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Abstract
Adaptive time stepping methods for metastable dynamics of the Allen–Cahn and Cahn–
Hilliard equations are investigated in the spatially continuous, semi-discrete setting. We
analyse the performance of a number of first and second order methods, formally predicting
step sizes required to satisfy specified local truncation error σ in the limit of small length
scale parameter ε → 0 during meta-stable dynamics. The formal predictions are made
under stability assumptions that include the preservation of the asymptotic structure of the
diffuse interface, a concept we call profile fidelity. In this setting, definite statements about
the relative behaviour of time stepping methods can be made. Some methods, including all
so-called energy stable methods but also some fully implicit methods, require asymptotically
more time steps than others. The formal analysis is confirmed in computational studies. We
observe that some provably energy stable methods popular in the literature perform worse
than some more standard schemes. We show further that when Backward Euler is applied to
meta-stable Allen–Cahn dynamics, the energy decay and profile fidelity properties for these
discretizations are preserved formuch larger time steps than previous analysis would suggest.
The results are established asymptotically for general interfaces, with a rigorous proof for
radial interfaces. It is shown analytically and computationally that for most reaction terms,
Eyre type time stepping performs asymptotically worse due to loss of profile fidelity.
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1 Introduction

The mathematical literature for computational methods for Allen–Cahn (AC) dynamics [2],
and its higher order relative Cahn–Hilliard (CH) dynamics [6], is dominated by the proposal,
use, and analysis of so-called energy stable schemes [12,25,26,29]. AC and CH dynamics
are gradient flows on an energy functional, and the solution should decrease that energy in
time. Energy stable schemes guarantee that decrease no matter what time step is chosen.
This is a desirable property not shared by standard fully implicit, semi-implicit (IMEX),
or exponential integrator time stepping methods. We will show in this work that some (but
not all) fully implicit methods can outperform energy stable schemes when subject to fixed
accuracy requirements. The recent article [30] gives especially clear evidence that when time
steps are chosen appropriately, fully implicit methods are conditionally energy stable, and
further that the large time steps allowed by energy stable schemes can come at the cost of
significant loss of accuracy. We show that in the metastable dynamic regime of AC and CH,
some fully implicit methods can take optimally sized time steps. By optimal, we mean the
asymptotically largest time steps as the order parameter ε → 0 that satisfy a given local error
tolerance. Here, ε represents the width of interfacial layers in metastable dynamics and, like
the authors of [30], we use the form of the equations scaled so that these dynamics transpire
in an O(1) time scale. When the dynamics are in this metastable regime, which dominates
the time of typical phenomena of interest, definite statements about the behaviour of different
time stepping methods can be made. This criteria does not take into account solver efficiency.
However, we canmake definite statements on how efficient solvers for nonlinear implicit time
stepping need to be to outperform other methods.

Acombination of asymptotic analysis and careful computationalworkbacks upour claims.
The computational codes that generate the results shown in the paper are available by e-mail
request from the last author. In addition, we present a rigorous result for implicit time stepping
for meta-stable AC dynamics in radial geometry that shows that asymptotically larger time
steps can be taken than previous analysis would suggest. These time steps preserve the diffuse
interface structure (a property that we call proflie fidelity) and also the energy decay property
of the equations. This result is shown for a class of reaction terms. An interesting result in
Sect. 6.2 shows that Eyre-type time stepping can perform asymptotically worse with most
reaction terms, while implicit time stepping has uniform asymptotic behaviour over a class
of reaction terms. This was predicted by the analysis and confirmed computationally.

Our study focuses on pure materials science applications rather than the use of Cahn–
Hilliard equations to track interfaces in so-called diffuse interface methods [32] in which
the CH dynamics are coupled to other physics. We consider the simplest form of AC and
CH dynamics, whose Gamma limit (as ε → 0) is well understood and use that well known
structure to gain insight into the behaviour of the schemes. The authors believe that the insight
gained from these studies will also apply to schemes used for other materials science models
which are less well understood.

We consider a number of first and second order time stepping schemes: the energy sta-
ble Eyre’s method [14]; Backward (Implicit) Euler (BE) [17]; Trapezoidal Rule (TR) [17];
Second order Backward Differentiation Formula (BDF2) [17]; Secant [13]; standard semi-
implicit (linear IMEX) methods of first and second order [3]; first and second order Scalar
Auxiliary Methods (SAV) [25] for which a modified energy stability can be proved; and
finally a second order Singular Diagonally Implicit Runge Kutta method with good stability
properties (DIRK2) [17]. The resulting implicit systems are considered in the spatially con-
tinuous semi-discrete setting in a 2D periodic domain, with numerical validation done with
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a suitably refined Fourier spectral approximation. Time step schemes that result in nonlinear
systems are solved with Newton’s iterations using the Preconditioned Conjugate Gradient
Solver (PCG) developed in [9] at each iteration. Adaptive time stepping is done based on
a user-specified local error tolerance σ . The variation of the number of time steps with ε

for fixed σ is predicted based on formal consideration of the local truncation error of the
schemes in the metastable dynamics. The formal predictions are then validated in computa-
tional studies. With this criteria, first order BE performs better (asymptotically fewer time
steps as ε → 0) than Eyre and first order IMEX and SAV. Second order TR and BDF2
perform better than Secant, DIRK2, and second order IMEX and SAV. The difference in
both cases is asymptotically larger for CH than AC. These comparisons are also valid for
computational time, using PCG counts as the measure, to similar accuracy. It is seen that
optimal numbers of time steps are obtained when the dominant local truncation error is a
higher order time derivative. This observation may have application in other systems with
metastable dynamics. We observe that standard IMEX methods perform almost identically
to SAV methods of the same order in the scenario we consider, at reduced computational
cost.

It is observed that the global accuracy of BE is better than a naïve prediction based on
the size of the local truncation error would suggest. A formal analysis of the scheme for the
AC case shows that the dominant error made in one time step is asymptotically smaller than
expected. This is due to a special structure of the local truncation error for BE, in which the
asymptotically largest term lies in a strongly damped space.

We introduce the equations and numerical schemes in Sect. 2 with some introductory
analysis. The scaling for AC and CH is chosen so that the metastable interface dynamics
(approximate curvaturemotion for AC andMullins-Sekerka flow [22] for CH) occurs in O(1)
time. In Sect. 3we examine themetastable dynamics of the equations andmake predictions for
the behaviour of the time steps with ε and local error tolerance σ under stability assumptions
which are verified numerically in Sect. 4. We give an asymptotic analysis for the surprising
accuracy and stability properties for BE with large time steps applied to AC in Sect. 5. In
Sect. 6 we present the rigorous result for BE applied to AC with large time steps and also
show the loss of profile fidelity for Eyre-type time stepping for most reaction terms. We end
with a short discussion.

2 Equations and Schemes

We consider the simplest form of the AC dynamics for u(x, t) given by

ut = Δu − 1

ε2
f (u) (1)

where f (u) = u3−u is the classical form of the reaction term.More general, smooth reaction
terms are considered in Sect. 6. Non-smooth reaction terms and degenerate mobility are also
of interest in some materials science applications and there are stability and convergence
results for implicit time stepping applied to these problems in [4,5] for example. However,
the asymptotic behaviour of time stepping schemes for these problems is not clear.

CH dynamics is described by a higher order partial differential equation

ut = −εΔΔu + 1

ε
Δ f (u). (2)
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For computational simplicity, we consider the two-dimensional (2D) cases of these equations
in a doubly periodic cell [0, 2π ]2. The time scaling in the equations above is chosen to give
sharp interface (as ε → 0) motion in O(1) time. The sharp interface limit yields curvature
driven flow for AC and a nonlocalMullins-Sekerka flow for CH [22]. Both types of dynamics
have an associated energy functional

E =
∫ (|∇u|2/2 + W (u)/ε2

)
(3)

whereW (u) = 1
4 (u

2−1)2 and the reaction term f (u) = W ′(u). The energyE(t) ismonotonic
decreasing due to the gradient flow nature of the dynamics. For AC the gradient is in L2 and
for CH it is H−1.

2.1 Time Stepping

2.1.1 Backward Euler

We consider the simplest implicit scheme, first order Backward Euler (BE), also known as
Implicit Euler. Applied to (1) keeping space continuous, we have

un+1 − un
kn

= Δun+1 − 1

ε2
f (un+1) .

where un(x) approximates the exact solution u(x, tn) and kn = tn+1 − tn is the time step.
We use the classical f (u) = u3 − u as mentioned above. Dropping the subscript on the time
step and the unknown solution at time level n + 1 we have the nonlinear problem

u − kΔu + k

ε2
f (u) = un (4)

for u given un .

Definition 1 A time stepping scheme is said to have the energy decay property if E(un+1) ≤
E(un).

This property could be conditional on the choice of time step size. Additionally, it could
depend on un . If a scheme has the energy decay property for any un and k, the scheme is
called unconditionally energy stable.

Theorem 1 Consider (4), assume that un ∈ H2(Ω) and un takes values in [−1, 1], then there
exists u ∈ H2(Ω) that solves (4) with values in [−1, 1]. Define f∞ := max{| f ′(s)|, s ∈
[−1, 1]}, then if k ≤ 2ε2/ f∞ the solution u is unique and satisfies the energy decay property.
Note that the energy stability result was established earlier in [30] with a different proof.

