
Journal of Scheduling (2018) 21:583–593
https://doi.org/10.1007/s10951-018-0566-0

Shared processor scheduling

Dariusz Dereniowski1 ·Wiesław Kubiak2

Published online: 13 April 2018
© The Author(s) 2018

Abstract
We study the shared processor scheduling problem with a single shared processor to maximize total weighted overlap, where
an overlap for a job is the amount of time it is processed on its private and shared processor in parallel. A polynomial-time
optimization algorithm has been given for the problem with equal weights in the literature. This paper extends that result by
showing an O(n log n)-time optimization algorithm for a class of instances in which non-decreasing order of jobs with respect
to processing times provides a non-increasing order with respect to weights—this instance generalizes the unweighted case
of the problem. This algorithm also leads to a 1

2 -approximation algorithm for the general weighted problem. The complexity
of the weighted problem remains open.

Keywords Divisible jobs · Scheduling · Shared processor

1 Introduction

We begin with a motivating example for the shared proces-
sor scheduling problem before we describe it generally and
define formally. Consider three orders (jobs) of size p1 = 52,
p2 = 12, and p3 = 26 units. These orders belong to three
competing agents (manufactures), each with its own private
processorP1,P2, andP3, respectively. If each processor pro-
duces one unit per unit of time, the order’s earliest completion
times will be 52, 12, and 26, respectively, provided that the
private processors start processing their orders right away,
i.e., at time 0, and experience no preemptions resulting in
undesirable delays. Naturally these completion times cannot
be shortened without additional processors. Now suppose a
subcontractor with a single processor M, capable of pro-
cessing at most one order at a time, offersM to be shared by
all agents. We refer to M as the shared processor. Then the
agents may consider subcontracting parts of their orders to
the subcontractor but only if this reduces their order’s com-
pletion times. Otherwise, they will obviously do better by

B Dariusz Dereniowski
deren@eti.pg.edu.pl

Wiesław Kubiak
wkubiak@mun.ca

1 Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

2 Faculty of Business Administration, Memorial University, St.
John’s, Canada

using only their own private processors. Therefore, sched-
ules that allow the subcontractor to process an order on M
while the order’s private processor remains idle are undesir-
able to the order’s agent since they do not reduce the order’s
completion time, and moreover they are more expensive to
the agent who needs to unnecessarily pay for usingMwhen
its private processor is idle. These requirements imply that
each order is either done on its private processor only or on its
private processor and in parallel onM (resulting in overlap)
at any time in a desirable schedule. Hence, only the overlap
can reduce completion times and thus agents strive to have
(collectively) as much of it as possible. Clearly, the overlap is
beneficial to the agents, by reducing completion times, and at
the same time to the subcontractor, by payments from agents
for usingM. Observe that while preemptions on private pro-
cessor are not advantageous, one cannot a priori rule out
possible advantages from preemptions on the shared proces-
sor where an order could be done in disjoint time intervals,
each overlapping with the execution on the order’s private
processor. However, we prove later that such preemptions
are not advantageous either. Thus, feasible schedules can be
limited to non-preemptive schedules only. Finally, the sub-
contractor needs to find a feasible schedule that maximizes
the total (weighted) overlap. In the motivating example such
schedule would have order 2 scheduled in (0,6), order 3 in
(6,16), and order 1 in (16,34) onM. Observe that order 2 is
also done in (0,6) on P2, order 3 in (0,16) on P3, and order 1
in (0,34) on P1, see Fig. 1a. This schedule is optimal for the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-018-0566-0&domain=pdf
http://orcid.org/0000-0003-4000-4818

584 Journal of Scheduling (2018) 21:583–593

unweighted case. Generally, the orders may have individual
weights w1, w2, and w3, respectively. This may be because
the payoffs to agents resulting from order completion time
savings may be order-dependent, or the subcontractor may
charge different rates to different orders for using the shared
processor.

Generally, we consider a subcontracting system where
each agent j has a job with processing time p j to be exe-
cuted. Such an agent can perform the work by itself on its
private processor, in which case the job completes after p j

units of time, or it can send (subcontract) a part (overlap) of
length t j ≤ p j/2 of this job to a subcontractor for processing
on a shared processor. The subcontractor needs to complete
this part of agent’s j job by p j − t j bearing in mind that the
shared processor can do at most one job at a time which obvi-
ously constraints the subcontractor. The speedup in terms of
the completion time that the agent achieves in this scenario is
exactly t j , or in other words, thework of agent j is completed
at time moment p j − t j . Whenever t j > 0, the subcontrac-
tor is paid by agent j : the payoff for executing t j units of
j-th agent’s job is t jw j . The goal of the subcontractor is to
maximize its total weighted overlap (or total weighted pay-
off to subcontractor, or total weighted time savings to agents
depending on interpretation). Thus, in this subcontracting
system all agents try to minimize completion times of their
jobs (the parameters p j and w j are fixed for each agent j)
by commissioning the biggest possible part of their jobs to
the subcontractor. The subcontractor is the party that decides
the overlap t j to maximize the total weighted overlap.

The shared processor scheduling problem can be placed
in a wider context of scheduling with the presence of private
(local) processors (machines), available only to a particular
job or a set of jobs, and shared (global) processors that are
available to all jobs. Then, some additional rules are given
in order to specify the conditions under which a job can gain
access to a shared processor in such systems. These systems
can be run as either centralized or decentralized. The former
typically has a single optimization criterion forcing all parties
to achieve the same goal. The latter emphasizes that each
party is trying to optimize its own goal, which may (and
often does) lead to problems having no solutions which are
optimal for each agent (job) individually. These problems
can be seen as multi-criteria optimization or coordination
problems. The latter can be further subdivided into problems
in which agents have complete knowledge about resources
of other agents (complete information games) and problems
without such a complete knowledge (distributed systems) in
the search for coordinating mechanisms. This research falls
into the category of centralized problems as the subcontractor
is deciding on the schedule that reflects its best interest.

