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Abstract Input estimation is employed in cases where it

is desirable to recover the form of an input function which

cannot be directly observed and for which there is no

model for the generating process. In pharmacokinetic and

pharmacodynamic modelling, input estimation in linear

systems (deconvolution) is well established, while the

nonlinear case is largely unexplored. In this paper, a rig-

orous definition of the input-estimation problem is given,

and the choices involved in terms of modelling assump-

tions and estimation algorithms are discussed. In particular,

the paper covers Maximum a Posteriori estimates using

techniques from optimal control theory, and full Bayesian

estimation using Markov Chain Monte Carlo (MCMC)

approaches. These techniques are implemented using the

optimisation software CasADi, and applied to two example

problems: one where the oral absorption rate and

bioavailability of the drug eflornithine are estimated using

pharmacokinetic data from rats, and one where energy

intake is estimated from body-mass measurements of mice

exposed to monoclonal antibodies targeting the fibroblast

growth factor receptor (FGFR) 1c. The results from the

analysis are used to highlight the strengths and weaknesses

of the methods used when applied to sparsely sampled data.

The presented methods for optimal control are fast and

robust, and can be recommended for use in drug discovery.

The MCMC-based methods can have long running times

and require more expertise from the user. The rigorous

definition together with the illustrative examples and sug-

gestions for software serve as a highly promising starting

point for application of input-estimation methods to prob-

lems in drug discovery.

Keywords Input estimation � Deconvolution � Nonlinear
dynamic systems � Optimal control � Markov Chain Monte

Carlo method

Introduction

Pharmacokinetic and pharmacodynamic (PKPD)models are

generally represented using a system of ordinary differential

equations (ODEs). The structure and parameter values are

usually estimated from experimental data. In some cases, it is

useful to estimate the time-course of a variable evenwhen no

generating model is available. This can be done using

experimental data combined with a model connecting the

sought variablewith themeasurements. This paper addresses

one such case: estimating the unknown input function to a

known dynamical system, given sparse measurements of

certain state variables (Fig. 1).

A typical example is to estimate the oral absorption-rate

of a drug, given measurements of the drug plasma con-

centration. This assumes that a model of drug distribution

and elimination is available. Of particular interest is the

oral bioavailability—the fraction of the drug that is

absorbed [22]. Clearly, this also applies to other routes of

administration, e.g. subcutaneous. Another example is to
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estimate the energy intake of a subject given body-mass

measurements. These estimates are important in research

on drugs aimed at reducing body mass, or improving

metabolic parameters, or both [11, 15].

One possible approach is to assume that the input

function has a prespecified functional form, parametrised

with a small number of parameters. Examples of functions

used for this purpose include exponentials [37] and inverse

Gaussians [7]. In this paper, we consider non-parametric

methods that do not make strong assumptions about the

form of the input.

When the dynamics are linear, established estimation

methods exist [8, 37]. These methods rely on being able to

express the input–output relationships as convolution

integrals, something that is possible for linear systems

only. Additionally, in many cases the linear input-estima-

tion problem can be reduced to solving a quadratic opti-

misation problem [37]. In contrast, estimation in nonlinear

systems is a more difficult problem. While many poten-

tially useful methods exist in the engineering and statistical

literature, typical engineering applications have densely

sampled data, and these methods are not necessarily a good

fit for PKPD applications. Thus, their applicability needs to

be assessed on a case-by-case basis.

In this paper, we give a rigorous definition of the input-

estimation problem for nonlinear systems, and suggest

methods and software to solve the problem. Two case

studies are presented, using different choices of algorithms

to illustrate the methods and serve as a starting point for

discussions.

Problem specification

We consider models of the form:

dxðtÞ
dt

¼ fðt; xðtÞ; uðtÞÞ ð1Þ

yðtÞ ¼ gðt; xðtÞ; uðtÞ; vðtÞÞ ð2Þ

xðt0Þ ¼ x0 ð3Þ

where t 2 R is time, xðtÞ 2 Rdx is the system state, uðtÞ 2
Rdu is the input function to be estimated, yðtÞ 2 Rdy are the

measured quantities, t0 2 R is the initial time and x0 2 Rdx

is the initial state. The function f : R� Rdx � Rdu 7!Rdx is

the right-hand side of the system of ODEs, and g :

R� Rdx � Rdu � Rdv 7!Rdy is the measurement equation,

which has an extra variable vðtÞ 2 Rdv representing the

measurement noise. The dimensionalities dx, du, dy and dv
can take any integer values. The functions xðtÞ, uðtÞ, yðtÞ
and vðtÞ may have constraints, for example to exclude

negative values. fð�Þ is assumed to satisfy the technical

requirements for the system of ODEs to have a unique

solution. No further assumptions on fð�Þ and gð�Þ are made,

although in practice, some estimation methods may have

additional requirements such as differentiability. In par-

ticular, fð�Þ and gð�Þ can be nonlinear. If they are linear,

standard methods exist for input estimation [8, 37]. The

measured quantities yðtÞ are sampled at a finite set of time

points ti, i 2 f1; . . .; ng. The set of sampled measurements

is denoted y1:n.

The aim is to estimate uðtÞ given a set of measurements,

y1:n. To make this problem well-posed, it is necessary to

impose additional assumptions on the input function. To

see this, consider a maximum likelihood estimator, that

gives the estimated input ûðtÞ as:

ûðtÞ ¼ argmin
uðtÞ

ED ð4Þ

where ED is the negative log likelihood function. Since uðtÞ
is an arbitrary function, and therefore infinite-dimensional,

it cannot be uniquely determined from a finite set of

measurements. This can be remedied by adding a regu-

larisation term EW , that penalises unnecessarily complex

solutions. The estimator can now be written as:

ûðtÞ ¼ argmin
uðtÞ

ED þ sEWð Þ ð5Þ

where s is a regularisation parameter that controls the

trade-off between data fit and regularity [37].