Proof The existence of u follows from the standard method of sub-/super-solutions applied
to comparison functions −1 and +1. To establish uniqueness, we assume u1 and u2 are
solutions. Then their difference w = u1 − u2 is a solution of

(1 − kΔ)w = −k · f (u1) − f (u2)

ε2
= − k

ε2
· f ′(s(x))w ,

where s takes values between u1 and u2, and hence in [−1, 1]. Isolatingw leads to the elliptic
problem [

1 + k f ′(s)
ε2

− kΔ

]
w = 0,
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and if k < ε2/ f∞ then the corresponding elliptic operator is strictly positive and w is zero
by the maximum principle. To establish energy decay, we take the inner product of (4) with
the test function u − un :

1

k

∫
|u − un |2 + 1

2

∫ (|∇u|2 − |∇un |2 + |∇u − ∇un |2
) = − 1

ε2
( f (u), (u − un)) .

From the Fundamental Theorem of Calculus we develop the expansion,

|F(u) − F(un) − f (u)(u − un)| =
∣∣∣∣
∫ un

u
f ′(s)(s − un) ds

∣∣∣∣ ≤ f∞
2

(u − un)
2.

Using this relation to eliminate f (u) yields the equality,
(
1

k
− f∞

2ε2

) ∫
|u − un |2 + E[u] − E[un] ≤ 0,

which yields energy decay for k < 2ε2/ f∞. The Theorem is also true when homogeneous
Neumann boundary conditions are specified. �	
Thus we have existence of solutions to (4) for any time step size, and uniqueness and energy
stability under the resitriction k ≤ 2ε2/ f∞. This is true for any un under the restrictions
of the Theorem. We shall see in Sect. 6 that asympoticaly larger time steps k = o(ε) can
be taken when the dynamics are slow (interface motion) with locally unique, energy stable
solutions. This is verified in computational tests.

2.1.2 Eyre’s Method

An alternative first order scheme to fully implicit BE was proposed by Eyre [14]:

u − kΔu + k

ε2
u3 = un + k

ε2
un (5)

The scheme is derived conceptually by keeping a convex part of the reaction term f (u) =
u3−u implicit and a concave part explicit. In this sense, it is an IMEXmethod but an unusual
one since a nonlinear term is kept implicit and a linear term is handled explicitly. The method
has appealing properties:

Theorem 2 (from [14]) The time step (5) has a unique solution u for any un and k that is
unconditionally energy stable.

Additional first order schemes considered are the SAVscheme [25] and a linear IMEXmethod
[3]:

u − kΔu + Sk

ε2
u = un − k

ε2

(
u3n − (S + 1)un

)
(6)

with S > 0, sometimes called a stabilization term. We take S = 2 since that makes the
left hand side a linearization about the far field values, but computational performance is
relatively insensitive to S. The SAV scheme is energy stable with a modified energy. We use
the same stabilization coefficient as above in the SAV scheme. There is a class of linearly
implicit energy stable schemes [8,19,20] that require an asymptotically large stabilization
term O(ε−p) with p large and increasing from AC to CH and 2D to 3D for the analysis.
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These methods are theoretically interesting but are extremely inaccurate and not useful for
practical applications. We have further discussion of these schemes in Remark 3.

All time stepping schemes can be applied to CH (2), with BE and Eyre shown below:

u + kΔΔu − k

ε2
Δ f (u) = un BE

u + kΔΔu − k

ε2
Δu3 = un − k

ε2
Δun Eyre

In this case, BE is known to have unique solutions with the energy decay property when
k < ε3 [30] and Eyre is unconditionally energy stable [14].

2.1.3 Second Order Schemes

We also consider the second order methods Trapezoidal Rule (TR), Secant (S) [13], Second
Order Backward Differencing (BDF2), and Second Order Singular Diagonal Implicit Runge
Kutta (DIRK2) [17] methods. These are described below for ut = F(u) with

F(u) = Δu − f (u)/ε2 for AC

and F(u) = −εΔΔu + Δ f (u)/ε for CH

With this notation:

(TR) u − k

2
F(u) = un + k

2
F(un)

(BDF2)
3u

2
− kF(u) = 2un − 1

2
un−1.

Secant is a variant of TR with the term f (u) − f (un) replaced by

(W (u) − W (un))/(u − un)

where W is the energy term from (3). It is known to be conditionally energy stable [13]. For
the simple form ofW we have taken, the expression above can be factored explicitly. DIRK2
is a two stage method

u∗ − αkF(u∗) = un

u − αkF(u) = un + (1 − α)kF(u∗)

with α = 1 − 1/
√
2. Both DIRK2 and BDF2 are A-stable, and so preferable to TR and

Secant from the perspective of stiff ODE solver theory [17]. A second order linear IMEX
method (SBDF2 [3]) and two variants of second order SAVmethods based on BDF2 are also
considered.

There are many other specialized schemes in the literature and we mention two second
order unconditionally energy stable concave-convex splitting schemes here. They are non-
linear two step schemes but the nonlinear problem at each time step is convex. One is based
on TR, with the cubic term handled implicitly and the linear reaction term extrapolated from
two previous time steps [11]. The second is a variant of SBDF2, again with the cubic term
handled implicitly and an additional moderate stabilizing term [31]. Both these schemes have
the same asymptotic error behaviour as the Secant, DIRK2, and SBDF2 methods shown in
detail below.
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2.2 Spatial Discretization and Solution Procedure

The current work concentrates on the time stepping errors, and it is convenient to consider the
semi-discrete, spatially continuous approximation. This idealization is approximated well by
the Fourier spectral spatial discretization. The computational results shown have sufficient
spatial resolution that spatial errors do not affect the results in the digits shown.

We use the Preconditioned Conjugate Gradient (PCG) solvers developed in [9] for the
schemes involving nonlinear implicit problems.We note that there has been recent promising
work in the use of preconditioned steepest descent with approximate line search in solving
these nonlinear problems [7,15]. Another approach has been to recast the implicit step as a
minimization problem [30]. Both these techniques have the advantage that they look for local
solutions which can be unique and have energy decay even for large time steps, as shown
rigorously in Sect. 6.

The computations in this work are done in a full 2D setting, rather than in a reduced
dimensional radial setting as could be done, in order to give PCG iteration counts for the
nonlinear time stepping methods that have meaning for more general computations. Note
that the PCG counts are independent of spatial resolution when the problem is resolved.

2.3 Error Estimation and Adaptive Time Stepping

We perform two time steps of the same size k in order to use a specialized predictor u p for
un+2.

u p = un + k

3
(F(un) + 4F(un+1) + F(un+2)) (7)

where F(u) = Δu − f (u)/ε2 for AC and −εΔΔu + Δ f (u)/ε for CH as above. Time step
sizes are adjusted so that

‖un+2 − u p‖∞ ≤ σ.

The predictor u p is formally one order more accurate than the numerical approximation
un+2 from time stepping, up to fifth order. The predictor has an inherent dominant local error
k5utttt t/90 that is a pure time derivative of u, which is shown below in Sect. 3.1.3 to be a
desirable property.

For the one step methods, the time step is adjusted adaptively to maintain a local error
below σ as described in [9]. For BDF2 and its linear variants, time steps are only adjusted
by a factor of two. When time steps are reduced (using Hermite cubic interpolation for the
restart value) or increased, four time steps are taken before checking the local error to allow
relaxation of the initial error layer.

3 Local Truncation Errors in Metastable Dynamics

3.1 Metastable Dynamics

In our formulation, it is known that after a short time O(ε2) solutions to AC tend to interfaces
between regions of solution near the equilibrium values,

u ≈ ±1.
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Fig. 1 Sketch of the local
coordinates of the metastable
solution

x (s,t)
 = {x(s,t)}

z scaled by 

s

z

These interfaces have width ε and move approximately with curvature motion. We refer to
this dynamics as metastable or slow, even though with the particular time scaling we have
chosen it occurs in in O(1) time. For the majority of the time, the solution will be in this
regime, so we concentrate now on the expected and observed behaviour of time stepping in
this setting. With the choice of f (u) = u3 − u, we have

u(x, t) ≈ g(z) (8)

with g(z) := tanh(z/
√
2) and z = dist(x, Γ )/ε, where Γ is the approximate interface with

arc length parameter s moving with curvature motion (normal velocity equal to curvature).
We fix its location at the u = 0 level set. The local coordinates (s, z) are shown in Fig. 1. This
structural result on the metastable solution can be obtained with formal asymptotics. In the
outer asymptotic region for AC the solution takes the form u = ±1 to all orders. Curvature
motion as the limit ε → 0 has been proven rigorously [1,23].

CH has the same metastable solution structure (8) with normal interface velocity given
by Mullins-Sekerka flow, in O(1) time in our scaling (2). We refer the reader to the review
article [24] for details. It has been shown that numerical schemes can accurately approximate
this limit with implicit time stepping with appropriate scaling of the time step with ε [16].
We will show that this limit can be taken with asymptotically larger time steps than in that
analysis.

From (8), we see that time and space derivatives are large near the interface. Starting with

u(x, t) ≈ g(dist(x, Γ )/ε)

we can take a time derivative to obtain:

ut ≈ g′(dist(x, Γ ))V /ε

where V is the normal velocity at the point on Γ closest to x . Formally taking higher
derivatives in this pattern yields:

∂nu

∂tn
= O(ε−n). (9)

This is used to analyze the truncation error of the time stepping schemes.

3.1.1 Predicted Time Step Sizes for AC

A standard strategy for adaptive time stepping is to have a user specified local error tolerance
of σ . The error for each time step is estimated and the time step adjusted so that there is
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an estimated error in that single time step less than σ . It is known that the dominant local
truncation error for BE is k2utt/2 which in metastable dynamics is O(k2/ε2) from (9). The
local truncation error restriction then requires time steps of size

k = O(
√

σε) (BE)

We now proceed to determine the expected behaviour of time steps with ε and σ from
the other schemes. We can write the BE scheme (4) and Eyre’s scheme (5) for AC in an
instructive way

u − un − kΔu + k
[
u3 − u

]
/ε2 = 0 (BE)

u − un − kΔu + k
[
u3 − u

]
/ε2 + k(u − un)/ε

2 = 0 (Eyre).

