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Abstract
We study the problem of determining through a variational data assimilation approach the
initial condition for a coupled set of nonlinear partial differential equations from which a
model trajectory emerges in agreement with a given set of time-distributed observations.
The partial differential equations describe an idealized coupled atmospheric–ocean model
on a rotating torus. The model consist of the viscous shallow-water equations in geophys-
ical scaling that represents the large-scale atmospheric dynamics coupled via a simplified
but physically plausible coupling to a model that represents the large-scale ocean dynam-
ics and consists of the incompressible two-dimensional Navier–Stokes equations and an
advection–diffusion equation. We propose a variational algorithm (4D-Var) of the coupled
data assimilation problem that is solvable and computable. This algorithm relies on the use
of a variational cost functional that is tailored to the regularity of the coupled model as well
as to the regularity of the observations by means of derivative-based norms. We support this
proposal by developing regularity results for an idealized coupled atmospheric–ocean model
using the concept of classical solutions. Based on these results we formulate a suitable cost
functional. For this cost functional we prove the existence of optimal initial conditions in the
sense of minimizers of the cost functional and characterize the minimizers by a first-order
necessary condition involving the coupled adjoint equations. We prove local convergence of
a gradient-based descent algorithm to optimal initial conditions using second-order adjoint
information. Instrumental for our results is the use of suitable Sobolev norms instead of
the standard Lebesgue norms in the cost functional. The index of the actual Sobolev space
provides an additional scale selective mechanisms in the variational algorithm.
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1 Introduction

Data assimilation aims at blending observational data with a dynamical model of a physical
process. It constitutes a fundamental technique formodelling real-world phenomena. Numer-
ical weather prediction and ocean state estimation are examples of scientific disciplines that
rely on data assimilation. Data assimilation for coupled atmosphere–ocean models, also
known as coupled data assimilation, has recently gained attention (see the report of the
World Meteorogical Organisation WMO [29] and references therein). The main goal of cou-
pled data assimilation is to extend the predictability horizon of weather and climate forecasts.
An important example of such a coupled assimilation problem is the initialization of a cou-
pled atmosphere–ocean model for the purpose of climate prediction on decadal time scales.
The challenges in coupled data assimilation are manifold and comprise for example the for-
mulation of error covariance matrices, or the treatment of vastly different spatio-temporal
scales of the respective model components. The current state of knowledge is summarized
consisely in [29]. The majority of actual approaches applies a strategy based on numerical
experiments using a fully discrete configuration (see e.g. [15,16,30]). Our approach is com-
plementary to this and focuses on the Partial Differential Equations of an idealized coupled
atmosphere–ocean model.

The purpose of this paper is to describe fundamental mathematical properties that need to
be fulfilled by a variational data assimilation algorithm for a coupled atmosphere–ocean sys-
tem such that the corresponding minimization problem is solvable and computable. We aim
to formulate a sound mathematical basis that guarantees a controlled behaviour of a coupled
variational data assimilation algorithm. For this purpose we focus on the formulation of the
4D-Var cost functional. This cost functional is minimized and its critical points determine
the optimal initial conditions of variational data assimilation. The key idea for implementing
our goal is to connect the norms in the cost functional to the regularity theory for the coupled
equations and to the regularity of the observations. Not respecting this connection may lead
to an unpredictable behaviour of the algorithm. If for example the function spaces used in
the background term of the cost functional does not match the function space for which the
coupled equations are well-posed then one searches in the variational optimization for initial
conditions that potentially create an ill-defined model trajectory. Similar reasoning applies to
the observational term of the cost functional. If the gradient of the cost functional, obtained
from a reverse in time integration of the adjoint equations forced by the model-observation
difference, does not reside in the same space as the initial condition this creates ill-defined
gradients that may results in an erratic behaviour in the gradient-based optimization process.
An ill-posed behaviour of the optimization procedure can in principle be compensated by
regularization techniques. Therefore it is important to derive criteria forwell-posed behaviour
and to understand the possible sources of ill-posed optimization in order to design minimally
invasive regularization techniques. To substantiate our arguments we investigate a set of
coupled nonlinear PDE’s and carry out a mathematical analysis of an idealized atmosphere–
ocean model that consists of an atmospheric component, described by viscous shall-water
equations in a geophysical scaling, following [25], and of an ocean component that is given
by the incompressible 2D-Navier–Stokes equations, supplemented by an advection diffusion
equation. The coupling between the atmosphere and the ocean is simplified and done via a
forcing term and not via boundary conditions as it is done in coupled (three-dimensional)
general circulation models. For the idealized coupled atmosphere–ocean PDE considered
here we develop a regularity theory (see Theorem 1). Based on this result we formulate a
variational cost functional that is tailored to the regularity of the underlying equations. For
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this cost functional we prove the existence of minimizers, i.e. the existence of optimal initial
conditions (Theorem 4). We characterize the optimal initial conditions by a necessary adjoint
criterion (Theorem 5) and prove convergence (Theorem 7) of a gradient-based algorithm via
an estimate of the Hessian of the cost functional utilizing second-order adjoint equations of
the coupled model.

For the equations of the idealized atmosphere–ocean model we carry out an elementary
mathematical analysis consisting of a well-posedness and regularity result in the Sobolev
space Hs with s := (si )

4
i=1 ∈ Z

4, si ≥ 3 (see Theorem 1). With this analysis we stay within
the framework of classical solutions and do not use the concept of weak and strong solutions.
The use of classical solutions facilitates the analysis, but excludes relevant phenomena such
as shocks and turbulence, including them requires more sophisticated solution concepts (e.g
[5,35]). Since the focus of this work is not well-posedness per se or optimal regularity but the
relation between regularity/well-posedness of coupled equations to solvability/computability
of the variational data assimilation problem we prefer to stay in the regularity regime of clas-
sical solutions before we relax this condition in later work. We study the regularity of the
associated linearized and adjoint equations and show that the solution of the coupled equations
is differentiable with respect to the initial condition. In accordance with the aforementioned
regularity results we formulate a cost functional which uses Sobolev spaces L2(T ,Hs)1 with
positive as well as negative Sobolev space indices si ∈ Z, (i = 1 . . . 4). The variational
cost functional consists of a observational term and a background term. In the language of
Inverse Problems the background term provides a Tikhonov regularization. For this term we
use a Sobolev space Hs with si ≥ 3, in consistency with the regularity of the underlying
equations. For the observational term the range of—positive or negative—Sobolev space
order is determined by the regularity of model solution and of observations. The physical
effect of including positive Sobolev space indices in the observational term of the cost func-
tional is to fit the model to the observations on small scales, while negative indices exclude
the small scales from the fitting process by means of a filtering process. This implements a
regularity-aware filter capability within the data assimilation algorithm that regulates which
spatial scales are seen by the data assimilation algorithm, while leaving the model dynamics
unaffected. The filter can be adjusted individually for different components of the coupled
state vector via the degree si of the respective Sobolev space. The proposed formulation
of the cost functional is the key to prove existence of minimizers for the variational data
assimilation problem of the coupled equations (Theorem 4) and to show in Theorem 5 that
critical points of the cost functional satisfy an adjoint equation with an observation-based
forcing term that depends also on the specific Sobolev space used. It allows also to prove con-
vergence of a steepest descent algorithm to an optimal initial condition, provided the initial
guess of the iterative algorithm is good enough (Theorem 7). This result uses the regularity of
the second-order adjoint equations. This numerical minimization algorithm shows also that
our Sobolev-metric based approach can easily be incorporated into the standard L2-based
variational data assimilation algorithms.

Derivative-based metrics provide an additional spatial filter mechanism in the data assimi-
lation algorithmwith the objective of emphasizing/de-emphasizing specific scales of individ-
ual components of a multi-component state vector within theminimization procedure.Which
choice of Sobolev space indices for background and observational term of the cost functional
may improve the data assimilation results has to be determined by numerical experiments.
For ocean data assimilation based on the Primitive Equations the results about the global well-

1 The space-time function space L p(T , X) denotes functions from the time interval T into a function space
X whose norm in X is p-times integrable (1 ≤ p ≤ ∞). In standard variational algorithms the space-time
metric L2(T , L2) is used.
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posedness of the Primitive Equations with initial conditions in H1 (see [9]) suggest to apply
at least the H1-norm in the background term rather than the usually chosen L2-norm (cf.
[31]). The choice of the appropriate Sobolev norms for the observational data should depend
on the regularity of the observations. We furthermore note that the Sobolev embedding the-
orem implies that for sufficiently high-order, in our case of two spatial dimensions, s ≥ 2,
one controls additionally also the L2(T , L∞)-norm while at the same time a Hilbert-space
structure is retained that allows to stay in the framework of a least-square problem.

The approach described here has to be supplemented by numerical experiments and our
results provide the basis for such experiments. The purpose of such experiments is to illus-
trate first, what can go wrong if the connection between regularity of model equations and
observations and the norms in the cost functional is lost and what goes right if this connection
is respected. Second, one has to explore the potential of the filter capacity that is provided
by the derivative-based metrics. These experiments are beyond the scope of this paper.

The use of alternative metrics beyond L2(T , L2) is not new in the literature. In [6]
enstrophy-based metrics and Sobolev-type cost functionals were discussed in the context of
turbulence control via boundary forcing for a channel flow with a focus on numerical exper-
iments (see also [33]). We are not aware of a similar study for atmospheric or oceanic data
assimilation. The data assimilation community inAtmosphere andOcean sciences focuses on
another important element of the cost functional, namely the modelling of the observational
and model error covariance matrix (see e.g. [39]) that are often modelled with the intention
of implementing a kind of filtering or scale selection.

Structure of the paper In Sect. 2 we introduce the coupled model and generic data assimi-
lation cost functionals. Section 3 describes the functional setting. We proceed in Sect. 4 with
the analysis of the model equations, its linearization and the adjoint equations. Based on this
analysis we propose in Sect. 5 a specific formulation of the cost functional. We show that the
use of higher-order cost functionals lead to solvable data assimilation problems (Theorem
4) and demonstrate how the modification can be incorporated into a iterative gradient based
optimization algorithms (Theorem 5) and prove in Sect. 6.2 a convergence result for a descent
algorithm (Theorem 7) by second-order adjoint methods. The paper ends with a conclusion
in Sect. 7.

2 The CoupledModel and the Associated Data Assimilation Problem

We are studying an idealized coupled atmosphere–ocean model that is described by the
following equations

Atmosphere:
∂ua

∂t
+ (ua · ∇)ua + 1

Roa
ua⊥ + 1

Roa
∇θa = 1

Rea
�ua, (1)

∂ F̃r
a
θa

∂t
+ 1

Roa
div(ua) = −γ θo + 1

Pea
�θa . (2)

Ocean:
∂uo

∂t
+ (uo · ∇)uo + 1

Roo
uo⊥ + 1

Roo
∇ po = σua + 1

Reo
�uo, (3)

∂θo

∂t
+ (uo · ∇)θo = 1

Peo
�θo, (4)

div(uo) = 0, (5)

with initial conditions

ua(t0) = ua
0, θa(t0) = θa

0 , uo(t0) = uo
0, θo(t0) = θo

0 .
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The state of the system is described by a state vector ψ := (ψa, ψo) with atmospheric
component ψa := (ua, θa) and oceanic component ψo := (uo, θo), where each component
consists of a (vectorial) velocity field ua,uo and a scalar variable θa, θo, respectively. All
functions depend on a two-dimensional space variable and time. For the Coriolis term we
use the notation ua⊥ := (ua

1, ua
2)

⊥ = (−ua
2, ua

1). The coupling functions γ, σ regulate the
strength of the interaction between the two components. Both coupling functions depend on
space and time variables, and vary smoothly in space and time. We write the coupled model
Eqs. (1)–(5) also in the following notation

∂ψ

∂t
+ N (ψ,ψ) + Lψ + Dψ = Cψ,

with initial conditons ψ(t0) = ψ0,

(6)

where N contains the advective terms of the equations, the operator L represents the linear
terms, except the Laplace operator which is described by D.

