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Abstract
Our research is motivated by the rapidly-evolving outbreaks of rare and fatal infectious diseases, for example, the
severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome. In many of these outbreaks, main
transmission routes were healthcare facility-associated and through person-to-person contact. While a majority of existing
work on modelling of the spread of infectious diseases focuses on transmission processes at a community level, we
propose a new methodology to model the outbreaks of healthcare-associated infections (HAIs), which must be considered
at an individual level. Our work also contributes to a novel aspect of integrating real-time positioning technologies into
the tracking and modelling framework for effective HAI outbreak control and prompt responses. Our proposed solution
methodology is developed based on three key components – time-varying contact network construction, individual-level
transmission tracking and HAI parameter estimation – and aims to identify the hidden health state of each patient and
worker within the healthcare facility. We conduct experiments with a four-month human tracking data set collected in a
hospital, which bore a big nosocomial outbreak of the 2003 SARS in Hong Kong. The evaluation results demonstrate that
our framework outperforms existing epidemic models for characterizing macro-level phenomena such as the number of
infected people and epidemic threshold.

Keywords Healthcare-associated infections · Disease outbreak · Tracking · Traceability · Person-to-person contact
analytics

Introduction

Nosocomial infections, or known as healthcare-associated
infections (HAIs), are infections that are acquired in a
healthcare setting, such as those caught during an inpatient
hospital stay or developed among patients and healthcare
staff within a healthcare facility. HAIs have become one
of the greatest challenges in the modern world and a
global threat to health security. Magill et al. [1] estimated
that there were around 722,000 HAIs in U.S. acute

care hospitals in 2011, and the [2] reported that around
75,000 patients deaths were related to HAIs. Among the
different types of transmission routes of HAIs, the most
important and common one is through person-to-person
contact, or known as direct-contact transmission. Person-
to-person contact transmission takes place when there
is a physical contact between an infected or colonized
individual and a susceptible person such that disease-
causing microorganisms may be transfered. In many cases,
due to the incubation period of the infectious disease or
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unawareness of the disease severity, the disease had already
been spread through the hospital before the index patient
was identified and quarantined.

A striking example of recent HAI outbreaks through
person-to-person contact transmission is the spread of 2013
Middle East respiratory syndrome coronavirus (MERS-
CoV) in Saudi Arabia. Assiri et al. [3] reported that, of the
23 confirmed cases of MERS-CoV infection identified in
eastern province of Saudi Arabia, 21 cases were acquired
by person-to-person transmission in different healthcare
facilities including hemodialysis units, intensive care units
(ICUs), and in-patient units. In the incident, Patient A
with symptoms of dizziness and diaphoresis was admitted
to a hospital. No MERS-CoV test was performed and
this patient was not suspected of carrying this deadly
virus at the time of admission. Another patient, Patient
C, was admitted on the next day to the room adjacent
to Patient A to undergo hemodialysis. Later, MERS-
CoV infection was confirmed in nine other patients
who were receiving hemodialysis treatments in the same
hospital, six of whom had overlapping time with Patient
C undergoing hemodialysis. MERS-CoV infection also
developed in a nurse administrator, who had once been
present in the ICU where the treatment of Patient A was
provided. From this incident, [3] concluded that person-
to-person transmission of MERS-CoV can be associated
with considerable morbidity in healthcare facilities and
suggested that surveillance and infection-control measures
are crucial to a global public health response.

Another classic example of large HAI outbreaks is the
2003 severe acute respiratory syndrome (SARS) epidemic
in Hong Kong. The 2003 SARS outbreak resulted in 8,096
confirmed cases and 774 deaths in total around the globe
[4], and 1755 confirmed cases and 299 deaths in Hong
Kong alone (World Health Organization (WHO) 2003).
The SARS outbreak began at the Prince of Wales Hospital
(PWH) in Hong Kong. The index patient was admitted
to PWH before WHO issued a high global alert about
cases of this deadly pneumonia. Due to the unawareness of
this previously unknown virus, the index patient was not
treated as a carrier of a highly infectious and severe disease
and SARS started to spread through the hospital among
the patients, healthcare workers and visitors, resulting in
at least 138 additional cases of SARS acquisition within
the hospital (including at least 20 doctors, 34 nurses,
15 allied health workers, and 16 medical students) [5].
The disease was further spread to the community through
the individuals leaving the hospital, e.g., leading to the
outbreak in a housing estate Amoy Gardens with a total
of 329 residents infected and 42 deaths [6], and became
an epidemic threatening the world. During the outbreak,
the governmental organizations (e.g., Department of Health
and Hospital Authority) and public health workers put

substantial efforts into contact tracing for effective infec-
tion control [6, 7]. It turns out that the contact tracing work
was one of the key interventions that helped the Hong Kong
Government successfully contained the SARS epidemic, e.g.,
through screening of symptoms and medical surveillance.

The lesson learned from the 2003 SARS outbreak
suggests that a rapid contact tracing is critical for
effective quarantine and epidemic management in serious
disease outbreaks in hospital settings. A traditional way
of conducting contact tracing relies on interviewing.
However, conducting interviews may be ineffective because
the patient is generally very sick to recall and talk
about the past activities and contacts. Another way is to
interview the healthcare workers to reconstruct the patients’
past activities. However, both ways cannot guarantee the
information is exhaustive and accurate. More importantly,
these procedures require lengthy investigations such that
prompt isolations cannot be carried out to prevent the
disease from spreading.

Our research was motivated by a project initiated at
PWH after the SARS outbreak in Hong Kong. The project
objectives were to mitigate HAI risk and to support rapid
contingency responses in case of severe infectious disease
outbreak. Our research team investigated how advanced
indoor positioning technologies can be applied to enhance
the person-to-person contact traceability for prompt con-
tact tracing, and developed a radio-frequency identification
(RFID) system for tracking people’s interactivities (includ-
ing those among patients and ward staff) and tracing high-
risk individuals when infectious disease outbreak occurs.
A pilot study was carried out in two medical wards at
PWH. Our research team developed an RFID-based real-
time locating system for this application. Figure 1 shows a
screen-shot of the real-time locating system. For the details

Fig. 1 The RFID-based real-time locating system developed for
tracking patient activities



J Med Syst (2018) 42: 222 Page 3 of 21 222

of the RFID hardwares, we refer the reader to [8]. It is
worth mentioning that the rare experience that the hospital
management and staff members of PWH had gone through
during the 2003 SARS outbreak and their suggestions were
crucial when developing this platform. While our pilot study
was enabled by RFID, other indoor positioning technolo-
gies are also viable. In our application, RFID was adopted
because it is a mature technology and can be deployed at a
affordable cost.

A vision-based system is an alternative technology cap-
turing events of person-to-person contacts and monitoring
activities of healthcare workers (HCWs) and patients. It
can accurately review whether two individuals have been
in close contact. Also, most hospitals have installed vision-
based systems in the waiting area such as lobbies, escalators,
etc., for surveillance purpose. However, such systems may
raise privacy issues when installed in wards. In particular,
patients’ and HCWs’ privacy is always a primary concern
in Hong Kong. It is unlikely that HCWs and patients would
accept an environment putting them under constant visual
recording. Thus, a sensing method appeared to be more
receptive in this study.

To mitigate the risk of HAIs, we characterize the con-
tact patterns among the patients and healthcare workers,
and study how an HAI is transmitted through person-to-
person contact. From the on-site pilot project conducted at
PWH, a large amount of positioning data of patients and
healthcare workers were collected. This set of data provides
the unique and necessary information to construct dynamic
human networks to trace person-to-person contacts, and
to develop a more comprehensive understanding of the
ways individuals contact with each other in a healthcare
environment. After the constructions of human networks
within the healthcare facility, we investigate how an HAI
is transmitted through person-to-person contact. This inves-
tigation requires the capability of tracking the transmis-
sion paths of HAIs at an individual level. In other words, we
infer the health status of any person at any time and identify
potential infected patients and healthcare workers.