Knowing that the truncation error for BE is O(k2/ε2) we see that the truncation error for the
Eyre scheme is dominated by the last term in its expression above, which has leading order
k2ut/ε2 = O(k2/ε3). Our time step prediction in this case is

k = O(
√

σε3/2) (Eyre)

Thus, the advantage of the Eyre scheme to be able to take large time steps and remain energy
stable is never realized if accurate computational results are required. Reference [30] has an
alternate way to view the loss of accuracy that does not highlight this asymptotic difference.
The first order IMEX and SAV schemes have the same asymptotic behaviour as Eyre.

Remark 1 It is well known that when large time steps are taken with Eyre’s method, the
dynamics occur in a slower time scale. This is an exact result for AC [30], qualitative for CH
[10]. In this work, time steps are restricted by a specified local error tolerance. Thus, we do
not see a change in time scale for the results of Eyre’s method, rather we see decreased time
step size.

Remark 2 The formal local error analysis above relies on the stability of the schemes in
metastable dynamics under the resulting time step restrictions. More than simple stability,
the analysis requires that the time stepping preserves the asymptotic structure of the diffuse
interface. This is the concept we have named profile fidelity. All predicitions described in
this section lead to time stepping that preserves profile fidelity for the classical choice of
f (u) = u3 − u. We observe the predicted time step behaviour in ε and σ computationally.
In Sect. 6.2 we show that for (most) other reaction terms, Eyre time stepping loses profile
fidelity for time steps k = O(ε3/2) and in these cases, k = O(ε2) is needed for accuracy.

Remark 3 The first order, linearly implicit energy stable scheme for 2D AC is analyzed
in [8]. The analysis requires a stabilization term of order ε−2| ln ε|. If such a scheme
were implemented, the time steps required for a local error tolerance of σ would be
k = O(

√
σε5/2/| ln ε|), prohibitively small for practical computation.

We can determine the dominant term in the local truncation errors of the second order
schemes applied to AC:

(TR) k3uttt/12 = O(k3/ε3)

(S) k3
(
uttt/12 + uu2t /(2ε

2)
) = O(k3/ε4)

(DIRK2) k3
(
(α2(1 − α) + α/2 − 1/6)uttt − 3α2(1 − α)uu2t /(2ε

2)
) = O(k3/ε4)

(BDF2) − k3uttt/3 = O(k3/ε3)
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Table 1 Order predictions for the behaviour of the numerical schemes with local error tolerance σ in the
metastable regime of AC dynamics

Method (AC) L k M = O(1/k)

BE k2/ε2
√

σε 1/(
√

σε)

Eyre, IMEX1, SAV1 k2/ε3
√

σε3/2 1/(
√

σε3/2)

TR, BDF2 k3/ε3 3√σε 1/( 3√σε)

S, DIRK2, SBDF2, SAV2-A k3/ε4 3√σε4/3 1/( 3√σε4/3)

SAV2-B k3/ε5 3√σε5/3 1/( 3√σε5/3)

Here, L is the local error, k is the time step size, and M is the number of time steps to reach a fixed end time

(SBDF2) k3
(
3u2 + (M + 1)

)
utt/ε

2 = O(k3/ε4)

We consider two second order SAV variants based on how an extrapolated approximation
is computed. If the extrapolated value of un+1 is taken as 2un − un−1 the scheme (referred
to as SAV2-A) behaves similarly to SBDF2. If the extrapolated value is computed with a
first order linear IMEX scheme as suggested in [25] (referred to as SAV2-B), the scheme
has a local truncation error of order k3/ε5. The results are summarized in Table 1. It is
clear that BE takes asymptotically (as ε → 0) fewer time steps than Eyre, although they are
both first order in time step size. TR and BDF2 take asymptotically fewer time steps than
Secant, DIRK2, SBDF2, SAV2-A and SAV2-B although they are all second order methods.
The computations in Sect. 4 below show that these time step estimates correspond to real
computational behaviour.

Remark 4 We predict the number M of time steps in Tables 1 and 2 and how it varies with
ε and σ . As shown in Fig. 2 we are also predicting how a profile of time steps k(t) behaves
with ε and σ .

3.1.2 Predicted Time Step Sizes for CH

The same local truncation analysis can be done for the CH in the metastable regime where
the solution has the same interface structure (8) with the interface Γ moving approximately
with Mullins-Sekerka flow in O(1) time. BE, TR, BDF2, and SBDF2 have the same error
expressions as above, but Eyre, Secant and DIRK2 have local truncation errors when applied
to CH listed below:

(Eyre) k2(utt/2 − Δut/ε) = O(k2/ε4)

(S) k3
(
uttt/12 − Δ(uu2t )/(2ε)

) = O(k3/ε5)

(DIRK2) k3
(
(α2(1 − α) + α/2 − 1/6)uttt + 3α2(1 − α)Δ(uu2t )/(2ε)

) = O(k3/ε5)

(SBDF2) k3
(
3u2 + (M + 1)

)
Δutt/ε = O(k3/ε5)

where we have used the fact that the Laplacian Δ increases the size of terms by 1/ε2 near
the interface. The first order IMEX and SAV schemes have the same asymptotic behaviour
as Eyre. SAV2-A behaves similarly to SBDF2 as before, with SAV2-B worse by a power of
ε as for the AC case above. The results are summarized in Table 2. The predictions in this
table are validated in the numerical experiments in the next section. Although the methods all
have the formal order of accuracy in terms of time step size, the behaviour as ε → 0 varies
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Table 2 Order predictions for the behaviour of the numerical schemes with local error tolerance σ in the
metastable regime of CH dynamics

Method (CH) L k M = O(1/k)

BE k2/ε2
√

σε 1/(
√

σε)

Eyre, IMEX1, SAV1 k2/ε4
√

σε2 1/(
√

σε2)

TR, BDF2 k3/ε3 3√σε 1/( 3√σε)

S, DIRK2, SBDF2, SAV2-A k3/ε5 3√σε5/3 1/( 3√σε5/3)

Here, L is the local error, k is the time step size, and M is the number of time steps to reach a fixed end time

significantly. Note that the gap between BE and the other first order schemes, and between
TR/BDF2 and Secant/DIRK2/SBDF2/SAV2-A is wider for CH dynamics than it was for AC.

3.1.3 Discussion: The Source of Increased Local Error

In the metastable regime, the two terms in AC and CH (diffusion and nonlinear reaction) are
both large but approximately cancel to give the slow dynamics. The methods with asymp-
totically (as ε → 0) small local errors (BE, TR, BDF2) have dominant truncation errors that
are pure time derivatives of the solution, which inherit this high order cancellation. The other
methods which have large local errors have truncation errors that involve the reaction term
individually. This imbalance amplifies the size of the error. As an example, DIRK2 applied to
ut = F(u) has an error proportional to F ′′u2t . From this discussion, we believe the ranking
of the schemes in this work will also apply to other nonlinear problems with metastable
dynamics.

4 Computational Results

4.1 Allen–Cahn

We take initial conditions in the form of a radial front

tanh

√
(x − π)2 + (y − π)2 − 2

ε
√
2

and compute with ε = 0.2, 0.1, 0,05 and 0.025. The benchmark for accuracy is the time T at
which the value at the domain centre (π, π) changes from negative to positive. Except for the
exponentially small (in ε) derivative discontinuities at the periodic boundaries, the dynamics
approximate the sharp interface limit of curvature motion of a circle shrinking to a point at
the domain centre. The expectation from asymptotic analysis of the sharp interface limit is
that

T = 2 + O(ε2).

This is confirmed by the numerical solutions below. A video of the dynamics is available
[27].
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Table 3 Computational results for the AC benchmark problem with fixed ε = 0.2 and local error tolerance σ

varied. BE results are on the left, Eyre on the right

σ BE Eyre

M CG E M CG E

1e−4 717 5348 [7.46] 0.003 2,350 14,856 [6.32] 0.047

1e−5 2225 (3.10) 9448 [4.24] 0.001 7351 (3.12) 28,263 [3.85] 0.014

1e−6 7010 (3.15) 23,017 [3.28] 0.001 23,172 (3.15) 68,148 [2.94] 0.004

Here, M is the total number of time steps taken (with the ratio to the value above in brackets), CG is the
number of conjugate iterations (with the ratio to the number of time steps in brackets), E is the error in the
benchmark time

Table 4 Computational results for the AC benchmark problem with fixed local error tolerance σ = 10−4 and
ε varied

ε BE Eyre

M CG E M CG E

0.2 717 5,348 [7.46] 0.003 2350 14,856 [6.32] 0.047

0.1 1291 (1.80) 12,354 [9.57] 0.001 6463 (2.75) 44,717 [6.92] 0.069

0.05 2412 (1.87) 27,782 [11.52] 0.001 18,218 (2.83) 143,416 [7.87] 0.099

0.025 4630 (1.92) 64,884 [14.01] ∗ 52,595 (2.89) 497,846 [9.47] 0.141

Here, M is the total number of time steps taken (with the ratio to the value above in brackets) and CG is the
number of preconditioned conjugate gradient iterations (with the ratio to the number of time steps in brackets),
E is the error in the benchmark time with ∗ denoting a result correct to three decimal places

4.1.1 First Order Methods

The PCG approach is known to have bounded condition number under the scaling k = Cε2

for BE with C < 1 [30] and we observe good behaviour in the example below even with
C > 1 in the metastable regime. It is observed computationally in this work that the PCG
for Eyre’s method is independent of k and ε although the authors are not aware of a proof in
the literature. PCG counts can be used as a proxy for computational time when comparing
methods.

Results of the numerical experiments in which σ and ε were varied for BE and Eyre
are shown in Tables 3 and 4. Spatial errors do not affect the digits shown in any of the
computational results in this paper.