The coupling is described by the coupling operator C. The physical picture of the
atmosphere–ocean coupling is as follows. The ocean model component consists of a two-
dimensional velocity field and an equation that describes the sea-surface temperature of the
ocean, while the atmospheric component contains a two-dimensional velocity field and an
equation describing the heat content. Both systems are linked together via a simple coupling:
changes in the oceanic sea surface temperature heat or cool the atmosphere, this changes the
atmospheric circulation and consequently the atmospheric winds that drive the ocean. The
atmosphere is affected by the ocean through a thermodynamic effect, while the ocean is influ-
enced by the atmosphere through a dynamic effect. The strength of this coupling is regulated
by the space- and time-dependent coupling functions γ, σ . This simple coupling procedure is
motivated by practice in large-scale climate modelling (see e.g. [14]). This type of coupling
has for example been used to study the El-Nino-Southern Oscillation phenomenon, a climate
mechanism in the tropical Pacific that crucially depends on the atmosphere–ocean interaction
(see e.g. chpt. 7 in [11], or [28]).

The numbersRe, Pe with superindex for the atmospheric and oceanic component denote
the Reynolds and Péclet numbers. The numbers Ro and F̃r in the atmospheric component
denote the Rossby and the Froude number. The Froude number measuring the degree of
compressibility occurs in the atmospheric component only. The atmospheric Eqs. (1)–(5)
arise from the (2D-) shallow water equations after non-dimensionalization as in chpt. 4 of
[25]. If U and L denote a typical velocity and length scale, respectively and H0 represents
the mean height of the fluid and N0 the typical size of the height perturbation, then one
can introduce the following non-dimensional variables to the atmospheric equations x ′ :=
x
L , t ′ := t L

U , u′ := u
U , θ ′ := θ

N0
. We introduce the non-dimensional parameters

Re := LU

νu
, Pe := LU

νθ

, Ro := U

L f
, Fr := U√

gH0
, Θ := N0

H0
, (7)

where νu, νθ denote viscosity and diffusivity parameters, f is the rotation frequency, g
the gravity constant. The Eqs. (1)–(5) are derived after applying the scaling above to the
shallow water equations and using the assumption Ro, Fr << 1, with the notation F̃r :=√

Fr Ro.More details, in particular the convergence of the uncoupled shallowwater equations
to the quasi-geostrophic equations in the vanishing Rossby number limit can be found in
[7,25]. A review of the mathematical theory of shallow-waters equations can be found in
[8], for application in the context Geophysical Fluid Dynamics we refer to [36]. Through
an appropriate choice of the non-dimensional parameters a coupled system (1)–(5) can be
created that consists of a fast and a slow component.
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The model Eqs. (1)–(5) do not describe general circulation models of atmosphere and
ocean but comprise several idealizations and simplifications. First, the fact that the model
is purely horizontal and the vertical axis is absent, excludes vertical dynamics of the atmo-
spheric boundary layer and the oceanic mixed layer that are important for atmosphere–ocean
interaction. Representing the rich dynamics of the two fluids by a state vector that consists
in each case of a velocity field and a tracer variable represents another severe simplification.
Furthermore we do not consider subgrid scale closures and physical parametrizations, and
work with constant coefficients. As a consequence of our model configuration we work with
an idealized coupling that focuses on first-order feedbacks between the two components,
namely the thermal effect of the ocean on the atmosphere and the mechanical energy input of
the atmosphere to the ocean. The heat transfer from the atmosphere to the ocean is on large
scales negligible due to the larger heat capacity of the ocean. The momentum transfer from
the ocean to the atmosphere can also be neglected on the scales under consideration here
(see Remark 1). The coupling takes place via forcing terms and not, as in general circulation
models, via boundary conditions. The complex and highly nonlinear physical behaviour of
the atmosphere–ocean interface is poorly understood (see e.g. [32]). The coupling used here
is clearly not realistic for describing the atmosphere–ocean interface on small scales but it
has proven to be a useful approximation for large scales dynamics. It is physically plausible
within the range of validity of our idealized atmosphere–ocean model, which has approxima-
tion quality for large-scale dynamics but not for small scales. For a description of the basic
physical processes of atmosphere–ocean interaction we refer to [38]. A concise mathematical
description of coupled general circulation models can be found in [21–23].

We now proceed by describing the data assimilation problem for the system (2) in an
abstract manner. Let X be a generic “state space” of solutions of the coupled equations with
a set of initial conditions X0. Let time distributed observations ψobs ∈ Y of the atmosphere
and the ocean be given. These formal definitions will be specified in Sect. 5. Our aim is to
fit a trajectory ψ ∈ X of the atmosphere–ocean model to the observations ψobs ∈ Y by
minimizing the distance between coupled model trajectory and observations using the initial
conditions ψ0 = (ua

0, θ
a
0 ,uo

0, θ
o
0 ) ∈ X0 as a control variable. The coupled data assimilation

problem consists in determining, for given observations ψobs ∈ Y , an initial condition ψ̄0 ∈
X0 such that

J (ψ̄0, ψobs) = min
ψ0∈X0

J (ψ0, ψobs)

and

ψ(ψ̄0) ∈ X satisfies coupled model equations (1)–(5)

with initial condition ψ̄0.

(8)

The cost functional J in (8) is defined as a sum of a background and an observational
term

J (ψ0, ψobs) := Jb(ψ0) + Jobs(ψ0, ψobs). (9)

The observational partJobs of the cost functional measures the distance between the coupled
model state and the observations and is defined by

Jobs(ψ0, ψobs) :=
∫

T
||M[ψ0] − ψobs ||2X (dμR)dt . (10)

HereM denotes the model operator that advances an initial condition ψ0 to the model state
ψ(t) at time t . The observational error covariance operatorR provides a statistical weighting
of the model-observation misfit, according to the quality of the observations. We subsume
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this weighting into the Lebesgue measure and denote the resulting measure by dμR and
the model space supplemented with this measure by X (dμR). The norm in (10) acts on the
spatial variable.

The background term Jb of the cost functional in (9) is defined by

Jb(ψ0) :=Jb(ψ0, ψback) := ||ψ0 − ψback ||2X (dμB)

=〈B(ψ0 − ψback), ψ0 − ψback
〉
X (dx)

,
(11)

whereψback is a given background state. The background state incorporates prior information
about the system and can for example be provided by a previous forecast. The model error
covariance operator B provides a weighting according to the estimated background error
and is assumed to be linear, bounded and positive definite. We do not address the important
problem of modelling error statistics but assume these error covariance operators as given
and that the error covariance operators preserve the functional space of model solutions and
observations [see 26].

The data assimilation problem (8) and the cost functional (9)–(11) has been stated in a
formal manner. In order to arrive at a sensible definition that provides the basis of a compu-
tational algorithm we have to give the abstract notion of “state space” X , “space of initial
conditions” X0 and “observation space” Y a precise meaning. This will be done in Sect. 5,
relying on the mathematical analysis of the coupled model in Sect. 4, for which the next
section provides that mathematical framework.

3 Functional Setting

Domain and Boundary Conditions The spatial domain is a two dimensional square Ω :=
(0, L) × (0, L) with L ∈ R

+. We assume periodic boundary conditions.
By W s(Ω) we denote the L2-Sobolev space of order s ∈ Z+ ∪ {0} that is defined as the

set of functions f ∈ L2(Ω) such that its derivatives in the distributional sense Dα f (x, y) =
∂

α1
x ∂

α2
y f (x, y) are in L2(Ω) for all |α| ≤ s, with multi-index α = (α1, α2) ∈ Z

2+, and degree
|α| := α1 + α2. The scalar product in W s(Ω) is defined by

〈
f , g

〉
W s :=

∑
|α|≤s

∫
Ω

Dα f · Dαg dx . (12)

The vectorial counterpart of the Sobolev space W s(Ω) is denoted by Ws(Ω). More infor-
mation about Sobolev spaces can be found for example in [2,12,27]. We define

V := { f : R2 → R : f is a trigonometric polynomial with period L,

and
∫

Ω

f dx = 0}, (13)

and its vector-valued equivalent

V := {u : R2 → R
2 :u is a vector-valued trigonometric polynomial with

period L, and
∫

Ω

u dx = 0}. (14)
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We define now the following function spaces

Hs(Ω) := the closure of V in W s(Ω),

Hs(Ω) := the closure of V in Ws(Ω),

Hs
div(Ω) := {u ∈ Hs(Ω) : div(u) = 0}.

(15)

The dual Sobolev space H−s(Ω) consists of linear functional on f ∈ H−s(Ω) cand an be
identified with a distribution (cf. [27] Sect. 1.1.15)

f = g +
∑
|α|=s

(−1)sDαgα, with g, gα ∈ L2(Ω), (16)

and the dual pairing between f ∈ H−s(Ω), h ∈ Hs(Ω) can be expressed by

〈
f , h

〉
H−s :=

∫
Ω

gh dx +
∫

Ω

∑
|α|=s

(−1)s gαDαh dx . (17)

Functions θ ∈ Hs(Ω) and u ∈ Hs(Ω) or u ∈ Hs
div(Ω) can be decomposed into an orthonor-

mal basis of eigenfunctions wn(x) := e
2π in·x

L of the Laplace operator such that (see e.g. [10])

u(x) =
∞∑

n∈Z2\{0}
ûnwn(x), and θ(x) =

∞∑
n∈Z2\{0}

θ̂nwn(x). (18)

An equivalent characterization for θ ∈ Hs(Ω) in terms of Fourier coefficients that is valid
for integer exponents s ∈ Z, i.e. including the dual space of Hs(Ω), reads as follows

θ ∈ Hs(Ω) ⇔
∑

n∈Z2\{0}
|n|2s |θ̂n |2 < ∞. (19)

A scalar product in Hs(Ω) in terms of the Laplacian that is equivalent to (12), is given by

〈
f , g

〉
Hs =

∫
Ω

∑
|α|=s/2

f �αg dx, (20)

and for the dual pairing between f ∈ H−s(Ω), h ∈ Hs(Ω) in (17)

〈
f , h

〉
H−s =

∫
Ω

∑
|α|=s/2

gα�αh dx . (21)

With this preparations we define now for s = (sua , sθa , suo , sθo) ∈ Z
4 the Sobolev space of

state vectors by

Hs(Ω) := Hsua (Ω) × Hsθa (Ω) × Hsuo

div(Ω) × Hsθo (Ω), (22)

with the norm of ψ = (ua, θa,uo, θo) ∈ Hs given by

||ψ ||Hs := (||ua ||2Hsθa + ||θa ||2Hsθa + ||uo||2
H

s
θ0

+ ||θo||2Hsθo )1/2. (23)

The notation s ≤ t for twomulti-indices s = (sua , sθa , suo , sθo), t = (tua , tθa , tuo , tθo) is to be
understood as relation between the components, i.e. si ≤ ti for all i . Similarly are expressions
such as s + 1 are defined as si + 1 for all components i . We use an analogous notation for
the Lebesgue spaces and denote by L2,L2,L2 the sets of square-integrable scalar functions,
vector fields and state vectors, respectively.
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Lemma 1 (Calculus Inequality, [19]) Let s ∈ Z+ ∪ {0}. Assume f , g ∈ Hs(Ω) ∩ L∞(Ω).
Then for any multi-index α ∈ Z

2+, |α| ≤ s, we have

i) ||Dα( f g)||L2 ≤ Cs
(|| f ||L∞||Ds g||L2 + ||g||L∞||Ds f ||L2

)
,

ii) ||Dα( f g) − f Dαg||L2 ≤ Cs
(||∇ f ||L∞||Ds−1g||L2 + ||g||L∞||Ds f ||L2

)
.

Lemma 2 (Sobolev Inequality, [26,27]) Let s ∈ Z+ with s ≥ 2, k ∈ Z+ ∪ {0}. Then
Hs+k(Ω) ⊆ Ck(Ω), and there exists a constant Ks such that for all f ∈ Hs+k(Ω)

max
x∈Ω

∑
|α|≤k

|Dα f (x)| ≤ Ks || f ||Hs+k .

