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Abstract
In this article, we present a least-squares method to compute freeform surfaces of a lens with
parallel incoming and outgoing light rays, which is a transport problem corresponding to
a non-quadratic cost function. The lens can transfer a given emittance of the source into a
desired illuminance at the target. The freeform lens design problem can be formulated as
a Monge–Ampère type differential equation with transport boundary condition, expressing
conservation of energy combined with the law of refraction. Our least-squares algorithm is
capable to handle a non-quadratic cost function, and provides two solutions corresponding
to either convex or concave lens surfaces.

Keywords Monge–Ampère equation · Transport boundary conditions · Non-quadratic cost
function · Least-squares method · Freeform lens surfaces · Optical design · Inverse problem

Mathematics Subject Classification 35A15 · 35J15 · 35J20 · 35J96 · 4900 · 65N08 · 65N21 ·
78A05

1 Introduction

The optical design problem involving freeform surfaces is a challenging problem, even for
a single mirror/lens surface which transfers a given intensity/emittance distribution of the
source into a desired intensity/illuminance distribution at the target [1–3]. More specifically,
the freeform design problem is an inverse problem: “Find an optical system containing
freeform refractive/reflective surfaces that provides the desired target light distribution for
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a given source distribution”. Inverse optical design has a wide range of applications from
LED based optical products for street lighting and car headlights to applications in medical
science, image processing and lithography [1,4].

To convert a given emittance profile with parallel light rays into a desired illuminance
profile with parallel light rays, one requires at least two freeform lens/mirror surfaces [2,5].
This freeform problem can be formulated as a second order partial differential equation
of Monge–Ampère (MA) type, with transport boundary conditions, applying the laws of
geometrical optics and energy conservation [2,3,6,7]. For the two-reflector problem [2,8],
one can obtain the followingmathematical formulation using properties of geometrical optics,
i.e.,

u1(x) + u2(y) = c(x,y) := a1 + a2|x − y|2, (1)

where a1, a2 are constants and u1(x), u2(y) represent the location of the optical surfaces,
and |.| denotes the 2-norm for vectors. The right hand side function c(x,y) in the above
expression is a quadratic (cost) function. Assuming convex/concave reflective surfaces the
ray-trace map can be uniquely expressed as the gradient of u1, i.e.,

m(x) = ∇u1(x). (2)

Furthermore, using conservation of energy, one can derive a second order partial differen-
tial equation (PDE) of MA-type. We refer to this equation as the standard MA-equation,
representing optical systems characterized by a quadratic cost function.

In this article, we show that a similar mathematical expression can be obtained for the
freeform surfaces of a lens with parallel ingoing and outgoing light rays applying the laws
of geometrical optics:

u1(x) + u2(y) = c(x,y) := b1 −
√
b2 + b3|x − y|2, (3)

where b1, b2, b3 are constants, and u1(x), u2(y) represent the first and second refractive
surface of the lens, respectively. For the freeform lens the cost function c(x,y) is no longer
a quadratic function, and the ray-trace map can not be expressed as the gradient of some
function, we provide more details in Sect. 2. Energy conservation results in a complicated
MA-type equation. In this article, we will present a numerical algorithm to compute the
freeform surfaces of a lens characterized by a non-quadratic cost function.A rigorous analysis
of the existence and uniqueness ofweak solutions of similar lens design problems is presented
in Oliker’s work [9,10].

There are several numericalmethodswhich can be employed to compute freeform surfaces
of optical systems characterized by a quadratic cost function. However, to the best of our
knowledge, this paper is the first to describe a numerical method for the MA-equation with
non-quadratic cost function. Froese et al. [11–13] solve the standardMA-equation within the
framework of optimal mass transport (OMT). Applying the theory of viscosity solutions, they
refine the solution using an iterative Fourier-transform algorithm with overcompensation. In
recent publications [5,14,15], the authors obtain freeform optical surfaces by solving the
standard MA-equation using Newton iteration. These numerical methods require an initial
guess which is obtained through the OMT problem. Brix et al. [3,16] solve the standard
inverse design problem using a collocation method with a tensor-product B-spline basis.
Glimm and Oliker [8,17] show that the illuminance control problem can be solved using an
optimization approach instead of solving a MA-type differential equation. Further, a similar
approach to design freeform surfaces of a lens is developed by Rubinstein and Wolansky
[18].

123



Journal of Scientific Computing (2019) 80:475–499 477

A least-squares (LS) method [2,7] has been presented to solve the standard MA-equation
to compute single reflector/lens or double reflector freeform surfaces optical systems. The
method provides the optical mapping which transfers the given emittance of the source into
the desired illuminance at the target, and the freeform surfaces are obtained via this mapping.

However, the coupled freeform lens surfaces design problem corresponds to a non-
quadratic cost function. The goal of this paper is to present a numerical method which is
applicable to design an optical system corresponding to a non-quadratic cost function. Here,
we present a fast and effective extended least-squares (ELS)method to construct the freeform
surfaces of the lens. The ELS-method is a two-stage procedure like the LS-method: first we
determine an optimal mapping by minimizing three functionals iteratively, next, we compute
the freeform surfaces from the converged mapping. In the first stage, there are two nonlinear
minimization steps, which can be performed point-wise, like in the LS-method. In the third
step two elliptic partial differential equations have to be solved. For the LS-method, these
are decoupled Poisson equations. However, in the ELS-method these are coupled elliptic
equations.

Our least-squares method is quite generally applicable since it can handle arbitrary twice
differentiable cost functions c(x,y), also in other fields of science and engineering such
as optimal transport theory, shape optimization, compression modeling, relativistic the-
ory, incompressible fluid flow, economics, astrophysics, atmospheric sciences etc. For the
interested reader, we refer to the following: Evans’ survey notes [19], articles of Bouchittè-
Buttazzo [20,21],Gangbo’s lecture notes [22], and paper ofBenamou–Brenier [23].However,
we restrict ourselves to the computation of freeform optical systems.

This paper is structured as follows. In Sect. 2 we explain the geometrical structure of
the optical system and formulate the mathematical model. The detailed procedure of the
proposed least-squares method is shown in Sect. 3. We apply the numerical method to four
test problems in Sect. 4 and verify the solutions using a ray tracing algorithm [2]. Finally, a
brief discussion and concluding remarks are given in Sect. 5.

