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Abstract The origin behind the dipolar order in molecular fluids is investigated by using a
simple dipolar fluid and Monte Carlo simulation technique. A penalty function is employed
to separately manipulate the positional and orientational structure of the fluid. By consider-
ing the distance-dependent Kirkwood function Gy, which in turn is related to the dielectric
permittivity of the fluid, it is observed that both positional and orientational ordering are
involved to establish dipolar order.
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1 Introduction

The first attempt to understand the dielectric behavior of molecular media dates back to the
middle of the 19th century and the work of Clausius [1] and Mossotti [2]. They developed
independently the well-known Clausius—Mossotti equation. Later, in the first half of the
20th century, Langevin [3], Onsager [4], and Kirkwood [5] made important contributions
to our understanding of the dielectric behavior of a molecular fluid. In particular, we note
that Kirkwood introduced the today well-known Kirkwood gk -factor to describe the dipolar
correlations of relevance for the dielectric behavior of dipolar fluids. In the 70ies of the last
century, Niehuis and Deutch [6] and somewhat later Wertheim [7] further developed our
understanding of these systems.

First principle statistic mechanical modeling of the dielectric behavior of molecular fluids
started roughly also at the 70ies and pioneering work [8—10], to mention a few, further
increased our understanding of the systems. In the beginning of the 80ies the problem of

G. Karlstrom
Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124,
22100 Lund, Sweden

P. Linse (<)

Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund,
Sweden

e-mail: per.linse@fkemI.lu.se

@ Springer


mailto:per.linse@fkem1.lu.se

Dipolar Order in Molecular Fluids 411

describing the dielectric behavior of a medium was considered solved by Kusalik [11, 12].
For that time, he modeled a very large system containing 4000 particles interacting via the
so-called Stockmayer potential comprising a long-range dipole—dipole and a short-range
Lennard-Jones term. It was for a long time assumed that the study of systems of that size
was enough to guarantee that the dielectric behavior in general and the Kirkwood gk -factor
was converged.

In a recent study of much larger systems involving up to 300 000 particles [13], we
showed that not even for these much larger systems could we expect to obtain a size-
independent description of the dielectric properties of a high dielectric molecular fluid, as
described by the distant-dependent Kirkwood Gy-function. One way to access the conver-
gence of the distance-dependent Kirkwood G-function and the dielectric permittivity would
be to systematically investigate the mechanisms behind the process. This has to the best of
our knowledge never been done, but in the following sections we will try to shed some light
on this problem by the use of Monte Carlo simulations of a spherically confined dipolar fluid
surrounded by a dielectric medium. Before presenting this model and the obtained results,
it is appropriate with a short theoretical discussion.

2 Theoretical Considerations

Kirkwood [5] suggested that the degree of dipolar order in a sphere of volume V containing
a dipolar fluid could be quantified by considering

1
Gk(r>=;<2ul -u,> (1)

jcv

where the sum runs over all dipoles in the sphere, which is centered at the position of the
central dipole p; and possess the radius r. Thus, G (r) measures the degree of alignment
of all dipoles in a sphere of radius r with the direction of the central one. For random
orientations, Gi(r) = 1 is obtained. The basic assumption by Kirkwood, as well as in this
work, is that G (r) converges to a well-defined value, the gk-factor, for an infinite sphere in
the thermodynamic limit.

In an ideal dielectric medium, (i) there is no length scale and (ii) Poissons equation pre-
dicts no dipolar order in the dielectric medium near a dipole in a cavity. This gives us reason
to believe that the formation of dipolar order in a molecular dipolar fluid is linked to the only
length scale present in the system, viz. the particle size as measured by either the range of
the long-range dipole—dipole or the short-range interaction. Thus, it seems natural to asso-
ciate the formation of the dipolar order, as, e.g., expressed by G (r), to the inhomogeneous
molecular (i) positional and (ii) orientational order (collectively referred to as the packing)
in the molecular fluid. We shall consequently modify the packing and investigate in what
way this influences G (r).