Table 3 validates the second order O(k2) local truncation error since the number of time
steps was predicted to be M = O(1/

√
σ) for both methods with ε constant, noting that√

10 ≈ 3.16. Such results for other schemes and for the CH benchmark problem below are
not shown, but verify the formal accuracy of the schemes. Table 4 validates the prediction of
M = O(1/ε) for BE and M = O(1/ε3/2) for Eyre with σ constant, noting that 23/2 ≈ 2.83.
Both tables validate the prediction that for the same local tolerance σ , Eyre involves more
computational work than BE and gives less accurate answers. CG counts for both methods
are small as expected. You see (unexpectedly) that the final accuracy of BE does not seem
to degrade as ε → 0 for fixed σ . This is discussed in Sect. 5 below. Although BE does not
guarantee energy stability, no step accepted by the local error tolerance exhibited an energy
increase.
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Fig. 2 Time steps k for Allen–Cahn dynamics with ε and σ varied using BE (left) and DIRK2 (right). The
time steps decrease in size as the simulation approaches the topological singularity at t ≈ 2. Note that for each
method, the profiles k(t) have the same shape as σ and ε are varied and scale with these quantities according
to our theoretical predictions. In particular, note that time steps decrease more quickly for BE as σ is decreased
but more quickly for DIRK2 as ε is decreased, as we predict

Table 5 Computational results
for the AC benchmark problem
with fixed local error tolerance
σ = 10−4 and ε varied

ε IMEX1 SAV1

M E M E

0.2 3932 0.067 3936 0.067

0.1 11,110 (2.83) 0.096 11,112 (2.82) 0.096

0.05 31,676 (2.85) 0.138 31,682 (2.85) 0.138

0.025 90,748 (2.86) 0.198 90,760 (2.86) 0.198

Here, M is the total number of time steps taken (with the ratio to the
value above in brackets) and E is the error in the benchmark time

For completeness, we show the time step sizes as a function of time for BE in Fig. 2 with
ε and σ varied. As mentioned in Remark 4 our predictions for the behaviour of the time steps
sizes k as ε and σ are varied describe a profile k(t).

We repeat the ε → 0 study for IMEX1 and SAV1 in Table 5. These methods require
a fixed number of FFT calculations per time step to invert the constant coefficient linear
implicit aspect of the schemes, with SAV1 requiring four times as many solves as IMEX1.
It is seen that IMEX1 behaves almost identically to SAV1 and both are superior to Eyre’s
method when computational cost is considered. In the context of this study, there is no benefit
from the theoretical guarantees of energy stable schemes and BE is the optimal (with our
asymptotic definition) first order scheme with IMEX1 the runner up. This will remain true
for other nonlinear solver strategies for BE as long as they require fewer than O(1/

√
ε)

iterations when adaptive time steps are taken.

Remark 5 Note that for theBEcomputation for ε = 0.025wecan still get reasonable accuracy
taking σ = 10−2. In this case, the maximum value of k/ε2 is 14.6. Clearly, the theory which
guarantees existence of solutions and energy decay for k < ε2 [30] can be improved for
metastable dynamics. This is explored in the analysis in Sects. 5 and 6 below.
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4.1.2 Second Order Methods

The CG counts of all the nonlinear second order methods are relatively insensitive to ε,
similar to the first order methods shown above. We show the number of time steps used for
the sevenmethods in Table 6, for σ = 10−4 fixed and ε varied. All second order methods give
at least three digits of accuracy to the benchmark time with this tolerance σ . The superiority
of TR and BDF2 is clearly seen with M = O(1/ε), compared to M = O(1/ε4/3) (noting
that 24/3 ≈ 2.52) for Secant, DIRK2, SBDF2, SAV2-A and M = O(1/ε5/3) (noting that
25/3 ≈ 3.18) for SAV-B as predicted above. The pattern in the number of time steps for
the multi-step methods is a bit rougher due to the strict criteria we have used for adaptive
time step change. As above, we see no benefit from the theoretical guarantees of energy
stable schemes. Fully implicit methods TR and BDF2 are asymptotically optimal in terms of
the number of time steps and are computationally optimal if the solvers require fewer than
O(1/ 3

√
ε) iterations when adaptive time steps are taken (which appears to be the case with

the Newton PCG solver we used). SBDF2 is the runner up and notably it is comparable to
the fully implicit DIRK2 method but does not have the overhead of a nonlinear solve.

It is interesting to note that the slight change in the extrapolation procedure in the SAV2
schemes makes such a difference to their asymptotic performance. It is confirmation that
merely considering the order of time stepping scheme and its theoretical energy stability
properties is not the whole story.

4.2 Cahn–Hilliard

For the initial conditions we take

tanh

(
r − 5/2

ε
√
2

)
+ tanh

(
3/2 − r

ε
√
2

)
+ 1

with r = √
(x − π)2 + (y − π)2 and compute with ε = 0.2, 0.1, 0,05 and 0.025. The dynam-

ics approximate the sharp interface limit of two concentric circles, with the inner circle
shrinking. As before, the benchmark is the time T at which the value at the domain centre
(π, π) changes from negative to positive. A video of the dynamics is available [28] .

4.2.1 First Order Methods

Results of the numerical experiments in which ε is varied for the first order methods are
shown in Table 7. These validate the prediction of M = O(1/ε) for BE and M = O(1/ε2)
for Eyre and IMEX1 with σ constant. As for the AC case, SAV1 behaves similarly to IMEX1
at increased computational cost. For CH, the implicit problem for BE is more difficult to
solve as ε → 0 with fixed σ , but it is still more accurate than Eyre stepping for equivalent
computational cost. It will be asymptotically more efficient as long as the solution strategy
for the nonlinear problem requires fewer than O(1/ε) iterations with adaptive time stepping.
As with AC, we see that BE does not suffer from global accuracy decrease as ε → 0.

4.2.2 Second Order Methods

The CG counts for the second order methods behave like those of BE with ε as shown above.
We show the number of time steps used for the four methods in Table 8, for σ = 10−4 fixed
and ε varied. The superiority of TR and BDF2 is clearly seen, consistent with M = O(1/ε)
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Table 8 Computational results for the second order methods applied to the CH benchmark problem with fixed
local error tolerance σ = 10−4 and ε varied

ε TR S BDF2 DIRK2 SBDF2

0.2 230 534 320 378 1388

0.1 314 (1.36) 1530 (2.87) 468 (1.46) 788 (2.08) 4108 (2.96)

0.05 474 (1.51) 4722 (3.08) 748 (1.60) 1906 (2.42) 12,352 (3.01)

0.025 792 (1.67) 14,924 (3.16) 1312 (1.75) 6048 (3.17) 44,060 (3.57)

Shown are the total number of time steps taken (with the ratio to the value above in brackets)

, compared to M = O(1/ε5/3) (noting that 25/3 ≈ 3.17) for Secant, DIRK2, and SBDF2
as predicted above. Results for SAV2-A are comparable to those for SBDF2. Again, the
implications for the asymptotic computational superiority of fully implicit TR and BDF2
under the assumption of sufficient solver efficiency are clear.

5 Asymptotic Analysis of Properties of BE AC Solutions

The results inTable 4present the accuracy forBEapplied toACwithfixed local error tolerance
σ = 10−4 under various values of ε. It is remarkable the accuracy in the benchmark time
does not degrade as ε → 0. This is unexpected, as a naïve prediction would be that the
final accuracy scaled like Mσ = O(

√
σ/ε) where M is the number of time steps. It is clear

that the resulting solution accuracy for the schemes under specified local error tolerance is a
nontrivial question.

We present below the asymptotic analysis of a fully implicit BE time step (4) in two
dimensions assuming the solution is in the meta-stable regime. That is, un is approximately
described as a curve xn(s) parametrized by arc length with normal n̂, dressed with the
heteroclinic profile (8). We take the scaling k = cε with c independent of ε, both sufficiently
small depending only on the curve xn . We consider the formal asymptotics for the implicit
time step u of (4) in this setting, anticipating that u will have the same local dependence
u(s, z). Using

Δ ≈ 1

ε2

∂2

∂z2
+ κ

ε

∂

∂z

where κ is the curvature of the interface, we find at leading order O(ε−1) that u has the same
homoclinic structure around a new curve x(s). That is,

un+1 ≈ g(z) + εv(z, s) (10)

with g(z) = tanh(z/
√
2) and where we have changed coordinates to (s, z) with

(x, y) = x(s) + εzn̂

based on the curve x(s) after the implicit time step. In the language ofRemark 2wepredict that
the scheme preserves profile fidelity and show below that this is asymptotically consistent.
In (10), v(z, s) is the correction to the leading order solution. We will identify the size and
structure of this term below.

We take

xn = x − kρ(s)n̂ (11)
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Fig. 3 Sketch of the asymptotic
analysis of the fully implicit
problem. Here, ρ(s) the average
normal speed of the interface
between time steps

where ρ is the average normal speed through the time step. Recalling that k = cε and the
spatial scaling of z, we have

un ≈ g(z − cρ(s)). (12)

A diagram is shown in Fig. 3. Note that the variation in normal direction appears in higher
order asymptotic terms, so it is consistent in what follows to use the same n̂ as normal
direction for both curves, i.e. the same “z”.