2 Formulation of the Problem

The geometrical structure of a lens optical system is shown schematically in Fig. 1. Let
(x1, x2, z) ∈ R

3 denote the Cartesian coordinates with z the horizontal coordinate and x =
(x1, x2) ∈ R

2 the coordinates in the plane z = 0, denoted by α1, and let S be a bounded
source domain in the plane α1. The source S emits parallel light rays which propagate in the
positive z-direction. The emittance, i.e., luminous flux per unit area (for an introduction to
photometry quantities see e.g. [24, p. 7–9]), of the source is given by f (x) [lm/m2], x ∈ S,
where f is a non-negative integrable function on the domain S. The target at a distance � > 0
from the plane α1 is denoted by T .

The incoming light rays are refracted at the first lens surface L1, propagate through the
lens and are refracted again at the second lens surface L2, to create a parallel bundle of light
rays in the positive z-direction. The index of refraction of the lens n > 1 and the surrounding
medium is air with refractive index of unity. The lens surfaces are defined as z ≡ u1(x),
x ∈ S and w ≡ � − z = u2(y), y ∈ T , respectively, where y = (y1, y2) ∈ R

2 are the
Cartesian coordinates of the target plane α2.

The goal is to design a lens system such that after two refractions the refracted rays
must form a parallel beam, propagating in the positive z-direction, and provide a prescribed
illuminance g(y) [lm/m2] at the plane α2 : z = �, where g > 0 is a positive integrable
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Fig. 1 Sketch of a freeform lens optical system

function on the domain T . It is assumed that both L1 and L2 are perfect lens surfaces and no
energy is lost in the refraction.

2.1 Geometrical Formulation of the Freeform Lens

In this section, we first give an expression for the ray-trace map, and secondly we derive a
mathematical formulation for the location of the freeform surfaces using the laws of geomet-
rical optics.

The mapping m can be derived by tracing a typical ray through the optical system. Let us
consider a ray emitted from a position x ∈ S on the source and propagating in the positive
z-direction, let ŝ be the unit direction of the incident ray. The ray strikes the first lens surface
L1, refracts off in direction t̂ , strikes the second lens surface L2, and reflects off, again in the
direction ŝ. The unit surface normal of the first lens surface L1, directed towards the light
source, is given by

n̂1 = (∇u1,−1)
√|∇u1|2 + 1

. (4)

Throughout this article, we use the convention that a hat denotes a unit vector. According to
Snell’s law [24,25], the direction t̂ = t̂(x) of the refracted ray can be expressed as

t̂ = ηŝ + F(|∇u1|; η)n̂1, (5)

where η = 1/n < 1 with n the refractive index of the lens and

F(z; η) = 1√
z2 + 1

[
η −

√
1 + (1 − η2)z2

]
. (6)

If we write t̂ = (t1, t2, t3)T then the first two components of the vector t̂ , can be written as a
function of the third component of the vector t̂ as

(
t1
t2

)
= (η − t3)∇u1. (7)

The image on the target of the point x ∈ S is the point y ∈ T under the ray trace mapping
m, i.e., y = m(x),x ∈ S. This mapping can be obtained by the projection of t̂ on the plane
α1, i.e.,
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m(x) = x +
(
t1
t2

)
d(x), (8)

where d(x) is the distance between surfaces L1 and L2 along the ray refracted in the direc-
tion t̂(x). The distance d(x) between the lens surfaces can be obtained using properties of
geometrical optics: The total optical path length L(x) corresponding to the ray associated
with a point x ∈ S, is given by

L(x) = u1(x) + nd(x) + u2(y). (9)

The theorem of Malus and Dupin (the principle of equal optical path lengths) states that the
total optical path length between any two orthogonal wavefronts is the same for all rays [26,
p. 130]. As we deal with two parallel beams of light rays, the wavefront coincides with planes
α1 and α2. Therefore, the total optical path length will be independent of the position vector
x, i.e., L(x) = L . The horizontal distance � between the source and the target plane is given
by

� = u1(x) + (ŝ · t̂)d(x) + u2(y). (10)

Subtracting Eqs. (9) and (10), and using Eq. (5), we obtain the following expression

d(x) = β

n − t3
, (11)

where where β = L − � is the “reduced” optical path length. Substituting (7) and (11) in (8),
we have

m(x) = x + β
η − t3
n − t3

. (12)

Now, substituting t3 in the above equation from the law of refraction (5), the mapping m is
given by the relation

m(x) = x − β∇u1(x)
√
n2 + (n2 − 1)|∇u1|2

. (13)

Next, we derive a mathematical expressions for the location of the lens surfaces. An
alternative expression for the distance d reads

d2 = (
� − u1(x) − u2(y)

)2 + |x − y|2. (14)

Thus, from Eqs. (9) and (14), we obtain

n2
(
� − u1(x) − u2(y)

)2 + n2|x − y|2 = (
L − u1(x) − u2(y)

)2
,

which can be rewritten as
[
u1(x) + u2(y) + L − n2�

n2 − 1

]2
+ n2

n2 − 1
|x − y|2 =

(
nβ

n2 − 1

)2

,

and after elementary algebraic derivations, we obtain

u1(x) + u2(y) = n2� − L

n2 − 1
± n

n2 − 1

√
β2 − (n2 − 1)|x − y|2. (15)

This is a mathematical expression for the location of the lens surfaces but the sign in front
of the square root is unknown yet. To determine this we proceed as follows. Using Eqs. (9)
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(with L(x) = L) and (14), we can show that β2−(n2−1)|x−y|2 = (nβ −d(n2−1))2 ≥ 0.
Substituting, this expression in Eq. (15), we obtain

u1(x) + u2(y) = n2� − L

n2 − 1
± n

n2 − 1

∣∣nβ − d(n2 − 1)
∣∣. (16)

First, we check the sign of the expression nβ − d(n2 − 1). Substituting d from Eq. (11), the
expression becomes

nβ − d(n2 − 1) = β
1 − nt3
n − t3

.

Since β > 0 and n− t3 > 0, it remains to check the sign of 1− nt3. Using the vectorial form
of the law of refraction (5) and expression (6), we can write

1 − nt3 = 1 − √
n2 + (n2 − 1)|∇u1|2

|∇u1|2 + 1
< 0, (17)

as n > 1. Thus we have to choose the negative sign in front of the absolute value in Eq. (16).
Hence, we obtain

u1(x) + u2(x) = n2� − L

n2 − 1
± nd(n2 − 1) − n2β

n2 − 1
.

Substituting d from relation (9), the above expression becomes

u1(x) + u2(y) = n2� − L

n2 − 1
±

(
L − (u1(x) + u2(y)) − n2

n2 − 1
β
)
. (18)

In the above equation, the right hand side equals the left hand side for theminus sign, therefore
we have to choose minus sign in (15). Thus the mathematical expression for the lens surfaces
becomes

u1(x) + u2(y) = c(x,y),

c(x,y) = � − β

n2 − 1
− n

n2 − 1

√
β2 − (n2 − 1)|x − y|2. (19)

These kind of freeform optical design problems are closely related to the mass transport
problem [10,27]. The right hand side function c(x,y) is known as the cost function in OMT
theory.