The noncentral dipole—dipole interaction is the origin of the inhomogeneous orientational
order in dipolar fluids. For example, the interaction in the direction of the dipole is stronger
than that in the direction perpendicular to the dipole. Consequently, given two dipolar par-
ticles being at short separation, it is more likely to find them with coaxial dipolar axes than
with perpendicular ones. This type of correlation is conventionally monitored by the angle 6
between the direction of the dipole of one of the two dipolar particles and the vector between
the dipolar particles. For each pair of particles, there are two angles of this type (see Fig. 1).
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Fig. 1 (Left) Illustration of a
molecular fluid confined in a
sphere with radius Rygs
concentrically placed in a
spherical cavity with radius R, in
a dielectric medium with the
relative permittivity ¢, and (right)
the two angles 6 and 6, formed
by the interparticle vector and the
dipole directions of two dipolar
particles

0,

Our goal is to manipulate the molecular packing without changing the nature of the
dipole—dipole interaction. For that purpose we have designed a penalty function Upena (7, 6)
consisting of two terms according to

1 1
Upenal (r, 0) = A Ui (r) + ?neUe(r)[EG cos’ 6 — 1) + 5(3 cos’ 0 — 1)} (@)

The first term U, depends only on the distance r between the particles and has the goal to
establish a uniform radial distribution function g(r). The second term depends both on r and
the angles 6; and 6, and its purpose is make (3 cos? 6) equal to unity—the value of a uniform
orientation distribution. As the orientational inhomogeneity depends on r, an r-dependent
prefactor Uy (r) is needed. For conveniences, we have also introduced the coupling parame-
ters A, and XAy in (2). Thus, A, = Ay = O represents an unperturbed (here Stockmayer) fluid,
whereas A, = Ag = 1 a perturbed fluid with ideally constant radial distribution function and
constant orientational distribution. We introduce separate coupling parameters of the two
terms of the penalty function to enable a study the effect of the radial and orientational
structure separately.

If the molecular packing were responsible for the nonunity of the distance-dependent
Kirkwood function G (r), we would expect that G (r) observed when the penalty function
is applied would be smaller than for a nonpenalized system. Finally, note that we are not
optimizing the penalty functions to minimize G (r) but to decrease the inhomogeneity of
the fluid. Consequently, it is interesting to observe not only how Gy (r) is influenced when
A is varied from O to 1 but also for values outside this interval.

3 Model and Methods

In this work, a spherically confined fluid composed of 1200 dipolar particles is studied using
Monte Carlo simulations. The fluid is confined by an external hard-sphere potential with the
radius Rys = 19.5 A, which in turn is embedded in an outer spherical cavity with the radius
R, =20.7 A. Moreover, the spherical cavity is surrounded by a dielectric medium with the
relative permittivity e = 130 (see Fig. 1). The reaction field originating from the polarized
dielectric surroundings acting on the molecular fluid is included in the model by using an
image approximation as suggested by Friedman [14].

As previously [13], the dipole particles are specified by (i) the Lennard-Jones size pa-
rameter o = 2.8863 A and interaction parameter ¢ = 1.97023 kJ/mol and (ii) the dipole
moment u = 1.651 D, whereas the system temperature 7 = 315.8 K is used. The analysis
of the simulated system is based on the most central particle in the system to reduce the
influence of the spherical boundary.
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Fig. 2 Illustration of the three b

paths employed in the
(Ar, Ag)-space describing the 11@ > @
increase of the applied penalty C

starting from the no-penalty case
(Ar = 1g =0) to the penalty
minimizing the radial and A
orientational inhomogeneities Ao
Ar=24g=1)