This can also be interpreted as a Bayesian inference

problem, where the aim is to determine the posterior

distribution:

pðuðtÞjy1:nÞ ¼
pðy1:njuðtÞÞpðuðtÞÞ

pðy1:nÞ
ð6Þ

where pðy1:njuðtÞÞ is the likelihood, pðuðtÞÞ is the prior,

and pðy1:nÞ is the model evidence, which is constant for a

given dataset. By identifying ln pðy1:njuðtÞÞ ¼ �ED and

ln pðuðtÞÞ ¼ �sEW , it can be seen that Eq. (5) gives the

Maximum a Posteriori (MAP) estimate. An advantage of

the Bayesian interpretation is that it is possible to calculate

Fig. 1 The input estimation problem: given measurements and

known system dynamics, estimate the input function without mod-

elling its generating process
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other statistical quantities of interest, such as mean or

median estimates as well as credible intervals.

Together with the model and the data, the problem can

be specified by the following components:

– Choice of prior for uðtÞ, or equivalently, choice of

regularisation term. This encodes the prior assumptions

about the shape of the input function.

– Functional representation. In practice, the input func-

tion uðtÞ has to be represented using a finite set of

parameters. Therefore, a choice of basis for the input

function must be made.

– Desired statistical quantities. Is a MAP estimate enough

or are other quantities such as credible intervals

desired?

We will now describe these three components in more

detail.

Choice of prior for uðtÞ

In this section, priors for scalar input functions are dis-

cussed. For vector-valued input functions, priors can be

independently assigned to each component, as long as they

are assumed to be a priori independent. Assigning priors

jointly over all components is not discussed in this paper.

For scalar input functions u(t), a common choice of prior

is to penalise the first or second derivative of the function

in order to avoid unnecessarily oscillatory functions [37,

p. 87]. If the function is defined in the interval [a, b], the

unnormalised log prior becomes

ln pðuðtÞÞ / �s
Z b

a

dju

dtj

� �2

dt ð7Þ

Typically, here j is set to 1 or 2.

In a Bayesian setting, the prior penalising the jth

derivative can be interpreted as defining a special case of a

Gaussian process [33]. This is a stochastic process whose

finite-dimensional marginal distributions are Gaussian, and

it is completely determined by a mean and a covariance

function. The theory of Gaussian processes provides a

flexible framework for defining priors over functions.

However, this approach does not seem to have been

employed in drug discovery modelling to any significant

extent.

Another choice for scalar functions is to use the entropy

of a discrete-time version of the input uk with Ne steps:

ln pðuðtÞÞ / �s
XNe�1

k¼0

uk ln
uk

mk

ð8Þ

where mk is a baseline value that can be set to the average

of the nearest neighbours [20]. Conceptually, this approach

prefers functions where the function’s value at each time

point is similar to its neighbours.

Functional representation of uðtÞ

For notational convenience, this section discusses scalar-

valued functions u(t) only. When the input function is

vector-valued, each component can be represented using

the techniques described below.

To represent the input function using a finite set of

parameters, one can select a set of basis functions BiðtÞ and
write the input function as a linear combination of these:

uðtÞ ¼
XNB�1

i¼0

hiBiðtÞ ð9Þ

Once a choice of basis has been made, recovering the input

function is equivalent to recovering the coefficients hi.
Perhaps the simplest choice of basis is to represent the

function as a piecewise constant function, as done in [29].

These functions are very cheap to evaluate. On the other

hand, the resulting staircase-like functions have to be

defined on a relatively dense grid to represent the actual

function well. This makes for a high-dimensional estima-

tion problem which can cause computational difficulties.

A convenient basis for a zero-mean Gaussian process

u(t) is given by the Karhunen–Loève expansion [24]. This

method computes a set of basis functions such that their

coefficients will be independent zero-mean Gaussian ran-

dom variables. A good approximation can be obtained by

only retaining the basis functions contributing the most to

the input function. This can be viewed as a dimensionality-

reduction method. The fact that the coefficients are

uncorrelated can make it easier to efficiently use sampling-

based estimation methods. More formally, assume that the

process is defined in the interval [a, b] and has a covari-

ance function k(s, t). If the functions /iðtÞ and values ki
satisfy the eigenvalue problem:Z b

a

kðs; tÞ/iðsÞ ds ¼ ki/iðtÞ ð10Þ

then the process can be represented by:

uðtÞ ¼
X1
i¼0

hi
ffiffiffiffi
ki

p
/iðtÞ ð11Þ

where the coefficients hi are independent zero-mean

Gaussian random variables with unit variance. By setting

BiðtÞ ¼
ffiffiffiffi
ki

p
/iðtÞ and keeping the basis functions with the

NB largest eigenvalues, the prior can be placed on a finite

number of coefficients rather than on the function itself,

effectively transforming the input estimation problem to a

parameter estimation problem.
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In [28], the Karhunen–Loève expansion is given for

penalisation of the first and second derivatives of the input

function, and applied to determining the input to a linear

system. For these priors, the basis functions do not depend

on the regularisation parameter. This is important since the

regularisation parameter is usually unknown and has to be

estimated from the data.

The Karhunen–Loève expansion assumes that the input

function starts at 0. When penalising the second derivative,

the derivative too starts at 0. To allow functions to start at

arbitrary values, a constant or a linear term can be added.