The outline of this paper is as follows. In the next sec-
tion, we briefly survey the related work to provide a state of
the art overview. Section 3 gives a formal statement of the

shared processor scheduling problem, and it introduces the
necessary notation. Then, in Sect. 4, we recall some facts
related to the problem, mainly the fact that when comput-
ing optimal schedules one may restrict attention to schedules
that are called synchronized. This generally greatly simplifies
the formal arguments and algorithmic approach. Section 5
considers a restricted version of the problem in which it is
assumed that for any pair of jobs, neither of the jobs can
have weight and processing time to be strictly smaller than
the other.We give an O(n log n)-time optimization algorithm
for this case, andwe use it subsequently as a building block to
obtain an O(n log n)-time 1/2-approximation algorithm for
the general case in Sect. 6.

2 Related work

The shared processor scheduling problem has recently been
studied by Vairaktarakis and Aydinliyim (2007), Hezarkhani
and Kubiak (2015), and Dereniowski and Kubiak (2017).
Vairaktarakis andAydinliyim (2007) consider the unweighted
problem with a single shared processor and with each job
allowed to use at most one time interval on the shared pro-
cessor. This case is sometimes referred to as non-preemptive
since jobs are not allowed preemption on the shared proces-
sor. Vairaktarakis and Aydinliyim (2007) prove that there are
optimal schedules that complete job execution on its private
and the shared processor at the same time;we call such sched-
ules synchronized. It further shows that this guarantees that
sequencing jobs in non-decreasing order of their processing
times leads to an optimal solution for the case. Hezarkhani
and Kubiak (2015) observes that this algorithm also gives
optimal solutions to the preemptive unweighted problem
where more than one interval can be used by a job on the
shared processor. Dereniowski and Kubiak (2017) considers
shared multi-processor problem proving its strong NP-
hardness and giving an efficient, polynomial-time algorithm
for the shared multi-processor problem with equal weights.
Also, it is shown in Dereniowski and Kubiak (2017) that syn-
chronized optimal schedules always exist forweightedmulti-
processor instances. Vairaktarakis and Aydinliyim (2007),
Vairaktarakis (2013), and Hezarkhani and Kubiak (2015)
also study decentralized subcontracting systems focusing
on coordinating mechanisms to ensure their efficiency.
Hezarkhani and Kubiak (2015) show such coordination
mechanism for the unweighted problem and give examples
where such schemes do not exist for the weighted problem.

The motivation to study the shared processor scheduling
problem comes from diverse applications. Vairaktarakis and
Aydinliyim (2007) consider it in the context of supply chains
where subcontracting allows jobs to reduce their completion
times by using a shared subcontractor’s processor. Bharad-
waj et al. (2003) use the divisible load scheduling to reduce

123

Journal of Scheduling (2018) 21:583–593 585

(a) (b)

Fig. 1 a An optimal schedule for three unweighted jobs with of processing times p1 = 52, p2 = 12 and p3 = 26 (the total weighted overlap
of this schedule is 34); b an optimal schedule when the jobs have weights w1 = 2, w2 = 1, w3 = 3 (the total weighted overlap equals
p3
2 w3 + p1−p3/2

2 w1 = 78)

a job completion time in parallel and distributed computer
systems, and Anderson (1981) argues for using batches of
potentially infinitely small items that can be processed inde-
pendently of other items of the batch in scheduling job-shops.
We refer the reader to Dereniowski and Kubiak (2017) for
more details on these applications.

We also remark multi-agent scheduling models in which
each agent has its own optimality criterion and performs
actions aimed at optimizing it. In these models, being exam-
ples of decentralized systems, agents usually have a number
of non-divisible jobs to execute (depending on the optimiza-
tion criterion thismay be seen as having one divisible job, but
restricted by allowing preemptions only at certain specified
points). For minimization of weighted total completion time
in such models see Lee et al. (2009) and weighted number
of tardy jobs see Cheng et al. (2006). Bukchin and Hanany
(2007) give an example of a game-theoretic analysis to a
problem of this type. For overviews and further references
on themulti-agent schedulingwe refer to the book byAgnetis
et al. (2014).

3 Problem formulation

We are given a set J of n preemptive jobs. Each job j ∈ J
has its processing time p j and weight w j . With each job
j ∈ J we associate its private processor denoted by P j .
Moreover, there exists a single shared processor, denoted by
M, that is available for all jobs.We follow the convention and
notation from Dereniowski and Kubiak (2017) to formulate
the problem in this paper.

A schedule S is feasible if it satisfies the following con-
ditions:

– each job j ∈ J executes non-preemptively in a single
time interval (0,CP

S (j))on its private processor and there
is a (possibly empty) collection I j of open, non-empty
intervals such that j executes non-preemptively in each
time interval I ∈ I j on the shared processor,

– for each job j ∈ J ,

CP
S (j) +

∑

I∈I j

|I | = p j ,

– the time intervals in
⋃

j∈J I j are pairwise disjoint (i.e.,
at most one job onM at a time).

Given a feasible schedule S, for each job j ∈ J we call
anymaximal time interval inwhich j executes on both private
P j and shared M simultaneously an overlap. Observe that
this definition allows I ∈ I j not to be an overlap. Thus, the
definition allows for feasible schedules that have jobs done on
the shared processor but not on their private processors at the
same time. These schedules may not be desirable (because
they are not optimal) for the jobs, but they are included by the
definition to remain consistent with the definition in Dere-
niowski and Kubiak (2017). The total overlap t j of job j
equals the sum of lengths of all overlaps for j . The total
weighted overlap of S equals

Σ(S) =
∑

j∈J
t jw j .