To conclude, we have derived a mathematical formulation representing the freeform lens
optical system which is given in (19). Also, we obtained the expression (13) for the ray-trace
mapping m. Next, we formulate a second order partial differential equation for the freeform
lens.

2.2 Energy Conservation for the Freeform Lens

Recall, that f ≥ 0 and g > 0 are integrable functions and no energy is lost in the light
transfer process. Thus energy conservation is given by

∫∫

S
f (x)dx =

∫∫

T
g(y)dy. (20)
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The key tool for the design of such an optical system is to find amapping y = m(x) : S → T
that satisfies the energy conservation constraint (20) for each measurable set A ⊂ S, i.e.,

∫∫

A
f (x)dx =

∫∫

m(A)

g(y)dy, (21)

and after a change of variables the constraint becomes

f (x) = g(m(x))| det(Dm(x))|, ∀x ∈ S, (22)

where Dm is the Jacobian of the mapping m, which measures the expansion/contraction of
a tube of rays due to the two refractions. The accompanying boundary condition is derived
from the condition that all the light from the source domain S must be transferred into the
target domain T , i.e.,

m(∂S) = ∂T , (23)

stating that the boundary of the source S is mapped to the boundary of the target T . This is
a consequence of the edge ray principle [28].

Next, we derive a MA-type equation for the freeform lens using the energy conservation
constraint (22) and the mathematical formulation (19) for the location of the lens surfaces.
We assume that both lens surfaces u1 and u2 are either c-convex or c-concave functions.
According to the following definition, the lens surfaces u1 and u2 are c-convex if

u1(x) = max
y∈T {c(x,y) − u2(y)} ∀ x ∈ S, (24a)

u2(y) = max
x∈S {c(x,y) − u1(x)} ∀ y ∈ T , (24b)

alternatively, these are c-concave if

u1(x) = min
y∈T {c(x,y) − u2(y)} ∀ x ∈ S, (25a)

u2(y) = min
x∈S{c(x,y) − u1(x)} ∀ y ∈ T . (25b)

For a continuously differentiable function c ∈ C1(S × T ), the c-convex/concave functions
u1 and u2 are Lipschitz continuous [27,29], and the mapping y = m(x) is implicitly given
by the relation

∇xu1(x) = ∇xc(x,m(x)), (26)

which is a necessary condition for (24b) and (25b), and holds under the condition that the
Jacobi matrix C = Dxyc defined by

C =
(
c11 c12
c21 c22

)
=

⎛

⎝
∂2c

∂x1∂ y1
∂2c

∂x1∂ y2

∂2c
∂x2∂ y1

∂2c
∂x2∂ y2

⎞

⎠ , (27)

is invertible. For our optical problem the mapping m given by relation (13) satisfies relation
(26) indeed.

The matrix C is symmetric negative semi-definite which is a consequence of the fact that
the function c depends on |x − y|. This can be verified as follows: let us rewrite the cost
function (19) as

c(x,y) = � − β

n2 − 1
+ c̃(x,y), (28a)

c̃(x,y) = − n

n2 − 1

√
β2 − (n2 − 1)|x − y|2. (28b)
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By differentiating (28) with respect to x and y, we obtain

∇xc(x,y) = − n2

n2 − 1

1

c̃
(x − y), (29a)

∇yc(x,y) = n2

n2 − 1

1

c̃
(x − y), (29b)

which gives
∇xc(x,y) + ∇yc(x,y) = 0. (29c)

Differentiating one more time with respect to x, we conclude that

C = Dxyc = −Dxxc. (30)

Evaluating all derivatives, we obtain the following expression

C = n2

n2 − 1

I
c̃

+
( n2

n2 − 1

)2 1

c̃3

(
(x1 − y1)2 (x1 − y1)(x2 − y2)

(x1 − y1)(x2 − y2) (x2 − y2)2

)
. (31)

We can rewrite the above expression as follows:

C = γ 2

c̃3

(
c̃2

γ
I + (x − y)(x − y)T

)
, (32)

where γ = n2/(n2 − 1) > 0. Since c̃ < 0, we conclude that det(C) > 0 and tr(C) ≤ 0
hence the matrix C is symmetric negative semi-definite.

Since the function c(x,y) defined in (19) is continuously differentiable, from relation
(26), we deduce

CDm(x) = D2u1(x) − Dxxc ≡ P, (33)

where D2u1 is the Hessian of u1. The matrix P = D2u1(x)−Dxxc is negative semi-definite
for a c-concave pair (u1, u2) and positive semi-definite for a c-convex pair (u1, u2). In the
following, we discuss the convex case, thus we require the matrix P to be positive semi-
definite. Substituting Dm from (33) into the energy conservation condition (22), we obtain

det(P(x))

det(C(x,m(x)))
= f (x)

g(m(x))
, ∀ x ∈ S. (34)

We know that the 2 × 2 matrix P is positive semi-definite if and only if

tr(P) ≥ 0 and det(P) ≥ 0. (35)

Because det(C) > 0 and the right hand side functions f ≥ 0, g > 0 in Eq. (34), it is obvious
that det(P) ≥ 0. So, the only requirement left is tr(P) ≥ 0 for convex optical surfaces.

In the following section, we give a detailed description of the ELS-algorithm to solve
the MA-equation (34) with the boundary condition (23) and constraints (35). The method
presented here is based on [7]. Compared to [7] we deal with a non-quadratic cost function
that results in the presence of the matrix C in (34).

3 Numerical Algorithm

Prins et al. [7] introduced a least-squares method to compute single freeform surfaces gov-
erned a quadratic cost function. Further, we applied the method to design a two-reflector
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optical system [2], which is also a quadratic cost problem. Our version of the least-squares
method was inspired by publications by Caboussat et al. [30,31], who developed a least-
squares method for the Monge–Ampère–Dirichlet problem. An extension of their method to
the three-dimensional equation is presented in [32].

In this section, we extend the least-squares method to compute the freeform surfaces
of a lens characterized by a non-quadratic cost function. The ELS-method is a two-stage
procedure. In the first stagewe calculate the optimalmapping byminimizing three functionals
iteratively, and in the second stage we compute the freeform surfaces from the mapping in
the least squares sense.