Considering now the next order term O(1) in (4) with the forms (10) and (12):

g′cρ + 1

2
g′′c2ρ2 + 1

6
g′′′c3ρ3 ≈ cκg′ − cLv (13)

where L := ∂2/∂z2 + f ′(g)· and we have used the smallness of c for the cubic Taylor
approximation of g(z) − gn(z) on the right hand side. We consider (13) at each s in the
L2(R) orthogonal decomposition of G := span{g′(z)} and G⊥. Note that g′′ ∈ G⊥ (this
does not depend on the specific reaction term f = u3 − u chosen here) and L has G as its
kernel and has bounded inverse on G⊥ from standard Fredhold theory [18]. Thus we have
ρ = κ + O(c2) and v = O(c) in G⊥. Careful examination of these results shows that the
errors in G⊥ do not accumulate and are globally of size O(cε) = O(k) and so decrease as
ε → 0. Global errors in interface position after O(1/k) time steps are of size c2, independent
of ε. Global solution value errors due to the position error have size O(c2/ε) = O(k2/ε3)
and so it is seen that BE behaves like a second order method in this scaling. This explains
the unexpected accuracy in AC BE computations as ε → 0.

Remark 6 Note that the error estimator (7) uses F(u) which sees the undamped dominant
truncation error term, which is why the number of time steps behaves with ε in the manner
predicted in Sect. 3.1.1. Thus for BE applied to AC in the metastable regime, the estimator
asymptotically over-estimates the local errors actually made.

The formal asymptotic results can also be used to show that the implicit time steps in this
scaling lead to energy decrease. Neglecting the O(c2) terms in the interface motion, we have
from (11)

xn = x − kκ n̂.

Using the identities for arc length parametrized curves |xs | = 1, κ n̂ = xss and xs ·xsss = −κ2

it follows by taking the s derivative of the equation above and the dot product with xs at each
s that

|xn,s | ≥ 1 + kκ2 ≥ 1 = |xs |.
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This shows that the metastable curve at time n is longer than at the next step n + 1. Since the
energy E is proportional to curve length to highest order in the metastable regime [21], we
have shown formally that implicit time stepping for AC has the energy decay property under
this time step scaling. Large, accurate, fully implicit time steps can be taken in computations
validated in Sect. 4.

In the next section we show a closely related rigorous result in a radial geometry. The
main result is in Proposition 1. A key ingredient is an identification of a dominant term in
the space G that represents the interface motion, separate from heavily damped terms in the
perpendicular space, as shown here. Care must be taken to control the size of terms which
are formally neglected in this asymptotic analysis.

6 Rigorous Radial Analysis of ACWith BE and Eyre Time Stepping

We derive rigorous asymptotic evolution of a radially symmetric profile for BE and first order
Eyre-type methods for the Allen–Cahn equation in R

2. Extensions to radial profiles in R
d

is immediate. More precisely we consider a splitting f = f+ − f− and study the iterative
scheme

u − un
k

= urr + 1

r
ur − 1

ε2
( f+(u) − f−(un)) , r ∈ [0,∞)

ur (0) = 0, u(∞) = 1.

For simplicity, we assume that f is smooth, odd about u = 0, has precisely three simple zeros
at u = ±1 and at u = 0, and tends to ±∞ as u → ±∞. This includes the classical choice
of f (u) = u3 − u but we consider other reaction terms in this class since Eyre’s method
can have quite different behaviour as shown in Sect. 6.2. The BE scheme corresponds to the
choice f− ≡ 0 while Eyre-type schemes take f ′+, f ′− ≥ 0. We pose the problem on the affine
space

Y := {u + 1 ∈ H1
R(0,∞)

∣∣ ∂r u(0) = 0.},
with un ∈ Y as a given. The assumptions on f imply that the continuous 1D Allen–Cahn
equation has a steady state solution

gzz = f (u), (14)

which is heteroclinic to ±1; that is g → ±1 as z → ±∞. Considering R > 1, we modify
this g at the order O(e−1/ε) so that g′ = 0 on (−∞,−1/ε) for ε � 1. This introduces
exponentially small residuals in the sequel that have no impact upon the salient results of our
analysis.

We introduce z = r−R
ε

, the weighted inner product

〈u, v〉R :=
∫ ∞

−R/ε

u(z)v(z) (R + εz)dz,

and the associated spaces L2
R and H1

R with BH1
R
(δ) the ball that is centered at the origin with

radius δ in the space H1
R . We rewrite the iterative equation as

u − un
k

= ε−2 (uzz − ( f+(u) − f−(un))) + ε−1uz
R + εz

, (15)
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on the domain z ∈ (−R/ε,∞). We decompose un and u as

un = g

(
z + R − Rn

ε

)
+ vn,

u = g(z) + v,

where Rn and vn are taken as given and R and v are to be determined. The profile associated
to un is denoted gn and observe that it admits the expansion

gn = g

(
z + R − Rn

ε

)
= g + g′ R − Rn

ε
+ O

((
R − Rn

ε

)2
)

.

In the sequel we will enforce the orthogonality conditions

〈v, g′〉R = 0, 〈vn, g′
n〉R = 0, (16)

and denote the corresponding subspaces of L2
R by X

⊥ and X⊥
n respectivelywith the associated

orthogonal projections Π and Πn .
At this point the analysis of the implicit and Eyre-type schemes diverges sufficiently that

we approach them distinctly.

6.1 Backward Euler Estimates

For BE we take f ′− ≡ 0, f = f+, and write the iterative map as

v + k

ε2
Lv = vn − (g − gn) + kg′

ε(R + εz)
− k

ε2
N , (17)

where we have introduced the linear operator

L := −
(

∂2z + ε

R + εz
∂z

)
+ f ′(g) = − 1

R + εz
∂z ((R + εz)∂z) + f ′(g), (18)

and the nonlinearity

N (v) := f (g + v) − ( f (g) + f ′(g)v).

The operator L is self-adjoint in the weighted inner product for which the eigenvalue problem
takes the form

Lψ = λ

R + εz
ψ,

subject to ∂zψ(−R/ε) = 0 and ψ → 0 as z → ∞. Since the profile g solves (14), it will be
useful to compare L to the simpler operator

L0 := −∂2z + f ′(g), (19)

arising as the linearization of (14) about g in L2(R). The operator L0 is self-adjoint on L2(R),
and since g is heteroclinic with g′ > 0, the Sturm-Liouville theory on L2(R) implies that
L0 has a simple, ground-state eigenvalue at λ = 0 with eigenfunction g′ and the remainder
of the spectrum of L0 is strictly positive, in particular L0 is uniformly coercive on the space
{g′}⊥

L2(R)
. While L does not generically have a kernel, it does have an eigenspace with a small

associated eigenvalue. However, for ε sufficiently small, it inherits the coercivity of L0.
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Lemma 1 Fix ε0 > 0 sufficiently small, then there exists α > 0, independent of R ≥ 1 and
of ε ∈ (0, ε0), such that

〈Lv, v〉R ≥ α‖v‖2
H1
R
. (20)

for all v ∈ H1
R satisfying 〈v, g′〉R = 0.

Proof We defer the proof of L2
R coercivity to the appendix. To extend coercivity to H1

R we
observe that

〈Lv, v〉R =
∫ ∞

−R/ε

(R + εz)
(|v′|2 + f ′(g)|v|2) dz,

so that for any t ∈ (0, 1) we may write

〈Lv, v〉R = t〈Lv, v〉R + (1 − t)〈Lv, v〉R,

≥
∫ ∞

−R/ε

(R + εz)(t |v′|2 + ((1 − t)α − t‖ f ′(g)‖∞)|v|2)dz,

≥ α̃‖v‖2
H1
R
,

where we have introduced α̃ := α/(1 + α + ‖ f ′(g)‖∞) > 0. Dropping the tilde, we have
(20) with α independent of ε > 0 and R > 1. �	

We assume throughout our analysis that ‖v‖H1
R
and ‖vn‖H1

R
are uniformly bounded by

δ � 1. Returning to (17), we denote its right-hand side as FBE. To have the inversion of the
operator on the left-hand side be contractive the termFBE must be approximately orthogonal
to the small eigenspace of L . As Lemma1 shows it is sufficient to be LR-orthogonal to g′,
the kernel of L0. To this end we determine R = R̂BE(v, vn, Rn) such that FBE ∈ X⊥, or
equivalently

〈FBE, g′〉R = 0. (21)

Assuming this condition has been enforced we introduce

M := I + k

ε2
L,

and may rewrite the BE iteration in the equivalent formulation

v = GBE(v, vn, R − Rn) := M−1ΠFBE(v, vn, R − Rn). (22)

The key step is the introduction of the operator Π , the orthogonal projection onto X⊥. This
is redundant whenFBE ∈ X⊥, but preserves contractivity for choices of (v, vn, R−Rn)when
it is not. Our goal is to show the function GBE is a contraction mapping and to develop
asymptotic formula for R and v.

Lemma 2 The function R = R̂BE satisfies the implicit relation

R − Rn

k
= − 1

R
+ k

4R3 − b1k2

ε2R3 + O

(
δ,

k3

ε2
,
δ2

ε

)
. (23)

where

b1 := ‖g′′‖2R
6‖g′‖2R

> 0. (24)
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Moreover we have the Lipshitz estimate

|R̂BE(v; vn, Rn) − R̂BE(ṽ; vn, Rn)| ≤ c
kδ

ε
‖v − ṽ‖R, (25)

so long as kδ2 � ε2.

Proof Due to parity considerations, we remark that ‖g′‖2R = R‖g′‖2
L2(R)

, up to exponentially
small terms. For brevity, and as an element of foreshadowing, we approximate (R − Rn) by
k in the O-error terms. We address the terms in FBE and derive the following elementary
estimates,

〈vn, g′〉R = 〈vn, (g′ − g′
n)〉R = −〈vn, g′′〉R R − Rn

ε
+ O

(
δ
k2

ε2

)
, (26)

〈g − gn, g
′〉R = −‖g′‖2R

(
(R − Rn)

ε
− (R − Rn)

2

4Rε

)
+

+ ‖g′′‖2R
6

(R − Rn)
3

ε3
+ O

(
k4

ε3

)
, (27)

〈
g′

R + εz
, g′

〉
R

= ‖g′‖2L2(R)
= ‖g′‖2R

R
, (28)

|〈N , g′〉R | ≤ cδ2. (29)

For this scheme, FBE depends upon v only throughN . Collecting terms in the orthogonality
condition that are linear in R − Rn and identifying relevant higher order terms yields the
relation

R − Rn

k
= − 1

R
+ (R − Rn)

2

4Rk
+ b1(R − Rn)

3

kε2
+ O

(
δ,

k3

ε2
,
δ2

ε

)
(30)

where b1 is given in (24). Under the assumptions on k and δ we have the leading order result
R − Rn = −k/R. Substituting this relation into (30) yields the result (23).