Our research is different from traditional epidemiology
studies, which investigate the spread of infectious disease
among people. Traditional epidemic models, for example,
[9–11], assume homogeneous human connection (i.e., all
individuals in the population are the same) and model
the spread of infectious diseases with ordinary differential
equations. As suggested by [12], individual differences
should be considered when modelling the transmission
and designing more effective strategies to reduce the
propagation of disease. For HAIs, the assumption that
all individuals are equally likely to be infected does
not hold, and therefore estimates from community-based
models can be inaccurate [13]. Due to the importance
of considering individual interactions, some approaches

have been proposed to capture the impacts of individual
differences using heterogeneous networks, such as the
percolation methods [14] and the non-linear dynamical
system [15]. However, there is inadequate research on
studying the problem of individual-level tracking of HAIs,
where most existing methods can hardly be applied to
identifying individual infection status. The novelty and
uniqueness of our research are as follows. (1) The contact
pattern of patients and healthcare workers in a healthcare
facility differs from the contact pattern of people in a
large region, for example, a city, studied by a majority of
the existing epidemic research. A healthcare facility is a
relatively closed community with a highly hierarchical and
modular structure, leading to dense human connectivity. On
the other hand, a city-level population is sparsely connected.
(2) We construct time-varying networks to represent
dynamic human interaction in a hospital, while many
existing models assume static networks that treat human
contact unchanged over time. (3) Individual differences in
a healthcare setting are related to the roles of individuals
in a hospital. As an example, a nurse generally has more
interactions with other people than a patient does. (4) We
aim to track transmission of HAIs at an individual level that
infers the hidden health status for any person at any time,
while traditional epidemic models focus on macro-level
phenomena such as the total number of infected individuals
and epidemic thresholds.

The recent advancement of real-time indoor positioning
technologies has provided us with a precious opportunity to
study the spread of infectious disease from a new perspec-
tive. Given the locational data of patients and healthcare
workers in a healthcare institution collected continuously to
the system, if an outbreak of an HAI occurs in the insti-
tution among patients and healthcare workers, our goal is
to track transmission of the HAI at an individual level
through person-to-person contact over time-varying contact
networks. To achieve the goal, we propose a framework with
three key components: time-varying network construction,
individual-level transmission tracking and HAI parameter
estimation. We realize individual-level transmission track-
ing with the assumption that all input parameters for the
HAI model (HAI parameters) are known. Then we discuss
our proposed parameter estimation procedure for effective
transmission tracking in a more general setting. Our work
leverages a previous RFID tracking study in which we col-
lected locational data of patients and healthcare workers for
four months in two medical wards at PWH.

Literature review

Our research investigates the transmission of HAIs over
time-varying human networks at an individual level. For an
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overview of the existing research on epidemic models, we
refer the reader to [16–20].

Traditional epidemic models such as the Susceptible-
Infected-Recovered (SIR) model and the Susceptible-
Infected-Susceptible (SIS) model are based on differential
equations [9, 11]. Pairwise models proposed by [21]
also belong to this class; in addition, they leverage the
local network structure such as the number of pairs
or triples to substitute the simple infection number in
standard epidemic models. These differential equation-
based models have been widely used for analyzing the
spread of various types of transmissible diseases. For
example, [22] studied the spread of sexually transmitted
diseases and considered network heterogeneities in their
differential equation-based model. They showed that their
predictive scheme was more accurate than models that
assume homogeneous networks. Percolation models utilize
network degree distributions and epidemic dynamics to
examine outcomes of disease outbreaks in the steady state.
[14] showed that a large class of standard SIR models could
be solved exactly with the use of percolation theory. This
approach is more realistic than the traditional approach as
it allows heterogeneous and correlated infectiveness times
and transmission probabilities. Meyers et al. [23] applied
percolation theory to reduce time-consuming calculations
and derive different epidemic outcomes on a contact
network for the city of Vancouver, British Columbia.
Newman [24] and Karrer et al. [25] developed percolation
models to study the transmission of two competing diseases
based on probability generating functions. Volz [26] showed
that SIR model can be represented by a system of ordinary
differential equations with the use of probability generating
functions. The result enables SIR dynamics to be modeled
in random networks.

Another popular class is probabilistic models. This
type of models incorporates uncertainty when modeling
the disease spreading process. Larson [27] studied the
use of “social distancing” (e.g., closing of schools, man-
dated minimum physical distances between co-workers)
to control influenza progression by reducing the fre-
quency and intensity of daily human-to-human contacts.
He considered heterogeneous populations, distinguished
by high-activity and low-activity persons, in their prob-
abilistic mixing model. Teytelman and Larson [28] con-
sidered heterogeneous population where the individuals
are different regarding their social activities, pronenesses
to infection, and pronenesses to shed virus and spread
infection. These attributes determine the rate of human
contacts per day and impact the probability that a sus-
ceptible individual becomes infected. Yaesoubi and Cohen
[29] proposed a discrete-time Markov chain approach to
modeling the transmission of diseases. Dynamic optimiza-
tion techniques can be integrated into their model to aid

real-time selection and modification of public health inter-
ventions. The studies mentioned above, however, focused
on population-level epidemics, which differs from an infec-
tious disease outbreak in a healthcare setting.

As suggested by [30] and [12], human behaviors that
might lead to transmission of disease differ significantly
between individuals. Much research thus has been carried
out to study human interaction pattern. The majority of
work in this direction is the use of network analysis.
For instance, [31] constructed a bipartite network to
represent the connectivity of patients and caregivers in a
psychiatric institution. Liljeros et al. [32] studied network
properties such as transitivity, assortativity and varia-
tion based on a large database constructing from the contact
records associated 295,108 inpatients over two years.
They concluded that the risk and adverse consequences
of epidemic outbreaks might be reduced if these network
properties are taken into account when designing the
intervention schemes. Ueno and Masuda [33] constructed
a hierarchical and modular contact network from a
hospital setting. They showed that healthcare workers are
main transmitters of diseases and shall be vaccinated
with a higher priority. Curtis et al. [34] modeled dyna-
mic contact networks by deriving spatial distributions of
healthcare workers and generating random walks to pre-
dict human movements in a hospital. Prakash et al. [15]
constructed a time-varying network which follows an
alternating connectivity behavior to model the day-night
pattern of nurse shifts and derived a closed-form equation
for the epidemic threshold with their network. In these
studies, their main focuses were on the constructions of
networks to capture the effects of human interactions on
disease transmission. In our work, we construct time-
varying dynamic human contact networks from real data
and study how these networks can be leveraged for
prediction of health status of each individual in a healthcare
facility.

Research on disease transmission in a healthcare setting
is not adequately addressed in the existing literature. Meyers
et al. [31] modelled the disease outbreak in a psychiatric
institution, but their model did not utilize real-world human
contact data and required some simplified assumptions,
e.g., the connection degree of each object in the model
follows a Poisson distribution. Prakash et al. [15] used
a non-linear dynamical system to model the spread of
infections in a time-varying network which takes into
account the shifts of nurses in a hospital. Dong et al. [35]
modeled nosocomial infections in an MIT college dormitory
using graph-coupled hidden Markov models and solved the
problem by Gibbs sampling. However, these studies either
are limited to describing macro-level epidemic phenomena
for HAIs, or did not attempt solutions to the individual-level
transmission tracking problem.
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Our research studies the transmission of HAIs at
an individual level. We propose a modeling framework
to describe the interactions between individuals with a
dynamic human contact network and tracks infections over
this network. Furthermore, we utilize real-time indoor
locating technology for tracking the interactions between
individuals and constructing their time-varying contact
networks. For our modeling contributions, we develop
coupled hidden Markov models to solve the problem. Our
method captures the difference of the underlying human
connectivity where existing epidemic models are unable
to address and contributes to more accurate estimations
for predicting macro-level outcomes of HAI outbreaks.
Moreover, compared to the existing epidemic models, our
proposed approach has the unique capability to estimate
individual hidden health status and to infer HAI parameters
for practical solutions.

Overview

In this section, we introduce the problem of individual-
level HAI tracking over dynamic human networks, and then
provide an overview of the key components of our proposed
solution framework.

Problem definition

Many HAIs are acquired through person-to-person trans-
mission. Our research aims to leverage the use of advanced
indoor positioning technologies, such as RFID, for human
tracking in healthcare facilities. The availability of the large
amounts of locational data about the individuals within the
facility, including patients and healthcare workers, enables
us to develop a groundbreaking and effective approach to
modeling the transmission of disease in a healthcare setting.
It provides a new opportunity to characterize person-to-
person contacts in a hospital environment and systemati-
cally study the transmission pattern of HAIs. More specif-
ically, we aim to develop a modeling framework to track
the transmission of HAIs among patients and healthcare
workers over time-varying contact networks.