Alternatively, splines can be used [5]. Just as piecewise

constant functions, they are non-zero only in a limited

interval. They can be computed efficiently, can be made

differentiable to an arbitrary degree, and can represent

realistic-looking functions using relatively few parameters.

Desired statistical quantities

In classical regularisation theory, the quantity of interest is

the penalised maximum likelihood, given by Eq. (5). From

a Bayesian perspective, this is the MAP estimate. One

might also be interested in the mean input function, as well

as pointwise 95 % credible intervals. The latter is impor-

tant for determining the uncertainty of the estimate.

Estimation algorithms

MAP estimates can be obtained by optimising Eq. (5).

Algorithms for optimisation in dynamical systems are

studied in the field of optimal control.

When quantities other than MAP are of interest, infer-

ence methods such as Markov Chain Monte Carlo

(MCMC) approaches can be employed [6]. Although not

explored here, it would also be possible to use other sam-

pling methods such as Sequential Monte Carlo [9] or

analytical approximations such as Variational Bayesian

methods [3].

Another estimation decision is how to select the regu-

larisation parameter s. The discrepancy criterion suggests

selecting s so that the sum of squared residuals is equal to

the expected sum of squared distances between the true

function and the measurements. In ordinary and gener-

alised cross-validation, measurements are left out from the

estimation procedure, and the ability to predict these left-

out measurements is assessed. For linear Gaussian prob-

lems, it is possible to derive analytical maximum-likeli-

hood criteria for s [35]. In the L-curve approach [18], a

MAP estimate is calculated for a large number of values for

s, and the data and regularisation cost terms ED and EW are

plotted against each other. For a low s, the data fit will be

almost perfect and the data cost will be almost zero.

Conversely, for high s, the input function is forced to

follow the regularisation criterion, and the regularisation

cost will approach a minimum value. Between these

extremes, there is a characteristic corner in the plot, where

there is a reasonable trade-off between data fit and regu-

larity. In the Bayesian paradigm, s can be treated as an

additional parameter, and can be estimated together with

the basis function coefficients.

Optimal control-based methods

The aim of optimal control is to select the input to a

dynamical system that minimises some cost function. Here,

the cost function is the negative log posterior. The opti-

misation problem can be formulated in multiple ways [4,

32].

In single shooting, only the parameters describing the

input function are included as decision variables in the

optimisation problem. The log posterior for a given input

function is calculated by solving the system of differential

equations using a numerical ODE solver. This is the most

straightforward method.

In multiple shooting, the time course of the system is

divided into a number of sub-intervals. For each such sub-

interval, the system of ODEs is solved numerically. The

input function parameters as well as the state variables at

the start of each interval are included as decision variables.

Constraints are added to the problem to ensure that the

resulting trajectories are continuous. This results in an

optimisation problem that is larger than in single shooting,

but it tends to be sparser and less non-linear.

In collocation methods, no ODE solvers are used.

Instead, the dynamic model is included in the form of

equality constraints in the optimisation problem. The time

course of the system is divided into a number of sub-in-

tervals. In each sub-interval, the state trajectories are

approximated by low-order polynomials. A small number

of collocation points are selected in each interval, and

constraints are added to ensure that the solution of the

system of ODEs is satisfied at these points. The input

function parameters as well as the state variables at the

start of each interval and at all collocation points are

included as decision variables. Additional constraints are

added to ensure that the state trajectory is continuous. This

results in an even larger optimisation problem than multi-

ple shooting, but it tends to be even sparser and less non-

linear.

Many optimisation methods rely on gradients and Hes-

sians of the objective function. A straightforward way to

compute these is to use finite differences. However, this

can be inaccurate and slow, especially in high dimensions.

A powerful alternative is to use automatic differentiation,

where gradients are automatically computed by applying
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the chain rule of calculus to the objective function [31].

For numerical ODE solvers, it is also possible to solve the

sensitivity equations to obtain gradients [2]. For input-es-

timation problems, a combination of these two methods can

be used.

An advantage of optimal control-based methods is that

they can be very fast, even for high-dimensional functional

representations such as piecewise constant functions on a

dense grid. It is easy to include extra constraints, which is

helpful in avoiding unphysical answers, such as negative

concentrations. The main disadvantage is that they can

only provide MAP estimates. It is therefore hard to assess

the uncertainty of the estimate.

Markov chain Monte Carlo (MCMC)

Most quantities of interest in Bayesian inference cannot be

computed in closed form. One way to overcome this is to

use Monte Carlo methods [34]. Let h be the vector of

parameters determining the function uðtÞ, which can

include the basis function coefficients, the regularisation

parameter, and other parameters. The idea is that the pos-

terior pðhjyÞ can be approximated by a large number of

samples hðiÞ drawn from it. This can, somewhat informally,

be represented by:

pðhjyÞ � 1

N

XN�1

i¼0

d
hðiÞ ; hðiÞ � pðhjyÞ ð12Þ

where d
hðiÞ is the Dirac function centred on hðiÞ. Using these

samples, any quantity of interest can be calculated by

simple arithmetic. However, drawing samples from the

posterior is in itself a non-trivial problem. Markov Chain

Monte Carlo methods solve this by constructing a Markov

chain such that its samples marginally come from the

correct distribution. The Metropolis–Hastings algorithm is

one of the most general MCMC methods [19, 27]. At each

time index i, a new sample hðiÞ is drawn using the following
algorithm:

1. Propose a new sample h0 using an arbitrary proposal

distribution pðh0jhði�1ÞÞ.
2. Calculate the Metropolis–Hastings ratio A:

A ¼ min 1;
pðh0jyÞpðhði�1Þjh0Þ

pðhði�1ÞjyÞpðh0jhði�1ÞÞ

 !