To obtain the Lipschitz estimate we observe from the estimates above that

|R̂BE(v) − R̂BE(ṽ)| ≤ c
k

ε‖g′‖2R
∣∣〈N (v), g′〉R − 〈N (ṽ), g̃′〉R

∣∣ .

The nonlinearity satisfies the Lipschitz properties

‖N (v) − N (ṽ)‖R ≤ cδ‖v − ṽ‖R,

while

‖g′ − g̃′‖R ≤ c
|R̂BE(v) − R̂BE(ṽ)|

ε
.

Adding and subtracting 〈N (ṽ), g′〉R and using (29), we arrive at the estimates

|R̂BE(v) − R̂BE(ṽ)| ≤ c

(
kδ

ε
‖v − ṽ‖R + kδ2

ε2
|R̂BE(v) − R̂BE(ṽ)|

)
.

Imposing the condition kδ2 � ε2 yields (25). �	
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To establish bounds on the map GBE defined in (22) we apply M to both sides of the
relation and take the L2

R inner product with respect to GBE. Using the coercivity estimate
(20) we find

‖GBE‖2R + α
k

ε2
‖GBE‖2

H1
R

≤ ‖ΠFBE‖R‖GBE‖R .

Taking v, vn ∈ BH1
R
(δ) for δ � 1 and recalling that the projection Π crucially cancels the

leading order term in g − gn , we estimate

‖GBE‖R + α
k

ε2
‖GBE‖H1

R
≤ c

(
δ + k2

ε2
+ k + k

ε2
δ2

)
. (31)

For the BE system we examine distinguished limits k = εs , for s ∈ (1, 2), which we call
the large time-step regime, for which the H1

R term is dominant on the left-hand side of (31).
We drop the L2

R term to find,

‖GBE‖H1
R

≤ c
(
δε2−s + εs + δ2

)
.

Taking δ = εs
′
for any s′ > max{s/2, 2(s − 1)} then we determine that

‖GBE‖H1
R

≤ c(ε2−s+s′ + εs + ε2s
′
) ≤ δ,

for ε sufficiently small. In particular, since s > max{s/2, 2(s−1)} in the large time-stepping
regime, we may take δ = k = εs , so that, viewing GBE as a map on (v, vn), we have
GBE : BH1

R
(k) × BH1

R
(k) �→ BH1

R
(k), for all s in the large time-step regime.

Proposition 1 Fix 1 < s < 2, then in the distinguished limit k = εs the function GBE defined
in (22) with R := Rn+1 = R̂BE(v; vn, Rn) maps BH1

R
(k) × BH1

R
(k) into BH1

R
(k) and is a

strict contraction. In particular it has a unique solution v ∈ BH1
R
(k), denoted by vn+1 which

satisfies
∥∥∥∥vn+1 − k

R2 LΠg′′
∥∥∥∥
H1
R

≤ c
ε2

k
‖vn‖R + O(k2).

In particular there exists c > 0 such that for all v0 ∈ BH1
R
(ck) and R0 > 1 the sequence

{(vn, Rn)}Nn=1 satisfies vn ∈ BH1
R
(ck) while {Rn}Nn=0 satisfies the backwards Euler iteration

Rn+1 − Rn

k
= − 1

R
− b1k2

ε2R3 + O(k), (32)

where b1 > 0 is given by (24). Here N is the iteration number such that RN > 1 and
RN+1 < 1.

Proof We have established the mapping property. To establish the contractivity we must
control the impact of f upon the projection Π through the motion of the front R. We assume
that v, ṽ, vn ∈ BH1

R
(k) and denote R = R(v) and R̃ = R(ṽ), with the associated front

profiles denoted by g and g̃. The estimate (25) establishes that R̂BE is Lipschitz with constant
ckδ/ε, which in the the large time-step regime reduces to ck2/ε. Following the proof of (25)
we find that

‖FBE(v) − FBE(ṽ)‖H1
R

≤ c
k2

ε2
‖v − ṽ‖H1

R
. (33)
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In the large time-step regime, using (20) we deduce the bound

‖M−1Π f ‖H1
R

≤ α−1 ε2

k
‖ f ‖R (34)

We wish to obtain a bound on the difference of GBE at two values of v:

GBE(v, vn) − GBE(ṽ, vn) = M−1ΠFBE − M̃−1Π̃F̃BE.

We first bound the difference

gBE := (M−1Π − M̃−1Π̃)FBE. (35)

The analysis is complicated by the fact that M is only uniformly invertible on the range of
Π . To factor these projected inverses we act with M , observing

MgBE = (Π − MM̃−1Π̃)FBE = (Π M̃ − M)M̃−1Π̃FBE + Π(I − Π̃)FBE, (36)

where we used that fact that M̃ M̃−1Π̃ = Π̃ and hence M̃ M̃−1Π̃ + (I − Π̃) = I . Since the
right-hand side of (36) lies in the range of Π we may invert boundedly,

ΠgBE = M−1Π(M̃ − M)M̃−1Π̃FBE + M−1Π(I − Π̃)FBE. (37)

To recover the whole gBE we act with (I − Π) on (35) obtaining

(I − Π)gBE = −(I − Π)M̃−1Π̃FBE = −(Π̃ − Π)M̃−1Π̃FBE. (38)

Adding (38) to (37) yields a regularized expression that accounts for the shifts in the projec-
tions

gBE = M−1Π(M̃ − M)M̃−1Π̃FBE + M−1Π(Π − Π̃)FBE + (Π − Π̃)M̃−1Π̃FBE.(39)

The operators M−1Π and M̃−1Π̃ are bounded using (34), while

‖M̃ − M‖R∗ = k

ε
‖ f ′(g) − f ′(g̃)‖R∗ ≤ c‖g − g̃‖R∗,

≤ c
|R − R̃|

ε
≤ c

k2

ε2
‖v − ṽ‖H1

R
,

where ‖ · ‖R∗ denotes the operator norm from L2
R into itself. The projections satisfy

‖(Π − Π̃) f ‖R = ‖g′〈g′, f 〉R − g̃′〈g̃′, f 〉‖R,

≤ c
k2

ε2
‖v − ṽ‖H1

R
‖ f ‖R + c

ε2

k

k2

ε2
‖v − ṽ‖H1

R

Applying these estimates to (39) and using (31) to estimate ΠFBE we obtain

‖gBE‖H1
R

≤c

(
ε4

k2
k2

ε2
+ ε2

k

k2

ε2

)
‖v − ṽ‖H1

R
‖ΠFBE‖L2 ,

≤ c
(
ε2 + k

) k2
ε2

‖v − ṽ‖H1
R
. (40)

Finally we write

GBE(v, vn) − GBE(ṽ, vn) = gBE + M̃−1Π̃(FBE − F̃BE),
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and using (33), (40) estimate

‖GBE(v, vn) − GBE(ṽ, vn)‖H1
R

≤c

(
k3

ε2
+ k

)
‖v − ṽ‖H1

R
,

which is contractive so long as k � ε
2
3 which holds with the large time-step regime.

Within the large time-step regime the leading order iteration (30) simplifies as k � k2/ε2

and the dominant correction is given by the b1 term. To compare to standard notation we
rewrite the regime as ε2 � k = δ � 1 and replace the internal parameter δ with k, the result
is the large time-step interation (32). �	

6.2 Eyre-Type Iterations

For an Eyre iteration the map (15) takes the form

v + k

ε2
L+v = vn − (g − gn) + kg′

ε(R + εz)
+ k

ε2
(R − N ) , (41)

where we have introduced the Eyre linear operator

L+ := −
(

∂2z + ε

R + εz
∂z

)
+ f ′+(g) = − 1

R + εz
∂z ((R + εz)∂z) + f ′+(g), (42)

the explicit-term residual

R(v, vn) := f−(gn) − f−(g) + f ′−(gn)vn,

and the nonlinearity

N (v, vn) := N+(v) − N−(vn),

which we further decompose into implicit and explicit parts

N+(v) := f+(g + v) − ( f+(g) + f ′+(g)v),

N−(vn) := f−(gn + vn) − ( f−(gn) + f ′−(gn)vn).

The operator L+ is self-adjoint in the weighted inner product for which the eigenvalue
problem takes the form

L+ψ = λ

R + εz
ψ,

subject to ∂zψ(−R/ε) = 0 and ψ → 0 as z → ∞. The coercivity estimate is substantially
simpler than for BE as the operator L+ is strictly positive without constraint.

Lemma 3 There exists α+ > 0, independent of R ≥ 1, such that

〈L+v, v〉R ≥ α+‖v‖2
H1
R
. (43)

for all v ∈ H1
R.

Proof Since f ′+ ≥ 0 the normalized ground-state eigenfunction ψ0 of L+, satisfies

λ+
0 = 〈L+ψ0, ψ0〉R =

∫ ∞

−R/ε

(
(∂zψ0)

2 + f ′+(g)ψ2
0

)
(R + εz)dz > 0.