Unlike traditional methods of contact tracing that involve
manual processes such as interviewing, advanced position-
ing technologies collect time-stamped locations of tracked
objects automatically and continuously for timely cons-
truction of contact networks. In the following, we introduce
the terminologies and framework used for our approach.

Definition 1 (Contact) A pair of individuals is considered
to constitute a contact if the distance between them is within
a pre-specified distance threshold for a duration that is
longer than a pre-specified time threshold.

This definition establishes the foundation that we model
the person-to-person transmission of HAIs. A person is
considered to have been exposed to the disease if (i) he
or she has had any face-to-face contact with an infectious
patient, (ii) is in the same hospital room with an infectious
patient for more than a certain amount of time, or (iii) is
provided care by an infected healthcare worker [3]. With
the definition of contact, we construct a person-to-person
contact network, denoted by G = (V , E), with vertice set V
consisting of individuals in the healthcare facility and edge
set E representing the contact records between individuals,
i.e., eij ∈ E indicating a contact between individual vi, vj ∈
V . The concept of time-varying contact network can then be
extended from the above setting:

Definition 2 (Time-varying contact network) A time-
varying contact network is a series of static contact networks
indexed by time points, which is denoted by G0:T =
{Gt }Tt=1 = {(Vt , Et )}Tt=1, where Vt and Et are the sets of
individuals and contacts at time t, respectively.

Without loss of generality, we can denote a time-varying
contact network by G0:T = {(V , Et )}Tt=1 because any vertex
vk that exists but is not present at time t, that is, vk with
k ∈ {∪T

s=1Vs} \ Vt , can be viewed as an isolated vertex at
time t in network Gt . Thus for simplicity, we use G0:T =
{(V , Et )}Tt=1 in the rest of the paper.

In the context of disease, the terms “symptom” and
“sign” are both used to refer to an indication of a certain set
of medical characteristics that can reflect the presence of a
disease, such as runny nose, coughing and fever in a case of
influenza. Technically, symptoms and signs are different; a
symptom is a feature observed by the patient whereas a sign
is observable by the others, e.g., physicians. For consistency,
we use observation to represent a symptom or a sign. The
presence of a disease, in general, is difficult to be identified
without the use of medical diagnostic tests, and therefore,
the actual health state of a patient is often hidden. We define
the terms observation and health state used for our model as
follows.

Definition 3 (Observation) An observation is a feature
that reflects the presence of a disease, which can be a
symptom or a sign, or both. oi

t denotes the observation
of person vi at time t. The observation vector Ot =
(o1

t , o
2
t , . . . , o

n
t ), n = |V | represents the collection of

observations of all individuals at time t.

Definition 4 (Health state) A health state denotes the (hid-
den) health status of an individual. A patient who is a host
of an infectious disease can only be in one health state at a
time. xi

t denotes the hidden health state of person vi at time
t. The state vector Xt = (x1

t , x2
t , . . . , xn

t ), n = |V | denotes
the combination of health states of all individuals at time t.
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Our objective is to infer the hidden health states of each
person at different time points. Observations and networks
are necessary to achieve this goal. Observations provide the
essential information for diagnoses of an infection, while
networks give the information the set of individuals an
infected person has contacted. On the other hand, they also
impose practical challenges on the accurate identification
of hidden health states of a person. Observations can
be misleading since the same observation may appear in
different health states. The networking effect complicates
the problem in the sense that the health state of a person not
only is dependent on his/her medical history but also can
be affected by other “connected” patients. The challenges
motivate us to consider the following overall problem,
and the three sub-problems required to tackle in our
framework.

Overall problem Given time-stamped locations of the
individuals in a healthcare facility, if an HAI outbreak takes
place through person-to-person contact, how can we track
the transmission of the HAI over the human contact network
at an individual level?

Problem 1 (Time-varying contact network construction)
Given time-stamped locations of the individuals in a
healthcare facility, how do we establish contact between
any pair of individuals and to construct a time-varying
contact network G0:T to characterize the human connection
pattern?

Problem 2 (Individual-level transmission tracking) Given
(1) a time-varying contact network G0:T of the individuals
in a healthcare facility, (2) observation vectorsO0:T of these
people, and (3) the transmission parameter set θ of the
HAI, if an HAI outbreak takes place, how do we identify the
hidden health state xi

t for any person vi at any time t ≥ 0?

Problem 3 (HAI parameter estimation) Given (1) a time-
varying contact network G0:T of the individuals in a
healthcare facility, (2) observation vectors O0:T of these
people, and (3) a subset θs of the HAI parameter set θ with
θs ⊂ θ , if an HAI outbreak takes place, how do we estimate
the unknown parameter set θ \ θs?

Solution framework

We propose a three-stage solution framework, consisting
of the approaches to solving the three respective sub-
problems, for tackling the overall problem. An overview of
our solution framework is as follows.

Stage1 (Time-varying contact network construction)
Person-to-person transmission is the primary

mode of transmission of HAIs. We define a dis-
tance threshold and a time threshold to utilize the
time-stamped locations of individuals to construct
the list of temporal-spatial co-occurrence events
for the establishment of person-to-person con-
tacts. Individuals are divided into multiple groups
according to their roles and attributes, and con-
tacts are labeled with four types. We first generate
static hierarchical networks based on the types
of contacts, and then construct a time-varying
contact network.

Stage2 (Individual-level transmission tracking) We for-
mulate the problem of individual-level transmis-
sion tracking with network-based coupled HMMs,
in which the SIS model describes the transmis-
sion dynamics of HAIs. HMMs are known to have
the power to recover hidden pattern from observ-
able information, and shown to be effective in
inference of health states, e.g., [36, 37]. Solutions
are obtained in three steps. First, we give basic
solutions to a standard HMM by considering all
individuals as a single vertex. Then we derive
solutions at an individual level by factoring basic
solutions according to SIS dynamics. Finally, we
reduce the computational complexity of the solu-
tions based on mean-field analysis to speed up
computations for large-scale problems.

Stage3 (HAI parameter estimation) The problem of HAI
parameter estimation is formulated as Maximum
Likelihood Estimation (MLE). An auxiliary func-
tion is introduced to transform the MLE problem
to a computationally efficient optimization prob-
lem. By solving this optimization problem with
Lagrangian multiplier method, we can obtain the
Baum-Welch reestimate and recover the origi-
nal HAI parameters from this reestimate. This
learning method improves the estimation of HAI
parameters iteratively.

Table 1 summarizes the notation used throughout this
paper.

Time-varying contact network construction

Contact establishment

We can establish a linkage between two persons in the
contact network by utilizing the information about their
temporal-spatial co-occurrence. First, movement trajecto-
ries of individuals, e.g. trajectories of person vi and person
vj shown in Fig. 2a, are extracted from the time-stamped
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Table 1 Notation

Notation Definition

G0:T Time-varying network from time 0 to T.

Gt A snapshot of G0:T at time t.

oi
t Observation on person vi at time t.

Ot Observation vector. Ot = (o1
t , o

2
t , · · · , on

t ).

xi
t Health state of person vi at time t.

Xt State vector. Xt = (x1
t , x2

t , · · · , xn
t ).

τi Infection rate of person vi .

μi Recovery rate of person vi .

πt , π
i
t Detection probability. πt (X) = P(Xt = X|O0:t , G0:t , θ). πi

t (x) = P(xi
t = x|O0:t , G0:t , θ).

πs|t , πi
s|t , s < t Tracing probability. πs|t (X) = P(Xs = X|O0:t , G0:t , θ). πi

s|t (x) = P(xi
s = x|O0:t , G0:t , θ).

πt+s|t , πi
t+s|t , s > 0 s-step ahead prediction probability. πt+s|t (X) = P(Xt+s = X|O0:t , G0:t , θ). πi

t+s|t (x) = P(xi
t+s = x|O0:t , G0:t , θ).

h, hi State transition probability. h(X,X′) = P(Xt+1 = X′|Xt = X). hi(X, x′) = P(xi
t+1 = x′|Xt = X).

φ, φi Observation probability. φ(X, O) = P(O|X). φi(x, o) = P(xi = x|oi = o).

locational data captured from the indoor positioning infras-
tructure. The distance between person vi and person vj at
any time is calculated; examples of the distances are repre-
sented by dashed lines in Fig. 2a. Let dij (t) be a function of
time t that measures the distance between persons vi and vj .
A contact between vi and vj is established if ∃t1, t2, where
t2 − t1 > �Tth such that

dij (t) < Dth ∀t1 ≤ t ≤ t2

where Dth is the distance threshold and �Tth is the time
threshold.