A feasible schedule that maximizes the total weighted over-
lap is called optimal. Figure 1 gives examples of optimal
schedules.

The formulationof ourweighted single-processor schedul-
ing problem (WSPS) is as follows.

Instance A set of weighted jobs J with arbitrary given
processing times.
Goal Find an optimal schedule for J .

4 Preliminaries

The section provides a brief discussion of the main charac-
teristics of optimal schedules on the shared processor. These

123

586 Journal of Scheduling (2018) 21:583–593

characteristics simplify the formal arguments and algorith-
mic approach in Sects. 5 and 6.

Let S be a feasible schedule. For j such that I j �= ∅, we
denote by sMS (j) and CM

S (j) the earliest and the latest time
points, respectively, in which j executes onM, i.e.,

sMS (j) = inf
⋃

I∈I j

I , CM
S (j) = sup

⋃

I∈I j

I .

For brevity we take sMS (j) = CM
S (j) = 0 if I j = ∅, i.e., j

executes on its private processor only. Whenever sMS (j) <

CM
S (j), i.e., some non-empty part of a job j executes onM,

then we say that the job j appears on M in schedule S. If,
in a schedule S, there is no idle time on the shared processor
in time interval
[
0,max{CM

S (j)
∣∣ j ∈ J }

]
,

thenwe say thatS has no gaps.We have the following results
from the literature.

Observation 1 (Dereniowski and Kubiak 2017) There exists
an optimal schedule that has no gaps.

A schedule S is called non-preemptive if each job j executes
in S in time interval [sMS (j),CM

S (j)] on the shared proces-
sor. We say that a schedule S is synchronized1 if it satisfies
the following conditions:

(i) S is non-preemptive and has no gaps,
(ii) for each job j that appears on the shared processor it

holds CM
S (j) = CP

S (j).

Theorem 1 (Dereniowski and Kubiak 2017) There exists an
optimal synchronized schedule.

Consider a synchronized scheduleS. Let A = { j1, . . . , jk} ⊆
J be the set of all jobs that appear onM in S, where the jobs
are ordered according to increasing order of their completion
times in S, i.e., CM

S (j1) < · · · < CM
S (jk). Note that the set

A and the order are enough to determine the schedule S.
Indeed, given the order (j1, . . . , jk) we obtain that for each
i ∈ {1, . . . , k} (by proceeding with increasing values of i in
a synchronized schedule),

sMS (ji) = CM
S (ji−1) and

CM
S (ji) = CP

S (ji) =
(
pi + sMS (ji)

)
/2,

1 We remark that the definition of synchronized schedule that appears
in Dereniowski and Kubiak (2017) uses as an intermediate step in the
analysis a weaker condition CM

S (j) ≤ CP
S (j) [such schedules are

called normal in Dereniowski andKubiak (2017)] which can be omitted
here due to the stronger condition in (ii) in our definition of synchronized
schedule. Also, it has been proved, cf. Observation 3.2 in Dereniowski
and Kubiak (2017), that normal schedule has no gaps which justifies
our condition (i).

where CM
S (j0) = 0. Hence, the start times and completion

times can be iteratively computed for all jobs in a synchro-
nized schedule. Thus, for synchronized schedules we write
for brevity S = (j1, . . . , jk) to refer to the schedule com-
puted above.

5 AO(n logn)-time optimal algorithm for
antithetical instances

We call an instance J of the problem antithetical if for any
two jobs i and j it holds: pi ≤ p j implies wi ≥ w j . We call
a schedule S processing time ordered if S = (j1, . . . , jn),
where p ji ≤ p ji+1 for each i ∈ {1, . . . , n − 1}. In other
words, all jobs are present on the shared processor, they are
arranged according to non-decreasing order of their process-
ing times and the schedule is synchronized. The definition is
correct since we observe that by the construction at the end of
Sect. 4, S is synchronized and all jobs from J appear on the
shared processor, see Vairaktarakis and Aydinliyim (2007)
and Hezarkhani and Kubiak (2015). We now prove that any
optimal solution for an antithetical instance is a processing
time ordered schedule. We remark that this algorithm gen-
eralizes the previously known solutions for the unweighted
case (w1 = · · · = wn) from Hezarkhani and Kubiak (2015),
Vairaktarakis and Aydinliyim (2007).

Before giving the main result of this section in Lemma 3,
we prove a technical lemma which shows how to transform a
schedule with k − 1 synchronized jobs, i.e., jobs completing
on the shared and private processors at the same time, into a
schedule that has k jobs synchronized. This transformation
will be used in the proof of Lemma 3.

Lemma 2 Let S ′ be a non-preemptive schedule with no gaps.
Consider a subset of jobs j1, . . . , jk for some k ∈ {1, . . . , n}
and let i ∈ {1, . . . , k−1}. Suppose that p ji ≤ p ji+1 ≤ · · · ≤
p jk , and CM

S ′ (ji ′) = CP
S ′(ji ′) for each i ′ ∈ {1, . . . , k} \ {i},

and one of the two cases holds:

(i) exactly the jobs j1, . . . , jk appear on the shared proces-
sor in S ′ in this order and CM

S ′ (ji) < CP
S ′(ji), or

(ii) exactly the jobs j1, . . . , ji−1, ji+1, . . . , jk appear on the
shared processor in S ′ in this order, p ji > sMS ′ (ji+1) and
ji does not appear on M.