3.1 First Stage: Calculation of theMapping

First, we calculate the mapping m using the least-squares method for the lens optical system
as follows: we enforce the equality CDm = P by minimizing the following functional

JI(m, P) = 1

2

∫∫

S
||CDm − P ||2dx. (36)

The norm used in this functional is the Frobenius norm, which is defined as follows. Let
A : B denote the Frobenius inner product of the matrices A = (ai j ) and B = (bi j ), defined
by

A : B =
∑

i, j

ai j bi j , (37)

the Frobenius norm is then defined as ||A|| = √
A : A. Next, we address the boundary by

minimizing the functional

JB(m, b) = 1

2

∮

∂S
|m − b|2ds. (38)

We combine the functionals JI for the interior and JB for the boundary domain by a weighted
average:

J (m, P, b) = α JI(m, P) + (1 − α)JB(m, b). (39)

The parameter α (0 < α < 1) controls the weight of the first functional compared to the
second functional. The variables b, P , and m are elements of the following spaces

B = {b ∈ [C(∂S)]2 | b(x) ∈ ∂T }, (40a)

P(m) =
{
P ∈ [C1(S)]2×2

∣∣ det(P)

det(C(·,m))
= f

g(m)

}
, (40b)

M = [C2(S)]2, (40c)

respectively. The minimizer gives us the mappingm which is implicitly related to the surface
function u1. We calculate this minimizer by repeatedly minimizing over the three spaces
separately.We start with an initial guessm0, which will be specified shortly, and we calculate
the matrix C(x,m0) at the initial guess m0. Subsequently, we perform the iteration

bn+1 = argmin
b∈B

JB(mn, b), (41a)

Pn+1 = argmin
P∈P(mn)

JI(mn, P), (41b)

mn+1 = argmin
m∈M

J (m, Pn+1, bn+1). (41c)
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Next, we compute the matrix C(x,mn) before going to the next iteration.
We initialize our minimization procedure by constructing an initial guess m0 which maps

a bounding box of the source area S to a bounding box of the target area T . Without loss of
generality we assume the smallest bounding box of the source and the target are rectangular
and denote these by [amin, amax]× [bmin, bmax] and [cmin, cmax]× [dmin, dmax], respectively.
Then the initial guess reads:

m0
1 = x1 − amin

amax − amin
cmin + amax − x1

amax − amin
cmax, (42a)

m0
2 = x2 − bmin

bmax − bmin
dmin + bmax − x2

bmax − bmin
dmax. (42b)

Note that the corresponding Jacobi matrix Dm0 of the initial condition is symmetric (in fact
diagonal) negative definite. The matrix C is also negative definite, moreover from relation
(32) we conclude that c11, c22 < 0 which implies that the matrix P = C(x,m0)Dm0 is
positive definite. Thus this initialization satisfies our requirement tr(P) ≥ 0.

Obviously, theminimization steps in (41) aswell as the computation of the optical surfaces
is done numerically. To that purpose we discretize the source S with a standard rectangular
N1 × N2 grid for some N1, N2 ∈ N, so the grid points xi j = (x1,i , x2, j ) are defined as

x1,i = amin + (i − 1)h1, h1 = amax − amin

N1 − 1
, i = 1, . . . , N1, (43a)

x2, j = bmin + ( j − 1)h2, h2 = bmax − bmin

N2 − 1
, j = 1, . . . , N2. (43b)

We start the iteration process (41) using initial guess m0. Here each iteration consists of
four steps: we perform the three minimization steps (41a)–(41c), and fourthly we update the
matrix C at every iteration. In this article, we give a detailed description of the minimization
steps (41b) and (41c). The minimization step first (41a) is simple and direct, and performed
point-wise because no derivative of bwith respect to x appears in the functional, more details
can be found in [7].

Finally, from the converged mapping m, we compute the first lens surface u1 via relation
(26) in a least-squares sense, and the second lens surface u2 from relation (19), see Sect. 3.2.

Minimizing procedure for P
We assumem fixed and minimize JI(m, P) over the matrices under the condition (34). Since
the integrand of JI(m, P) does not contain derivatives of P , the minimization procedure can
be done pointwise. So, we need to minimize ||CD − P || for each grid point xi j ∈ S, where
D is the central difference approximation of Dm. Let’s define

P =
(
p11 p12
p12 p22

)
, D =

(
d11 d12
d21 d22

)
, Q = CD =

(
q11 q12
q12 q22

)
, (44a)

with

d11 = δx1m1, d12 = δx2m1, d21 = δx1m2, d22 = δx2m2, (44b)

where δx1 and δx2 are the central difference approximations of ∂/∂x1 and ∂/∂x2, respectively.
Note that, the matrices C, D, P and Q all depend on xi j . For the sake of brevity we omit
xi j . Moreover, we want to avoid crossing grid lines, i.e., intersection of images of grid lines
in S, and for that reason we require d11, d22 > 0. This can be achieved by imposing

d11 = max(δx1m1, ε), d22 = max(δx2m2, ε), (45)
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for a threshold value ε > 0. This implies that m1(xi+1, j ) < m1(xi, j ) and m2(xi, j+1) <

m2(xi, j ) for all xi, j ∈ S, which assures that there is no crossing of grid lines. In our
computations we choose ε = 10−8.

Note that thematrix P is symmetric but thematrix D need not be symmetric and d12, d21 <

0 is possible. Next we define the function

H(p11, p22, p12) = 1

2
||Q − P ||2. (46)

Also, we define the matrix QS as the symmetric part of the matrix Q, i.e.,

QS = 1

2
(Q + QT ) =

(
q11 qS
qS q22

)
, (47)

with qS = 1
2 (q12 + q21). The function HS corresponding to the symmetric matrix QS is

defined as

HS(p11, p22, p12) = 1

2
||QS − P ||2

= H(p11, p22, p12) − 1

4
(q12 − q21)

2. (48)

Since (q12 − q21)2 is independent of p11, p22 and p12, and because we are only interested
in the minimizer (p11, p22, p12) and not in its value H(p11, p22, p12), we minimize HS

instead of H . For each grid point xi j = (x1,i , x2, j ) ∈ S we have the following quadratic
minimization problem

minimize HS(p11, p22, p12), (49a)

subject to det(P) = f

g
det(C), (49b)

tr(P) ≥ 0. (49c)

This problem can be solved analytically, and we will show that for given q11, q22, qS and
f /g there exist at least one and at most four real solutions, see “Appendix A”. From these
we have to select the ones that give rise to a negative semi-definite matrix P , and we will
also show that this is always possible. Finally, we compare the values of HS(p11, p22, p12)
to find the global minimum.