Static hierarchical network generation

A three-level hierarchical network is generated to repre-
sent the human connectivity in a hospital environment.
Individuals are labeled with their role classes and divided
into a patient group and a caregiver group. The patient
group is further divided according to the ward where a
patient is staying. Correspondingly, there are four types of

contacts, namely, intra-ward contacts, inter-ward contacts,
intra-type contacts and inter-type contacts. An example of
a simple hierarchical contact network is shown in Fig. 3.
The bottom-level network consists of patients and they
are linked according to intra-ward contacts; the middle-
level network consists of both patients and caregivers and
they are linked with intra-type and inter-ward contacts; the
top-level network consists of inter-type contacts between
patient-caregiver pairs.

Time-varying contact network construction

A time-varying network can be represented as a series of
static networks. We divide a continuous period into discrete
time intervals and construct the time-varying contact
network by combining the static networks constructed for
each time period in sequence. In a hospital setting, it is
common to divide a day into a daytime nighttime sessions
[15], because most healthcare workers have fixed shift times
and human connectivity has dissimilar structures in the two
sessions.

Fig. 2 Establishments of
contacts through movement
trajectories of individuals. vi ,
Dth, and �t , respectively denote
individual i, distance threshold,
and time threshold
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Fig. 3 A simple example of static hierarchical contact networks

Most healthcare facilities adopt a hierarchical and
modular structure for the separation of wards and different
roles of individuals. Interaction pattern differs between the
intra-ward and inter-ward contacts or between the intra-
type and inter-type contacts. The time-varying hierarchical
contact network naturally captures such characteristics in
a hospital environment. Moreover, the hierarchical network
is an extension of the bipartite patient-caregiver network in
[31]. The bipartite patient-caregiver network assumes that
only inter-type contacts exist, but does not consider contacts
within the same individual group. Undoubtedly, it would be
more practical to consider contacts among caregivers as they
are the main transmitters of HAIs.

Individual-level transmission tracking

Transmission dynamics

The classical SIS model formulates transmission dynamics
of HAIs. There are two health states in the SIS model,
namely, susceptible and infected. A person can be either
susceptible or infected at one time. A susceptible person
vi might get infected with an infection rate τi due to
a contact with an infectious patient. An infected patient
vj gets recovered independently with a recovery rate μj ,
and turns from the infected state to the susceptible state
immediately. Let health state xi

t be a binary variable such
that xi

t = 1 and 0 respectively indicate that person vi is
infected and suspectible at time t. Let Nt (vi) be the neighbor
set of vi at time t, where a neighbor of vi is defined to be
the set of adjacent vertices of vi on graph Gt . In the SIS
model, the transmission through person-to-person contact is
determined by the following set of equations.

P(xi
t+1 = 0|xi

t = 0, {xj
t }j :j 
=i ) =

∏

j :vj ∈Nt (vi )

(1 − τi)
x

j
t , (1)

Fig. 4 A simple example of the SIS dynamics. vi denotes individual i

P(xi
t+1 = 1|xi

t =0, {xj
t }j :j 
=i )=1−

∏

j :vj ∈Nt (vi )

(1−τi)
x

j
t , (2)

P(xi
t+1 = 0|xi

t=1)=μi, (3)

P(xi
t+1 = 1|xi

t =1) = 1 − μi . (4)

Equation 1 represents the case that a susceptible person
vi remains susceptible at the next time period if all
his/her infectious neighbors fail to transmit the infection
to vi . Equation 2 indicates that a susceptible person gets
infected if one or more of the infectious neighbors transmit
the infection to him/her successfully. Equations 3 and 4
respectively state that an infected person recovers and
remains infected independently. The SIS dynamics is shown
in Fig. 4. The links between vertices represent the person-
to-person contacts. At time t, v1, v2 and v3 are infected
while v4 and v5 are susceptible. At time t + 1, v4 remains
susceptible as the infected neighbors v1 and v3 both fail
to transmit the disease to v4. v5 gets infected because
v1 transmits the infection to v5 successfully. v2 recovers
independently and becomes susceptible at time t + 1 , while
v1 and v3 remain infected.

Detection, tracing and prediction

The problem of individual-level transmission tracking is to
identify the hidden health state of a person at any time,
given the set of observations, parameters of the HAI model,
and the contact networks. Suppose that the current time
is t. Specifically, the problems of tracing, detection and
prediction are respectively to infer the hidden state of an
individual before, at and after time t, as illustrated in Fig. 5.
Formally, given the observation set O0:t , the time-varying
contact network G0:t , and the parameter set θ of an HAI,
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Tracing Detec�on Predic�on 
πt-k|t πt πt+k|t

... Xt-1 Xt Xt+1 ...

Fig. 5 The problems of detection, tracing and tracking. πt and Xt

respectively denote the detection probability and state vector at time t

the problem of individual-level transmission tracking is to
determine a mapping function

f : {O0:t , G0:t , θ} → Xs, ∀s.

We call the function f for detection if s = t , tracing if s < t ,
and prediction if s > t .

We propose network-based coupled HMMs to tackle
the individual-level transmission tracking problem. As
shown in Fig. 6, a standard HMM has two sequences
of components: a sequence of hidden states of a Markov
chain and a sequence of observations. An observation is
dependent on its hidden state only, but not affected by
other states and observations. HMMs have the power to
reveal hidden pattern from observable information and
have been widely applied in various fields such as speech
recognition and social network analysis. The coupled
HMMs incorporate several sub-HMMs together under a
network structure, as illustrated in Fig. 7. This connection
creates the interdependence of the hidden states of multiple
sub-HMMs. For example, the hidden state of HMM-2 at
time t is not only determined by its own state at time
t − 1, but also affected by the hidden states of HMM-1 and
HMM-3 at time t − 1.

We propose a two-phase approach to deriving solutions
from the coupled HMMs. First, the coupled HMMs are
regarded as a standard HMM to give basic solutions to
the problems of detection, tracing and prediction. In the
standard HMM, all individuals are considered as single
vertices such that the combined state Xt is determined
rather than individual xi

t . The second phase is to derive
solutions for individual-level transmission tracking based on
factorization and mean-field analysis.

For each person vi , we denote the detection probability
at time t by πi

t , the tracing probability at time s by

Fig. 6 A standard hidden Markov model. Ot and Xt respectively
denote the observation vector and state vector at time t

Fig. 7 Coupled hidden Markov models. Ot and Xt respectively denote
the observation vector and state vector at time t

πi
s|t , and the k-step ahead prediction probability at time

t + k by πi
t+k|t . Correspondingly, πt , πs|t and πt+k|t

respectively denote the detection probability at time t, the
tracing probability at time k and the k-step ahead prediction
probability at time t + k. Let ht |t−1 = P(Xt |Xt−1) be
the state transition probability and φt = P(Ot |Xt) be
the observation probability. A standard HMM provides the
detection, tracing and prediction probabilities in recursive
forms by the following set of equations [38], respectively:

πt = φt

∑
Xt−1

ht |t−1πt−1∑
Xt

φt

∑
Xt−1

ht |t−1πt−1
, (5)

πs|t = πsβs|t∑
Xt

πsβs|t
, (6)

πt+k|t =
∑

Xt

ht+k|tπt , (7)

where βs|t = ∑
Xs+1

βs+1|tφs+1hs+1|s can be computed
with a backward approach. The basic solutions can
be obtained by the analogies of detection, tracing and
prediction to filtering, smoothing and prediction in a
standard HMM.

However, treating all individuals as a single vertex is
incapable of tracking the health state of each individual.
It is also impractical to apply the basic solutions directly
due to the high computational complexity. For example,
if we are to track the transmission of an SIS-type HAI
among n individuals, the computational complexities for the
detection and tracing procedures are respectively O(22n)

and O(2n). Thus, we propose an integrated approach
of factorization and mean-field analysis to reducing the
complexities.
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Detection

Since the basic solutions obtained from a standard HMM
treat all individuals as a whole, we first factorize the basic
solutions for individual-level detection, and then reduce the
computational complexity using mean-field analysis. In this
way, we can solve the individual-level detection problem
and substantially improve the solvability for large-scale
problems.

Assumption 1 (Independence assumption) The one-step-
ahead prediction probability of a sub-HMM is independent
of those of other sub-HMMs, or formally

πt |t−1 =
n∏

i=1

πi
t |t−1, (8)

where n is the number of sub-HMMs.