Since the ground-state eigenvalue is strictly positive, this establishes the L2
R coercivity of

L+ with α+ = λ+
0 . The H1

R coercivity follows as in Lemma 1. �	
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We assume throughout our analysis that ‖v‖H1
R
and ‖vn‖H1

R
are uniformly bounded by

δ � 1. We denote the right-hand side of (41) by FE and introduce

M+ := I + k

ε2
L+,

which is strictly contractive on the full space L2
R , and re-write the Eyre iteration as

v = GE(v, vn, R − Rn) := M−1+ ΠFE(v, vn, R − Rn). (44)

For the Eyre iteration the role of the projectionΠ is diminished as M+ is contractive without
it. Our goal is to show the existence of a map R = R̂E(v, vn, Rn), for which

〈FE, g′〉R = 0, (45)

to establish the contractive mapping properties of GE, and to develop asymptotic formula for
R and v. We do this in the long time-stepping regime, k � ε2, which has no lower bound
for the Eyre scheme.

Lemma 4 Assume k � ε2. There exists a smooth function R̂E : BH1
R
(δ)× BH1

R
(δ)×R �→ R

such that the profile g = g(z; R) satisfies (45). The function R = R̂E satisfies the implicit
relation

R − Rn = − ε2

c−R
+ O

(
ε3, δε,

ε4

k

)
. (46)

where we have introduced the leading order Eyre time constant

c− := 〈 f ′−(g)g′, g′〉R
‖g′‖2R

> 0 (47)

when f ′− �≡ 0. Moreover we have the Lipshitz estimate

|R̂E(v; vn, Rn) − R̂E(ṽ; vn, Rn)| ≤ cεδ‖v − ṽ‖R, (48)

so long as δ � 1.

Proof Due to parity considerations, we remark that ‖g′‖2R = R‖g′‖2
L2(R)

, up to exponentially
small terms. For brevity, and as an element of foreshadowing, we approximate (R − Rn) by
ε2 in the O-error terms. Addressing the terms in FBE one by one, we record

〈vn, g′〉R = 〈vn, (g′ − g′
n)〉R = O(δε) (49)

〈g − gn, g
′〉R = −‖g′‖2R

(R − Rn)

ε
+ O

(
ε3

)
, (50)

〈
g′

R + εz
, g′

〉
R

= ‖g′‖2L2(R)
= ‖g′‖2R

R
, (51)

〈R, g′〉R = 〈 f ′−(g)g′, g′〉R(R − Rn)

ε
+ 〈 f ′−(g)vn, g

′〉R + O(ε2, εδ), (52)

|〈N , g′〉R | ≤ cδ2. (53)

With these reductions we can simplify the orthgonality condition, identifying terms that are
linear in R − Rn and most relevant higher order terms. The result is the balance

R − Rn

k

(
1 + c−k

ε2

)
= − 1

R
− 〈 f ′−(g)g′, vn〉R

ε‖g′‖2R
+ O

(
ε, δ,

δ2

ε

)
, (54)
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where c−, introduced in (47) is positive since f ′− ≥ 0 by assumption. The largest terms and
error terms come from the residual, and we kept the lower order constant on the left-hand
side to emphasize that in the long time-stepping regime, the residual dominates the natural
time-step term. Indeed, the iteration is independent of step size, k, given at leading order by
(54).

To obtain the Lipshitz estimate we observe from the bounds above that dependence of R̂E

on v arises from the balance of the linear R− Rn term in the residual against the nonlinearity.
Since both these terms are multiplied by k/ε2 this factor cancels and we have the balance

|R̂E(v) − R̂E(ṽ)| ≤ cε

〈 f ′−(g)g′, g′〉R
∣∣〈N (v), g′〉R − 〈N (ṽ), g̃′〉R

∣∣ .
The nonlinearity satisfies the Lipshitz properties

‖N (v, vn) − N (ṽ, vn)‖R ≤ cδ‖v − ṽ‖R,

while

‖g′ − g̃′‖L2 ≤ c
|R̂E(v) − R̂E(ṽ)|

ε
.

Adding and subtracting 〈N (ṽ, vn), g′〉R and using (53), we arrive at the estimates

|R̂E(v) − R̂E(ṽ)| ≤ c
(
εδ‖v − ṽ‖R + δ2|R̂BE(v) − R̂BE(ṽ)|

)
.

Imposing the condition δ � 1 yields (48). �	

We may now establish the main result on the Eyre sequence.

Proposition 2 There exists c > 0 such that for any k � ε2 the function GE defined in (44)
with R := R̂E(v; vn, Rn) maps BH1

R
(cε) × BH1

R
(cε) into BH1

R
(GE(0, vn), ε2) and is a strict

contraction, satisfying

‖GE(v, vn) − GE(ṽ, vn)‖H1
R

≤ cε2‖v − ṽ‖H1
R
. (55)

In particular GE has a unique fixed point in that set, which we denote vn+1. Moreover, if the
Eyre balance parameter

γ := ‖L−1+ Π ◦ f ′−(g)g′‖H1
R∗ < 1 (56)

then for any ρ ∈ (0, 1) there exists c > 0 such that for all v0 ∈ BH1
R
(cε) and R0 > 1, the

sequence {(vn, Rn)}Nn=1 satisfies vn ∈ BH1
R
(cε) and

Rn+1 − Rn

ε2
= − cE

Rn+1
+ O

(
ε1−ρ

)
.

where the Eyre number, cE , is defined by

cE := ‖g′‖2R
〈 f ′−(g)g′, g′〉R + 〈K+L−1+ Π f ′−(g)g′, f ′−(g)g′〉R

> 0, (57)

where K+ > 0 is defined in (65) and K+L−1+ Π > 0 is self-adjoint.
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Proof To establish the contractivity of GE we follow the arguments for backward Euler,
sketching only the differences. We introduce

gE := (M−1+ Π − M̃−1+ Π̃)FE; (58)

and derive the expression

gE = M−1+ Π(M̃+ − M+)M̃−1+ Π̃FE

+ M−1+ Π(Π − Π̃)FE + (Π − Π̃)M̃−1+ Π̃FE. (59)

The operators M−1+ Π and M̃−1+ Π̃ are bounded as L+ has no small eigenvalues. Using (48)
we estimate

‖M̃+ − M+‖R∗ = k

ε
‖ f ′+(g) − f ′+(g̃)‖R∗ ≤ c‖g − g̃‖R∗,

≤ c
|R − R̃|

ε
≤ cδ‖v − ṽ‖H1

R
.

Similarly the projections satisfy

‖(Π − Π̃)‖R∗ = ‖g′〈g′, ·〉R − g̃′〈g̃′, ·〉‖R,

≤ cδ‖v − ṽ‖H1
R

Applying these estimates to (58,59) and following the proof of (48) to estimate ΠFE we
obtain

‖gE‖H1
R

≤c
ε2

k
δ‖v − ṽ‖H1

R
‖ΠFBE‖L2 ,

≤ c

(
ε2δ2

k
+ ε4δ

k
+ εδ + δ2

)
‖v − ṽ‖H1

R
. (60)

Finally we write

GE(v, vn) − GE(ṽ, vn) = gE + M̃−1Π̃(FE − F̃E), (61)

and estimate the FE term from which the dominant contribution comes from the residual

‖FE − F̃E‖R ≤ c
k

ε2
‖ f−(g) − f−(g̃)‖R ≤ c

k

ε2

|R − R̃|
ε

,

≤ c
kδ

ε
‖v − ṽ‖R,

where we used (48) in the last inequality. In particular we deduce that

‖M̃−1+ Π̃(FE − F̃E)‖H1
R

≤ cεδ‖v − ṽ‖R . (62)

Combining (60), (62) and (61), imposing δ = ε, and using k � ε2 we arrive at strict
contractivity on BH1

R
(cδ) for any fixed c > 0.

To establish bounds on the the fixed point vn+1 of GE(·; vn) we observe from (43) that in
the large time-stepping regime

‖M−1+ Π‖H1
R∗ ≤ c

ε2

k
.
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Using this result we expand

ΠFE = k

ε2
Π

(
f ′−(g)g′ R − Rn

ε
+ f ′−(g)vn

)
+ O

(
δ, ε2, k

)
.

Inverting M+ we find, at leading order

vn+1 = R − Rn

ε
L−1+ Π f ′(g)g′ + L−1+ Π f ′−(g)vn + O(ε2, δ2)

In particular we deduce that
∥∥∥∥vn+1 − R − Rn

ε
L−1+ Π f ′(g)g′

∥∥∥∥
H1
R

≤ γ ‖vn‖H1
R

+ O(ε2, δ2).

Arguing inductively, since the Eyre balance parameter γ < 1 and the functions
‖L−1+ Π f ′−(g)g′‖H1

R
are uniformly bounded for all R ≥ 1, we deduce that if δ := ‖v0‖H1

R
=

O(ε) then the sequences {(R − Rn)ε
−2}N0 and {ε−1‖vn‖H1

R
}N0 are uniformly bounded, inde-

pendent of ε � 1 and k � ε2 for all n ≤ N so long as Rn > 1 for all n = 0, . . . , N .