The possible minimizers of (49) are obtained introducing the Lagrangian function Λ,
defined as

Λ(p11, p22, p12;μ) = 1

2

∥∥QS − P
∥∥2 + μ

(
det(P) − f

g
det(C)

)
, (50)

where μ is the Lagrange multiplier. By setting all partial derivatives of Λ to 0 we find the
critical points of Λ and this gives the following algebraic system

p11 + λp22 = q11, (51a)

λp11 + p22 = q22, (51b)

(1 − λ)p12 = qS, (51c)

p11 p22 − p212 = f

g
det(C), (51d)

where λ = μ/ det(C). The system (51a)–(51c) is linear in p11, p22 and p12, and is regular
if λ �= ±1 (we discuss the singular cases in the “Appendix A”). In the case when λ �= ±1,
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we calculate the critical points by inverting the system, i.e., we express p11, p22 and p12 in
terms of λ as

p11 = λq22 − q11
λ2 − 1

, p22 = λq11 − q22
λ2 − 1

, p12 = qS
1 − λ

. (52)

Substituting these expressions in Eq. (51d) gives the following quartic equation

F(λ) = a4λ
4 + a2λ

2 + a1λ + a0 = 0, (53a)

with coefficients given by

a4 = f

g
det(C) ≥ 0, (53b)

a2 = −2
f

g
det(C) − det(QS) = −2a4 − det(QS), (53c)

a1 = ‖QS‖2 ≥ 0, (53d)

a0 = f

g
det(C) − det(QS) = a4 − det(QS). (53e)

Furthermore, from Eqs. (51a)–(51b) the condition (49c) becomes

tr(P) = tr(QS)

1 + λ
≥ 0, (54)

and consequently, we need to select Lagrange multipliers that satisfy the above condition. It
can be shown that the quartic Eq. (53) has at least two real roots, and one of them is less than
− 1 and other one is greater than − 1 (see “Appendix A”). The convexity condition (54) can
be satisfied by choosing the appropriate values of λ and tr(QS), and the minimizers of HS

are given by (52).

Minimizing procedure for m
In this section, we describe the minimization step (41c). The minimizing procedure for m
differs from the procedure given in [7] because we have an extra matrix C in the function JI
which results in two coupled elliptic equations for the components of the mapping m instead
of decoupled Poisson equations. We assume P and b are fixed, and minimize J (m, P, b)
over the functions m ∈ M using calculus of variations, i.e., P and b are given in all grid
points xi j ∈ S. We want to compute m on the grid covering S. Here, we drop the indices
n and n + 1, for ease of notation. In the calculations that follow, we use the identity for the
Frobenius norm of matrices, i.e.,

‖A + B‖2 = ‖A‖2 + 2A : B + ‖B‖2. (55)

The first variation of the functional J with respect to m in the direction η ∈ [C2(S)]2 is
given by

δ J (m, P, b)[η] = lim
ε→0

1

ε

[
J (m + εη, P, b) − J (m, P, b)

]

= lim
ε→0

[
α

2

∫∫

S
2(CDm − P) : CDη + ε‖CDη‖2dx

+ 1 − α

2

∮

∂S
2(m − b) · η + ε‖η‖2ds

]

= α

∫∫

S
(CDm − P) : CDηdx + (1 − α)

∮

∂S
(m − b) · ηds.

(56)
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The minimizer is obtained by setting the variation equal to 0, i.e.,

δ J (m, P, b)[η] = 0, ∀η ∈ [C2(S)]2. (57)

Let us define the column vectors p1, p2, c1 and c2 as

P = [ p1 p2], C = [c1 c2], pi =
(
p1i
p2i

)
, ci =

(
c1i
c2i

)
, i = 1, 2. (58)

We can split the first integrand of the final expression in (56) as follows

(CDm − P) : CDη = CT (CDm − P) : Dη

=
2∑

k=1

CT
(
C

∂m
∂xk

− pk
)
· ∂η

∂xk

= v1 · ∂η

∂x1
+ v2 · ∂η

∂x2
,

(59)

where the vectors v1 and v2 are column vectors of the matrix V = [v1, v2], given by

v1 =
(

v11
v21

)
= CT

(
C

∂m
∂x1

− p1
)
, v2 =

(
v12
v22

)
= CT

(
C

∂m
∂x2

− p2
)
,

and by definingW = V T = [w1,w2], we can rewrite the first integral of the final expression
in (56) as

∫∫

S
(CDm − P) : CDηdx =

2∑

k=1

∫∫

S
wk · ∇ηkdx. (60)

Let n̂ denote the unit outward normal at the boundary ∂S. Using the vector-scalar product
rule [33, p. 576] and the identity

∫∫

S
∇v · F + v∇ · Fdx =

∮

∂S
vF · n̂ds, (61)

derived from the Gauss’s theorem, the integrals in the rhs of (56) become
∫∫

S
wk · ∇ηkdx =

∮

∂S
wk · n̂ηkds −

∫∫

S
∇ · wkηkdx. (62)

Substituting the integral in the final expression of (56), the minimizer can be obtained from
the following relation

2∑

k=1

( ∮

∂S

(
αwk · n̂ + (1− α)(mk − bk)

)
ηkds − α

∫∫

S
∇ ·wkηkdx

)
= 0 ∀η ∈ [C2(S)]2,

(63)
wheremk and bk (k = 1, 2) are the components of the vectorsm and b, respectively. Choosing
η2 = 0 and applying the fundamental lemma of calculus of variations [34, p. 15] for η1, we
find that m1 and m2 satisfies, almost everywhere, the equation

∂

∂x1

[
|c1|2 ∂m1

∂x1
+ c1 · c2 ∂m2

∂x1

]
+ ∂

∂x2

[
|c1|2 ∂m1

∂x2
+ c1 · c2 ∂m2

∂x2

]

= ∂

∂x1
(c1 · p1) + ∂

∂x2
(c1 · p2) x ∈ S, (64a)
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(1 − α)m1 + α(|c1|2∇m1 · n̂ + c1 · c2∇m2 · n̂) = (1 − α)b1 + αc1 · Pn̂ x ∈ ∂S.

(64b)

Similarly, choosing η1 = 0 and applying the fundamental lemma of calculus of variations
for η2, we obtain

∂

∂x1

[
c1 · c2 ∂m1

∂x1
+ |c2|2 ∂m2

∂x1

]
+ ∂

∂x2

[
c1 · c2 ∂m1

∂x2
+ |c2|2 ∂m2

∂x2

]

= ∂

∂x1
(c2 · p1) + ∂

∂x2
(c2 · p2) x ∈ S, (65a)

(1 − α)m2 + α(c1 · c2∇m1 · n̂ + |c2|2∇m2 · n̂) = (1 − α)b2 + αc2 · Pn̂ x ∈ ∂S.