Then, the synchronized schedule S ′′ = (j1, . . . , jk) satisfies

Σ(S ′′) = Σ(S ′) + εw ji − ε

k∑

i ′=i+1

w ji ′
2i ′−i

for some ε > 0.

123

Journal of Scheduling (2018) 21:583–593 587

Fig. 2 Transformation from S ′
to S ′′ in proof of Lemma 2

Proof The transformation described in the proof is shown in
Fig. 2. Informally speaking, we obtain S ′′ by moving a part
of ji from its private processor to the shared processor M,
so that ji becomes synchronized, i.e., it ends on both of these
processors at the same time. This move forces all jobs that
follow ji on M, i.e., the jobs ji+1, . . . , jk , to be postponed
on M as described below. Note that the transformation is
exactly the same for both case (i) and case (ii) but Fig. 2
depicts case (i) only.

Let

ε = 1

2

(
CP
S ′(ji) − sMS ′ (ji+1)

)
.

Note that ε > 0 by the lemma assumption. We now obtain a
schedule S ′′ as follows. For i ′ ∈ {i + 1, . . . , k}, the start of
the job ji ′ is postponed by ε/2i

′−i−1 onM, i.e.,

sMS ′′ (ji ′) = sMS ′ (ji ′) + ε

2i ′−i−1
= sMS ′ (ji ′) + 2ε

2i ′−i
, (1)

the completion of job ji ′ is postponed by ε/2i
′−i on M and

on P ji ′ , i.e.,

CM
S ′′ (ji ′) = CP

S ′′(ji ′) = CM
S ′ (ji ′) + ε

2i ′−i
. (2)

Thus, ji ′ completes on both M and P ji ′ at the same time
for i ′ ∈ {i + 1, . . . , k}. Moreover, sMS ′′ (ji) = sMS ′ (ji) in
case (i) and sMS ′′ (ji) = sMS ′ (ji+1) in case (ii). Then, let
CM
S ′′ (ji) = sMS ′′ (ji+1) (thus in both cases the duration of

ji on M increases by ε) and the remaining part of length
CP
S (ji) − ε of ji executes on P ji so that ji completes on

bothM and P ji at the same time as well. Finally, S ′′ and S ′
are identical in time interval [0,CM

S ′ (ji)). From the transfor-
mation we obtain that

Σ(S ′′) = Σ(S ′) + εw ji − ε

k∑

i ′=i+1

w ji ′
2i ′−i

. (3)

Indeed, the amount of ji present onM increases by ε, and the
amount of ji ′ decreases by ε/2i

′−i for each i ′ ∈ {i+1, . . . , k}.
Clearly the transformation ensures that S ′′ is non-pree-

mptive and has no gaps as long as S ′ is non-preemptive
and has no gaps, which holds by assumption. By lemma’s
assumption, the execution time of ji in S ′′ is well defined.
Thus, it remains to argue that the jobs ji+1, . . . , jk are present
on M in S ′′, i.e., that the execution times of these jobs are
properly defined. To that end we need to prove that

CM
S ′′ (ji ′) − sMS ′′ (ji ′) = CM

S ′ (ji ′) − sMS ′ (ji ′) − ε

2i ′−i
> 0,

for each i ′ ∈ {i + 1, . . . , k}. By induction on i ′ we get

CM
S ′ (ji ′) − sMS ′ (ji ′) = p ji ′

2
−

i ′−1∑

�=i+1

p j�

2i ′−�+1
− x

2i ′−i

for each i ′ ∈ {i + 1, . . . , k}, where x = sMS ′ (ji+1). Since
p ji ≤ p ji+1 ≤ · · · ≤ p jk , we have

CM
S ′ (ji ′) − sMS ′ (ji ′) ≥ p ji ′

2i ′−i
− x

2i ′−i
.

Thus, it suffices to show that

p ji ′ − x > ε.

By definition of ε this boils down to showing that

2p ji ′ > CP
S ′(ji) + x .

123

588 Journal of Scheduling (2018) 21:583–593

This inequality holds since p ji ≥ CP
S ′(ji) > x and thus we

get

2p ji ′ ≥ 2p ji > CP
S ′(ji) + x,

which completes the argument and proves that S ′′ is feasible.
This implies that S ′′ is feasible and synchronized. Observe
that though we assumed CM

S ′ (ji) − sMS ′ (ji) > 0 in case
(i) of the lemma, we have not used this assumption in the
proof. Hence, the proof also works for case (ii) in which one
can equivalently take CM

S ′ (ji) − sMS ′ (ji) = 0. We use this
observation in the proof of Lemma 3 where the case of ji
absent from M in S ′ needs to be considered (i.e., when we
refer to case (ii) of this lemma). 	

We remark that it is still premature to conclude from
Lemma 2 that no job is missing on M in an optimal sched-
ule S. This would simplify the proof of Lemma 3 as it would
eliminate case (5) in the proof. However, an insertion of a
job missing on M in S requires the jobs on M to the right
of the insertion point to be ordered according to the non-
decreasing order of processing times. Otherwise, if this key
assumption in Lemma 2 is not met, then the synchronized
schedule S ′′ from Lemma 2 may not be feasible or may not
satisfy the formula for its total weighted overlap given in the
lemma. Unfortunately, at this point we cannot guarantee that
S satisfies the assumption.

Lemma 3 An optimal schedule for an antithetical instance
of the problem WSPS is a processing time ordered schedule.