To investigate the effect of the packing of the particles on the distance-dependent Kirk-
wood function G (r), and thus on the dielectric permittivity, we have performed three sets
of simulations where the weights of the two terms of the penalty function have systemati-
cally been varied. The sets comprised three paths from an unperturbed fluid (A, = Ay = 0)
to a perturbed fluid with minimal structure (A, = Ag = 1). The paths were (A) A, = Ay = A,
(B) increase of A, from O to 1 followed by an increase of A4 from O to 1, and (C) increase of
Mg from O to 1 followed by an increase of A, from O to 1 (see Fig. 2). The case A, = Xy = A,
A < 0 has also been used to investigating the effect of increasing the structure of the spher-
ically confined particles and A > 1 to generate structures with distinctly different character-
istic than the unperturbed system. The simulations involved between 1 - 10° and 2 - 10° trial
moves per particle, 1 - 10° for 0 < A < 1 and the longer simulations for A <0 and A > 1,
where worse statistics were obtained when the structure was enhanced.

Regarding the penalty function Upena (1, 0) defined by (1), U;(r) and Uy (r) were deter-
mined using an iterative process. They were updated according to

U™ () = Up(r) = y exp(=sr) In[g"" (r)] 3)

new old 2 1 2 1 2
U™ (r) = Uy (r) — y exp(—sr~) 5<3cos 01 — Dnew + 5(3cos 02 — Dnew 4)

where the used radial distribution function g""(r) and the orientational average
(3082 8)ew (r), involving the central particle obtained in a simulation using U®¢ from
the previous iteration, were used to construct a new estimate U"" of the penalty function.
Furthermore, (i) the radial factor exp(—sr?) was invoked to make the penalty function short
ranged [s was chosen to make Upenal(r, @) negligible (~ 107* kT) at r = 15 Al, (ii) the
prefactor y = 0.6 was included to avoid the updating procedure to become oscillatory,
(i) UM(r) = Ug’ld = (0 were used in the first iteration, and (iv) at convergence, in princi-
ple, U™ (r) = UM (r) and US*™ (r) = UJ(r). However, as convergence implies g(r) = 1
for all r, including r < o, and as we desired to retain the excluded volume effect of the
particles, the iteration was stopped before the onset g(r) > 0 was shifted more than 0.2 A,
even if g(r > o) and the orientation distribution were not fully converged. In retrospect,
this problem would have been avoided, if a hard-sphere short-range potential had been used.
Nevertheless, the results below are sufficient to draw reliable conclusions about the origin
of the distance-dependent Kirkwood function.
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Fig. 3 (Color online) Radial 2.0 —7——1————
distribution function g(r) and — 0.4+g(r) no penalty
radial orientational-averaged = — O:A+gl) with panalty
distribution (3 cos? 6) (r) ;TS <3m529>{r) no penalty
obtained without (A; = Ag =0) “p 151 — <3cos"6>{r) with penalty |
and with (A = Ag = 1) penalty 8 s
function applied. For better ¥
clarity g(r) is shifted +0.4 in the 2
y-direction .g
= 10r -
E: I
=]
0'50 5 1 25

4 Results and Discussions

The radial distribution function g(r) and the radial orientational average (3 cos”8)(r) around
the most central particle in the confining sphere obtained without (A, = Ay = 0) and with
(A: = Ag = 1) the penalty function applied are displayed in Fig. 3.

The unperturbed fluid displays a radial distribution function possessing (i) the conven-
tional set of maxima with decreasing amplitude appearing at » ~ no, where n is an integer,
and (ii) an approach to unity at longer distance. Since the present simulations are performed
in a sphere with a hard-wall potential, the structure at large r (say r > 15 A) becomes influ-
enced by this wall and will here not be treated. Similarly, (3 cos?6)(r) deviates from unity
at short distance where it also displays an oscillatory decaying behavior. A positive value
implies a preferential location of the particles in the forward and backward dipole direction
and a negative value a preferential location perpendicular to the dipole direction. The max-
ima of (3cos?@)(r) appear roughly a quarter of a period before those of g(r). The extreme
points of (3cos?8)(r) deviate from unity much less than those of g(r) do. As we will see
below, this deviation is however of large importance.