(65b)

We can rewrite these equations as follows in matrix-vector form

∇ · (CTCDm) = ∇ · (CT P), x ∈ S, (66a)

(1 − α)m + α(CTC∇m) · n̂ = (1 − α)b + αC · Pn̂, x ∈ ∂S. (66b)

These are two coupled elliptic equations with Robin boundary conditions for the two com-
ponents m1 and m2 of the mapping m [35, p. 160]. The above equations are in divergence
form which motivates us to discretize the equations using the finite volume method [35, p.
84–88], for more details see “Appendix B”.

3.2 Second Stage: Calculation of the Freeform Surfaces

We compute the lens surfaces assuming that a numerical approximation of m on the grid
is available. We compute the first lens surface u1(x) from the converged mapping m using
relation (26) in the least-squares senses, i.e.,

u1(x) = argmin
φ

I (φ), I (φ) = 1

2

∫∫

S
|∇φ(x) − ∇xc(x,m(x))|2dx, ∀ φ ∈ C1(S).

(67)
We calculate theminimizing function u1(x) using calculus of variations. The first variation

of the functional I in (67) in a direction v is given by

δ I (u1)[v] = lim
ε→0

1

ε

[
I (u1 + εv) − I (u1)

]

= lim
ε→0

1

2

[ ∫∫

S
ε|∇v|2 + 2(∇u1 − ∇xc) · ∇vdx

]

=
∫∫

S
(∇u1 − ∇xc) · ∇vdx.

(68)

The minimizer is given by

δ I (u1)[v] = 0, ∀ v ∈ C1(S). (69)

Using the Gauss’s identity (61), we conclude from (69) that
∮

∂S
v(∇u1 − ∇xc) · n̂ds −

∫∫

S
v(Δu1 − ∇ · ∇xc)dx = 0, ∀ v ∈ C1(S). (70)

123



Journal of Scientific Computing (2019) 80:475–499 489

Applying the fundamental lemma of calculus of variations [34, p. 15], we find

Δu1 = ∇ · ∇xc(x,m), x ∈ S, (71a)

∇u1 · n̂ = ∇xc · n̂, x ∈ ∂S. (71b)

This is a Neumann problem, and only has a solution if the compatibility condition is satisfied,
which reads ∫∫

S
∇ · ∇xcdx −

∮

∂S
∇xc · n̂ds = 0. (72)

By Gauss’s theorem, this is satisfied automatically. The solution of the Poisson equation with
Neumann boundary condition is unique up to an additive constant. To make the solution
unique, we have added the constraint u1(x1, x2) = 1 at the first discretized left most corner
point. We solve this problem using standard finite differences, and the discretized system is
solved in Matlab using LU decomposition. The second lens surface is calculated from the
relation (19), by substituting the converged mapping m(x) and the first lens surface u1(x),
thus we have

u2(m(x)) = c(x,m(x)) − u1(x) ∀x ∈ S. (73)

The numerical algorithm is summarized as follows. We start the minimization procedure
using the initial guess m0 given by (42) for the discretized source domain S. Subsequently,
we iteratively perform the steps given by (41a), (41b) and (41c). The first and second steps
are minimization procedure for b and P , respectively, and both are performed pointwise.
The third step is a minimization procedure for the mapping m and is performed by solving
two coupled elliptic boundary value problems given by (64) and (65). Next, we update the
matrix C given by (27). Finally, after convergence of the iteration (41), the first lens surface is
computed from the mappingm by solving Poisson problem (71), and the second lens surface
is computed from relation (73).

4 Numerical Results

We apply the algorithm to four test problems to compute c-convex lens surfaces: first, we
map a square with uniform emittance into a circle with uniform illuminance, second, we
map an ellipse with uniform emittance into another ellipse with uniform illuminance, third,
we map a square with uniform emittance into a non-convex (flower) target distribution, and
finally, we challenge our algorithm to map the same distribution into a light pattern given by
a picture on the target screen. The numerical results are verified by our self-built ray tracer
based on the Monte–Carlo method [2].

4.1 From a Square to a Circle

In the first test problem, we design an optical system of lens surfaces that transforms the
uniform emittance of a square into a circle with uniform illuminance. The source domain is
given by S = [−1, 1] × [−1, 1] and the target domain by T = {y ∈ R

2
∣∣ ||y||2 ≤ 1}. The

light source emits a parallel beam of light rays with uniform emittance, i.e.,

f (x) = 1

4
∀ x ∈ S. (74)
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Fig. 2 Square-to-circle problem: the mapping and convergence history

The target plane is at a distance � = 40 from the source plane, andwe have fixed the refractive
index n = 1.5 and the reduced optical path length β = 3π for all numerical problems. The
target T is illuminated by a parallel beam of light rays with uniform illuminance, i.e.,

g(y) =
{

1
π

if y ∈ T ,

0 otherwise.
(75)

Note that the energy conservation condition (20) is satisfied. We discretize the source
domain S uniformly with 200 × 200 grid points. We have a different grid for the boundary,
and found from various experiments that the number of boundary grid points Nb does not
influence the convergence of the algorithm if it is chosen large enough. Since a large value of
Nb does not significantly increase the calculation time, we have chosen Nb = 1000. We also
observed from various experiments that α = 0.65 is a good choice for α to have residuals
in JI and JB close together. Choosing α too large or too small slows down convergence. We
stopped the algorithm after 200 iterations because JI and JB stall. The resulting mapping
after 200 iterations is shown in Fig. 2a, and the convergence history of the algorithm is shown
in Fig. 2b. The algorithm performed efficiently, the boundary and interior functionals for the
circular target have converged well with residuals of approximately 2.35 × 10−7.