3. With probability A, set hðiÞ ¼ h0. Otherwise, set

hðiÞ ¼ hði�1Þ.

It can be shown that the resulting sequence hðiÞ will

asymptotically be marginally distributed according to

pðhjyÞ. Most MCMC methods in use can be shown to be

special cases of the Metropolis–Hastings algorithm. The

parameters can be updated either one at a time, or several at

once. For a good introduction to MCMC, see [6] and [13].

In some cases, it is possible to sample from some of the

parameters conditional on the other ones. This typically

happens when conjugate priors are used, which are priors

that have the same functional form as their corresponding

posteriors. As an example, when Karhunen–Loève basis

functions are used, their coefficients are normally dis-

tributed with a precision equal to the regularisation

parameter. If the regularisation parameter is assigned a

Gamma distribution prior, it can be shown that its distri-

bution conditioned on the coefficients of the basis functions

is also a Gamma distribution. Since efficient methods exist

for sampling from Gamma and other standard distributions,

this can be used to propose new parameter values. By

inserting this proposal into the Metropolis–Hastings ratio,

it can be shown that these proposals will always be

accepted. This sampling method is called Gibbs

sampling [6].

MCMC methods have the advantage that they can

handle arbitrary models and estimate any kind of statistical

quantity, including credible intervals. The downside is that

they can be slow, since a large number of samples may

have to be generated. Their performance can depend crit-

ically on the choice of proposal distribution. For high-di-

mensional functional representations, finding a proposal

distribution that gives acceptable performance can some-

times be challenging.

One possible approach to construct good proposal dis-

tributions is to use Riemannian manifold methods [14]. In

these methods, a metric tensor is defined that describes the

local geometry of the target distribution. This can be used

to construct proposals that automatically make larger steps

in the directions for which the distribution changes slowly.

In [14], it is suggested to use the sum of the Fisher infor-

mation matrix and the negative Hessian of the log prior as a

metric tensor. The simplest manifold method is the Sim-

plified Manifold Metropolis-Adjusted Langevin Algorithm

(SMMALA). In SMMALA, the new sample h0 is proposed
from a Gaussian distribution with mean l and covariance

C:

l ¼ hði�1Þ þ 1

2
�2G�1 hði�1Þ

� � d ln pðhjyÞð Þ
dh

����
h¼hði�1Þ

ð13Þ

C ¼ �2G�1 hði�1Þ
� �

ð14Þ

where Gð�Þ is the metric tensor and � is a user-specified

scale factor. An intuitive motivation for SMMALA is that

it proposes values from a quadratic approximation of the

log target distribution. The required gradients can be

obtained by using automatic differentiation and solving the

corresponding sensitivity equations.

J Pharmacokinet Pharmacodyn (2016) 43:207–221 211

123



It is also possible to mix proposals, for example by using

different updating mechanisms for different parameters.

This is exemplified here in Case Study 2.

Even though the samples from the Markov chain are

drawn from the desired distribution asymptotically, the

initial part of the chain may be non-representative and

should be discarded. Various methods have been proposed

to assess whether convergence to the desired distribution

has been achieved [25]. In Geweke’s method, the mean and

variance from different segments of the chain are com-

pared [12]. The Gelman–Rubin method compares the

within-chain and between-chain variance of several Mar-

kov chains initialised in different parts of the parameter

space [10]. In the Raftery–Lewis method, the user can

specify that quantiles of particular parameters should be

estimated to a given accuracy. By analysing statistics of

where the parameters exceed these quantiles, an estimate of

the number of samples to discard can be obtained [30].

Assessing the number of samples required for an accu-

rate estimate is non-trivial. Since the samples generated by

the Markov chain are correlated, N samples from the chain

give a less accurate estimate than N independent samples.

The previously mentioned Raftery–Lewis method can

provide an estimate for the required number of samples.

The effective sample size (ESS) is another way to assess the

quality of the samples. It is a rough estimate of the number

of independent samples required to obtain the same

approximation error as the samples from the Markov chain

and can be calculated from the autocorrelation of the

generated samples [14, Sect. 7.1].

Previous work

Many previously used nonparametric input-estimation

methods can be described using the framework presented

above:

Verotta [37] gives a good overview of classical input-

estimation (deconvolution) methods for linear systems. As

a choice of prior, two approaches are suggested: either

using the norm of the first or second derivative of the input

function, or parametrising the input function with few

enough parameters so that the problem becomes well-

posed without the use of a prior. As basis functions,

piecewise constant and spline functions are suggested.

Obtaining point estimates using optimisation techniques is

discussed. Suggested methods to assess uncertainty esti-

mates include quadratic approximations around the MAP

estimate and bootstrapping. The methods are tested on

pharmacokinetic examples as well as an example involving

estimating the secretion rate of lutenizing hormone.

Magni et al. [26] employ MCMC techniques to do full

Bayesian inference using piecewise constant basis

functions and a prior penalising the first or second

derivative, and use this to estimate insulin secretion rate

after a glucose stimulus.

Pillonetto et al. [29] suggest penalising the first deriva-

tive of the logarithm of the input function to handle non-

negativity constraints. Piecewise constant basis functions

are used, and full inference is done using MCMC. The

method is applied to estimate lutenising hormone secretion

rate as well as to pharmacokinetic problems.