For the fluid with the penalty function applied, the radial distribution function becomes
much smoother, though not completely smooth as already alluded to. Noticeable are the
reminisces of the maximum of the unperturbed system at » =~ o and the rise of the radial
distribution function appearing ca 0.2 A earlier than in the unperturbed system. Further iter-
ations of the penalty function improve the smoothness of g(r & o) at the expense of further
shrinkage of the excluded volume. Moreover, at intermediate distance the radial distribu-
tion function becomes smaller than unity due to an increased density of particles near the
spherical boundary. Regarding (3 cos?8)(r), it becomes nearly completely uniform with the
penalty function applied.

Figure 4 shows the radial term U,(r) and the prefactor Uy (r) of the orientational term of
the penalty function. Both quantities display oscillations at short  with a wavelength of ~ o
and approach smoothly zero at increasing r as constructed. Atr ~ o, (i) U;(r) becomes large
to suppress the maximum in the radial distribution function at that  and (ii) Uy (r) becomes
positive to suppress the dipolar alignment at this distance (cf. Fig. 3). At shorter distance,
U,(r) becomes rapidly and strongly negative to match the steep rise of the Lennard-Jones
potential.

The distance-dependent Kirkwood function G (r) obtained from series A with A, = Ay =
A are presented in Fig. 5a. First, the unperturbed system (A = 0) displays a G () that in-
creases from unity at small r in two steps to Gx ~ 4 at r &~ 20 and continues with a gentle
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Fig. 4 (Color online) Reduced q—— 7T T T T
radial term Uy(r)/kT and
rﬁducgd pre_faculJr Uy (rz/ II:T of — radial term
the orlentat1opa term of the = — angular term
penalty function versus the =
distance r ‘:-:z, 2r T
2
©
!_
T o
=
N 1 1 1 1 1 1 1
20 6 8 10 12 14
r(A)
Table 1 Dipolar energy per
particle (in kT) as a function of 2o Ar
Ar and Ag 0.0 0.5 1.0
0.0 —4.32 —4.48 —-5.39
0.5 —-3.74 —3.83 —4.18
1.0 —-3.52 —3.67 —4.18

rise to 5 at r ~ 40 . Thus, on the average, the dipoles of the particles in the first as well as
in second shell of neighbors of the central particle are preferentially oriented parallel to the
dipole of the central one. The preferential orientation of particles further away is weak.

Second, a strong dependence of Gy (7) on the magnitude of the penalty function applied
through A is found. Positive A values decrease G (r), whereas negative A values increase
this quantity. (i) For unit value of A, there is practically no dipolar structure left as analyzed
by Gk(r), consistent with nearly annealed radial and orientational structure. (ii) For A > 1,
G (r) initially decreases below 1 and then starts to grow slowly but it always remains small.
(iii) Furthermore, with a negative coupling parameter G (r) displays a stronger rise at dis-
tances corresponding to the first two shells and the increase continues steadily at even larger
distances from the central particle. The overall main increase of Gy (r) appears already at
A = —0.25 and that a more negative A induces only a minor effect on the Gy (r). Thus,
we have demonstrated that by suppressing the radial and orientational molecular inhomo-
geneities of the dipolar fluid, we reduce the dipolar correlations and hence the dielectric
response of the fluid and a opposite response is achieved when the inhomogeneities are
enforced.

It is also worth mentioning that (i) the systems obtained using A > 1 exhibit maxima
in g(r) and (3cos?0)(r), at which the unperturbed system shows minima and vice versa,
and that systems generated with A < 0 show an increase structure as measured by g(r) and
(3cos?8)(r) in comparison to the unperturbed system (data not shown).