4.2 From an Ellipse to Another Ellipse

In the second test case, we apply the algorithm to map a uniform emittance of an ellipse into
another ellipse with uniform illuminance. The source domain is given by S = {(x1, x2) ∈
R
2
∣∣ 4x21 +x22 ≤ 4}, see Fig. 3a, and the target domain by T = {(y1, y2) ∈ R

2
∣∣ y21 +4y22 ≤

4}, i.e., rotate an ellipse distribution to another ellipse over π/2. We have f (x1, x2) =
g(y1, y2) = 1/4π . We use a 200 × 200 grid with 1000 points on the boundary, the reduced
optical path length β = 3π , and the weight parameter α = 0.65. The mapping after 200
iterations is shown in Fig. 3b, and the source distribution in grid format shown in Fig. 3a.
The algorithm exhibits almost the same convergence as shown in Fig. 2b.
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Fig. 3 a An ellipse on the source S and b its image under the mapping m on the target T

4.3 From a Square to a Non-convex (Flower) Target

In the third test case, we test the algorithm for non-convex flower shaped targets. We apply
the algorithm to map a uniform emittance of a square into uniformly illuminated non-convex
targets. The source domain is given by the square [−1, 1] × [−1, 1] with f (x1, x2) = 1/4,
and the target domain is defined in polar coordinates as

ρ(θ) = 1 + e cos(6θ), 0 ≤ θ < 2π, (76)

where ρ(θ) is the distance to the origin and θ is the counterclockwise angle with respect to the
y1-axis in the target plane.We test the algorithm for the four values e ∈ {0.1, 0.15, 0.20, 0.25}
which represent the deviation of the target domain from a convex shape. We use 200 × 200
gridwith 1000 points on the boundary, the reduced optical path lengthβ = 3π , and theweight
parameter α = 0.50. The mappings after 250 iterations are shown in Fig. 4. The residual J
after 250 iterations is 2.73× 10−7, 7.05× 10−6, 3.93× 10−5 and 9.99× 10−5, respectively.
The convergence problem arises for target domains which strongly deviate from a convex
shape, but if the shape deviates mildly from convex, the algorithm performs satisfactorily,
see Fig. 4a–d.

4.4 From a Square to a Picture

The fourth test problem is to design an optical system of lens surfaces which transforms
a square uniform bundle of parallel light rays into a target distribution corresponding to a
given picture. Here, we challenge our algorithm for a picture showing costumes of the Indian
classical dance Bharatanatyam, see Fig. 5. The emittance of the light source is again the same
as defined in (74) and the parameters of the optical system are also the same as defined in
Sect. 4.1. The desired target illumination g(y1, y2) is given by the grayscale test image shown
in Fig. 5. Because the target distribution contains many details, e.g., the pattern of costumes
and jewellery, it provides a challenging test for our algorithm.

Note that the picture is converted into grayscale and contains some black regions, which
results in g(y1, y2) = 0 for some (y1, y2) ∈ T . This would give division by 0 in the least-
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Fig. 4 Non-convex flower shaped target problem: mapping after 200 iterations

Fig. 5 The picture showing costumes of Indian classical dance Bharatanatyam. The original is shown on the
left and the ray trace result is shown on the right. Courtesy Wikipedia

123



Journal of Scientific Computing (2019) 80:475–499 493

Fig. 6 The mapping and its convergence history for the image target

Fig. 7 Freeform surfaces of the
lens for the image target

squares algorithm. Therefore, we have increased the illuminance to 5% of the maximum
value if it is less than this threshold value. We discretized the source S on a 500 × 500 grid,
with 1000 boundary points. The convergence history of the algorithm is shown in Fig. 6b
for α = 0.70. We stopped the algorithm after 150 iterations, because JI and JB did no
longer seem to decrease. The resulting mapping is shown in Fig. 6a, the image details can
be recognized in the grid. The optical system is verified using the ray tracing algorithm
[2]. We ran our ray tracing algorithm for 10 million uniformly distributed random points
on the source to compute the actual illumination pattern produced on the target. The target
illuminance for 10 million rays is plotted in the Fig. 5. The output images is very close to
the corresponding original image, although the image is slightly blurred, but even complex
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details can be identified. The functions u1(x) and u2(y) representing the freeform surfaces
L1 and L2 of the lens, respectively, are shown in Fig. 7. The lens surfaces are convex on their
respective domains and an alternative representation of the mapping can be seen as contour
of grids on the second lens surface.

5 Discussion and Conclusion

We introduced a least-squares method to compute freeform surfaces of an optical system
corresponding to a non-quadratic cost function. The method is an extended version of the
least-squares method, earlier introduced in [7]. Furthermore, we presented a new generic (in
term of cost function) minimization procedure of P for the functional JI. Moreover, we have
shown that the minimization procedure of the mapping m for the total functional J consists
of coupled elliptic PDEs.

We presented the extended least-squares method to compute coupled freeform surfaces of
a lens. Our method can compute freeform surfaces of any optical system corresponding to a
twice continuously differential cost function, which demonstrates the wider applicability of
the method. The ELS-method also shows good performance for a non-convex target domain:
as long as the domain does not deviate too much from a convex shape.

The algorithm is very time and memory efficient, and provides both convex and concave
optical surfaces which makes it very suitable to use for these type of problems. Furthermore,
we have applied the method to a very challenging problem containing the details of the cos-
tumes of the Indian classical dance Bharatanatyam and obtained a high resolution, preserving
details of the original picture.

In future work we would like to apply the algorithm to more complex cost functions, e.g.,
point light sources and far-field problems. Also, we would to explore the applicability of the
Monge–Ampère solver in other fields of science and engineering.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

Appendices

A Solution of the Quartic Equation

We obtain four possible solutions of the quartic equation (53) using Ferrari’s method [36, p.
32]. The key idea is to rewrite the quartic equation as two quadratic equations, and by solving
both we get solutions of the quartic equation. For detailed solution of the quadratic equations
we refer to [7].

Solution of (53) when f > 0f > 0f > 0.
It can be shown that the problem (53) has at least two real roots. For the real symmetric
matrix QS, we can deduce

tr(QS)
2 − 4 det(QS) = (q11 − q22)

2 + 4q2S ≥ 0, (77)
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and using the above relation, we conclude that F(−1) = − tr(QS)
2 < 0 and F(1) =

tr(QS)
2 − 4 det(QS) ≥ 0, and the coefficient of λ4 in the quartic equation (53) is positive.

Which imply that (53) has at least two real roots, more precisely one of them is less than −1
and other one is greater than −1. The solution of (53) are given by

λ1 = −
√

y

2
+

√
− y

2
− a2

2a4
+ a1

2a4
√
2y

, (78a)

λ2 = −
√

y

2
−

√
− y

2
− a2

2a4
+ a1

2a4
√
2y

, (78b)

λ3 =
√

y

2
+

√
− y

2
− a2

2a4
− a1

2a4
√
2y

, (78c)

λ4 =
√

y

2
−

√
− y

2
− a2

2a4
− a1

2a4
√
2y

, (78d)

where y is the solution of a cubic equation in the Ferrari’smethod. The real roots satisfying the
convexity condition (54) are substituted in (52) and (49), yielding the possible minimizers
of HS(p11, p22, p12). Note that we have division by zero in (78) if y = 0. We find that
this happens only when a1 = 0, i.e., q11 = q22 = qS = 0. This is a special case which
corresponds to the possibility λ = 1, which we discuss later.