Pillonetto and Bell [28] suggest using Karhunen–Loève

basis functions with various priors. Since their examples

are unconstrained linear Gaussian models, full inference

can be done analytically without resorting to sampling

methods. However, MCMC is used to estimate the regu-

larisation parameter. The methods are tested on synthetic

test functions.

Hattersley et al. [20] use an entropic prior together with

piecewise constant basis functions. MAP estimates are

obtained using a Sequential Quadratic Programming opti-

misation method. The method was used to estimate the

production rate of free light chains in multiple myeloma

patients.

Case studies

Here, various input-estimation approaches are illustrated

using two case studies, fully specified in the supplement.

Both optimal control-based and MCMC methods were

implemented on top of CasADi, a framework for numeric

optimisation [1]. This software can compute gradients and

Hessians by automatic differentiation, and has interfaces to

the ODE solver package SUNDIALS [21] together with

the optimisation software IpOpt [38]. CasADi is imple-

mented in C??, but at the time of writing, the recom-

mended way to use it is to call it from Python.1 All the code

for the case studies was written in Python 2.7, using

CasADi version 2.4.1 for computing log posteriors, gradi-

ents and metric tensors as well as for performing optimi-

sation with IpOpt. The code can be obtained at www2.

warwick.ac.uk/fac/sci/eng/research/biomedical/impact/ear

lystageresearcher/magnustragardh/.

Case Study 1

In this case study, input-estimation methods were applied to

a dataset from a previously published study [22]. The pur-

pose of the studywas to characterise the pharmacokinetics of

eflornithine, a drug used to treat Human African Try-

panosomiasis. Using data from intravenous administration, a

1 www.python.org.
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nonlinear 3-compartment model (Fig. 2) could be fitted to

the data:

dCp

dt
¼ uðtÞ

Vc

� CL

Vc

þ Q

Vc

� �
Cp þ

Q

Vc

Ct � kon � Cp

� Rmax

Vc

� Cb

� �
þ koff � Cb

ð15Þ

dCt

dt
¼ Q

Vt

Cp �
Q

Vt

Ct ð16Þ

dCb

dt
¼ kon � Cp �

Rmax

Vc

� Cb

� �
� koff � Cb ð17Þ

where Cp, Ct and Cb are the drug concentrations in the

central, peripheral and binding compartments, and Vc, Vt,

CL, Q, kon, koff and Rmax are parameters, defined in the

original paper and in the supplement. The drug concen-

tration in the central compartment Cp was measured. When

the drug is given intravenously, the input u(t) is an impulse.

When the same drug is given orally, the input u(t) describes

the absorption rate of the drug. Using the model and con-

centration data from experiments when the drug was

administered orally, the absorption rate could be

determined.

In the original article, this was done by fitting a

smoothing spline to the concentration measurements, and

directly inverting the system of ODEs. While this approach

yielded satisfactory results, it is somewhat simplistic. Since

it enforces smoothness on the output function rather than

on the input, it is difficult to determine what assumptions

about the input function are actually being made. Addi-

tionally, no attempt was made to assess estimation

uncertainty.

For this paper, the input-estimation methods described

previously were applied to two representative time series:

one for a low dose of 20 mg/kg and one for a high dose of

1500 mg/kg.

Penalisation of the second derivative, as in Eq. (7) was

chosen as a prior. Two input parametrisations were inves-

tigated: Cubic B-splines with breakpoints at the

measurement times, and a piecewise constant function,

discretised to 100 uniformly distributed intervals. Both

MAP estimates and pointwise means and 95 % credible

intervals were sought. To this end, optimal control methods

as well as MCMC were used.

The time series are characterised by an early phase,

where the plasma concentration has a large peak and the

sampling is relatively dense, and a late phase, where the

plasma concentration has declined and sampling is sparser

(Fig. 3). To capture the initial peak, the amount of regu-

larisation cannot be too large. On the other hand, too little

regularisation can cause unrealistically large uncertainty in

the latter sparsely sampled part. One way to mitigate this is

to apply the prior to the logarithm of the input function

rather than to the input function itself. This has the added

benefit of automatically ensuring that the input function is

always non-negative. In the sequel, this will be referred to

as the ‘‘log-scale model’’, while penalising the function

itself will be referred to as the ‘‘linear-scale model’’.

As a first step, a suitable value for the regularisation

parameter s was determined using the L-curve

approach [18]. To investigate the sensitivity to s, the sub-

sequent estimation was run using three different values:

one at the ‘‘knee’’ of the curve, and one on either side of

this. The resulting estimates were qualitatively similar for

all three values. Fig. 4 shows a typical L-curve.

In summary, the following analyses were performed:

– MAP estimation using the cubic spline model.

– MAP estimation using the piecewise constant model.

– Full Bayesian estimation by MCMC using the cubic

spline model.

All analyses were performed for both time series, and for

both the linear- and the log-scale models. MCMC estima-

tion turned out to be too inefficient when the number of

parameters significantly exceeds the number of measure-

ments. Therefore, MCMC estimation was not used for the

piecewise constant model.

For the optimal control-based methods, single shooting

was used for the spline model, since this made it easy to

reuse the code for the MCMC estimation. For the piecewise

constant model, single shooting was too inefficient and was

replaced by collocation.

For MCMC, a simple component-wise Gaussian ran-

dom-walk Metropolis–Hastings algorithm was used. In this

method, each parameter is updated individually, using a

Gaussian proposal density centred on the current value.