Lemma 3 (Interpolation inequality, [2]) Let s ∈ Z+. There exists a constant Cs such that for
all f ∈ Hs(Ω) and for 0 < s′ < s

|| f ||Hs′ ≤ Cs || f ||1−s′/s
L2 || f ||s′/s

Hs

Lemma 4 (Agmon’s inequality, [10]) There exists a constant CA > 0 such that for all
f ∈ H2(Ω) ∩ H1

0 (Ω)

|| f ||L∞(Ω) ≤ CA|| f ||1/2
H1(Ω)

|| f ||1/2
H2(Ω)

. (24)

Lemma 5 (Poincaré inequality, [10]) There exists a constant CP > 0 such that for all f ∈
H1(Ω).

|| f ||L2 ≤ CP ||∇ f ||L2 . (25)

Lemma 6 (Gronwall inequality, [12]) Let f , g and h be non-negative functions in L1
loc(T ,R.

Assume that f is absolutely continuous on T and that for almost every t ∈ T

d f

dt
≤ g f + h.

Then f ∈ L∞
loc(T ,R) and

f (t) ≤ f (0)exp
( ∫ t

0
g(s) ds

) +
∫ t

0
h(s)exp

( ∫ t

s
g(y) dy

)
ds.

Young inequality: ab ≤ 1
2ε a2 + ε

2b2 for a, b ∈ R and ε > 0.

General Assumption on Covariance Operators: The error covariance operators B,R pre-
serve the space of their respective arguments, i.e.

if ξ ∈ Hs then Bξ ∈ Hs, and Rξ ∈ Hs. (26)

4 Mathematical Analysis of the CoupledModel

In this section we provide the regularity results of the coupled model Eqs. (1)–(5) and of
the associated linearized and adjoint equations. This enables us to prove the differentiability
of the model solution with respect to the initial conditions (Lemma 7). These results are
instrumental for the formulation of the data assimilation cost functional in Sect. 5.

123



Journal of Scientific Computing (2019) 79:748–786 757

4.1 Well-Posedness of the Coupled Equations

Definition 1 Let s ∈ Z
4. A state vector ψ := (ua, θa,uo, θo) is said to be a regular solution

of(1)–(5) (or equivalently of (6)) on the time interval T := [t0, t1] if it satisfies(1)–(5) on
Ω × T with initial condition ψ(t0) = ψ0 and if

ψ ∈ C(T ,Hs(Ω)) ∩ C1(T ,Hs−2(Ω)). (27)

The following theorem is the main result of this section.

Theorem 1 (Well-posedness of coupled model) Let the time interval T := [t0, t1] be given
and let the initial condition of the coupled Eqs. (1)–(5) satisfy ψ0 ∈ Hs(Ω) with s =
(sua , sθa , suo , sθo) ∈ Z

4+ such that all components of s are greater or equal than 3. Suppose

the coupling functions satisfy σ ∈ C(T ,Hso
u (Ω)), γ ∈ C(T ,Hsa

θ (Ω)). Then there exists on
the time interval T a regular solution ψ of (1)–(5) in the sense of Definition 1. The solution
is unique and depends continuously on the initial condition.

Proof Step 1: Existence and Uniqueness of Galerkin Approximation.
The Galerkin approximation to the coupled Eqs. (1)–(5) reads as follows

∂ua
m

∂t
+ Pm

[
(ua

m · ∇)ua
m

] + 1

Roa
ua⊥

m + 1

Roa
∇θa

m = 1

Rea
�ua

m,

∂ F̃r
a
θa

m

∂t
+ 1

Roa
div(ua

m) = −γ θo
m + 1

Pea
�θa

m,

∂uo
m

∂t
+ Pm[(uo

m · ∇)uo
m] + 1

Roo
uo⊥

m + 1

Roo
∇ po

m = σua
m + 1

Reo
�uo

m,

∂θo
m

∂t
+ Pm

[
(uo

m · ∇)θo
m

] = 1

Peo
�θo

m,

(28)

here the Galerkin projections ua
m, θa

m for the atmospheric component are given as truncation
of the expansions (18)

ua
m(x, t) := Pmua(x, t) :=

∑
n∈{Z2\{0},|n|≤m}

ûa
n(t)wn(x)

and θa
m(x, t) := Pmθa(x, t) :=

∑
n∈{Z2\{0},|n|≤m}

θ̂n(t)wn(x),
(29)

with wn given by (4). The Galerkin system (28) has periodic boundary conditions and its
initial condition is given by

ua
m(t0) = ua

0, θa
m(t0) = θa

0 , U o
m(t0) = uo

0, θo
m(t0) = θo

0 . (30)

For the oceanic component an analogous expansion holds. The corresponding operator equa-
tion for the state vector ψm := (ua

m, θa
m,uo

m, θo
m) is obtained by replacing ψ in (6) by ψm ,

with initial condition ψ(t0) = (ua
m(t0), θa

m(t0),uo
m(t0), θo

m(t0)).
The system (28) is a ordinary differential equation system with constant coefficients and

a quadratic nonlinearity. By standard arguments one can show that this system is a Lipschitz
continuous mapping from Hs

m into itself and then it follows from the Picard Theorem that a
unique solution ψm ∈ C1([t0, tm

1 ],Hs) of (28) exists on time intervals [tm
0 , tm

1 ] that depend
on m.
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Step 2: Hs-Estimate Applying the derivative operator Dα to the Galerkin system (28)
yields for the atmospheric component

∂Dαua
m

∂t
+ (ua

m · ∇)Dαua
m + 1

Roa
Dαua⊥

m + 1

Roa
∇Dαθa

m = 1

Rea
�Dαua

m + Ga
u(α),

F̃r
a ∂Dαθa

m

∂t
+ 1

Roa
div(Dαua

m) = −Dα(γ θo
m) + Ga

θ (α) + 1

Pea
�Dαθa

m,

(31)

where the nonlinear terms on the right-hand side are defined by

Ga
u(α) := ua

m · ∇Dαua
m − Dα[ua

m · ∇ua
m],

Ga
θ (α) := ua

m · Dα∇θa
m − Dα[ua

m · ∇θa
m].

Taking the L2-inner product of (31) with (Dαua
m,Dαθa

m), integrating by parts and adding the
two equations yields

1

2

d

dt

{||Dαua
m ||2L2 + F̃r

a ||Dαθa
m ||2L2

} + 1

Rea
||Dα∇ua

m ||2L2 + 1

Pea
||Dα∇θa

m ||2L2

= −
∫

Ω

ua
m · ∇ |Dαua

m |2
2

dx −
∫

Ω

1

Roa
∇Dαθa

m · Dαua
m dx

−
∫

Ω

1

Roa
div(Dαua

m) · Dαθa
m dx

−
∫

Ω

Dα(γ θa
m) · Dαθo

m dx +
∫

Ω

Ga
u(α) · Dαua

m dx +
∫

Ω

Ga
θ (α) · Dαθa

m dx,

(32)

where the Coriolis term vanishes due to
〈Dαua⊥

m Dαua
m

〉
L2 = 0. For the coupling term we

derive with the inequalities of Cauchy–Schwarz, Poincaré and with Lemma 2
∣∣∣∣
∫

Ω

Dα(γ θa
m) · Dαθo

m dx

∣∣∣∣ ≤
∫

Ω

|γDαθa
m · Dαθo

m | dx +
∫

Ω

|θa
mDαγ · Dαθo

m | dx

≤ KsCP ||γ ||
Hsa

θ
||Dαθo

m ||L2 ||Dαθa
m ||L2 .

(33)

After integrating the second term on the right hand side of (32) by parts and invoking the
periodic boundary condition, this term cancels with the third term on the right hand side and
we obtain with (33) and the Young inequality the following estimate

1

2

d

dt

{||Dαua
m ||2L2 + F̃r

a ||Dαθa
m ||2L2

} + 1

Rea
||Dα∇ua

m ||2L2 + 1

Pea
||Dα∇θa

m ||2L2

≤ |
∫

Ω

div(ua
m)

|Dαua
m |2

2
dx | + 1

2Pea
||Dαθa

m ||2L2 +
K 2

s C2
P Pea ||γ ||2

Hsa
θ

2
||Dαθo

m ||2L2

+ ||Ga
u(α)||L2 ||Dαua

m ||L2 + ||Ga
θ (α)||L2 ||Dαθa

m ||L2 .

(34)
For the nonlinear forcing terms we obtain with Lemma 1 for all α ∈ Z

2+ with |α| ≤ sua

||Ga
u(α)||L2 ||Dαua

m ||L2 ≤ Cs ||∇ua
m ||L∞||ua

m ||Hsua ||Dαua
m ||L2 , (35)

and
||Ga

θ (α)||L2 ||Dαθa
m ||L2

≤ Cs(||∇ua
m ||L∞||Ds−1∇θa

m ||L2 + ||∇θa
m ||L∞||Dsua

m ||L2)||Dαθa
m ||L2 .

(36)
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From (35), (36) we obtain for (34)

d

dt

{||Dαua
m ||2L2 + F̃r

a ||Dαθa
m ||2L2

} + 1

Rea
||Dα∇ua

m ||2L2 + 1

Pea
||Dα∇θa

m ||2L2

≤ 2||div(ua
m)||L∞||Dαua

m ||2L2 + K 2
s C2

P Pea ||γ ||2
Hsa

θ
||Dαθo

m ||2L2

+ 2Cs
(||∇ua

m ||L∞ + ||∇θa
m ||L∞

)(||Dsua
m ||L2 ||Dαua

m ||L2 + ||Dsθa
m ||L2 ||Dαθa

m ||L2

+ ||Dsua
m ||L2 ||Dαθa

m ||L2
)
.

(37)
We sum over all derivatives Dα such that the degree |α| of any derivative is less or equal
to the degree of the corresponding s-component. This implies with the Young inequality the
following upper bound for the atmospheric state ψa = (ua, θa)

d

dt
||ψa

m ||2Hs + 1

Rea
||∇ua

m ||2
Hsa

u
+ 1

Pea
||∇θa

m ||2
Hsa

θ
≤ C ||divψa

m ||L∞||ψa
m ||2Hs

+ C K 2
s C2

P Pea ||γ ||2
Hsa

θ
||θo

m ||2Hs .

(38)
For the oceanic state we proceed analogously to the atmosphere. After applyingDα to (28)we
take the L2-inner product with (Dαuo

m,Dαθo
m), integrate by parts and add the two equations.

This yields

1

2

d

dt

{||Dαuo
m ||2L2 + ||Dαθo

m ||2L2

} + 1

Reo
||Dα∇uo

m ||2L2 + 1

Peo
||Dα∇θo

m ||2L2

= −
∫

Ω

uo
m · ∇ |Dαuo

m |2
2

dx −
∫

Ω

uo
m · ∇ |Dαθo

m |2
2

dx +
∫

Ω

σDαua
m · Dαuo

m dx

+
∫

Ω

Go
u(α) · Dαua

m dx +
∫

Ω

Ga
θ (α) · Dαθa

m dx

≤
∫

Ω

Go
u(α) · Dαua

m dx +
∫

Ω

Ga
θ (α) · Dαθa

m dx + KsCP ||σ ||Hso
u ||Dαua

m ||L2 ||Dαuo
m ||L2 ,

(39)
where the pressure and the two gradient terms in the second line vanish after integration by
part due to incompressibility and the periodic boundary conditions. The coupling term in
the velocity equations has been treated analogously to (33) with the temperature variable θa

m
replaced by the velocity variable uo

m∣∣∣∣
∫

Ω

Dα(σua
m) · Dαuo

m dx

∣∣∣∣ ≤
∫

Ω

|σDαua
m · Dαuo

m | dx +
∫

Ω

|ua
mDασ · Dαuo

m | dx

≤ KsCP ||σ ||Hso
u ||Dαuo

m ||L2 ||Dαua
m ||L2 .

(40)

With the estimates (35) and (36) for Go
u(α) and Go

θ (α) respectively we arrive analogously to
the atmospheric estimate at the following inequality

d

dt
||ψo

m ||2Hs + 1

Reo
||∇uo

m ||2
Hso

u
+ 1

Peo
||∇θo

m ||2
Hso

θ

≤ C ||divψo
m ||L∞||ψo

m ||2Hs + C K 2
s C2

P Reo||σ ||2
Hso

u
||ua

m ||2
Hsa

u
.