The state transition probability ht |t−1 is determined by
SIS dynamics. By Eqs. 5, 6, and 7, the individual states are
conditionally independent, that is,

P(Xt |Xt−1) =
n∏

i=1

P(Xi
t |Xt−1) ⇒ ht |t−1 =

n∏

i=1

hi
t |t−1. (9)

Theorem 1 The solution to the problem of individual-level
detection is given by

πi
t = φi

t π
i
t |t−1∑

xi
t
φi

t π
i
t |t−1

, ∀i (10)

and the basic solution to the detection problem can be
factored in a product form

πt =
n∏

i=1

πi
t . (11)

Factorization of the basic solution gives the detection
probability for each individual. The complexity is reduced
to O(2n) after factorization, and the computational burden
now becomes the calculation of individual-level one-
step-ahead prediction probability πi

t |t−1. We apply mean-

field analysis for solving πi
t |t−1 to reduce the overall

computational complexity further. The mean-field analysis
studies the behavior of a large and complex system in
view of simpler systems. Such system considers a large
number of small individuals who interact with each other,
where the effects of the other individuals on any given
individual can be approximated by an averaged effect. With
independence assumptions and decomposition, mean-field

analysis reduces a multiple-body problem to a one-body
problem.

Theorem 2 The solution to the problem of individual-level
one-step-ahead prediction is given by

πi
t |t−1(0) = πi

t−1(0) · pi
t |t−1 + πi

t−1(1) · μi, (12)

πi
t |t−1(1) = 1 − πi

t |t−1(0), (13)

where pi
t |t−1 =∏

j :vj ∈Nt−1(vi )

(
π

j

t−1(1)· (1−τi)+π
j

t−1(0)
)
.

Theorems 1 and 2 enable us to recursively calculate the
one-step-ahead prediction and detection probabilities for
each individual. The computational complexity is, therefore,
reduced to O(n2) by mean-field analysis.

Algorithm 1 outlines the forward algorithm for
solving individual-level detection. Let detection vec-
tor π i

t = (
πi

t (0), πi
t (1)

)
, observation vector φi

t =(
φi

t (O
i
t |0), φi

t (O
i
t |1)

)
, and ρi be the initial distribution of

hidden states of individual vi . We initialize and calculate the
detection probability for each individual at time 0. Then we
recursively compute the one-step-ahead probability and the
detection probability.

Tracing

The basic solution to the tracing problem in the standard
HMM requires a backward computing procedure for
βs|t , s < t . The procedure introduced in Sub-section
appears to be not applicable for tracing because βs|t is
not normalized. To derive the tracing probability at an
individual level, we rewrite the basic solution based on the
following formula [39, 40]:

πs|t = πs

∑

Xs+1

πs+1|t hs+1|s
πs+1|s

. (14)
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Theorem 3 The solution to the problem of individual-level
tracing is provided by

πi
s|t (1) = πi

s|t (1)
∑

xi
s+1

πi
s+1|tP (xi

s+1|xi
s = 1)

πi
s+1|s

, (15)

πi
s|t (0) = 1 − πi

s|t (1), (16)

and the basic solution to the tracing problem can be factored
in the following product form:

πs|t =
n∏

i=1

πi
s|t , (17)

where s ≤ t , P(xi
s+1 = 0|πi

s = 1) = μi , and P(xi
s+1 =

1|πi
s = 1) = 1 − μi .

Algorithm 2 outlines the forward-backward algorithm
for solving individual-level tracing. We first implement the
forward algorithm to obtain the detection probability and
the one-step-ahead probability. Then we set the tracing
probability equal to the detection probability at time T .
Thus, the tracing probability with time earlier than T can be
computed recursively in a backward fashion.

Prediction

We have provided the solution approach to the problem
of one-step-ahead prediction in the previous sub-section.
Trivially, we can solve the problem of s-step ahead
prediction by substituting the one-step transition probability
with the s-step transition probability. Here we introduce
the pure prediction probability πi

t |0(x). In pure prediction,
no health observations are given, but the initial outbreak
information is available. The health states of individuals
are completely determined by the initial conditions and
epidemic dynamics given by the SIS model. Intuitively, the
effect of having no observation at all is equivalent to the
setting that all individuals have the same observation at any

time. Based on this intuition, we modify the computation
for the detection probability πi

t (x) to derive πi
t |0(x). We set

the observation space to {0} and the observation probability
φ(·, 0) to one. By doing so, this tracking procedure becomes
pure prediction. We calculate the tracking probability πi

t (x)

under this condition, and we have πi
t |0(x) = πi

t (x) with
φ(·, 0) = 1. Pure prediction is consistent with the non-
linear dynamical system (NLDS) discussed in [15]. The
model reduces to NLDS when observable features of HAIs
are unavailable. As observations provide useful information
for more effective estimation of the health states, one-step-
ahead prediction is expected to give better performance than
the NLDS or pure prediction.

HAI parameter estimation

In “Individual-level transmission tracking”, we discussed
our modeling framework on tracking HAI transmission
under the assumption that all the required parameters – the
infection rate, the recovery rate, the initial state distribution
and the observation probability matrix – are given. In
practice, however, the real values of these parameters
are very likely not known exactly. In general, at the
beginning of an outbreak, making an initial guess is the
only possible option as no prior information is available.
In this section we present an estimation method to refine
the guess in a step-by-step manner, thus guaranteeing
the practicality of our approach for real-world problems.
Let θ = ({ρ(xi

0)}, {τi}, {μi}, {φo
x}) be an HAI parameter

configuration. The goal of HAI parameter estimation is
to find the best θ that maximizes the likelihood function
L(θ) = P(O0:T |θ),

θ∗ = arg max logL(θ).

As analytical global optimal solutions are unlikely to
exist, we use the Baum-Welch method [41, 42] to solve
the problem. Let λ = ({ρ(X)}, {h(X, X′)}, {φ(X, O)}). We
first consider the coupled HMMs as a single HMM for
estimating λ, and then recover the original parameter set θ

from λ. We introduce the auxiliary function

Q(λ, λ̄) =
∑

X0:T
P (X0:T |O0:T , λ) log P(X0:T , O0:T |λ̄).

Using Jensen’s inequality, we obtain

logL(λ̄) − logL(λ) ≥ Q(λ, λ̄) − Q(λ, λ).

Let λ∗ = arg max
λ̄

Q(λ, λ̄). we have

logL(λ∗) − logL(λ) ≥ max
λ̄

Q(λ, λ̄) − Q(λ, λ) ≥ 0.
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The above fact suggests that the likelihood of λ

never exceeds the likelihood of λ∗ and that com-
puting a new estimate λ̄ by maximizing the auxil-
iary function Q(λ, λ̄) improves the likelihood. Thus,
we can derive a maximum likelihood estimate by iter-
atively updating λ̄ until convergence. In this way,
the original intractable optimization problem is reduced
to maximizing the auxiliary function Q(λ, λ̄), which
can be solved with a Lagrangian multiplier approach
efficiently.

Consider the following optimization problem

max Q(λ, λ̄) =
∑

X0:T
P (X0:T |O0:T , λ) log P(X0:T , O0:T |λ̄)

s.t .
∑

X0∈X
ρ̄(X0) = 1,

∑

F∈F
φ̄(X, F ) = 1 ∀X ∈ X , and

∑

X′∈X
h̄(X, X′) = 1 ∀X ∈ X

where X is the value set of state vector X.
By substituting

P(X0:T ,O0:T |λ̄) = ρ̄(X0)φ̄(X0, O0)

T −1∏

t=0

h̄(Xt ,Xt+1)φ̄(Xt+1, Ot+1),

we can write the Lagrangian function as

L(λ̄) =
∑

X0:T
P (X0:T |O0:T ,λ)

(
log ρ̄(X0) +

T∑

t=0

log φ̄(Xt , Ft )

+
T −1∑

t=0

log h̄(Xt ,Xt+1)

)
+ η

⎛

⎝
∑

X0∈X
ρ̄(X0) − 1

⎞

⎠

+
|X |∑

j=1

γj

(
∑

F∈F
φ̄(X, F ) − 1

)
+

|X |∑

j=1

ωj

(
∑

X′∈X
h̄(X,X′) − 1

)
,

where η, γj and ωj are Lagrangian multipliers. The
optimization problem thus becomes

max L(λ̄) = max{
∑

X0:T
P (X0:T |O0:T ,λ) log ρ̄(X0) + η(

∑

X0

ρ̄(X0) − 1)}

+ max{
∑

X0:T
P (X0:T |O0:T ,λ)