The variance of the proposal density was tuned during trial

runs to maintain the acceptance rate between 0.2 and 0.5,

and hence keep it reasonably close to optimal values [6,

Sect. 4.2]. The tuning was performed by monitoring the

acceptance rate every 100 iterations, and modifying the

proposal variance if the acceptance rate was not in the

Fig. 2 Three-compartment model for Case Study 1. The aim is to

estimate the function u(t) given measurements of Cp
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Fig. 3 Estimated absorption rates, predicted plasma concentrations,

and plasma concentration measurements for low and high doses with

both log- and linear-scale models in Case Study 1. All estimates are

calculated using the mid value for the regularisation parameter. The

shaded regions are 95 % credible intervals. MAP estimates were

obtained with single shooting, and mean and credible interval

estimates were obtained with MCMC

Fig. 4 Example L-curve

obtained for the low-dose

dataset in Case Study 1. Three

values for s were selected to be

used in the subsequent analysis
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range 0.2–0.5. The Markov chains were initialised to the

MAP estimate given by the optimal-control techniques.

15,000 samples were drawn for each analysis.

Obtaining MAP estimates is in general computationally

cheap. For the linear-scale model, even the 100-dimen-

sional piecewise-constant model could be solved using

collocation methods in a matter of seconds on an ordinary

workstation. On the other hand, these methods were unable

to find a solution to the log-scale version of the piecewise-

constant model. Therefore, all results for the log-scale

model were obtained using splines. MCMC is considerably

more expensive—drawing 15,000 samples requires 20–30

min on the test machine. One reason for the long running

time is that the parameters are updated one at a time, and

the ODE solutions have to be recomputed for every update.

Updating several parameters jointly would be more effi-

cient, but finding good proposals for joint updates can be

challenging. Methods for doing this are explored in Case

Study 2.

The ESS, as defined in ‘‘Estimation Algorithms’’ section,

was used as a measure of the quality of the samples. In par-

ticular, the ESS of the bioavailabilitywasmonitored, as it was

considered to be the most important quantity. Typical ESS

values ranged from 300 to 2000 samples. The notable ex-

ception was the linear-scale model with the low dose, where

the quality of the samples from the Markov chain was very

poor despite the large number of samples and extensive tun-

ing. Here, the typical ESSwas around 10 samples. The results

from that analysis are therefore very uncertain.

From Fig. 3, it can be seen that for the high dose, the

linear-scale model gives an underprediction of the initial

peak at around 350 min. During 900–1400 min, the sparse

sampling causes the uncertainty of the plasma concentra-

tion to drop below 0, clearly an unphysical result. The log-

scale model appears to capture the peak better and keeps

the uncertainty within reasonable values. For the low dose,

the poor mixing of the Markov chain makes it hard to make

any conclusions about the linear-scale model. The log-scale

model appears to capture the data well.

In Fig. 5, the bioavailability estimates are centred

between 0.3 and 0.4. For comparison, in [22] the bioavail-

ability was estimated to be 0.30 for the low dose and 0.38 for

the high dose. Thewide distribution of the linear-scalemodel

with low dose can probably be attributed to the small ESS.

For the high dose, the log-scale model predicts a slightly

higher bioavailability than the linear-scale model. This is

because the log-scale model is better at capturing the initial

peak, which is the main contribution to bioavailability.

Case Study 2

The data in this case study come from a drug-discovery

project where the effect of two optimised monoclonal

antibodies targeting fibroblast growth factor receptor

(FGFR) 1c (R1c mAb opt1 and R1c mAb opt2) was studied

by measuring energy intake and body mass over time [11].

The parent R1c mAb has previously been shown to cause

profound body weight and body fat loss due to decreased

food intake (with energy expenditure unaltered), thereby

improving glucose control in diet-induced obese (DIO)

mice [23]. Thus, inhibiting R1c has become an attractive

target for developing novel therapies against obesity and

diabetes. However, different R1/R1c mAbs have been

shown to decrease body weight solely due to hypophagia or

via a combined effect on both food intake and energy

expenditure [23, 36, 39], thus demonstrating the impor-

tance of taking both caloric intake and expenditure into

account when defining mechanisms for weight-loss thera-

pies. It is of great interest to be able to estimate energy

intake without having to measure it directly, since methods

for measuring energy intake can be unreliable, or expen-

sive, or both [15]. The objective of this analysis was to

investigate the possibility of estimating the energy intake

from body-mass measurements alone.

The study consisted of seven groups of DIO mice: one

vehicle group, and three groups of each of the two inves-

tigated substances, R1c mAb opt1 or R1c mAb opt2

administered as a single subcutaneous injection with doses

of 0.3, 3 or 10 mg/kg. Each group comprised four mice,

and energy intake was measured per group. Body mass was

measured per individual, and group averages computed.

Measurements were taken 9 days before treatment, and

subsequently once per day or once every 2 days, up to 30

days after treatment. The analysis was performed using

Fig. 5 Kernel density estimate of the posterior of the oral bioavailabilities in Case Study 1. The solid line represents the mean, and the dashed

lines show the 95 % credible interval
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group means. All animal experiments were approved by the

Gothenburg Ethics Committee for Experimental Animals.