(41)

Adding (38) and (41) results in

d

dt
||ψm ||2Hs + 1

R
(||∇ua

m ||2
Hsa

u
+ ||∇uo

m ||2
Hso

u
) + 1

P
(||∇θa

m ||2
Hsa

θ
+ ||∇θo

m ||2
Hso

θ
)

≤ C ||divψm ||L∞||ψm ||2Hs + C K 2
s C2

P (||γ ||2
Hsa

θ
Pea + ||σ ||2

Hso
u

Reo)||ψm ||2Hs ,

(42)
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where 1
R := min{ 1

Rea , 1
Reo }, 1

P := min{ 1
Pea , 1

Peo }. The inequality is still true if we neglect
the positive gradient-terms on the left hand side

d

dt
||ψm ||2Hs ≤ C ||divψm ||L∞||ψm ||2Hs + C K 2

s C2
P (||γ ||2

Hsa
θ

Pea + ||σ ||2
Hso

u
Reo)||ψm ||2Hs .

(43)
We now make use of our assumption that all components of the state vector belong to a
Sobolev spaceHs and that all component of s are greater or equal to 3. This allows to apply
Lemma 2 (with s = 2, k = 1) to the divergence term in (42) and it follows

d

dt
||ψm ||2Hs ≤ Cs ||ψm ||3Hs + C K 2

s C2
P

(
||γ ||2

Hsa
θ

Pea + ||σ ||2
Hso

u
Reo

)
||ψm ||2Hs , (44)

where the constant Cs from Lemma 2 does depend on s but not on m. Hence

d

dt
||ψm ||Hs ≤ Cs ||ψm ||2Hs + Ks

(
||γ ||2

Hsa
θ

Pea + ||σ ||2
Hso

u
Reo

)
||ψm ||Hs ,

and with the Young inequality

d

dt
||ψm ||Hs ≤ (Cs + 1)||ψm ||2Hs + M, (45)

with M := C K 2
s C2

P (||γ ||2
Hsa

θ
Pea + ||σ ||2

Hso
u

Reo). Integrating this from t0 to t1 yields2

arctan

√
(Cs + 1)

M
||ψm(t1)||Hs − arctan

√
(Cs + 1)

M
||ψm(t0)||Hs ≤ √

(Cs + 1)M . (46)

We chose now t1 > t0 such that the following condition is satisfied

√
Cs Mt1 ≤ π

2
− arctan

√
Cs

M
||ψ0||Hs . (47)

A t1 with this property exist, because the right-hand-side of (47) is positive. From (46) follows√
(Cs + 1)

M
||ψm(t1)||Hs ≤ tan

{√
(Cs + 1)

M
t1 + arctan

√
(Cs + 1)

M
||ψm(t0)||Hs

}
. (48)

With (30) follows√
(Cs + 1)

M
||ψm(t1)||Hs ≤ tan

{√
(Cs + 1)

M
t1 + arctan

√
(Cs + 1)

M
||ψ0||Hs

}
. (49)

Since the upper bound is independent on m, we have thus proven that the sequence (ψm)m is
uniformly bounded in L∞([t0, t1],Hs), where the endpoint t1 satisfies (47). It follows that for
each m the solutions ψm of the Galerkin system do have a joint interval of existence [t0, t1].
The boundedness of (ψm)m establishes the existence of a subsequence (ψk)k that converges
weakly in L2(T ;Hs) to a ψ ∈ L2(T ;Hs). According to (49) it holds that ψ ∈ L∞(T ;Hs).

Step 3: Estimate on the time derivative.
The uniform boundedness of (ψm)m in L2(T ;Hs) implies together with (45) that ( dψm

dt )m

is uniformly bounded in L2(T ;Hs). The sequence (
dψm

dt )m is in particular uniformly bounded
in L2(T ,L2) and in L2(T ;H−s). The last fact follows from the continuous injection Hs ⊆
L2 ⊂ H−s .

Step 4: The limit satisfies ψ ∈ C(T ,Hs).

2 The argument that leads to (48) follows [10], see Sect. 11, (11.10).
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The boundedness of (ψm)m in L2(T ;Hs) and of (
dψm

dt )m in L2(T ,L2) implies with
the Aubin compactness theorem (cf. [10], Lemma 8.2) that a subsequence (ψk)k of (ψm)m

exists that converges strongly in L2(T ,L2) and weakly in L2(T ;Hs) to the limit ψ ∈
L2(T ,Hs). We consider the (ψk − ψ), and denote an arbitrary component of this difference
by ( f (i)

k − f (i)), with i = 1 . . . 4. From Lemma 3 applied to the components ( f (i)
k − f (i))

of the difference (ψk − ψ) follows that for all s′
i < si and t ∈ T

|| f (i)
k (t) − f (i)(t)||Hsi

′ ≤ Cs || f (i)
k (t) − f (i)(t)||1−s′

i /si

L2 || f (i)
k (t) − f (i)(t)||s′

i /si

Hsi . (50)

From (50) we derive with the convergence of (ψk)k in L2(T ,L2) and with the boundedness
in L2(T ,Hs) the (strong) convergence of (ψk)k in C(T ;Hs′) for all s′ < s. We now show
that ψ ∈ C(T ;Hs). The strong convergence in C(T ;Hs′) and the density of H−s′ in H−s

for s′ < s imply for all φ ∈ H−s′ that

lim
k→∞

〈
ψk(·, t), φ

〉
L2 = 〈

ψ(·, t), φ
〉
L2 . (51)

This proves continuity in the weak sense, i.e. ψ ∈ Cw(T ;Hs). The weak continuity implies
for τ ∈ [t0, t1]

lim
τ→t0+

inf ||ψ(·, τ )||Hs ≥ ||ψ0||Hs . (52)

From (49) follows
lim

τ→t0+
sup ||ψ(·, τ )||Hs ≤ ||ψ0||Hs . (53)

From (52) and (53) we obtain continuity of the Hs-norm of the solution at initial time

lim
τ→t0+

||ψ(·, τ )||Hs = ||ψ0||Hs . (54)

From (42) we get after integration over T = [t0, t1]∫ t1

t0

1

R
(||∇ua

m(s)||2Hs + ||∇uo
m(s)||2Hs ) + 1

P
(||∇θa

m(s)||2Hs ||∇θo
m(s)||2Hs ) ds

≤ ||ψm(t0)||2Hs + Cs

∫ t1

t0
||ψm(s)||2Hs ds + K 2

s (||γ ||2
Hsa

θ
Pea + ||σ ||2

Hso
u

Reo)2(t1 − t0).

(55)
From (49) follows that the right hand side of (55) is bounded independent from m. This
implies that ψ ∈ L2(T ,Hs+1). Consequently there exists a set E ⊆ T of Lebesgue-measure
zero such that for all τ ∈ T \E it holds that ψ(·, τ ) ∈ Hs+1. This implies that for all
δ > 0 there exists a t∗0 < δ such that ψ(·, t∗0 ) ∈ Hs+1. If we use ψt∗0 := ψ(·, t∗0 ) as initial
condition we can repeat all the arguments of our proof to establish the existence of a solution
ψ̃ ∈ C([t∗0 , t∗1 ],Hs∗), with s∗ < s + 1. The two solutions ψ, ψ̃ coincide on their joint
interval of existence [t0, t1] ∩ [t∗0 , t∗1 ]. We obviously have for the two endpoints t1 ≤ t∗1 and
hence ψ, ψ̃ coincide on [t∗0 , t1]. Since δ > 0 was arbitrary we have ψ ∈ C((t0, t1],Hs) and
combined with the continuity at t0 (see (54)) it follows that ψ ∈ C([t0, t1],Hs).

Step 5: Existence Global in Time
Let [t0, t1] be the maximal interval of existence of the solution ψ . If we assume that

t1 < ∞ then this implies that

lim
t→t1+

sup ||ψ(t)||Hs = ∞.

This contradicts ψ ∈ C(T ,Hs). Therefore t1 = ∞ and the solution exists globally in time.
��
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Remark 1 (Coupling Variants) Some variants of coupling our atmosphere and ocean equa-
tions can be included in our analysis. The atmospheric wind forcing term σua in the oceanic
velocity equation in (1)–(5) can be modified into σ(ua − uo) without significantly changing
the proof of Theorem 1. This can immediately be seen from (40).

A second variant that can easily be incorporated is to include heat transfer from atmosphere
to ocean andmomentum transfer from ocean to atmosphere. The additional term κθa for heat
transfer can be added to the right-hand side of the ocean heat equation in (1)–(5) and the term
λuo for the momentum transfer to the right-hand side of the atmospheric velocity equation,
where κ, λ are sufficiently smooth coupling functions. These changes can be includedwithout
altering essentially the proof of Theorem 1.

4.2 Linearized, Adjoint Coupled Equations and Differentiability

We linearize the coupled model equations around a solution ψ = (ψa, ψo) of (1)–(5). The
resulting model equations (also referred to as “tangent linear model”) are given by

Atmosphere:
∂U a

∂t
+ (ua · ∇)U a + (U a · ∇)ua + 1

Roa
U a⊥ + 1

Roa
∇Θa

= 1

Rea
�U a + Fa

U ,

∂ F̃r
a
Θa

∂t
+ 1

Roa
div(U a) = −γΘo + 1

Pea
�Θa + Fa

Θ.

Ocean:
∂U o

∂t
+ (uo · ∇)U o + (U o · ∇)uo + 1

Roo
U o⊥ + 1

Roo
∇ Po

= σU a + 1

Reo
�U o + Fo

U ,

∂Θo

∂t
+ (U o · ∇)θo + Θo · ∇uo = 1

Peo
�Θo + Fo

Θ,

div(U o) = 0,

with initial conditions U a(t0) = U a
0 ,Θa(t0) = Θa

0 , U o(t0) = U o
0 ,Θo(t0) = Θo

0 ,

(56)

where F := (Fa
U , Fa

Θ, Fo
U , Fo

Θ) denotes the forcing of the linearized equations. In analogy
to (6) we write the linearized equations of the (linear) state vector Ψ := (U a,Θa, U o,Θo)

in the following form

∂Ψ

∂t
+ N ′[ψ](Ψ ) + LΨ + DΨ = C̄(Ψ a, Ψ o) + F,

with initial conditions Ψ (t0) = (U a(t0),Θ
a(t0), U o(t0),Θ

o(t0)),
(57)

where the linear operators L includes pressure gradient and Coriolis force, D the dissipation
and N ′ the linearization of the advective operator.

The next theorem establishes a regularity result about the linearized equations. The proof
is based on the energy method and classical inequalities.

Theorem 2 (Regularity of Linearized Equations) Let the time interval T := (t0, t1] be given
and let s = (sua , sθa , suo , sθo) ∈ Z

4+ such that all components of s are greater or equal than 3.
Let the initial condition of the coupled Eqs. (1)–(5) satisfy ψ0 ∈ Hs(Ω). Assume furthermore
that the coupling functions satisfy σ ∈ C(T ,Hso

u (Ω)), γ ∈ C(T ,Hsa
θ (Ω)). Suppose the

initial condition of the linearized coupled equations satisfies Ψ0 ∈ Hs(Ω) and the forcing
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F := (Fa
U , Fa

Θ, Fo
U , Fo

Θ) ∈ L2(T ,Hs−1) × L2(T , Hs−1) × L2(T ,Hs−1) × L2(T , Hs−1).
Then (56) has a unique solution on the time interval T with the properties

Ψ ∈ C(T ,Hs) ∩ L2(T ,Hs+1).

The state vector Ψ of (56) satisfies

||Ψ (t)||2Hs ≤ ||Ψ0||2Hse

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(y)||2
Hso

u

)
−C−1

P ν∗ dy

+ C
∫ t

t0

[
(Pea + Peo)||FΘ ||2Hs−1 + (Rea + Reo)||FU ||2Hs−1

]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy

(58)

where Ms(t) := M(||ψ(t)||Hs , Rea, Reo, Pea, Peo) is a bounded function on T , ν∗ :=
min{ 1

Rea , 1
Reo , 1

Pea , 1
Peo } and where ||FU ||2Hs−1 := ||FUa ||2

Hsa
u −1 + ||FU o ||2

Hso
u −1 and

||FΘ ||2
Hs−1 := ||FΘa ||2

Hsa
u −1 + ||FΘo ||2

Hso
u −1 .

Proof The Galerkin approximation to the atmospheric component in (56) reads as follows

∂U a
m

∂t
+ (ua · ∇)U a

m + (U a
m · ∇)ua + 1

Roa
U a⊥

m + 1

Roa
∇Θa

m = 1

Rea
�U a

m + Fa
U ,

∂ F̃r
a
Θa

m

∂t
+ 1

Roa
div(U a

m) = −γΘo
m + 1

Pea
�Θa

m + Fa
Θ.