Proof Let S be an optimal schedule for an antithetical
instance J . By Theorem 1 we can assume that S is synchro-
nized. We assume without loss of generality that the jobs in
J = {1, . . . , n} are ordered in non-decreasing order of their
processing times, i.e., p1 ≤ p2 ≤ · · · ≤ pn . Let A ⊆ J
be the set of jobs that appear on the shared processor in S.
Let π(1), π(2), . . . , π(k), k = |A|, be the order of jobs on
the shared processor in S, i.e., S = (π(1), π(2), . . . , π(k)).
We have n ∈ A. Indeed, by Vairaktarakis and Aydinliyim
(2007) and Hezarkhani and Kubiak (2015) regardless of the
ordering of the jobs 1, . . . , n−1, it is always possible to add
the job n as the last one onM and increase the total overlap.

If for an index i ∈ {1, . . . , k − 1} it holds

pπ(i) > pπ(i+1) (4)

or if for an index i ∈ {1, . . . , k} it holds

j̄ = π(i) − 1 /∈ A, (5)

then the jobπ(i) is called a violator. Informally speaking, the
condition (4) detects whether some jobs in S do not follow
the non-decreasing order of the processing times required

by the processing time ordered schedule. The condition (5)
detects whether some job is missing on the shared processor
in S, namely, the job j̄ should precede the job π(i) onM in
the processing time ordered schedule but j̄ does not appear
onM in S.

Since n ∈ A, we have that if there is no violator, then
S is a processing time ordered schedule and the proof of
the lemma is thus completed. Therefore, we assume in the
following that at least one violator exists. Then, themaximal
index i ∈ {1, . . . , k} such that π(i) is the violator is called
the violation point in S.

Among all optimal and synchronized schedules for J we
take S to satisfy the following:

(a) |A| is maximum, and
(b) with respect to (a): the violation point of S is minimum.

Let i > 0 be the violation point of S. By definition, we
have that one of the cases (4) or (5) holds. We should arrive
at a contradiction in both cases, and we start by analyzing
the case of (4), that is, we assume that (4) holds for the
violation point i . For antithetical instances we have wπ(i) ≤
wπ(i+1). Also, for convenience andwithout loss of generality
we denote j = π(i +1) and j +1 = π(i). Thus, p j+1 > p j

by (4). In the next two paragraphs we describe a transition
from S to a new schedule S ′. This transition is depicted in
Fig. 3.

Consider the intervals in which the two jobs j and j + 1
execute on M in S and suppose that j + 1 starts at t on
M, sMS (j + 1) = t . Since S is synchronized, the length
l = CM

S (j) − sMS (j + 1) of this sequence on the shared
processor equals

l =
(
CM
S (j) − sMS (j)

)
+

(
CM
S (j + 1) − sMS (j + 1)

)

= p j − t

2
+ p j+1 − t

4
, (6)

and its contribution x to the total weighted overlap equals

x =
(
CM
S (j + 1) − sMS (j + 1)

)
w j+1

+
(
CM
S (j) − sMS (j)

)
w j

= p j+1 − t

2

(
w j+1 − w j

2

)
+ p j − t

2
w j . (7)

Thus, we can express the total weighted overlap of S as fol-
lows:

Σ(S) = c + x for some c ∈ R. (8)

Before we formally define S ′, we analyze the impact the
reversed order of the two jobs j and j + 1 in the interval
(t, t+ l) has on S and its total weighted overlap. Suppose for

123

Journal of Scheduling (2018) 21:583–593 589

Fig. 3 Transition from S to S ′
in proof of Lemma 3

the time being that j starts at t onM and is followed by the
job j + 1, and that each of these jobs completes both on M
and its private processor at the same time. Then the length l ′
of the interval (t, t + l ′) occupied by these two jobs on the
shared processor equals

l ′ = p j+1 − t

2
+ p j − t

4

and its contribution x ′ to the total weighted overlap equals

x ′ = p j − t

2

(
w j − w j+1

2

)
+ p j+1 − t

2
w j+1. (9)

Clearly, l ′ > l for p j+1 > p j by

l ′ − l = p j+1 − p j

4
. (10)

The job j completes at

t ′ = t + p j − t

2
< t + p j − t

2
+ p j+1 − t

4
= t + l (11)

after the exchange. We construct the schedule S ′ as follows:
S andS ′ are identical in time intervals [0, t) and (t+l,+∞),
the job j executes in time interval

(t, t ′) = (t, t + (p j − t)/2) (12)

in S ′ and the job j + 1 executes in time interval

(t ′, t + l) = (t + (p j − t)/2, t + l) (13)

on processorM inS ′. Note that j finishes at the same time on
its private and shared processor in S ′ while the job j+1 does
not have this property. Since p j+1 > p j , j + 1 completes
(p j+1 − p j)/4 units later on its private processor than on
M. Thus, S ′ is not synchronized; see also Fig. 3. The total

weighted overlap of S ′ is then by (6), (12) and (13):

Σ(S ′) = c + (t ′ − t)w j + (t + l − t ′)w j+1,

= c + p j − t

2
w j + p j+1 − t

4
w j+1

(14)

where c is defined in (8). By (8) and (14) we obtain that the
difference (in total weighted overlaps) between S ′ and S is

Σ(S ′) − Σ(S) = p j+1 − t

4
(w j − w j+1). (15)

Since p j+1 − t > 0 (this holds since the job j + 1 appears
on the shared processor in S) and w j ≥ w j+1, we have
that Σ(S ′) − Σ(S) ≥ 0. Note that if w j is strictly greater
than w j+1, then we obtain the desired contradiction with the
optimality of S. However, if w j = w j+1, then Σ(S) =
Σ(S ′) and we need to use different arguments to arrive at a
contradiction.

To that end denote

q =
k∑

i ′=i+2

wπ(i ′)
2i ′−i−1

.