Solution of (53) when f = 0f = 0f = 0.
If the source density f = 0, the quartic equation (53) reduced to a quadratic equation because
a4 = 0. The solutions are obtained by solving the corresponding quadratic equation, and the
roots are given by

λ =
−a1 ±

√
a21 − 4a2a0

2a2
. (79)

Wecan verify that the discriminant of this quadratic equation is always positive by substituting
the coefficients in (53) in the discriminant, it becomes

a21 − 4a2a0 = (q211 − q22)
2 + 4q2S(q

2
11 + q222)

2 ≥ 0. (80)

Furthermore, also in this case F(−1) = − tr(QS)
2 < 0 and F(1) = tr(QS)

2 −4 det(QS) ≥
0, and consequently it shows that (53) has at least one solution λ > −1.

Solution of (53) when λ = 1λ = 1λ = 1.
If λ = 1, i.e., q11 = q22 and qS = 0, and in this case, we cannot invert the system (51a)–(51c)
for (p11, p22, p12). Therefore we determine the minimum of HS(p11, p22, p12) as follows.
Using qS = 0 and q11 = q22, the minimization (49) simplifies to

argmin
(p11,p22,p12)∈R3

1

2

(
(p11 − q11)

2 + 2p212 + (p22 − q11)
2), (81)

with the conditions (49b) and (49c). By solving this minimization problem we obtained the
following four solutions

p11 = p22 = q11
2

, p12 = ±
√
q211
4

− f

g
det(C), (82a)

or

p11 = p22 = ±
√

f

g
det(C), p12 = 0. (82b)
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For the detailed solution see [7]. Also there exists at least one solution which satisfies the
convexity condition tr(P) ≥ 0.
Solution of (53) when λ = −1λ = −1λ = −1.
If λ = −1, i.e., q11 = −q22. In this case again we can not invert the system (51a)–(51c)
for (p11, p22, p12). We determine the minimizers using a different method. From (51a) and
(51b), we find

p22 = p11 − q11, p12 = qS/2. (83)

Substituting these in (51d), we conclude

p211 − q11 p11 − q2S
4

− f

g
det(C) = 0. (84)

Solving for p11, we find two solutions:

p11 = q11
2

+
√
q211 + q2S + 4 det(C) f /g

2
, (85a)

p12 = qS
2

, (85b)

p22 = −q11
2

+
√
q211 + q2S + 4 det(C) f /g

2
, (85c)

and

p11 = q11
2

−
√
q211 + q2S + 4 det(C) f /g

2
, (86a)

p12 = qS
2

, (86b)

p22 = −q11
2

−
√
q211 + q2S + 4 det(C) f /g

2
, (86c)

which are always real. The second solution satisfies the convexity condition tr(P) ≥ 0.

B Finite Volume Discretisation of the Coupled Elliptic Equations (66)

We can write the differential equation (64a) as

∂ f11
∂x1

+ ∂ f12
∂x2

= ∂r11
∂x1

+ ∂r12
∂x2

, (87)

where

f11 = |c1|2 ∂m1

∂x1
+ c1 · c2 ∂m2

∂x1
, r11 = c1 · p1,

f12 = |c1|2 ∂m1

∂x2
+ c1 · c2 ∂m2

∂x2
, r12 = c1 · p2.

The above equation can be written in the divergence form as

∇ · f 1 = ∇ · r1, (88)
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Fig. 8 The control volume for a cell-centred finite volume method

where, f 1 = ( f11, f12)T and r1 = (r11, r12)T . Integrating Eq. (88) over each A ⊂ S and
using Gauss’s theorem [33, p. 925], we obtain

∮

∂A
f 1 · n̂ds =

∮

∂A
r1 · n̂ds, (89)

where n̂ is the unit outward normal on the boundary ∂A of A. Now, we create a set of
non-overlapping control volumes for the computational grid of the domain S and apply the
cell-centred finite volume method, i.e., grid points are located in the centre of the control
volume.

Let us consider the control volume A ≡ ΩC = [x1,w, x1,e] × [x2,s, x2,n] as shown in
Fig. 8, where x1,w is the x1-value at centre of the western cell face Γw , i.e., x1,w = x1,i−1/2

and approximated as x1,w = (
x1(W ) + x1(C)

)
/2, etc, and x1(C) = x1,i , x1(W ) = x1,i−1,

etc. The finite volume method is used to transform equation (89) to a system of discrete
equations for the centre point C of the control volume ΩC. First, Eq. (89) is applied for the
control volume ΩC. This reduces the equation to one involving only first derivatives. These
first order derivatives are replaced with central difference approximations, for more details
see [35]. Finally, the integral equation (89) can be descretized as follows

aEm1(E) + aWm1(W ) + aNm1(N ) + aSm1(S) + aCm1(C)

+ bEm2(E) + bWm2(W ) + bNm2(N ) + bSm2(S) + bCm2(C) = r1(C),
(90)

where

aE =|c1|2e
h21

, aW = |c1|2w
h21

, aN = |c1|2n
h22

, aS = |c1|2s
h22

,

bE = (c1 · c2)2e
h21

, bW = (c1 · c2)2w
h21

, bN = (c1 · c2)2n
h22

, bS = (c1 · c2)2s
h22

,

aC = − (aE + aW + aN + aS), bC = −(bE + bW + bN + bS),

r1(C) = 1

h1

[
(c1 · p1)e − (c1 · p1)w

] + 1

h2

[
(c1 · p2)n − (c1 · p2)s

]
.
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Similarly, the discrete form of Eq. (65a) is

bEm1(E) + bWm1(W ) + bNm1(N ) + bSm1(S) + bCm1(C)

+ dEm2(E) + dWm2(W ) + dNm2(N ) + dSm2(S) + dCm2(C) = r2(C),
(91)

where

dE =|c2|2e
h21

, dW = |c2|2w
h21

, dN = |c2|2n
h22

, dS = |c2|2s
h22

,

dC = − (dE + dW + dN + dS),

r2(C) = 1

h1

[
(c2 · p1)e − (c2 · p1)w

] + 1

h2

[
(c2 · p2)n − (c2 · p2)s

]
.

Calculation of the above coefficients requires values at the interfaces of the control volumes.
We calculate the interface values using linear interpolation. We solve these linear systems
(90)–(91) iteratively form1 andm2 with boundary conditions (64b)–(65b), usingMATLAB’s
inbuilt function mldivide, and therefore the coupled discrete elliptic equations can be solved
very efficiently.
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