(59)

For the Hs- estimate we apply Dα to (59), multiply by DαΨm and integrate over the spatial
domain. If we now add velocity and scalar equations and integrate by parts, the gradient term
of the velocity equation cancels with the divergence term in the θ -equation

1

Roa

∫
Ω

Dα(∇Θa
m) · DαU a

m dx = − 1

Roa

∫
Ω

Dαdiv(U a
m) · DαΘa

m dx .

This implies that it is sufficient to consider the following inequality

1

2

d

dt
(||DαU a

m ||L2 + F̃r
a ||DαΘa

m ||L2) + 1

Rea
||∇DαU a

m ||2L2 + 1

Pea
||∇DαΘa

m ||2L2

≤ 〈Dα[(ua · ∇)U a
m],DαU a

m

〉
L2 + 〈Dα[(U a

m · ∇)ua],DαU a
m

〉
L2

− 〈Dα(γΘo
m),DαΘa

m

〉
L2 + 〈Dα Fa

Θ,DαΘa
m

〉
L2 + 〈Dα Fa

U ,DαU a
m

〉
L2 .

(60)

We proceed by estimating all terms on the right hand side of (60) in terms of the corresponding
Sobolev norm. The first term on the right-hand side is estimated with the inequality of
Cauchy–Schwarz, Lemmas 1, 2 and Theorem 1

∫
Ω

Dα[(ua · ∇)U a
m] · DαU a

m dx ≤ ||Dα[(ua · ∇)U a
m]||L2 ||DαU a

m ||L2

≤ Cs{||ua ||L∞||Ds∇U a
m ||L2 + ||Dsua ||L2 ||∇U a

m ||L∞}||DαU a
m ||L2

≤ Cs Ks ||ua ||Hsa
u ||∇U a

m ||Hsa
u ||DαU a

m ||L2

≤ Ns ||∇U a
m ||Hsa

u ||U a
m ||Hsa

u ,

(61)

where Ns := Cs Ks ||ua
m ||Hsa

u and ua
m ∈ L∞(T ;Hsa

u ) according to Theorem 1. For the second
term on the right-hand-side of (60) we use integration by parts and the periodic boundary
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conditions, and we find with the Cauchy–Schwarz inequality, Lemmas 1 and 2∫
Ω

Dα[(U a
m · ∇)ua] · DαU a

m dx = −
∫

Ω

Dα−1[(U a
m · ∇)ua] · Dα+1U a

m dx

≤ ||Dα−1[(U a
m · ∇)ua]||L2 ||Dα+1U a

m ||L2

≤ Ks ||Dα−1[(U a
m · ∇)ua]||L2 ||∇U a

m ||Hsa
u

≤ Cs
(||U a

m ||L∞||Ds−1∇ua ||L2 + ||∇ua ||L∞||Ds−1U a
m ||L2

)||∇U a
m ||Hsa

u

≤ Cs Ks ||ua ||Hsa
u ||U a

m ||Hsa
u ||∇U a

m ||Hsa
u

≤ Ns ||∇U a
m ||Hsa

u ||U a
m ||Hsa

u .

(62)

For the forcing terms in (60) we integrate by parts3 and use the inequality of Cauchy–Schwarz〈Dα Fa
Θ,DαΘa

m

〉
L2 + 〈Dα Fa

U ,DαU a
m

〉
L2

≤ ||Dα−1Fa
Θ ||L2 ||∇DαΘa

m ||L2 + ||Dα−1Fa
U ||L2 ||∇DαU a

m ||L2

≤ ||Fa
Θ ||

Hsa
θ

−1 ||∇Θa
m ||

Hsa
θ

+ ||Fa
U ||Hsa

u −1 ||∇U a
m ||Hsa

u ,

(63)

where we have used that the boundary terms vanish due to the periodic boundary conditions.
For the coupling termweobtain analogously to (33)with the inequalities ofCauchy–Schwarz,
Poincaré and with Lemma 2〈Dα(γΘo

m),DαΘa
m

〉
L2 ≤ KsCP ||γ ||

Hsa
θ
||Θo

m ||
Hso

θ
||∇Θa

m ||
Hsa

θ
. (64)

We collect (61)–(64) and sum up over all derivatives Dα such that their degree is smaller or
equal than the corresponding component of s. This yields for (60) the following estimate

1

2

d

dt
(||U a

m ||2
Hsa

u
+ Fra ||Θa

m ||2
Hsa

θ
) + 1

Rea
||∇U a

m ||2
Hsa

u
+ 1

Pea
||∇Θa

m ||2
Hsa

θ

≤ Ns
(||U a

m ||Hsa
u + ||Fa

U ||Hsa
u −1

)||∇U a
m ||Hsa

u

+ (
KsCP ||γ ||

Hsa
θ
||Θo

m ||
Hso

θ
+ ||Fa

Θ ||
Hsa

θ
−1

)||∇Θa
m ||

Hsa
θ

(65)

After applying Young’s inequality (see Sect. 3) with ε = 1
Rea and ε = 1

Pea to the two terms
on the right-hand side, the resulting quadratic terms of the form (a + b)2 are estimated by
2(a2 + b2) and finally we obtain

d

dt
(||U a

m ||2
Hsa

u
+ Fra ||Θa

m ||2
Hsa

θ
) + 1

Rea
||∇U a

m ||2
Hsa

u
+ 1

Pea
||∇Θa

m ||2
Hsa

θ

≤ C N 2
s Rea ||U a

m ||2
Hsa

u
+ C N 2

s Rea ||Fa
U ||2

Hsa
u −1 + CC2

P Pea ||Fa
Θ ||2

Hsa
θ

−1

+ C K 2
s C2

P Pea ||γ ||2
Hsa

θ
||Θo

m ||2
Hso

θ
.

(66)

This can be written as estimate for the atmospheric state

d

dt
||Ψ a

m ||2Hs + 1

Rea
||∇U a

m ||2
Hsa

u
+ 1

Pea
||∇Θa

m ||2
Hsa

θ

≤ Ma
s ||Ψ a

m ||2Hs + C Pea ||Fa
Θ ||2

Hsa
θ

−1 + C N 2
s Rea ||Fa

U ||2
Hsa

u −1

+ C K 2
s C2

P Pea ||γ ||2
Hsa

θ
||Θo

m ||2
Hso

θ
,

(67)

3 The reason to integrate by parts and reduce the order of differentiation of the forcing term is that we need
this regularity in the differentiability proof in Lemma 7, see (81).
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where Ma
s := Ms(Cs, Ks, Rea, Pea, ||ua(t)||Hsa

u ) is bounded on T.
For the ocean component in (56) we proceed similarly and apply Dα to the Galerkin

system and take the L2-inner product with DαU o
m,DαΘo

m and arrive at

1

2

d

dt
(||DαU o

m ||L2 + ||DαΘo
m ||L2) + 1

Reo
||∇DαU o

m ||2L2 + 1

Peo
||∇DαΘo

m ||2L2

≤ 〈Dα[(uo · ∇)U o
m],DαU o

m

〉
L2 + 〈Dα[(U o

m · ∇)uo],DαU o
m

〉
L2

+ 〈Dα(U o
m · ∇θo),DαΘo

m

〉
L2 + 〈Dα(Θo

m∇uo),DαΘo
m

〉
L2

+ 〈Dα(σU o
m),DαU a

m

〉
L2 + 〈Dα Fo

Θ,DαΘo
m

〉
L2 + 〈Dα Fo

U ,DαU o
m

〉
L2 .

(68)

For the coupling term in the velocity equation we obtain analogously to (40) with the inequal-
ities of Cauchy–Schwarz, Poincaré and with Lemma 2

〈Dα(σU a
m),DαU o

m

〉
L2 ≤ KsCP ||σ ||Hso

u ||DαΘa
m ||L2 ||∇DαU o

m ||L2 . (69)

The other terms in the velocity equation can be estimated analogously to the atmospheric
case (see (61), (62))

〈Dα[(uo · ∇)U o
m],DαU o

m

〉
L2 + 〈Dα[(U o

m · ∇)uo],DαU o
m

〉
L2

≤ Ns ||∇U a
m ||Hso

u ||U a
m ||Hso

u .
(70)

We have to estimate the additional terms (U o
m · ∇)θo and Θo

m∇uo in the third line of (68).
For the first term we find after integration by parts with the inequality of Cauchy–Schwarz

∫
Ω

Dα(U o
m · ∇θo)DαΘo

m dx

=
∫

Ω

[(DαU o
m) · ∇θo)]DαΘo

m dx +
∫

Ω

[(U o
m · ∇)Dαθo)]DαΘo

m dx

=
∫

Ω

[(DαU o
m) · ∇θo)]DαΘo

m dx −
∫

Ω

∇U o
mDαθoDαΘo

m dx −
∫

Ω

U o
mDαθoDα∇Θo

m dx

≤ ||∇θo||L∞||DαU o
m ||L2 ||DαΘo

m ||L2 + ||∇U o
m ||L∞||Dαθo||L2 ||DαΘo

m ||L2

+ ||U o
m ||L∞||Dαθo||L2 ||Dα∇Θo

m ||L2 .

(71)
For the second term in the third line of (68) we have similarly with integration by parts, and
the inequality of Cauchy–Schwarz

∫
Ω

Dα(Θo
m∇uo)DαΘo

m dx

=
∫

Ω

[(DαΘo
m)∇uo]DαΘo

m dx −
∫

Ω

∇Θo
m DαuoDαΘo

m dx

−
∫

Ω

Θo
mDαuoDα∇Θo

m dx

≤ ||∇uo||L∞||DαΘo
m ||2L2 + ||∇Θo

m ||L∞||Dαuo||L2 ||DαΘo
m ||L2

+ ||Θo
m ||L∞||Dαuo||L2 ||Dα∇Θo

m ||L2 .

(72)
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The estimates (71), (72) imply with Lemma 15
∫

Ω

Dα(U o
m · ∇θo)DαΘo

m dx +
∫

Ω

Dα(Θo
m∇uo)DαΘo

m dx

≤ ||θo||
Hso

θ
||U o

m ||Hso
u ||Θo

m ||
Hsa

θ
+ ||U o

m ||Hso
u ||Θo

m ||
Hso

θ
||θo||

Hso
θ

+ ||U o
m ||Hso

u ||θo||
Hso

θ
||∇Θo

m ||
Hso

θ

+ ||uo||Hso
u ||Θo

m ||2
Hso

θ
+ ||uo||Hso

u ||Θo
m ||2

Hso
θ

+ ||uo||Hso
u ||Θo

m ||
Hso

θ
||∇Θo

m ||
Hso

θ

≤ Ks
(||U o

m ||2
Hso

u
+ ||Θo

m ||2
Hso

θ
+ (||U o

m ||Hso
u + ||Θo

m ||
Hso

θ
)||∇Θo

m ||
Hso

θ

)
,

(73)

where Ks := Ks(||θo||
Hso

θ
, ||uo||Hso

u , Reo, Peo) is bounded on T = [t0, t1] according to
Theorem 1. After an application of Young’s inequality to the last term in (73) and the usual
compensation with the term 1

Peo ||∇Θo
m ||

Hso
θ
on the left-hand side of (68), it follows with

(70) for the ocean equations

d

dt
(||U o

m ||2
Hso

u
+ ||Θo

m ||2
Hso

θ
) + 1

Reo
||∇U o

m ||2
Hso

u
+ 1

Peo
||∇Θo

m ||2
Hso

θ

≤ Ks(||U o
m ||2

Hso
u

+ ||Θo
m ||2

Hso
θ
) + C Peo||Fo

Θ ||2
Hso

θ
−1 + C Reo||Fo

U ||2
Hso

u −1

+ C K 2
s C2

P Reo||σ ||2
Hso

u
||U a

m ||2
Hso

u
,

(74)

where we have applied the Young inequality to the forcing term as in the atmospheric case
(cf. (65), (66)). This implies for the ocean state

d

dt
||Ψ o

m ||2Hs + 1

Rea
||∇U o

m ||2
Hso

u
+ 1

Pea
||∇Θo

m ||2
Hso

θ

≤ Mo
s ||Ψ o

m ||2Hs + C Peo||Fo
Θ ||2

Hso
θ
−1 + C Reo||Fo

U ||2
Hso

u −1

+ C K 2
s C2

P Reo||σ ||2
Hso

u
||U a

m ||2
Hso

u
,

(75)

where Mo
s := Ms(Cs, ||θo||

Hso
θ
, ||uo||Hso

u , Reo, Peo) is bounded on T. Adding (67) and (75)
we infer the following inequality for the coupled system

d

dt
||Ψm ||2Hs + 1

R
(||∇U a

m ||2
Hsa

u
+ ||∇U o

m ||2
Hso

u
) + 1

P
(||∇Θa

m ||2
Hsa

θ
+ ||∇Θo

m ||2
Hso

θ
)