We show that

w j+1 ≥ q. (16)

Suppose for a contradiction that w j+1 < q. To obtain a
contradiction with this assumption we will convert S ′ into
a schedule S ′′ with strictly greater total weighted overlap,
which will contradict the optimality of the original schedule
S. This conversion is described in the next two paragraphs
and depicted in Fig. 4. Let

ε = CM
S ′ (j + 1) − sMS ′ (j + 1).

Observe that ε > 0 by (10). By assumption, S is synchro-
nized and S and S ′ are identical on M in time intervals
[CM

S ′ (j + 1),+∞). Thus,

123

590 Journal of Scheduling (2018) 21:583–593

Fig. 4 Transition from S ′ to S ′′
in proof of Lemma 3 when
proving (16)

CM
S ′ (i ′) = CM

S (i ′) = CP
S (i ′) = CP

S ′(i ′)

for each job i ′ that appears on M and completes in S ′ later
than the job j + 1. The schedule S ′′ is defined as follows.
Let, S ′′ and S ′ be identical on M in time interval

[
0,CM

S ′ (j + 1) − ε
)

=
[
0, sMS ′ (j + 1)

)
.

Then, the job j +1 is not present onM in S ′, i.e., it executes
only on P j+1 in S ′′. Finally, for each job π(i ′), i ′ ∈ {i +
2, . . . , k}, we set:

sMS ′′ (π(i ′)) = sMS ′ (π(i ′)) − ε

2i ′−i−2
,

CM
S ′′ (π(i ′)) = CM

S ′ (π(i ′)) − ε

2i ′−i−1
,

CP
S ′′(π(i ′)) = CP

S ′(π(i ′)) − ε

2i ′−i−1
.

Both S ′′ and S ′ are the same on Pi ′ for each i ′ ∈ J \ { j +
1, π(i + 2), . . . , π(k)}, i.e., on each processor not specified
by the formulas above.

Clearly, S ′′ is feasible and synchronized. To compare its
total weighted overlap to that of S ′, note that on the one
hand the total weighted overlap of S ′′ decreases by εw j+1 in
comparison withS ′ since the job j+1 does not appear onM
in S ′′, on the other hand it increases since the subintervals
with the jobs that follow j + 1 on M get longer due to
disappearance of j + 1 fromM. Precisely, we have

Σ(S ′′) = Σ(S ′) − εw j+1 + ε

k∑

i ′=i+2

wi ′

2i ′−i−1

= Σ(S ′) + ε(q − w j+1) > Σ(S ′)

because ε > 0 and w j+1 < q by assumption. Thus, we
obtain a contradiction with the optimality of S (recall that
Σ(S) ≤ Σ(S ′)). Hence, (16) holds.

By Lemma 2, we obtain a synchronized schedule S∗ from
S ′.Moreover by (16)we haveΣ(S∗) ≥ Σ(S ′). In particular,
if Σ(S∗) > Σ(S ′), then we have immediately a contradic-
tion with the optimality of S since Σ(S ′) ≥ Σ(S). On the
other hand, ifΣ(S∗) = Σ(S ′), then the contradiction comes
from the selection of S to be a schedule that minimizes the
violation point i . Observe that since the intervals in (12) and
(13) are non-empty then all S, S ′, and S∗ have the same
number |A| of jobs that appear on the shared processor.

We now consider case (5). We can assume

pπ(i−1) ≤ pπ(i) (17)

since if the inequality does not hold we get case (4) which
we already considered. We assume pπ(0) = 0 in (17). Recall
that S = (π(1), . . . , π(k)) and j̄ /∈ A. By (17) and (5) we
have

CM
S (π(i − 1)) < pπ(i−1) ≤ p j̄ ≤ pπ(i) (18)

for i > 1. We apply Lemma 2(ii) to S ′ with j1 =
π(1), . . . , ji−1 = π(i − 1), ji = j̄ and ji+1 = π(i), . . .,
when i > 1 and with j1 = j̄ , j2 = π(1), j3 = π(2), . . .
when i = 1. Observe that since i is the violation point of S
and (5) holds, we have w j̄ ≥ wπ(i ′) for each i ′ ∈ {i, . . . , k}
in the antithetical instance J . Therefore,

k∑

i ′=i

wπ(i ′)
2i ′−i+1

≤ w j̄

k∑

i ′=i

1

2i ′−i+1
< w j̄ .

Hence, by Lemma 2(ii), there exists a schedule S∗ for which
we have Σ(S∗) > Σ(S ′). Thus, we again have a contradic-

123

Journal of Scheduling (2018) 21:583–593 591

Fig. 5 An example of the key
sequence (the area of the gray
part equals u∗)

tion by the optimality of S since clearly Σ(S ′) = Σ(S).
This completes the proof of the lemma. 	

Due to the fact that some jobs may have equal process-
ing times yet different weights in an antithetical instance
not all processing time ordered schedules are optimal for
the instance. However any processing time ordered sched-
ule S = (j1, . . . , jn) such that w j1 ≥ · · · ≥ w jn is optimal
for the instance. To prove that we observe that any maximal
sequence of jobs having the same processing times occu-
pies the same interval (s,C) on M in any processing time
ordered schedule. However, the earlier the job appears in
the sequence the longer is its overlap, moreover the over-
laps in (s,C) remain the same regardless of the sequence of
jobs having equal processing times. Hence, the first position
should be occupied by the heaviest job, the second position
by the second heaviest job etc. among the jobs with the same
processing times to ensure total weighted overlap maximiza-
tion. This gives an O(n log n)-time optimization algorithm
for the antithetical instances.