The relationship between energy intake and body mass

was characterised using the semi-mechanistic model of

Guo and Hall [16, 17]. This model divides the total mass

into fat mass (FM) and fat-free mass (FFM):

dFFM

dt
¼ a

a � qFFM þ qFM
ðEI � EEÞ ð18Þ

dFM

dt
¼ 1

a � qFFM þ qFM
ðEI � EEÞ ð19Þ

where EI is the energy intake, EE is the energy expendi-

ture, qFFM and qFM are the densities of fat-free and fat

tissue, and a is the Forbes function, relating changes in fat

mass to changes in fat-free mass, empirically given by:

a ¼ q1 þ q2 � eq3�FM ð20Þ

Furthermore, the energy expenditure is given by:

EE ¼ðK þ bDEI þ ðcFFM þ kÞ � FFM þ ðcFM þ kÞ � FM
þ gFFM � a � g � EI þ gFM � g � EIÞ=ð1þ gFM � gþ gFFM � a � gÞ

ð21Þ

where K is a constant thermogenesis parameter, DEI is the
difference between the energy intake and a standard ref-

erence intake (12 kcal/day), b is a scaling parameter, gFFM
and gFM are biochemical efficiencies for fat and protein

synthesis, cFFM and cFM represent the relationship between

metabolic rate and mass, and g ¼ 1=ða � qFFM þ qFMÞ. The
function k represents physical activity and could be cap-

tured by the empirical equation:

k ¼ k0 þ k3 þ k1 � k2 � t � e�k2t ift� 0

k0 otherwise

(
ð22Þ

where ki, i 2 f0; 1; 2; 3g were estimated from data for each

dose group and t ¼ 0 is the start of the treatment. These

parameters are not to be confused with the eigenvalues ki
in Eq. (11). All other model parameters were literature

values, as used in [11] and defined in the supplement.

As choice of prior, the first derivative of the energy intake

was penalised, which is equivalent to modelling the energy

intake as a randomwalk. For the body-massmeasurements, a

proportional 0.5 % measurement noise was assumed.

The input functions were represented using Karhunen–

Loève basis functions [28]. Twenty basis functions were

used, as it was found that adding more did not significantly

influence the estimates. A constant term, which was not

penalised, was added to allow the energy intake to start at a

nonzero value. The regularisation parameter was treated as

an unknown parameter, and estimated jointly with the basis

function coefficients. It was assigned a Gamma distribution

prior, which is a conjugate prior to the inverse variance of

the basis function coefficients. This makes it possible to

estimate it using Gibbs sampling. The Gamma distribution

was assigned a shape parameter of 0.001 and a rate

parameter of 0.001, in order to make the prior flat and thus

to avoid making strong a priori assumptions about the

parameter value.

The sampling process was carried out as follows:

1. A good starting point for MCMC sampling was

determined. This was done by fixing the regularisation

parameter to a high value, and optimising the log

posterior with respect to the basis coefficients.

2. MCMC sampling was done by alternating between the

following updates:

(a) Updating the regularisation parameter using

Gibbs sampling.

(b) Jointly updating the coefficients of the basis

functions using SMMALA.

The computational bottleneck is the calculation of the

Jacobian of the predicted body mass with respect to the

basis coefficients, which is necessary in order to evaluate

the metric tensor. To obtain an efficient algorithm, it is

highly desirable to use sampling techniques which min-

imise the number of metric tensor evaluations. The sam-

pling method used in 2(a) and 2(b) performs well since all

basis coefficients are updated jointly, requiring only a

single metric tensor computation per iteration. The regu-

larisation parameter is cheap to update, since the log target

and the metric tensor can be updated without recalculating

the Jacobian.

In most of the measured time-series, the estimated

inputs agree reasonably well with the data (Fig. 6). The

main difficulty is the rapid decrease in energy intake seen

around t ¼ 0, which is hard to capture with a random-walk

model. It can be noted that the uncertainty in the energy

intake is considerably greater than in the body mass. This

can be expected, since the model acts as a lowpass filter:

rapid changes in energy intake do not cause equally rapid

changes in body mass. There are therefore multiple energy

intake profiles that would result in similar body mass

measurements. A consequence of this is that fast oscilla-

tions are not captured reliably. Still, the method is honest in

that it correctly gives an uncertainty region that includes

cFig. 6 Measured and estimated energy intake and body mass for all

datasets in Case Study 2. The body-mass measurements (circles) were

used for estimation, while the energy-intake measurements (triangles)

are not known to the estimation algorithm and are plotted for

comparison with the estimates. The shaded regions are 95 % credible

intervals
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most points. It can also be noted that the uncertainty in the

energy intake as well as in the body mass is larger during 8

days prior to treatment where no measurements are taken.

It is an attractive feature of these methods that such

uncertainty is automatically accounted for.

For comparison, a similar sampling scheme was tested

on a single time-series, where the basis coefficients were

jointly updated using the Random Walk Metropolis–Hast-

ings (RWMH). The proposal covariance matrix was

selected by computing the metric tensor at the MAP esti-

mate, and scaling this to get an acceptance rate around

20–30 %. RWMH can draw samples approximately 10

times faster than SMMALA, since it does not need to

evaluate the Jacobian. However, in terms of effective

samples per second, SMMALA gives better performance,

since its samples are considerably less correlated (Fig. 7).

Furthermore, several trial runs had to be made to find a

good scaling factor for RWMH, something which has to be

done separately for each time-series. In contrast,

SMMALA required no manual tuning. Running time and

median effective sample size are shown in Table 1.

A weakness in the current work is that the measured

energy intake was used to estimate the physical activity

parameters ki, i 2 f0; 1; 2; 3g. Since the purpose here was

to evaluate the possibility of estimating the energy intake

given that the system dynamics are known, this was con-

sidered acceptable. For the methods to be useful in

experiments where the energy intake is not measured, it

would be necessary to characterise the vehicle and drug

effect on the physical activity by a generic model.

Discussion

Both case studies show that, in terms of computational

speed, MAP estimates can be obtained quickly for these

kinds of models. Obtaining full posteriors in a reasonable

amount of time is considerably more difficult. Case Study 1

shows that naive application of MCMC methods does not

perform well in certain cases. SMMALA can be a good

default choice, since it can efficiently update several

parameters jointly, and does not require any user-specified

tuning. It could also be worthwhile to investigate more

advanced MCMC proposals, such as Hamiltonian Monte

Carlo and Riemannian Manifold Hamiltonian Monte Carlo

methods [14].