≤ (
Ms + C K 2

s C2
P (Pea ||γ ||2

Hsa
θ

+ Reo||σ ||2
Hso

u

)||Ψm ||2Hs

+ C(Pea + Peo)(||FΘa ||2
Hsa

θ
−1 + ||FΘo ||2

Hso
θ
−1)

+ C(Rea + Reo)(||FUa ||2
Hsa

u −1 + ||FU o ||2
Hso

u −1),

(76)

with Ms := Ma
s + Mo

s ,
1
R := min{ 1

Rea , 1
Reo }, 1

P := min{ 1
Pea , 1

Peo }. From the Poincaré
inequality we have

d

dt
||Ψm ||2Hs + C−1

P ν∗||Ψm ||2Hs ≤(
Ms + C K 2

s C2
P (Pea ||γ ||2

Hsa
θ

+ Reo||σ ||2
Hso

u
)
)||Ψm ||2Hs

+ C(Pea + Peo)(||FΘa ||2
Hsa

θ
−1 + ||FΘo ||2

Hso
θ
−1)

+ C(Rea + Reo)(||FUa ||2
Hsa

u −1 + ||FU o ||2
Hso

u −1),

(77)
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where ν∗ := min{ 1
R , 1

P }. Using Gronwall’s inequality it follows

||Ψm(t)||2Hs ≤ ||Ψ0||2Hse

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(y)||2
Hso

u

)
−C−1

P ν∗ dy

+ C
∫ t

t0

[
(Pea + Peo)(||FΘa ||2

Hsa
θ

−1 + ||FΘo ||2
Hso

θ
−1)

+ (Rea + Reo)(||FUa ||2
Hsa

u −1 + ||FU o ||2
Hso

u −1)
]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy

(78)

Since Ms is boundedonT this implies thatΨ ∈ L∞(T ,Hs). Integrating (77) overT = [t0, t1]
yields that Ψ ∈ L2(T ,Hs+1). ��

Proof of continuous dependency on the initial conditions and uniqueness of the coupled
nonlinear Eqs. (1)–(5)

Let ψ1 = (ua
1, θ

a
1 ,uo

1, θ
o
1 ) and ψ2 = (ua

2, θ
a
2 ,uo

2, θ
o
2 ) be two solutions of the coupled

nonlinear Eqs. (1)–(5). Define the difference δψ := (δua, δθa, δuo, δθo)

δua := ua
1 − ua

2 and δθa := θa
1 − θa

2 ,

δuo := uo
1 − uo

2 and δθo := θo
1 − θo

2 .

Then the difference for the atmospheric component satisfies the equations

∂δua

∂
+ ua

2 · ∇δua + δua · ∇ua
2 + δua⊥ + ∇(gδθa) = 1

Rea
�δua,

∂δθa

∂t
+ div(δua) = 1

Pea
�δθa − γ δθo.

and analogously for the ocean. A comparison with the linearized equations (56) shows that
the system above has an identical structure. Analogously to the linear equations (cf. (77) with
vanishing forcing) one can derive the inequality

d

dt
||δψ ||2L2 ≤ M ||δψ ||2L2 .

The Gronwall lemma implies

||δψ(t)||2L2 ≤ ||δψ(t0)||2L2eM(t−t0).

The above inequality proves the continuous dependency on the initial conditions. In particular,
if the two solutions ψ1, ψ2 have the same initial conditions, i.e. δψ(t0) = 0, uniqueness
follows. ��

The 4D-Var algorithm applies a gradient-based minimization such as steepest descent,
which relies on the derivative of the model state with respect to the initial conditions. For this
purpose we have to assure that the mapping of the initial state to the model state at a certain
time instant is differentiable. This is the content of the following Lemma.

Lemma 7 The mapping ψ0 �→ ψ(t;ψ0) from Hs into L2(T ;Hs), with T := (t0, t1], that
assigns the solution of the coupled model equations to an initial condition has a Gateaux
derivative Dψ

Dψ0
h in every direction h ∈ Hs. Furthermore, Dψ

Dψ0
h solves the linearized coupled

equations (56) with initial condition Ψ (t0) = h and forcing F = 0.
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Proof Let h ∈ Hs. Denote by ψ0, ψ0 + τh ∈ Hs two initial conditions and by ψ and ψτh

the corresponding solutions of the coupled model equations

∂ψ

∂t
+ N (ψ,ψ) + Lψ + Dψ = C(ψa, ψo),

and
∂ψτh

∂t
+ N (ψτh, ψτh) + Lψτh + Dψτh = C(ψa

τh, ψo
τh).

Let Ψ be the solution of the linearized equations, which is linearized around ψ . Then Ψ

satisfies
∂Ψ

∂t
+ N ′[ψ](Ψ ) + LΨ + DΨ = C̄(Ψ a, Ψ o),

with zero forcing and initial condition Ψ (t0) = h. The assertion of the lemma is proven if
we have shown that y(τ ) := ψτh − ψ − τΨ satisfies

lim
τ→0

||y(τ )||L2(T ;Hs)

|τ | = 0. (79)

The function y = (ya
u , ya

h , yo
u , yo

h ) solves the equation

dy

dt
+ N (ψτh, ψτh) − N (ψ,ψ) − N ′[ψ](τΨ ) + Ly + Dy = C(ya, yo),

with initial condition y0 = 0. If we introduce

k(x, t) := N (ψ,ψ) − N (ψτh, ψτh) + N ′[ψ](ψτh − ψ),

the equation for y becomes

dy

dt
+ N ′[ψ](y) + Ly + Dy = C(ya, yo) + k. (80)

Note that (80) is a linearized coupled equation with initial condition y0 = 0 and forcing
given by k = (ka, ko) and ka = (ka

u , 0), ko = (ko
u , ko

θ ). The forcing ka
u reads explicitly

ka
u :=(ua · ∇)ua − (ua

τh · ∇)ua
τh + (ua · ∇)(ua

τh − ua) + ((ua
τh − ua) · ∇)ua

=(ua
τh − ua) · ∇(ua

τh − ua).

The expression for ko
u is analogous to ka

u but with ua replaced by uo. The forcing ko
θ is given

by
ko
θ := = (uo

τh − uo) · ∇θo
τh + (θo

τh − θo)∇uo.

We prove now the following two inequalities:

i) ∃ K > 0 :
∫

T
||y(t)||2Hsdt ≤ K

∫
T

||k||2Hs−1dt,

ii) ∃ C > 0 : ||k||Hs−1 ≤ C(||ua − ua
τh ||2

Hsa
u

+ ||θo
τh − θo||2

Hso−θ + ||uo − uo
τh ||2

Hso
u
).

(81)
From (78) in the proof of Theorem 2 follows for t ∈ T := (t0, t1] and with Fa

U = ka
u , Fa

Θ =
0, Fo

U = ko
u , Fo

Θ = ko
θ that

||y(t)||2Hs ≤C Reae

∫
T

(
Ms (z)+C K 2

s C2
P (Pea ||γ ||2

H
sa
θ

++Reo||σ ||2
Hso

u
)
)
−CP ν∗ dz

×
∫

T
||ka

u (τ )||2
Hsa

u −1 + ||ko
u(τ )||2

Hso
u −1 + ||ko

θ (τ )||2
Hso

θ
−1dτ,
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with ν∗ = min{ 1
Rea , 1

Reo , 1
Pea , 1

Peo }. This implies that a K > 0 exists that depends on the
length of the time interval T such that

∫
T

||y(z)||2Hsdz ≤K
∫

T
||ka

u (τ )||2
Hsa

u −1 + ||ko
u(τ )||2

Hso
u −1 + ||ko

θ (τ )||2
Hso

θ
−1dτ,

where K is a exponentially growing but bounded function on T . This proves assertion i).
For assertion i i) it follows from Lemma 1 that

||ka
u ||Hsa

u −1 ≤ C ||ua − ua
sh ||2

Hsa
u
.

Analogous estimates apply to ko
u , ko

θ and this proves i i). Combining i) and i i) we conclude
that ∫

T
||y(t)||2Hsdt ≤ C

∫
T

||ua
τh − ua ||4

Hsa
u

+ ||uo
τh − uo||4

Hsa
u

dt . (82)

We show now an upper bound on the right hand side of (82)

i i i) ∃ K > 0 : sup
t∈T

||ua
τh − ua ||2

Hsa
u

≤ K τ 2||h||2Hs , (83)

with an analogous estimate for the ocean term in (82). Define ψ̂ := ψτh − ψ , i.e. for the
atmospheric component we have ûa := ua

τh −ua and θ̂a := θa
τh −θa . According to Theorem

1 we have (ûa, θ̂a) ∈ C(T ;Hsa
u ) × C(T ; Hsa

θ ). Furthermore ûa, θ̂a solve the equations

∂ûa

∂t
+ ua · ∇ûa + ûa · ∇ua

τh + 1

Roa
ûa⊥ + 1

Roa
∇ θ̂a = 1

Rea
�ûa,

F̃r
a ∂θ̂a

∂t
+ 1

Ro
div(ûa) = 1

Pea
�θ̂a − γ θ̂o,

with initial condition ψ̂(t0) = τh. This equation has a similar structure as the linearized
equations (56) with a zero forcing term. We can repeat all steps that have lead us to (78) and
this inequality implies

||ψ̂(t)||2Hs ≤ C(t)||ψ̂0||2Hs = C(t)τ 2||h||2Hs , (84)

with C(t) bounded on T . With the definition of ψ̂ this implies

||ua
τh − ua ||2

Hsa
u

+ ||hτh − h||2Hs ≤ C(t)τ 2||h||2Hs .

This proves (83). Together with the corresponding bound for the ocean term in (82) this
implies (79). From (79) and the definition of theGateaux derivative it follows that the solution
w of the linearized equations satisfies w(h) = (DΨ /Dψ0)h. ��

The adjoint model of the coupled system (6) is defined as adjoint of the equations that are
linearized around a model trajectory (56). The adjoint equations are explicitly given by the
following equations (see e.g. [20])
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Atmosphere: − ∂Ũ a

∂t
− ua ∂Ũ a

∂x
− va ∂ Ṽ a

∂ y
− Ũ a ∂va

∂ y
+ Ṽ a ∂va

∂x
− 1

Roa
Ṽ a⊥ + 1

Roa
θa ∂Θ̃a

∂x

= σ Ũ o + 1

Rea
�Ũ a + F̃a

Ũ
,

− ∂ Ṽ a

∂t
− Ũ a ∂ua

∂ y
+ ua ∂ Ṽ a

∂x
− Ṽ a ∂ua

∂x
− va ∂ Ṽ a

∂ y
+ 1

Roa
Ũ a⊥ + 1

Roa
θa ∂Θ̃a

∂v

= σ Ṽ o + 1

Rea
Ṽ a + F̃a

Ṽ
,

− F̃r
a ∂Θ̃a

∂t
− 1

Roa
∇Ũ a = 1

Pea
�Θ̃a + F̃a

Θ̃
.

