This is clear if �̃ is4 affine, otherwise, proceed as in [2, Lemma 3.5], using the L p version of
the leafwise Young inequality [5, Lemma 4.2], to obtain the above estimate in the sum over
j > � +C ′

0, after decomposing v = ∑
m ψ

Op
m v and using almost orthogonality.) Therefore,

since |s| < r and a ≤ b + εa implies a ≤ (1 − ε)−1b if a > 0, b > 0, and ε < 1, for each
δ > 0 there is C so that

2�t
∥∥∥
(
ψ

Op
� v

) ◦ π−1
�̃

∥∥∥
L p(Rds )

≤ C2�(−s+δ)‖v‖U t,s
p

∀�̃, ∀�. (0*)

Then, applying ‖φ‖Bs
p,∞ ≤ C‖φ‖L p to φ = (H �,τ

n,σ (
∑2

i=−2 ψ
Op
�+iv)) ◦ π−1

� , and using (54)
and the L p version of [5, Lemma 4.2], one obtains

2�t‖H �,τ
n,σ (v)‖sp,� = 2�t

∥∥∥∥∥
H �,τ
n,σ

(
2∑

i=−2

ψ
Op
�+iv

)∥∥∥∥∥

s

p,�

≤ CF, f 2
−(r−1)max{n,�}2(−s+δ)�‖v‖U t,s

p
.

This replaces the stronger bound stated two lines above (52) on p. 546 and gives the following
weakening of (31):

‖(φ − Rn0)Mcϕ‖
UC′±,t,s
p

≤ CF, f,δ2
−(r−1−2δ−(t−s))n0 . (31*)

Therefore, one must replace −(r − 1) < s < −t < 0 by t − (r − 1) < s < −t < 0 in
Lemma 4.2, and thus in5 Theorem 4.1.

4 The second line is then not needed.
5 The condition on s and t was not explicited in Theorem 4.1.
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5 Fixing the End of the Proof of Sublemma 4.4

The formulas for some kernels in the proof of Sublemma 4.4 (p. 548) are garbled. The
corrections are detailed below. The statement of the sublemma is unchanged.

Lines 9–14 and the footnote of p. 548 must be replaced by “Recalling the functions bm
from (53), we claim that there exists a constant C0 > 1 depending only on CF and C± so
that, for any � ∈ F(C+) and all n, ns , the kernels V

n,−
ns ,�

(w, y) defined forw ∈ � and y ∈ R
d

by
∫

Rd
F

−1(ψ�′,n,−)(−x)(φ · ψ
Op(�+x)
ns ϕ̃)(w + x)dx = 1

(2π)d+ds

∫

Rd
V n,−
ns ,�

(w, y)ϕ̃(y) dy

satisfy,21

|V n,−
ns ,�

(w, y)| ≤ C02
−(r−1)nbns (w − y) if C02

ns ≤ 2n or 2ns ≥ C02
n .′′ (60)

Replace lines 15–19 of p. 548 by: “To prove (60), recall (16) and note that

V n,−
ns ,�

(w, y) =
∫

η∈Rd , x−,ηs∈Rds
e−i x(y,x−)ηei(π�+x(y,x−)(w+x(y,x−))−z(y,x−))ηs

× φ(w + x(y, x−))

| det DY�,x−(Y−1
�,x−(y))|ψ

(ds )
ns (ηs)ψ�′,n,−(η)dηdηsdx−,

using for each x− ∈ R
ds the Cr change of variable y = Y�,x−(z, x+) := π−1

�+(x−,x+)(z) in

R
d , with z ∈ R

ds and x+ ∈ R
du , setting also

x(y, x−) = (x−,�+
(Y−1

�,x−(y))
)
, z(y, x−) = π�+x(y,x−)(y),

where �+ : Rds+du → R
du is defined by �+(x−, x+) = x+. Next just like in [10, 11] (see

also [Lemma 2.34, 2]), using that π�+x (w+ x) = π�(w)+ x− if x = (x−, x+) ∈ R
ds ×R

du

and that � ∈ F , first integrate by parts (see Appendix 3) (r − 1) times with respect to
x− ∈ R

ds in the formula for V n,−
ns ,�

(w, y), and second, noticing that ‖y − w‖ > ε implies

that either ‖π�(w) − π�+x(y,x−)(y)‖ > ε/(2C0) or ‖�+(Y−1
�,x−(y))‖ > ε/(2C0), integrate

by parts with respect the other variables as many times as necessary. It is an enlightening
exercise to prove (60) for affine �.”

There is a minor typo in the left-hand side of (64) on p. 549, which should read:
∥∥∥∥

∫
F

−1(ψ�′,n,−)(−x) · (Rñs ,�+x )(ϕ̃)(· + x)dx

∥∥∥∥

s

p,�
≤ sup

x
C12

−(r−1)m0‖ϕ̃‖sp,�+x . (64)

Finally, (64) follows from (60) and the leafwise Young inequality (38). ��

6 Typos

On p. 537, the condition R
ds × {0} ⊂ C− must be replaced by “Rds × {0} is included in

(Rd \ C+) ∪ {0}” (thrice, including Defs 3.2–3.3). Also, the assumptions ensure that ��

21 For the kernels Vn,+
ns ,�+x (w, y) defined by replacing ψ�′,n,− with ψ�,n,+, we only get C0 > 1 so that

|Vn,+
ns ,�

(w, y)| ≤ C02−(r−1)nbns (w − y) if C02ns ≥ 2n . In particular, Vn,+
ns ,�

need not be small if n is big and
ns small.
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is surjective. Same page, 6 lines after (17), the norms are equivalent uniformly in �, not
equal, due to the Jacobian. In Lemma 4.2, one must assume that F can be extended by a
bilipschitz regular cone hyperbolic diffeomorphism F̃ ofRd , with ‖F̃‖+, 1/‖F̃‖−, 1/‖F̃‖−−
and 1/| det(DF̃ |(C′+)⊥)| controlled by twice the corresponding constants for F . In lines 2–3
of p. 555, the sum is over all � ≥ 0, and in line 2, one of the (1+ ‖x−‖)Q1 must be replaced
by (1 + ‖x+‖)Q2 , while ψ

Op
� υ(x) should be replaced by ‖ψOp

� υ‖L∞ .
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