An alternative way to obtain estimates is to make mul-

tiple MAP estimates using bootstrapping. Note, however,

that this will give a frequentist estimate of estimator vari-

ance rather than of uncertainty in the Bayesian sense. Great

care has to be taken when interpreting and comparing

uncertainty estimates from different methods.

It may also be worthwhile to investigate other

parametrisations. Although the Karhunen–Loève expansion

has appealing theoretical properties, it has the disadvantage

that all basis functions are non-zero at all time points,

making it necessary to sum all of them when evaluating at

a single time point. They also make it difficult to impose

non-negativity constraints.

The most principled and automated way to estimate the

regularisation parameter is the Bayesian method of treating

it as an additional random variable to be estimated from the

Fig. 7 Representative MCMC

traces for a parameter (R1c

mAb opt1, 10 mg/kg, coefficient

6). It can be clearly seen that

SMMALA traces explore the

parameter space more

efficiently
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data. However, for certain problems this method can have

robustness issues. The L-curve method is an alternative,

but it is far from ideal in terms of usability, since it requires

the user to plot and manually select a value from the curve.

A disadvantage of using a linear-scale input model is

that it does not rule out negative energy intakes. It is

possible to impose non-negativity constraints by using a

log-scale input model, as in Case Study 1. However, such a

model may be hard to justify in certain cases, and it makes

it more difficult to find efficient sampling methods.

Another way to impose constraints would be to simply

reject all proposed input functions that drop below zero.

This could be reasonably efficient when only a small por-

tion of the unconstrained distribution is below zero. In

other cases, it could lead to prohibitively large rejection

rates. A pragmatic approach is to use the unconstrained

results as is, acknowledging that it is just an approximation.

This is what has been done in Case Study 2.

In the case studies, uncertainties in the system model are

not taken into account. Adding this could improve the

statistical soundness and give more realistic estimates. This

could be done by including uncertain system parameters in

the estimation problem, estimating them jointly with the

input function. Although it may be computationally

expensive, it would not require any conceptual changes to

the methods. It may also be possible to embed these

methods in a non-linear mixed effects (NLME) framework.

CasADi has proved to be a valuable tool in that it allows

the user to easily obtain gradients and Hessians for com-

plicated functions, which can include calls to numerical

ODE solvers. The details involved in formulating and

solving the sensitivity equations are handled automatically

by the software.

Since the performance of the methods may be problem-

specific, it is important to evaluate them using multiple

datasets and models. Only then can any conclusions about

general usefulness be made.

Conclusions and future work

Numerous drug discovery deconvolution-applications have

been reported over the years, and it is evident that there is a

need for useful methods also for the more general non-

linear case, referred to as input estimation. This work

serves as a highly promising starting point for application

of input-estimation methods to problems in drug discovery:

it gives a rigorous definition of the problem, it lists main

methods and how these can be implemented, and discusses

the application of the methods to realistic case studies.

Additionally, the usefulness of CasADi for implementing

these methods has been investigated and verified.

The presented methods for optimal control for input

estimation can be recommended for use in drug discovery.

The MCMC-based methods work well in certain cases, but

they can have long running times, and care has to be taken

to make sure that the parameter space is well explored.

Further improvements would be desirable before they can

be recommended for use by non-experts.

Suggestions for future work in this area include inves-

tigating the choice of prior and basis functions. It can be of

interest to evaluate additional criteria for choosing the

regularisation parameter. Note, however, that the regular-

isation parameter does not require any special treatment

when Bayesian methods are used. Additionally, more

advanced MCMC methods can be evaluated and alternative

criteria can be considered for determining the number of

MCMC samples necessary to obtain an accurate estimate.

To gain a better understanding of the performance of

these methods, more combinations of prior choice, basis

functions and estimation methods should be evaluated on a

larger collection of input-estimation problems, ideally

including both real and simulated data. The two fully

specified problems of this paper form the base of such a

collection. Desirable properties of input-estimation meth-

ods to evaluate include:

Table 1 Running time and ESS for the time-series in Case Study 2

Dose group Method Number of samples Time (s) Median ESS Median ESS (s)

Vehicle SMMALA 5000 151.1 940.8 6.2

R1c mAb opt1 (0.3 mg/kg) SMMALA 5000 172.6 685.5 4.0

R1c mAb opt1 (3 mg/kg) SMMALA 5000 179.1 601.6 3.4

R1c mAb opt1 (10 mg/kg) SMMALA 5000 172.6 694.6 4.0

R1c mAb opt2 (0.3 mg/kg) SMMALA 5000 151.6 866.8 5.7

R1c mAb opt2 (3 mg/kg) SMMALA 5000 162.9 828.8 5.1

R1c mAb opt2 (10 mg/kg) SMMALA 5000 173.4 551.0 3.2

R1c mAb opt1 (10 mg/kg) RWMH 50,000 142.4 267.2 1.9

ESS effective sample size
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– Computational speed. The method should be fast

enough to appeal to modellers working under time

constraints.

– Usability. It should be possible for non-experts to use

the method.

– Statistical soundness. All assumptions should be rea-

sonable and explicitly stated. Sources of uncertainty

should be accounted for.

– Usefulness. The algorithm should be applicable to as

many input-estimation problems as possible.
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11. Gennemark P, Jansson-Löfmark R, Hyberg G, Wigstrand M,
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