We will continue our analyses by considering if G(r) depends on the radial or orien-
tational correlations or if perhaps on both. An obvious way to perform this is to study the
effect of varying the magnitude of the radial and orientational term of the penalty function
separately. Figure 5b displays the effect of first varying X, and then A4 along bath B given by
Fig. 2, and Fig. 5c shows the effect of first varying Ay followed by varying A; as in path C of
Fig. 2. In panels b and c of Fig. 5, the top curves give Gy (r) without (A, = Ay = 0) and the
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Fig. 5 (Color online)
Distance-dependent Kirkwood
function G (r) versus r at
various degree of penalty applied
through the coupling parameters
XAr and Ag [see (2)] for various
combinations of Ar and Ay as
predescribed by (a) path A,

(b) path B, and (c) path C shown
in Fig. 2. The values of coupling
parameters (a) A and (b and ¢) A;
and Ag used are given in the
curve captions appearing in the
panels

“soc0bbL
2888888 |
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bottom ones with penalty (A, = Ay = 1) applied. The data shows that G (r) decays mono-
tonically along both paths and though the largest response appears when applying the orien-
tational penalty, it is clear that both the radial and orientational term of the penalty function
are of importance. Hence, an important message is that the high values of the distance-
dependent Kirkwood function in a simple polar fluid is intimately related to both the radial
and orientational packing of the particles.

The change of the packing of the particles will of course affect the way the dipoles are
interacting, and one way to monitor this is to study the average dipole—dipole interaction.
Table 1 provides average dipolar energies for different values of A, and Xy. It is clear that the
use of the radial term of the penalty function strengthens the dipole—dipole interaction. The
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main explanation is that the chosen radial penalty function actually facilitates the dipoles to
come closer, as discussed above. The effect of the orientational term of the penalty function
is to weaken the dipole—dipole interaction. The main explanation for this is that the linear and
attractive alignment of dipoles at short distances, which corresponds to the most favorable
arrangement, is strongly penalized.

5 Conclusions

This work shows that it is possible to control the dipolar structure in a fluid by manipulating
the radial and orientational structure of the dipolar particles by employing a short-range
penalty function. We have shown that the long-range dipolar order is intimately coupled to
the radial and orientational inhomogeneity of the dipolar fluid. In particular, we note that the
dipolar structure is enhanced by stronger radial packing and decreased when suppressing the
orientational inhomogeneity. In this work, a penalty function controlled the radial packing
and orientational inhomogeneity, and in a following contribution [15] we systematically
investigate how the same objective can be achieved by modifying the shape of the particles
and by introducing higher electrostatic moments of the particles.

Acknowledgements Financial support by the Swedish Research Council (VR) through the Linnaeus grant
Organizing Molecular Matter (OMM) center of excellent (239-2009-6794) and through individual grants to
GK (621-2007-5009) and PL (621-2007-5251) is gratefully acknowledged.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Clausius, R.: Die Mechanische Wérmetheorie, vol. II, p. 62. Braunschweig (1879)
Mossotti, O.F.: Bibl. Univ. Modena 6, 193 (1847)
Langvin, P.: J. Phys. 4, 678 (1905)
Onsager, L.: J. Am. Chem. Soc. 58, 1486 (1936)
Kirkwood, J.G.: J. Chem. Phys. 7, 911 (1939)
Nienhuis, G., Deutch, J.M.: J. Chem. Phys. 56, 1819 (1972)
Wertheim, M.S.: Ann. Rev. Phys. Chem. 30, 471 (1979)
Ladd, A.J.C.: Mol. Phys. 36, 463 (1978)
9. Adams, D.J., McDonald, L.R.: Mol. Phys. 32, 931 (1976)
10. Neumann, M.: Mol. Phys. 50, 841 (1983)
11. Kusalik, P.G.: J. Chem. Phys. 93, 3520 (1990)
12. Kausalik, P.G.: Mol. Phys. 73, 1349 (1991)
13. Stenhammar, J., Linse, P., Karlstrom, G.: J. Chem. Phys. 131, 164507 (2009)
14. Friedman, H.L.: Mol. Phys. 29, 1533 (1975)
15. Linse, P, Karlstrom, G.: J. Stat. Phys., doi:10.1007/s10955-011-0352-2

R

@ Springer


http://dx.doi.org/10.1007/s10955-011-0352-2

	Dipolar Order in Molecular Fluids: I. Toward an Understanding
	Abstract
	Introduction
	Theoretical Considerations
	Model and Methods
	Results and Discussions
	Conclusions
	Acknowledgements
	Open Access
	References