T∑

t=0

log φ̄(Xt , Ft )

+
|X |∑

j=1

γj (
∑

F

φ̄(X, F ) − 1)} + max{
∑

X0:T
P (X0:T |O0:T ,λ)

T −1∑

t=0

log h̄(Xt ,Xt+1) +
|X |∑

j=1

ωj (
∑

X′
h̄(X,X′) − 1)},

which can be separated to three independent maximization
problems. Solving each sub-problem, we have

ρ̄(X0) = π0|T (X0), (18)

φ̄(X, F ) =
∑T

t=0,Ot=F πt |T (X)
∑T

t=0 πt |T (X)
, (19)

h̄(X, X′) =
∑T −1

t=0 πt,t+1|T (X, X′)
∑T −1

t=0 πt |T (X)
, (20)

where πt,t+1|T (X, X′) = P(Xt = X,Xt+1 =
X′|O0:T ) denotes the probability that the node is at
state X at time t and at state X′ at time t + 1.
As an example, we take the derivative of h̄(X, X′) to
obtain the solution to the maximization problem. By

letting L3 = ∑
X0:T

P (X0:T |O0:T , λ)
T −1∑
t=0

log h̄(Xt , Xt+1) +
|X |∑
j=1

ωj

(
∑

X′∈X
h̄(X, X′) − 1

)
and X′

0:T = (X0:T : Xt =
X,Xt+1 = X′), we have

∂L3

∂h̄(X, X′)
=

∑

X′
0:T

P (X′
0:T |O0:T , λ)

T −1∑

t=s0

1

h̄(X, X′)
+ ωj .

By setting ∂L3
∂h̄(X,X′) = 0, we have

h̄(X, X′) = − 1

ωj

T −1∑

t=0

∑

X′
0:T

P (X′
0:T |O0:T , λ)

= − 1

ωj

T −1∑

t=0

P(Xt = X,Xt+1 = X′|O0:T )

= − 1

ωj

T −1∑

t=0

πt,t+1|T (X, X′).

By setting ωj = −∑T −1
t=0 πt |T (X), the third constraint is

satisfied, and Equality (20) holds.
Note that ρ̄(X0), φ̄(X, F ) and h̄(X, X′) in Eqs. 18, 19

and 20 are the same with the Baum-Welch reestimate.
Iteratively updating λ̄ in this manner keeps improving the
estimate of λ until it converges. The subsequent step to
recover the original parameter configuration θ̄ from λ̄ . As
an example, we illustrate the recovery of SIS parameters τi

and μi .

Lemma 1 The probability πt,t+1|T (X, X′) can be derived
from the detection probability πt (X), the tracing probabil-
ity πt+1|T (X′), the one-step-ahead prediction probability
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πt+1|t (X′), and the transition probability h(X, X′) by the
following formula

πt,t+1|T (X, X′) = πt (X)h(X, X′)πt+1|T (X′)
πt+1|t (X′)

, ∀X, X′ ∈ X .

(21)

Based on the above lemma, we can recover the SIS
parameters τi and μi , from h(Xt , Xt+1).

μ̄i = h̄(xi
t = 1, xi

t+1 = 0) =
∑T −1

t=0 πt,t+1|T (xi
t = 1, xi

t+1 = 0)
∑T −1

t=0 πt |T (xi
t = 1)

=
∑T −1

t=0 πt (x
i
t = 1) · μi · πt+1|T (xi

t+1=0)

πt+1|t (xi
t+1=0)

∑T −1
t=0 πt |T (xi

t = 1)
.

Let ξi = ∏
j :vj ∈Nt (vi )

(
(1 − τi)π

j
t (1) + π

j
t (0)

)
=

∏
j :vj ∈Nt (vi )

(
1 − τiπ

j
t (1)

)
≈ 1 − τi · ∑

j :vj ∈Nt (vi )
π

j
t (1).

Then we have

ξ̄i = h̄(xi
t = 0, xi

t+1 = 0) =
∑T −1

t=0 πt,t+1|T (xi
t = 0, xi

t+1 = 0)
∑T −1

t=0 πt |T (xi
t = 0)

=
∑T −1

t=0 πt (x
i
t = 0) · ξi · πt+1|T (xi

t+1=0)

πt+1|t (xi
t+1=0)

∑T −1
t=0 πt |T (xi

t = 0)
,

and

τ̄i = T (1 − ξ̄i )
∑T −1

t=0
∑

j :vj ∈Nt (vi )
π

j
t (1)

. (22)

The proposed method provides an effective way to infer
HAI parameters. Even if complete information on HAI
parameters is not available initially, we can resort to this
approach to improve estimation of the parameters with
the updating observations and the tracked human contact
networks. While theoretically the Baum-Welch reestimate
converges to a local maximum, our computational experi-
ments to be presented in “Computational study” show that
our proposed approach has a good performance in the sense
that the estimated values are close to the actual ones.

Computational study

In this section, we carry out a computational study, based
on a real-world healthcare setting and real-world human
tracking data collected from the facility, for assessing
the performance of our proposed solution framework and
conducting a comparative analysis with other existing
epidemic models.

Baseline algorithms

We compare our proposed methods of individual-level
transmission tracking approaches – detection (ILTT-DT),
tracing (ILTT-TR), one-step-ahead prediction (ILTT-PD1) and
pure prediction (ILTT-PD0) – with the following three
baseline methods.

• Ordinary-differential-equation-based SIS model (ODE-
SIS) assumes homogeneous populations. All individu-
als share the same infection rate τ and recovery rate
μ. The initial number of infected individuals I0 is
an input. The output is the number of infected indi-
viduals as a function of time determined by I (t) =
I∞/

(
1 + νe−(τ−μ)(t−t0)

)
, where ν = I∞/I0 − 1 and

I∞ = (τ − μ)n/τ .
• Percolation method (Percolation) is based on probability

generating functions and considers disease spread over
a heterogeneous network [14]. It requires network
degree distributions as input and returns the number of
infected individuals at steady state.

• Non-linear dynamical system (NLDS) uses the probabil-
ity of infection vector (pt ) to approximate the infection
dynamics and model the evolution of epidemic outbreak
over a time-varying network [15]. pt is determined
by pt+1 = g(pt ), where the non-linear function g is
defined by pi,t+1 = 1 − μpi,t − (1 − pi,t )ξt (i), and
ξt (i) = ∏

j∈{1,··· ,n}(1 − τAt (i, j)pj,t ). This approach
requires an adjacency matrix At to represent the time-
varying network at time t .

Setup of experiments

We leveraged the RFID human tracking data collected
from two medical wards at PWH, which suffered from
a nosocomial outbreak the 2003 SARS, for conducting
our computational experiments. The data consists of time-
stamped locations of 56 patients and 70 healthcare workers
in two medical wards over a period of four months. Indoor
locations of the tracked objects were recorded every 3
seconds with a spatial resolution of 0.5 meter. We set the
time threshold �Tth = 30 minutes and the distance threshold
Dth = 1 meter. While these threshold distance and time
were chosen to illustrate our idea, our algorithm allows the
user to specify these threshold values. We also note that
the threshold distance and time depend on the type of the
HAI. We constructed static daytime networks and nighttime
human contact networks for each time period based on the
tracking data; a time-varying hierarchical contact network
of 240 time periods was then obtained.

We considered the nosocomial outbreak of the 2013
MERS-CoV in Saudi Arabia [3] for deriving practical HAI
parameters.
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Table 2 Health
state-observation probability
matrix

obs. 0 obs. 1 obs. 2 obs. 3 obs. 4

state 0 0.60 0.10 0.16 0.08 0.06

state 1 0.10 0.30 0.17 0.13 0.30

From April 1 to May 23, 2013, thirty-four individuals,
including four healthcare workers, acquired MERS-CoV
in three healthcare institutions. Fever, cough, shortness
of breath and gastrointestinal symptoms were respectively
observed in 20, 20, 11 and 8 individuals. As of June 12,
2013 a total of 15 deaths were related to the disease.
We prioritized the observations fever, shortness of breath,
gastrointestinal symptoms and cough, in a descending order
of priority (from 4 to 1). If multiple observations were found
at the same time period for an individual, we consider the
individual is at the observation state of the highest priority.
There were only two health states; each individual either is
susceptible (state 0) or infected (state 1). Table 2 provides
the health state-observation probability matrix. We include
the observation state 0, which indicates that no symptom
was found.