6 A 1/2-approximation algorithm

Let 0 = q0 < q1 < · · · < q� and u1, . . . , u� ≥ 0 for some
� ≥ 1. An envelope for q1, . . . , q� and u1, . . . , u� is a step
function of non-negative x defined as follows

e(q1, . . . , q�, u1, . . . , u�, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 if q0 ≤ x ≤ q1
u2 if q1 < x ≤ q2

. . .

u� if q�−1 < x ≤ q�

0 if q� < x .

The area of the envelope e is

�∑

i=1

ui (qi − qi−1).

Let J be a set of jobs. Without loss of generality we
assume p1 ≤ · · · ≤ pn , and for any tie (i.e., for equal

processing times) we assume that the jobs are ordered in
non-decreasing order of their weights, i.e., the heaviest tied
job comes last in the tie. A sequence of jobs i1, . . . , i� for
some � ≥ 1, where 1 ≤ i1 < · · · < i� ≤ n, is called a key
sequence for J if it satisfies the following conditions:

(i) i� = n,
(ii) wi1 > · · · > wi� ,
(iii) wk ≤ wi j for each k ∈ Ii j = {i j−1 + 1, . . . , i j } and

j ∈ {1, . . . , �}, where i0 = 0.

Clearly pi1 < · · · < pi� , thusu(pi1 , . . . , pi� , wi1 , . . . , wi� , x)
is an envelope; we refer to it as the upper envelope forJ . Let
u∗ be the area of the upper envelope for J . See Fig. 5 for an
example.

Note that the key sequence always exists. This follows
from the fact that it can be constructed ‘greedily’ by start-
ing with picking the last job of the sequence [(see (i)]
and then iteratively selecting the predecessor of the previ-
ously selected job so that the predecessor has strictly bigger
weight [see (ii)] and satisfies the condition (iii). Also, the key
sequence is unique by the same argument.

We have the following simple observation.

Claim For each k ∈ {1, . . . , �}, wik = max{w j
∣∣ ik ≤ j ≤

n}. 	

The key sequence for J defines a synchronized schedule

Skey for J with the set of jobs executed on the shared pro-
cessor being Jkey = {i1, . . . , i�} and the permutation of the
jobs on the processor being π(j) = i j for j ∈ {1, . . . , �}.
The jobs in J \Jkey are executed on their private processors
only. Following our notation introduced in Sect. 4, we get
Skey = (i1, . . . , i�). We have the following lemma.

Lemma 4 For the schedule Skey it holds 2Σ(Skey) ≥ u∗.

Proof We argue that for each k ∈ {1, . . . , �},

wik

(
CM
Skey

(ik) − sMSkey
(ik)

)
≥ wik

pik − pik−1

2
, (19)

123

592 Journal of Scheduling (2018) 21:583–593

where pi0 = 0. Note that sMSkey
(ik) ≤ pik−1 for each k ∈

{1, . . . , �}. Thus,

CM
Skey

(ik) − sMSkey
(ik) =

sMSkey
(ik) + pik

2
− sMSkey

(ik)

≥ pik − pik−1

2

for each k ∈ {1, . . . , �}, which proves (19).
By (19),

Σ(Skey) =
�∑

k=1

wik

(
CM
Skey

(ik) − sMSkey
(ik)

)

≥
�∑

k=1

wik
pik − pik−1

2
= u∗

2
.

	

We now prove that the area u∗ of the upper envelope for

J is an upper bound on the total weighted overlap of an
optimal solution forJ . ByTheorem1, there exists an optimal
synchronized schedule Sopt for J . Let Jopt ⊆ J be the set
of jobs that appear on the shared processor in Sopt and let π
be the permutation of jobs on the shared processor in Sopt.
Thus, we have Sopt = (π(1), . . . , π(|Jopt|)). It holds 0 <

CM
Sopt

(π(1)) < · · · < CM
Sopt

(π(|Jopt|)) < pn and therefore

e
(
CM
Sopt

(π(1)), . . . ,CM
Sopt

(π(|Jopt|)), wπ(1), . . . , wπ(|Jopt |), x
)

.

is an envelope for CM
Sopt

(π(1)), . . . ,CM
Sopt

(π(|Jopt|)) and

wπ(1), . . . , wπ(|Jopt |). Let the area of this envelope be e∗.
We have the following key result.

Lemma 5 It holds e∗ ≤ u∗.

Proof Observe that for each index j ∈ {1, . . . , |Jopt|} there
exists τ(j) ∈ {1, . . . , n} such that

CM
Sopt

(π(j)) ≤ piτ (j) . (20)

This follows from condition (i) in definition of key sequence.
If, for a given j , there are several jobs τ(j) that satisfy the
above, then take τ(j) to be the smallest one.

We argue that

wπ(j) ≤ wiτ (j) (21)

for each j ∈ {1, . . . , |Jopt|}. Suppose for a contradiction that
(21) does not hold. We consider two cases. In the first case
let

pπ(j) ≤ piτ (j) .

By condition (iii) in definition of the key sequence and the
minimality of τ(j),π(j)does not belong to the key sequence.
But then, wπ(j) > wiτ (j) implies that there is t such that
pπ(j) < pit < piτ (j) , which contradicts the choice of τ(j).
In the second case let

pπ(j) > piτ (j) .

Take the minimum index t such that pit ≥ pπ(j). By con-
dition (iii) in definition of the key sequence, wit ≥ wπ(j).
Since wπ(j) > wiτ (j) , condition (ii) in definition of the
key sequence implies that iτ(j) does not belong to the
key sequence — a contradiction. This completes the proof
of (21).