Ocean: − ∂Ũ o

∂t
− uo ∂Ũ o

∂x
− vo ∂ Ṽ o

∂ y
− Ũ o ∂vo

∂ y
+ Ṽ o ∂vo

∂x
− 1

Roo
Ũ o⊥ + 1

Roo
θo ∂Θ̃o

∂x

= 1

Reo
�Ũ o + F̃o

Ũ
,

− ∂ Ṽ o

∂t
+ Ṽ o ∂uo

∂ y
− vo ∂ Ṽ o

∂ y
− ∂

∂x
[uoṼ o] + 1

Roo
Ṽ o + 1

Roo
θa ∂Θ̃o

∂v

= 1

Reo
�Ṽ o + F̃o

Ṽ
,

− ∂Θ̃o

∂t
− (uo∇)Θ̃o = 1

Peo
�Θ̃o − γ Θ̃a + F̃o

Θ̃
,

∂Ũ o

∂x
+ ∂ Ṽ o

∂ y
= 0,

with initial conditions Ũ a(t0) = Ũ a
0 , Ṽ a(t0) = Ṽ a

0 , Θ̃a(t0) = Θ̃a
0 ,

Ũ o(t0) = Ũ o
0 , Ṽ o(t0) = Ṽ o

0 , Θ̃o(t0) = Θ̃o
0 ,

(85)

and with forcing terms F̃ := (F̃a
U , F̃a

Θ, F̃o
U , F̃o

Θ). Observe the “inverse coupling” in the
adjoint equations. While in the coupled Eqs. (1)–(5) and in the linearized equations (56)
the ocean is influenced through the atmospheric component via the velocity equation and
the atmosphere is coupled to the ocean via the advection–diffusion equation, these roles are
reversed in the adjoint equations above. In analogy to (6) we write the linearized equations
in the following form

− ∂Ψ̃

∂t
+ N ′∗[ψ](Ψ̃ ) + LΨ̃ − C̃(Ψ̃ a, Ψ̃ o) + DΨ̃ = F̃,

with initial conditions Ψ̃ (t0) = (Ũ a(t0), Ṽ a(t0), Θ̃
a(t0), Ũ o(t0), Ṽ o(t0), Θ̃

o(t0)),

(86)

where Ψ̃ := (Ũ a, Θ̃a, Ũ o, Θ̃o) denotes the adjoint state vector and ψ the solution to
(1)–(5). The following result follows immediately from the corresponding result about the
linearized equations (56) and the definition of the adjoint equations bymeans of the L2-scalar
product.

Theorem 3 (Regularity of Adjoint Equations) Let s = (sua , sθa , suo , sθo) ∈ Z
4+ such that

all components of s are greater or equal than 3. Let the coupling functions satisfy σ ∈
C(T ,Hso

u (Ω)), γ ∈ C(T ,Hsa
θ (Ω)). Assume that for the initial condition of the coupled

equation (1)–(5) it holds that ψ0 ∈ Hs(Ω). Suppose the initial condition of the coupled
adjoint equations, specified at t = t1, satisfy Ψ̃ (t1) ∈ Hs(Ω) and F̃ := (F̃a

U , F̃a
Θ, F̃o

U , F̃o
Θ) ∈
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L2(T ,Hs−1) × L2(T , Hs−1) × L2(T ,Hs−1) × L2(T , Hs−1). Then the system (85) has a
unique solution on T := [t1, t0] with the properties

Ψ̃ (t) ∈ C(T ,Hs) ∩ L2(T ,Hs+1).

The state vector Ψ̃ of the adjoint equations (85) satisfies

||Ψ̃ (t)||2Hs ≤ ||Ψ̃ (t1)||2Hse

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(y)||2
Hso

u

)
−C−1

P ν∗ dy

+ C
∫ t

t0

[
(Pea + Peo)||F̃Θ̃ ||2Hs−1 + (Rea + Reo)||F̃AU ||2Hs−1

]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy

(87)

where Ms, ν∗ are defined in Theorem 2 and where F̃U , F̃Θ . are defined by ||F̃Ũ ||2Hs−1 :=
||F̃Ũa ||2

Hsa
u −1 + ||F̃Ũ o ||2

Hso
u −1 and ||F̃Θ̃ ||2

Hs−1 := ||F̃Θ̃a ||2
Hsa

u −1 + ||F̃Θ̃o ||2
Hso

u −1 .

Remark 2 The upper bound on the norm of the adjoint state in (87) depends via M on
the regularity of the coupled model solution ||ψ ||Hs , on the coupling parameters (γ, σ )

and through the Reynolds and Péclet number on viscosity and diffusivity. The smoother
the underlying model solution, the smaller is M and consequently the smaller becomes
the upper bound. A stronger coupling with increasing norm of the coupling functions γ, σ

will increase the upper bound, while an increase of viscosity and diffusivity will decrease the
upper bound in (87) such that we observe competing effects between diffusivity and coupling
functions. Additionally the right-hand-side in (87) depends on the adjoint initial condition
and the regularity of the adjoint forcing over the time interval T . In the adjoint method of data
assimilation the adjoint state at time t = t0 is identifiedwith the gradient of the cost functional
(9) with respect to the initial condition. This illustrates that the flow parameters influence the
gradient’s smoothness and thereby the convergence rate of the variational minimization.

The following relation follows from a direct calculation using the definition of the tangent
linear and the adjoint equations

Lemma 8 (Adjoint Relation) Let F and F̃ be the forcing of the linearized coupled equations
and the adjoint coupled equations, respectively. By Ψ and Ψ̃ we denote the variables of the
linear and adjoint equations. Then〈

F, Ψ̃
〉
L2 = 〈

F̃, Ψ
〉
L2 .

Remark 3 (The case of two uncoupled models) The well-posedness results of Sect. 4 remain
valid if we replace the coupling term by an external forcing of the same regularity. This
follows from an inspection of the proofs of this section. More precisely, in the atmospheric
temperature equation (2) we can replace the temperature γ θo that stems from the ocean
component, by an external temperature source Fθa (x, t) ∈ L2(T , Hs(Ω)). The same applies
to the ocean component, the wind forcing from the atmosphere in (3) can be replaced by an
external force Fuo(x, t) ∈ L2(T , Hs(Ω)). The proofs of this section show that with these
modifications one obtains two models to which Theorems 1, 2, 3 apply, as well as Lemma 7.

5 Existence of Local Minima of the Data Assimilation Problem

Based on the regularity results of the previous sections we are now formulating the data
assimilation cost functional. The formal definition of the data assimilation problem (8) and
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the cost functional (9)–(11) will no filled with a precise mathematical definition that is
consistent with the analysis of Sect. 4.

The model dynamics that we are considering consist of trajectories in C(T ,Hs) and are
controlled by initial conditions in Hs. Let observations ψobs and a background guess ψback

be given. We define the cost functional by

J s(ψ0) = J sb

b (ψ0) + J so

obs(ψ0)

:= ||ψ0 − ψback ||2Hsb (dμB)
+

∫
T

||M[ψ0] − ψobs ||2Hsobs
(dμR)

dt .
(88)

The background term is given by

J sb

b (ψ0) = 〈B(ψ0 − ψback), ψ0 − ψback
〉
Hsb

(dx)

=
∑

α∈Isb

∫
Ω

DαB(ψ0 − ψback) · Dα(ψ0 − ψback) dx,
(89)

where sb = (sb
a , sb

o ) ∈ Z
4+ ∪ {0} is a non-negative index set for the order of the Sobolev

spaces in the background term. We introduce the following notation for index sets of the
background term

Isb :=
{
α = (αua , αθa , αuo , αθo) ∈ Z

4+ ∪ {0} : αua ≤ sb
ua , αθa ≤ sb

θa ,

αuo ≤ sb
uo , αθo ≤ sb

θa

}
. (90)

The definition of the observational term unfolds to (cf. (20, (21))

J sobs

obs (ψ0) =
∫

T

〈M[ψ0] − ψobs,M[ψ0] − ψobs
〉
Hsobs

(dμR)
dt

=
∫

T

〈R(M[ψ0] − ψobs),M[ψ0] − ψobs
〉
Hsobs

(dx)
dt

=
∑

α∈I[tobs ,sobs ]

∫
T

∫
Ω

{�αR(M[ψ0] − ψobs)
} · {M[ψ0] − ψobs

}
dxdt,

(91)

with the index set Itobs

sobs given as follows. Let sobs := (sobs
ua , sobs

θa , sobs
uo , sobs

θo ) ∈ Z
4 and

tobs := (tobs
ua , tobs

θa , tobs
uo , tobs

θo ) ∈ Z
4 be given such that tobs ≤ sobs . Define now

I[tobs, sobs] :=
{
α = (αua , αθa , αuo , αθo) ∈ Z

4 : tobs
ua ≤ αua ≤ sobs

ua ,

tobs
θa ≤ αθa ≤ sobs

θa , tobs
uo ≤ αuo ≤ sobs

uo , tobs
θa ≤ αθo ≤ sobs

θa

}
. (92)

Note that the indices in the observational term are allowed to be negative, while the indices
for the background term are non-negative.

The following theorem establishes the existence of stationary points of the cost functional.
We refer to these points as “optimal initial conditions”.

Theorem 4 (Optimal Initial Conditions) Let observations ψobs ∈ L2(T ;Hs∗
) be given, with

s∗ = (s∗
ua , s∗

θa , s∗
uo , s∗

θo) ∈ Z
4+ ∪ {0}. Let sb := (sb

ua , sb
θa , sb

uo , sb
θo) ∈ Z

4+ be an index set for
the order of the Sobolev spaces in the background component of the cost functional that is
chosen such that

sb
ua , sb

θa , sb
uo , sb

θo ≥ 3. (93)
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Let sobs := (sobs
ua , sobs

θa , sobs
uo , sobs

θo ) ∈ Z
4 be an index set for the order of the Sobolev spaces

in observational component of the cost functional that is chosen such that

sobs
ua ≤ min{s∗

ua , sb
ua }, sobs

θa ≤ min{s∗
θa , sb

θa },
sobs

uo ≤ min{s∗
uo , sobs

uo }, sobs
θo ≤ min{s∗

θo , sb
θo}.

(94)

Then there exist optimal initial conditions ψ̄0 ∈ Hsb
for the coupled data assimilation

problem (8) using the cost functional (88).

Remark 4 (Cost functional for smooth and non-smooth observations) Let observations be
given that are more regular than the model dynamics, such that s∗ ≥ sb. Following (94) in
Theorem 4 we choose the observational norm sobs = sb. Then the observational term of the
cost functional will involve derivatives up to degree sb. This will not use the full regularity
of the observations in case that s∗ > sb .The lower bound of the degree of derivatives that
enter the cost functional is given by the lower index of the observational index set tobs ∈ Z

4

and can be chosen independently.
For less smooth observations that are for example square integrable only, we have s∗ = 0.

Consequently the observational norm is to be chosen as sobs = s∗. Now only the L2-norm
is used in the observational term of the cost functional. The lower bound tobs ∈ Z

4 can be
chosen such that the desired scale selectivity is implemented.

These examples illustrate that the highest degree of the derivatives that appear in the cost
functional Jobs , measured by the upper index sobs in I[tobs, sobs] (see (92)), is determined
by the regularity of the model and by the regularity of the observations. The lowest degree of
derivatives that enter Jobs is given by the second multi-index tobs . This index can be chosen
freely and it can even by negative. With negative indices one filters out small scale features
(see Remark 5 below).

Remark 5 (Smoothing via Sobolev norm with negative index) Consider the operator �α

in (91), applied to RδX with model-data misfit δX := M[ψ0] − ψobs and observation
error covariance operator R. For α = (αua , αθa , αuo , αθo) ∈ Z

4, the positive indices
emphasize the importance of derivatives in the minimization process. According to the
Fourier-characterization (19) this puts weight on fitting the high-wave numbers (small spatial
scales). For negative α-indices the operator �α denotes the solution to the equation

�αδY = RδX ,

which is supplemented by periodic boundary conditions. This Laplacian acts on the respective
component of RδX , i.e. if all components of the multi-index α ∈ Z

4 are negative, then we
have to solve the equations for Y = (Yua , Yθa , Yuo , Yθo)

�αua Yua = [RδX ]ua , �αθa Yθa = [RδX ]θa ,

�αuo Yuo = [RδX ]uo , �αθo Yθo = [RδX ]θo ,

where the components referring to velocities are vector Laplacians, while the remaining two
are scalar Laplacians. For negative Sobolev space indices the small scales are filtered out via
the inverse Laplacian and are excluded from the minimization of the cost functional. The
decision whether positive or negative indices are appropriate is a design decision of the data
assimilation process and depends on the problem under investigation.