In the experiments, we simulated the health states and
observations based on the above setup.

Marco-level phenomena of hospital outbreaks

Most existing epidemic models focus on the macro-
level phenomena of epidemic thresholds and the infected
population. Figure 8 shows the fraction of infections at
the steady state for different values of τ/μ on three static
networks of snapshots at different time periods, G1, G41

and G62, respectively. G1 and G41 have the same degree
distribution whereas G62 differs from them and is more
sparse. The mean degrees of three networks are 15, 15 and
4, respectively. Although G1 and G41 have the same degree
distribution, the underlying networks are not equivalent. As
we observe from Fig. 8a and b, the simulated threshold
effects of G1 and G41 are different: the curves of G1 “take
off” at around τ/μ = 0.5 while the ones of G41 “take
off” at around τ/μ = 0.2. Percolation gives the same
threshold, τ/μ = 0.4, for G1 and G41 because it considers
only the degree distribution of a network but ignores other

Fig. 8 Infections at steady state
on static networks. ILTT-PD1,
ODE-SIS and NLDS respectively
denote individual-level
transmission tracking with
one-step-ahead prediction,
ordinary-differential-equation-
based SIS model, and non-linear
dynamical system
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Fig. 9 Infected fraction time
plot of static networks.
ILTT-PD1, ODE-SIS and NLDS
respectively denote
individual-level transmission
tracking with one-step-ahead
prediction, ordinary-differential-
equation-based SIS model, and
non-linear dynamical system

network properties. ODE-SIS gives the same threshold for
three different networks because it assumes a homogeneous
connection. NLDS captures the difference between the
networks but deviates much from the simulation result.
Our ILTT-PD1 predicts the thresholds to be 0.5, 0.2 and
1.2 for G1, G41 and G62, respectively, which are more
consistent with the simulated results compared with the
other approaches.

Figure 9 shows the plot of infection fraction at different
time points resulting from the models for an HAI with
infection rate τ = 0.4 and recovery rate μ = 0.3.
Since Percolation is not applicable for investigating transient
states over time, we compare only ILTT-PD1, NLDS and
ODE-SIS with the simulated result. The plots of infection
fraction resulting from ILTT-PD1, NLDS and Simulation all
increase rapidly at t = 3, whereas ODE-SIS increases at
a significantly lower rate. As expected, ODE-SIS provides
the same prediction for three networks because it does
not capture the network structures. The simulated infection
fraction at steady state ranges from 0.03 to 0.26. Our ILTT-
PD1 provides a similar prediction to the simulated results
(from 0.03 to 0.30), while NLDS has a significantly deviated
prediction ranging from 0.33 to 0.54.

Among the baseline algorithms, only NLDS applies to
time-varying networks. Figure 10 shows the comparison
of NLDS, ILTT-PD1, ILTT-PD0 and simulated results on the
time-varying network G0:T . As shown in Fig. 10a, ILTT-PD1
predicts the “take-off” of the outbreak size at a threshold

τ/μ = 0.4 while NLDS and ILTT-PD0 predict a lower
threshold of 0.3. Figure 10b shows the plot of infection
fractions above and below the threshold at different time
points. Above the threshold the infection reaches a steady
state much higher than the starting point, and below the
threshold the infection decays and dies out. Note that
ILTT-PD0 and NLDS give almost the same prediction in both
figures. The reason is that our model reduces to NLDS when
observations of HAIs are not available. Taking advantage of
observable information improves the accuracy of prediction,
which leads to a better performance of ILTT-PD1 than
ILTT-PD0.

Individual-level transmission tracking

Our proposed method has the capability to track the
transmission of HAIs at an individual level. In other words,
it infers the hidden health state of any person at any time.
In this subsection, we compare the identification results
obtained from ILTT-PD1, ILTT-DT, ILTT-TR and NLDS with
fixed infection rate τ = 0.03 and recovery rate μ = 0.02.
Outcomes resulting from ILTT-PD0 are identical to NLDS.
Figure 11 shows the estimation of the illness evolution of
person v1, who is the patient zero of an HAI. This person
stayed infected (at state 1) until time period 103 and remains
susceptible (at state 0) from that time onwards. ILTT-DT,
ILTT-TR, ILTT-PD1 all capture the state transition close to
time step 103 whereas NLDS gives a smooth curve with no
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Fig. 10 Macro-level prediction on time-varying network G0:T . ILTT-PD1, ILTT-PD0 and NLDS respectively denote individual-level transmission
tracking (ILTT) with one-step-ahead prediction, ILTT with pure prediction, and non-linear dynamical system

clear indication of such change in state. ILTT-TR identifies
hidden states with the highest accuracy, and the ILTT-DT
performs better than ILTT-PD1.

The Receiver Operating Characteristic (ROC) curves in
Fig. 12 exhibit a consistent trend with the results shown in
Fig. 11. We observe that ILTT-TR demonstrates an advantage
over the other approaches and ILTT-DT performs slightly
better than ILTT-PD1 whereas NLDS’s performance is the
worst. Their difference in performance is due to the fact
that the approaches utilize different degrees of observable
information. ILTT-TR makes use of all available observable
information to obtain the estimation of the hidden Markov
processes, while NLDS utilizes no observations at all. ILTT-
PD1 and ILTT-DT both use past observations, but ILTT-DT
performs slightly better because it also captures observable
information at present.

When an HAI outbreak takes place, the healthcare
organization conducts contact tracing to identify the index
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Fig. 11 Tracking of the initial patient. ILTT-DT, ILTT-TR, ILTT-PD1
and NLDS respectively denote individual-level transmission tracking
(ILTT) with detection, ILTT with tracing, ILTT with one-step-ahead
prediction, and non-linear dynamical system

case and construct epidemiological links with a manual
approach. If this patient zero has had frequent contacts
with the others, the transmission path can only be
estimated based on experience [3, 5]. Our method provides
an effective tool to construct the transmission network
automatically and accurately. For example, if we consider
a person as being infected if his/her tracing probability is
greater than 0.5, we can draw a transmission map of the
hospital outbreak for the first month, as shown in Fig. 13.
27 individuals in total got infected in the first month. The
patient zero v1 transmitted the disease to 4 other individuals
and patient v3 is a “super-spreader” who infected 7 people.
This transmission map is similar to the one reported in [3],
a real-world hospital outbreak of the MERS-CoV.
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tively denote individual-level transmission tracking (ILTT) with detec-
tion, ILTT with tracing, ILTT with one-step-ahead prediction, and
non-linear dynamical system
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Fig. 13 Transmission map

HAI parameter estimation

In general, the exact values of HAI parameters were not
known exactly. Existing models, which are highly sen-
sitive to the precision of HAI parameters, might pro-
duce predictions much deviated from the actual situation

if parameters are not determined correctly. Our solution
framework is capable of refining the estimate of HAI
parameters in a step-by-step manner based on available
information of observable features and human contacts.
As discussed in “HAI parameter estimation”, our solution
framework learns the infection rate τi and the recovery
rate μi for any individual vi . Without loss of general-
ity, we set τp and μp for the patient group, and τc

and μc for the caregiver group. The following exper-
iment illustrates the estimation of parameters of SIS
dynamics.

Figure 14a and b show the estimation of infection rates
and recovery rates for patients and caregivers. The dashed
lines indicate true parameter values while the solid lines
represent the estimated values at each step of estimation.
In Fig. 14a, the true value of τp is 0.3 and the estimate τ̄p

converges to 0.32 after 6 runs using the proposed method.
The true value of τc is 0.03 and τ̄c reaches 0.01 after 4 runs.
From Fig. 14b, we observe that μ̄p and μ̄c converge very
quickly to their true values as well.

Figure 14c and d show the average gap between an
estimate and the true value for the observation matrix and

Fig. 14 Estimation of HAI parameters. τp and μp (τ c and μc) respectively denote the estimated infection and recovery rates for patient (caregiver)
groups. φi and ρi respectively represent the estimated observation probability matrix and state distribution
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the initial state distribution. For an m × n matrix B, we
define the average gap as

AveGap(B) =
∑

i,j | ēi,j − ei,j | /ei,j

m × n
,

where ēi,j is an estimate of element ei,j . In Fig. 14 (c),
three sets of estimated observation probability matrices
are given with initial average gaps AveGap0(φ̄1) =
0.12, AveGap0(φ̄2) = 0.18, and AveGap0(φ̄3) = 0.31,
respectively, where φ̄3 is generated randomly.