To improve this bound we require Lipschitz estimates on the vn component of GE. To this
end we find

‖GE(v; vn) − GE(v; ṽn)‖H1
R

≤ ‖M−1+ Π(I + k

ε2
f ′−(g))‖H1

R∗‖vn − ṽn‖H1
R
,

≤
(

γ + O

(
ε2

k

))
‖vn − ṽn‖H1

R
. (63)

Here we introduce the quasi-steady parameter ρ ∈ (0, 1). Since |Rn − Rm | = O(ε2−ρ) for
|n − m| ≤ Nρ :=≤ ε−ρ we infer that

∥∥∥L−1+,nΠn f
′(gn) f ′

n − L−1+,mΠm f ′−(gm)g′
m

∥∥∥
H1
R

≤ c
√

ε,

for all such n and m. For n > Nρ we define the quasi-equilibrium

vn∗ := Rn − Rn−1

ε
En(z)

where En is the R = Rn translate of

E := K+L−1+ Π f ′−(g)g′. (64)

Here the self-adjoint operator

K+ := (
I − L+Π ◦ f ′−(g)

)−1
> 0, (65)

is well defined since ‖L+Π ◦ f ′−(g)‖H1
R∗ = γ < 1 by assumption. Using the Lipschitz

property (63) of GE and the quasi equilibrium relation

‖vn∗ − GE(vn∗; vn∗)‖H1
R

= O(ε2),

we deduce that

‖vk+1 − vn∗‖H1
R

≤ γ ‖vk − vn∗‖H1
R

+ O
(
ε2−ρ

)
.
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for k = n − mε, . . . , n. Since γ Nρ � ε we deduce from an inductive argument that∥∥∥∥vn − Rn − Rn−1

ε
En

∥∥∥∥
H1
R

= O(ε2−ρ),

for all n > Ns . Inserting this result in (46) we arrive at the leading order Eyre iteration (57).
�	

Remark 7 There are two examples of particular relevance

f (u) = u3 − u,

with the decomposition f+ = (1 + β)u3 and f− = u + βu3 for β > 0. The choice
β = 0 is classical and very degenerate, as in this case f ′−(u) = 1 and the corresponding
Eyre balance parameter γ , defined in (56) is zero, and the Eyre number, (57) is 1. In this
case it is possible to rewrite Eyre’s method as backward Euler with a rescaled time. In
particular the slow convergence to equilibrium will not be in evidence. For larger values of
β the balance parameter increases from zero and the Eyre number decreases from 1. As the
balance parameter increases through 1 we anticipate enhanced slowing of the front profile
as the Eyre number tends to zero. The choice of non-zero β can be viewed as spurious, a
deliberate attempt to foul the method. A more robust example of non-zero balance arises
naturally through the model

f (u) = u5 − βu3,

with β ≥ 1. This suggests the optimal decomposition f+ = u5 and f− = βu3. Here,
unambiguously, increasing β increases the balance parameter and will lead to non-trivial
enhanced slow-down with potential instability as γ increases through 1. These analytic
predictions are validated in a computational study below.

Remark 8 To leading order, in the large time-stepping regime k � ε2, the Eyre iteration
recovers backward Euler with the substitution k �→ cEε2. This reduces to the exact result
for the case f (u) = u3 − u and f−(u) = u, for which f ′− = 1, as the Eyre constant reduces
to 1 since Π f−(g)g′ = Πg′ = 0.

The strong contractivity of GE with respect to v, given in (55), arises from the strong
convexity with respect to v, but the slow evolution and marginal convergence to the quasi-
equilibrium, given in (63) arises from the balance between the implicit and explicit terms. The
parameter γ measures this balance, with the quasi-equilibrium structure lost as γ increases
towards 1. Indeed, since ‖K+‖H1

R∗ ∼ (1 − γ )−1, the Eyre constant will generically tend to
zero as γ → 1.

6.2.1 Computational Validation of Remark 7

We perform computations for AC with the non-classical f (u) = u5 − u3 (which also leads
to meta-stable dynamics of curvature motion) using the same initial conditions and accuracy
criteria as described in Sect. 4.1. BE performs almost identically to the results shown in
Tables 3 and 4 for the classical f (u) = u3 − u in terms of accuracy and variation of time
steps with ε and σ . This matches the theory in Sect. 6.1 which can be summarized as BE has
profile fidelity when k = o(ε).

When Eyre’s method is applied to the dynamics with f (u) = u5 − u3, with the natural
splitting suggested in Remark 7, profile fidelity is lost as predicted. The formal prediction of
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Table 9 Computational results
for the AC benchmark problem
with fixed local error tolerance
σ = 10−4 and ε varied, using
Eyre’s method with reaction term
f (u) = u5 − u3

ε Eyre with f (u) = u5 − u3

M E

0.2 5726 0.001

0.1 21,947 (3.83) 0.005

0.05 86,499 (3.94) 0.007

0.025 343,525(3.97) 0.007

Here, M is the total number of time steps taken (with the ratio to the
value above in brackets) and E is the error in the benchmark time

k = O(ε3/2) which was seen computationally for f (u) = u3 − u in Table 4 is not observed
for f (u) = u5 − u3. Rather, we see k = O(ε2) as predicted by the theory in the previous
section. The numerical results are shown in Table 9.

7 Summary and FutureWork

We have identified the time step scaling for several first and second order schemes for AC
and CH under the restriction of fixed local truncation error, σ . In particular, we derive the
asymptotic behaviour of time-step number with σ and asymptotic parameter ε during meta-
stable dynamics. These predictions aremade under the assumption that the time steps preserve
the asymptotic structure of the diffuse interface, a concept we refer to as profile fidelity. The
predictions are verified in numerical experiments. We see that methods whose dominant
local truncation error can be expressed as a pure time derivative have optimal asymptotic
performance in this particular limit. BE, TR, and BDF2 all have this desirable property. We
believe thesemethodswill also have superior performance for other problemswithmetastable
dynamics. Our numerical results show that BE performs better than expected and we have
shown an explanation of this behaviour with formal asymptotics.

The optimal fully implicitmethods asymptotically computationally outperform all linearly
implicit methods in the limit we consider. We present precise criteria on the computational
cost of nonlinear solvers for this comparison. The provably energy stable first and second
order SAV schemes had higher computational cost than standard IMEX methods for similar
results. As a final result, we present a rigorous proof that large time steps with fully implicit
BE can be taken with locally unique solutions that are energy stable. This is done for the 2D
radial AC equation in meta-stable dynamics. Eyre-type iteration is also considered in this
analytic framework, and it is shown that in general this approach loses profile stability unless
very small time steps are taken.

Our work gives strong evidence that some fully implicit schemes for phase field models
should be given more consideration and that provably energy stable schemes are inaccurate
and give no benefits during meta-stable dynamics. Perhaps a hybrid scheme that switches
between the two approaches depending on the dynamic regime should be considered.

Extending the analysis to the non-radial case and to CH is an interesting question. We
observed that the question of global accuracy is not trivial in Sect. 5 and should be considered
for other schemes. Accurate local error estimation for these problems is another interesting
question to pursue.
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Appendix: L2R Coercivity of L

Here we show the technical argument for Lemma 1. For u, v ∈ H1(R) we define the inner
product

〈u, v〉� :=
∫ �

−�

u(s)v(s) ds,

with the standard norms L2
� and H1

� while L2
�c is defined in R\[−�, �]. Let L0 be as defined

in (19).

Lemma 5 Fix �0 > 0 sufficiently large there exists α > 0 such that for all � > �0

〈L0u, u〉� ≥ α, (66)

for all u ∈ H1
� ∩ L2(R) satisfying 〈u, g′〉L2(R) = 0 and 1 = ‖u‖L2

�
≥ ‖u‖L2

�c
.

Proof Let φ be the minimizer of 〈L0u, u〉� over H1(R) subject to ‖u‖L2
�

= 1 and the full-

line orthogonality 〈u, ψ0〉L2(R) = 0. By scaling, the minima is attained with ‖φ‖L2
�

= 1
2 and

satisfies

L0φ = λφ, on [−�, �],
subject to Neumann boundary conditions φx (±�) = 0, in addition to the full line orthogo-
nality condition. The operator L0 on the truncated domain has eigenvalues λ�

0 < λ�
1 < ...

which are O(e−d�) far away from the eigenvalues of L0 on the full line. In particular λ�
0 may

be negative, but the rest are uniformly positive. In L2
� we partition φ = βψ�

0 + φ⊥, where
ψ�
0 is the L2

� ground state of L0 and φ⊥ ∈ L2
� is L

2
� orthogonal to ψ�

0 . Then we have

〈L0φ, φ〉� ≥ λ0β
2 + λ�

1‖φ⊥‖2
L2

�

. (67)

On the other hand the orthogonality condition implies that

〈φ, g′〉R = 0 = β + 〈φ, g′〉�c .
where the subscript �c denotes integration over R\[−�, �] with the corresponding norms. In
particular we deduce that

|β| ≤ ‖φ‖L2
�c

‖g′‖L2
�c

≤ ‖g′‖L2
�c

‖φ‖L2
�
.

Since g′ decays exponentially at ±∞, is complementary norm is exponentially small in �.

From orthogonality of ψ�
0 and φ⊥ we have

‖φ‖2
L2

�

= β2 + ‖φ⊥‖2
L2

�

≤ ‖φ⊥‖2
L2

�

+ ‖g′‖2
L2

�c
‖φ‖2

L2
�

.

123

http://creativecommons.org/licenses/by/4.0/


Journal of Scientific Computing (2021) 86 :32 Page 33 of 34 32

or equivalently

1 = ‖φ‖2
L2

�

≤ 1

1 − ‖g′‖2
L2

�c

‖φ⊥‖2
L2

�

,

and taking � large enough we use these bound in (67) to show that α is exponentially close
to λ�

1 > 0. �	
To complete the proof of Lemma1 we take � sufficiently large to apply Lemma5 and

then take ε sufficiently small that ε|z| ≤ ε� � 1. Under these conditions L2
� and L2

R(−�, �)

are equivalent norms, uniformly in ε, and we have uniform L2
R(−�, �) coercivity of L .

Conversely, L is clearly L2
R coercive on [−R/ε,∞)\[−�, �] since f ′(g) is strictly positive

there. Clearly L is uniformly coercive on function with more than half their L2
R mass in

[−R/ε,∞)\[−�, �]. The g′ orthogonality condition implies approximate orthogonality to
ψ0 for � large. From these we deduce the full L2

R-coercivity of L over X .
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