Let x ∈ [CM
Sopt

(π(j − 1)),CM
Sopt

(π(j))] for some j ∈
{1, . . . , |Jopt|}, where we take CM

Sopt
(π(0)) = 0. Denote for

brevity

ẽ(x) = e
(
CM
Sopt

(π(1)), . . . ,CM
Sopt

(π(|Jopt|)), wπ(1), . . . , wπ(|Jopt |), x
)

and

ũ(x) = u
(
pi1 , . . . , pi� , wi1 , . . . , wi� , x

)

for each real x . By definition,

ẽ(x) ≤ wπ(j).

By (21), wπ(j) ≤ wiτ (j) . By (20), x ≤ piτ (j) and hence by
the monotonicity of u,

wiτ (j) ≤ ũ(x).

Hence, we obtain:

ẽ(x) ≤ ũ(x). (22)

Since the index j was selected arbitrarily, the above inequal-
ity holds for each x ≥ 0. Note that the inequality in (22)
implies that the integral of ẽ(x) is less than or equal to the
integral of ũ(x). Since the former equals e∗ and the latter
equals u∗, this completes the proof. 	

Since Σ(Sopt) = e∗ and Σ(Skey) ≤ Σ(Sopt), Lemmas 4
and 5 give the following.

Corollary 1 It holds e∗/2 ≤ Σ(Skey) ≤ e∗. 	

Theorem 2 The key sequence for J provides a 1/2-approxi-
mate solution to the problem WSPS. This sequence can
be found in time O(n log n) for any set of jobs J , where
n = |J |. Moreover, the bound of 1/2 is tight, i.e., for each
ε > 0 there exists a problem instance such that Σ(Skey) <(1
2 + ε

)
Σ(Sopt).

123

Journal of Scheduling (2018) 21:583–593 593

Proof The fact that the key sequence is a 1/2-approximation
of the optimal solution follows from Corollary 1. The key
sequence can be constructed directly from the definition and
sorting the jobs in J according to their processing times
determines the O(n log n) running time.

To close we show that the 1/2 bound for the key sequences
is tight. Fix ε > 0 arbitrarily and assume without loss of gen-
erality that ε < 1. Take J to contain n = log2(3/(2ε))�
jobs, each of the same weight w > 0 and the same pro-
cessing time p > 0. The key sequence consists of one job
and therefore the total weighted overlap of the correspond-
ing schedule Skey is Σ(Skey) = wp/2. Take a schedule S
that places all jobs in J on the shared processor. We have
Σ(S) = wp(1 − 1/2n). If Sopt is an optimal schedule, then

Σ(Skey)

Σ(Sopt)
≤ Σ(Skey)

Σ(S)
≤ 1

2(1 − 2ε/3)
<

1

2
+ ε

for 0 < ε < 1. 	

7 Open problems and further research

The complexity status of WSPS remains open. The gener-
alized problem with multiple shared processors is strongly
NP-hard (Dereniowski and Kubiak 2017) when the number
of shared processors is a part of the input.However, it remains
open whether the generalized problem with fixed number
of processors is NP-hard or whether it is FPT, for instance
when the parameter is defined to be the number of shared
processors. This complexity result and the open complexity
questions clearly underline the difficulty in finding efficient
optimization algorithms for the shared processor scheduling
problem. The development of an efficient branch-and-bound
algorithm for the problem remains unexplored so far. The
1/2-approximation algorithm along with the structural prop-
erties of optimal schedules presented in this paper and in
Dereniowski and Kubiak (2017) may prove useful building
blocks of such an algorithm.

Acknowledgements This research has been supported by the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC)
Grant OPG0105675 and by Polish National Science Centre under
Contract DEC-2011/02/A/ST6/00201. The authors are grateful to two
anonymous reviewers for their insightful comments that have led to
improvements in the paper’s presentation.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Agnetis, A., Billaut, J.-C., Gawiejnowicz, S., Pacciarelli, D.,&Soukhal,
A. (2014).Multiagent scheduling. Models and algorithms. Berlin:
Springer.

Anderson, E. J. (1981). A new continuous model for job-shop schedul-
ing. International Journal of System Science, 12, 1469–1475.

Bharadwaj, V., Ghose, D., & Robertazzi, T. G. (2003). Divisible load
theory:A newparadigm for load scheduling in distributed systems.
Cluster Computing, 6, 7–17.

Bukchin, Y., & Hanany, E. (2007). Decentralization cost in scheduling:
A game-theoretic approach.Manufacturing & Service Operations
Management, 9(3), 263–275.

Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2006). Multi-agent scheduling
on a single machine to minimize total weighted number of tardy
jobs. Theoretical Computer Science, 362(1–3), 273–281.

Dereniowski,D.,&Kubiak,W. (2017). Sharedmulti-processor schedul-
ing. European Journal of Operational Research, 261(2), 503–514.

Hezarkhani, B., & Kubiak, W. (2015). Decentralized subcontractor
scheduling with divisible jobs. Journal of Scheduling, 18(5), 497–
511.

Lee, K., Choi, B.-C., Leung, J. Y.-T., & Pinedo, M. L. (2009).
Approximation algorithms formulti-agent scheduling tominimize
total weighted completion time. Information Processing Letters,
109(16), 913–917.

Vairaktarakis, G. L. (2013). Noncooperative games for subcontracting
operations. Manufacturing and Service Operations Management,
15, 148–158.

Vairaktarakis, G. L., & Aydinliyim, T. (2007). Centralization versus
competition in subcontractingoperations.TechnicalMemorandum
Number 819, Case Western Reserve University.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Shared processor scheduling
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Preliminaries
	5 A O(n logn)-time optimal algorithm for antithetical instances
	6 A 1/2-approximation algorithm
	7 Open problems and further research
	Acknowledgements
	References