Even though we start with these initial guesses with fairly
large average gaps, they converge to zero after only a few
iterations. In contrast, Fig. 14d shows that the performance
of the inference method is sensitive to the initial guess of the
initial state distribution ρ. As the initial guess deviates from
the true value gradually from ρ̄1 to ρ̄3, the gaps between
the final estimates and the true value become larger. For ρ̄3,
there are oscillations and the estimation converges rather
slowly but the estimate is far away from the true value. This
indicates the importance of an appropriate initial guess of
the initial state distribution.

Conclusion

In this work, we propose a solution methodology integrating
the techniques of network epidemiology and coupled hidden
Markov models to infer the health state of any person
at any time in a healthcare setting. We utilize advanced
real-time positioning technologies for tracing person-to-
person contacts among individuals, including patients and
healthcare workers, in the healthcare facility and construct
a time-varying human contact network. We also develop
the algorithms for transmission tracking of individuals, with
a given set of HAI parameters. We finally propose an
estimation procedure to infer unknown HAI parameters to
tackle the practical problem that the parameters are not
completely known.

We conduct experiments based on four-month human
tracking data collected from two medical wards at PWH,
which suffered from the 2003 SARS nosocomial outbreak.
Computational results show that our framework provides
more accurate results for predicting macro-level phenomena
such as the number of infected individuals and epidemic
threshold, compared to existing epidemic models.
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Appendix: Proofs

Theorem 1 The solution to the problem of individual-level
detection is given by

πi
t = φi

t π
i
t |t−1∑

xi
t φ

i
t π

i
t |t−1

, ∀i

and the basic solution to the detection problem can be
factored in a product form

πt =
n∏

i=1

πi
t .

Proof By the definition of the one-step-ahead prediction
probability, stated in Eq. 7, and the independence assump-
tion, stated in Eq. 8, we have

∑

Xt−1

ht |t−1πt−1 = πt |t−1 =
n∏

i=1

πi
t . (23)

The denominator of the basic solution (5) can be rewritten
as

∑

Xt

φt

∑

Xt−1

ht |t−1πt−1 =
∑

Xt

φtπt |t−1 =
∑

Xt

P (Ot |Xt )P (Xt |O0:t−1)

=
∑

Xt

P (Ot ,Xt |O0:t−1) = P(Ot |O0:t−1).

(24)

The third equality follows from the Markov property. In
coupled HMMs, observations are independent of each other
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and an observation is only affected by its own state. Thus
we have

P(Ot |O0:t−1) =
n∏

i=1

P(Oi
t |O0:t−1)

=
n∏

i=1

∑

xi
t

P (Oi
t |xi

t )P (xi
t |O0:t−1)

=
n∏

i=1

∑

xi
t

φi
t π

i
t |t−1. (25)

By Eqs. 5, 9, 23, 24 and 25, we have πt = ∏
i=1 πi

t and

πi
t = φi

t π
i
t |t−1∑

xi
t
φi

t π
i
t |t−1

.

Theorem 2 The solution to the problem of individual-level
one-step-ahead prediction is given by

πi
t |t−1(0) = πi

t−1(0) · pi
t |t−1 + πi

t−1(1) · μi,

πi
t |t−1(1) = 1 − πi

t |t−1(0),

wherepi
t |t−1 =∏

j :vj ∈Nt−1(vi )

(
π

j

t−1(1)·(1−τi)+π
j

t−1(0)
)
.

Proof πi
t |t−1(0) is the estimate that person vi is not infected

at time t based on the information about the person-to-
person contact history and features of all individuals by time
t − 1. We have

πi
t |t−1(0) = πi

t−1(0) · P(xi
t = 0|xi

t−1 = 0)

+πi
t−1(1) · P(xi

t = 0|xi
t−1 = 1)

According to the SIS dynamics, if xi
t−1 = 1, xi

t is

independent of x
j

t−1 for all j 
= i. That is,

P(xi
t = 0|xi

t−1 = 1) = μi .

If xi
t−1 = 0, xi

t is influenced by other x
j

t−1, j 
= i. Let
X∼i

t−1 be a state vector excluding xi
t−1, or formally, X∼i

t−1 =
(x1

t−1, x
2
t−1, ..., xi−1

t−1 , xi+1
t−1 , ..., xn

t−1). Let

pi
t |t−1 = P(xi

t = 0|xi
t−1 = 0)

=
∑

X∼i
t−1

P(xi
t = 0|xi

t−1 = 0, X∼i
t−1)πt−1(X

∼i
t−1).

We apply the mean-field analysis approach to decompose
the effect of X∼i

t−1 on xi
t into single average effects. A

neighbor vj of vi is infected at time t − 1 with probability

π
j

t−1(1), and is susceptible with probability π
j

t−1(0). The

average effect of vj on vi for which vi stays susceptible is

π
j

t−1(1) · (1 − τi) + π
j

t−1(0) · 1. Thus we have
∑

X∼i
t−1

P(xi
t = 0|xi

t−1 = 0, X∼i
t−1)

=
∏

j :vj ∈Nt−1(vi )

(π
j

t−1(1) · (1 − τi) + π
j

t−1(0)),

and this completes the proof.

Theorem 3 The solution to the problem of individual-level
tracing is provided by

πi
s|t (1) = πi

s|t (1)
∑

xi
s+1

πi
s+1|tP (xi

s+1|xi
s = 1)

πi
s+1|s

,

πi
s|t (0) = 1 − πi

s|t (1),

and the basic solution to the tracing problem can be factored
in the following product form:

πs|t =
n∏

i=1

πi
s|t ,

where s ≤ t , P(xi
s+1 = 0|πi

s = 1) = μi , and P(xi
s+1 =

1|πi
s = 1) = 1 − μi .

Proof We first prove the claim that πs|t = ∏
i π i

s|t by
backward induction. When s = t , this equality holds since
πs|t = πt = ∏

i π i
t . Now suppose πs+1|t = ∏

iπ
i
s+1|t for

s ≤ t − 1. We have

∑

Xs+1

πs+1|t hs+1|s
πs+1|s

=
∑

Xs+1

∏

i

π i
s+1|t h

i
s+1|s

πi
s+1|s

=
∏

i

∑

xi
s+1

πi
s+1|t h

i
s+1|s

πi
s+1|s

.

The second equality holds because Xs+1 is a combination
of xi

s+1. From the above equation and the tracing formula,
we have πs|t = ∏

i π i
s|t for s ≤ t − 1, and the claim holds.

As hi
s+1|s = P(xi

s+1|Xs), we aim to decompose the
coupling variable Xs . Note that an infected person is not
affected by other individuals according to SIS dynamics.
Thus we only need to consider the case of xi

s = 1. We have

πi
s|t (1) = πi

s|t (1)

(
πi

s+1|t (0)P (xi
s+1 = 0|xi

s = 1)

πi
s+1|s(0)

+πi
s+1|t (1)P (xi

s+1 = 1|xi
s = 1)

πi
s+1|s(1)

)
,

and it completes the proof.
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Lemma 1 The probability πt,t+1|T (X, X′) can be derived
from the detection probability πt (X), the tracing probabil-
ity πt+1|T (X′), the one-step-ahead prediction probability
πt+1|t (X′), and the transition probability h(X, X′) by the
following formula

πt,t+1|T (X, X′) = πt (X)h(X, X′)πt+1|T (X′)
πt+1|t (X′)

, ∀X, X′ ∈ X .

Proof Let αt and βt be the forward and backward variables
respectively as in standard HMMs. Note that

αt+1(X
′) = φ(X′, Ot+1)

∑

X

αt (X)h(X, X′),

πt (X) = αt (X)∑
Xαt (X)

,

πt |T (X) = αt (X)βt (X)∑
Xαt (X)βt (X)

,

πt+1|t (X′) =
∑

X

πt (X)ht (X, X′).

By the above relationships, we have

πt,t+1|T (X, X′) = αt (X)h(X, X′)φ(X′, Ot+1)βt+1(X
′)∑

X′αt+1(X′)βt+1(X′)

= αt (X)h(X, X′)φ(X′, Ot+1)πt+1|T (X′)
αt+1(X′)

= αt (X)h(X, X′)πt+1|T (X′)∑
Xαt (X)h(X, X′)

= πt (X)h(X, X′)πt+1|T (X′)
πt+1|T (X′)
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