Proof of Theorem 4 Let (ψ0,n)n ⊆ Hsb
(Ω) be a minimizing sequence of initial conditions

for the data assimilation problem. We denote by ψn := M[ψ0,n] ∈ C(T ,Hsb
(Ω)) ∩
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L2(T ,Hsb+1(Ω)) the corresponding solutions of equations (1)–(5). The model-observation
difference satisfies (M[ψ0] − ψobs) ∈ L2(T ,Hsobs

(Ω)), with sobs satisfying (92). Since
the model error covariance operator R preserves the space (cf. (26)) it follows that
R(M[ψ0] − ψobs) ∈ L2(T ,Hsobs

(Ω)) and from (91) we infer that the cost functional
is well-defined. From (88) follows that the sequence of initial conditions (ψ0,n)n is bounded

in Hsb
, i.e, there exists a c > 0 such that uniformly for all n ∈ N

||ψ0,n ||Hsb ≤ c. (95)

From Theorem 1 we see that the sequence of associated solutions (ψn)n is bounded in
C(T ;Hsb

) ∩ L2(T ,Hsb+1), in particular there exists a C > 0 such that for all n ∈ N

∫
T

||∇ψn ||2Hsb
≤ C . (96)

Since Hsb+1 is compactly embedded in Hsb
we conclude that a subsequence, still denoted

(ψn)n , exists and a limit ψ̄ , such that (ψn)n converges strongly in L2(T ,Hsb
) to ψ̄ ∈

L2(T ,Hsb
) and weakly in L2(T ,Hsb+1). For the limit ψ̄ lower semi-continuity implies for

all n ∈ N

||ψ̄0||Hsb ≤ ||ψ0,n ||Hsb (dμB)
,

and ∫
T

||M[ψ̄0] − ψobs ||2Hsobs
(dμR)

dt ≤ lim inf
n

∫
T

||M[ψn] − ψobs ||2Hsobs
(dμR)

dt .

Consequently

||ψ̄0||Hsb
(dμB)

+
∫

T
||M[ψ̄] − ψobs ||2Hsobs

(dμR)
dt ≤ lim inf

n
J (ψ0,n, ψobs).

We show now that the limit ψ̄ is a regular solution of (1)–(5) in the sense of Definition 1. We
can adopt the arguments from the proof of Theorem1 (cf. Step 4) to show that ψ̄ ∈ C(T ,Hsb

).
We consider the components of (ψn − ψ̄), and denote them by ( f (i)

k − f̄ (i)), with i = 1 . . . 4.

By applying Lemma 3 to the components ( f (i)
k − f̄ (i)) of (ψn − ψ̄) it follows that for all

s′
i < sb

i and t ∈ T

|| f (i)
n (t) − f̄ (i)(t)||Hs′i ≤ Ci s|| f (i)

n (t) − f̄ (i)(t)||1−s′
i /sb

i
L2 || f (i)

n (t) − f̄ (i)(t)||s′
i /sb

i

Hsb
i

. (97)

This proves the convergence of (ψn)n inC(T ;Hs′) to ψ̄ for s′ < sb, because (ψn)n converges
in L2(T ,L2) and is bounded in L2(T ,Hsb

). From the strong convergence in C(T ;Hs′
) for

s′ < sb and the density of H−s′ in H−s we conclude for φ ∈ H−s′ that

lim
n→∞

〈
ψn(·, t), φ

〉
L2 = 〈

ψ̄(·, t), φ
〉
L2 . (98)

The weak continuity implies for τ ∈ [t0, t1]
lim

τ→t0+
inf ||ψ̄(·, τ )||Hsb ≥ ||ψ̄0||Hsb . (99)

From (49) follows
lim

τ→t0+
sup ||ψ̄(·, τ )||Hsb ≤ ||ψ̄0||Hsb . (100)
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This proves the continuity of the Hsb
-norm of the solution at initial time

lim
τ→t0+

||ψ̄(·, τ )||Hsb = ||ψ̄0||Hsb . (101)

From (96) and the weak convergence of (ψn)n to ψ̄ in L2(T ,Hsb+1) follows∫
T

||∇ψ̄ ||2Hsb
≤ C . (102)

This implies that ψ̄ ∈ L2(T ,Hsb+1). Consequently there exists a set E ⊆ T of Lebesgue-
measure zero such that for all τ ∈ T \E it holds that ψ̄(·, τ ) ∈ Hsb+1. This implies that for
all δ > 0 there exists a t∗0 < δ such that ψ̄(·, t∗0 ) ∈ Hsb+1. If we use ψ̄t∗0 := ψ̄(·, t∗0 ) as
initial condition we can repeat all the arguments of our proof to establish the existence of a
solution ψ̃ ∈ C([t∗0 , t∗1 ],Hs∗), with s∗ < sb + 1. The two solutions ψ̄, ψ̃ coincide on their
joint interval of existence [t0, t1] ∩ [t∗0 , t∗1 ]. We obviously have for the two endpoints t1 ≤ t∗1
and hence ψ̄, ψ̃ coincide on [t∗0 , t1]. Since δ > 0 was arbitrary we have ψ̄ ∈ C((t0, t1],Hsb

)

and combined with the continuity at t0 (see (54)) it follows that ψ̄ ∈ C([t0, t1],Hsb
). From

(1)–(5) follows then ψ̄ ∈ C1([t0, t1],Hsb−2). ��
Remark 6 The geostrophic balance

u⊥ ∼ ∇θ

constitutes an important constraint on large scale Atmosphere- and Ocean dynamics. The
Hs-approach drives the gradient ∇θ towards ∇θobs and u⊥ towards u⊥,obs and thereby
automatically accounts for geostrophic balance, provided the observational data are in approx-
imate geostrophic balance. Therefore an addition of a penalty term to the cost functional to
prevent the deviation from geostrophic balance is not needed.

Proposition 1 (Stability) Let the assumptions of Theorem 4 be satisfied. Denote by ψ̄0 ∈ Hsb

the optimal initial conditions for the coupled data assimilation problem (8) using the cost
functional (88) and by ψ = ψ(ψ̄0) := (ua

1, θ
a
1 , uo

1, θ
o
1 ) the solution of (1)–(5) with initial

condition ψ̄0. Let φ = φ(φ0) := (ua
2, θ

a
2 , uo

2, θ
o
2 ) be a second solution with initial condition

φ0 ∈ Hsb
. If ||ψ̄0 − φ0||Hsb ≤ ε, then

||ψ(t) − φ(t)||Hs ≤ εe

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(y)||2
Hso

u

)
−C−1

P ν∗ dy (103)

where Ms, ν
∗ is defined in Theorem 2.

Proof Subtracting the twomodel solutionsψ and φ leads to a difference equation that resem-
bles the linear equation (56) with linear variables U a = ua

2 − ua
1,Θ

a := θa
2 − θa

1 and
U o = uo

2 − uo
1,Θ

o := θo
2 − θo

1 . The assertion follows now from Theorem 2. ��

6 Calculation of Minimizers and Convergence of Gradient Algorithm

In this sectionwe study the convergence of a gradient based algorithm to calculate the optimal
initial conditions for the data assimilation problem (8) with cost functional specified by (88).
We demonstrate convergence by invoking a classical result about convergence of gradient
algorithms (see below Lemma 9). This Lemma involves the second derivative of the cost
functional. We calculate this derivative with the help of the second-order adjoint equations
of the model.
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6.1 Characterization of Local Minima

The existence of aminimizer allows us to investigate the problem of establishing an algorithm
for the calculation of this minimum.

Theorem 5 (First Order Necessary Condition) Let the assumptions of Theorem 4 be satisfied.
Denote by ψ̄0 ∈ Hs an optimal initial condition of the data assimilation problem (8) and by
ψ̄ the associated solution of the coupled equations (1)–(5). Then ψ̄0 satisfies

ψ̄0 = ψback − B−1S−1
sb ψ̃0, (104)

where
Ssb :=

∑
α∈Isb

(−1)|α|�α, (105)

and where ψ̃ is the solution of the adjoint linearized coupled equations (85) (or equivalently
(86))

− ∂Ψ̃

∂t
+ N ′∗[ψ](Ψ̃ ) + LΨ̃ + DΨ̃ − C̃(Ψ̃ a, Ψ̃ o) = F̃, (106)

with forcing F̃ := ∑
α∈I[tobs ,sobs ] �αR(ψ̄ − ψobs), and with initial condition ψ̃(t1) = 0,

specified at t = t1.

Proof For a minimizer ψ̄0, which exists according to Theorem 4, the Gateaux derivative
vanishes such thatJ ′(ψ̄0; h) = 0 for all perturbations h. We calculate the Gateaux derivative
of J at an arbitrary state ψ in direction h, by using (19), as follows

J ′(ψ0; h) = 〈B(ψ0 − ψback), h
〉
Hsb +

∑
α∈I[tobs ,sobs ]

∫
T

∫
Ω

�αR(M[ψ0] − ψobs
)

× ( DM[ψ0]
Dψ0

h
)

dxdt

= 〈B(ψ0 − ψback), h
〉
Hsb +

∑
α∈I[tobs ,sobs ]

∫
T

∫
Ω

�αR(M[ψ0] − ψobs
) · Ψ dxdt,

where we have applied the chain rule and the fact that Ψ := DM[ψ0]
Dψ0

h, according to Lemma
7, satisfies the linearized equation. Now we define the forcing of the adjoint equation by
F̃ := ∑

α∈I[tobs ,sobs ] �αR(M[ψ0] − ψobs
)
and its initial condition by ψ̃(t1) = 0. Then

Lemmas 7 and 8 imply that

J ′(ψ0; h) = 〈B(ψ0 − ψback), h
〉
Hsb +

∫
T

∫
Ω

F̃ · ψ̃ dxdt −
∫

Ω

ψ̃ψ |t1t0 dx

= 〈B(ψ0 − ψback), h
〉
Hsb +

∫
Ω

ψ̃(t0)ψ(t0) dx

=
∑

α∈Isb

〈DαB(ψ0 − ψback),Dαh
〉
L2 +

∫
Ω

ψ̃(t0)h dx

=
∑

α∈Isb

(−1)|α|〈�αB(ψ0 − ψback), h
〉
L2 +

∫
Ω

ψ̃(t0)h dx
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=
∑

α∈Isb

(−1)|α|
∫

Ω

(�αB(ψ0 − ψback) + ψ̃(t0)
) · h dx

=
∫

Ω

(SsbB(ψ0 − ψback) + ψ̃(t0)
) · h dx . (107)

For a minimum we have J ′(ψ̄0; h) = 0 for all h, which implies with (107)

SsbB(ψ̄0 − ψback) + ψ̃(t0) = 0,

and we finally derive
ψ̄0 = ψback − B−1S−1

sb ψ̃0. ��

Remark 7 On the left-hand-side of (106) we find the linear operator LψΨ̃ := ∂Ψ̃
∂t +

N ′∗[ψ](Ψ̃ )+LΨ̃ −C̃(Ψ̃ a, Ψ̃ o). In order to solve the equationLψΨ̃ = F̃ , the right-hand-side
with the observational information has to be in the range of Lψ .

Remark 8 The appearance of the Sobolev-norm Hs in the background term is equivalent to
a smoothing of the adjoint field at time t = t0 via the smoothing operator S−1

sb . Since the
adjoint field at time t = t0 is identified with the gradient of the cost functional with respect to
the initial conditions (cf. Theorem 5) this implies a smoothing of the gradient. The Sobolev-
norm with negative index H−s in the observational term leads to a smoothing of the adjoint
forcing, which potentially may results in a more regular adjoint field at time t = t0.

Remark 9 (The case of two uncoupled models) The results on data assimilation in sections
5 and (6) apply also to the two uncoupled models that is constructed if once replaces the
coupling term by an appropriate external forcing (cf. Remark 3). Then our proofs imply the
existence of optimal conditions (Theorem 4) and the characterization of the optimal initial
condition by an adjoint condition (Theorem 5).

6.2 Convergence of Gradient-Based Descent Algorithm

In this section we always assume that the assumptions of Theorem 4 are satisfied. The goal of
this section is to prove the convergence of an iterative gradient based method for determining
the optimal initial condition. In order to prove convergence we investigate the Hessian of
the cost functional and its computation via the second-order adjoint equations. This iterative
gradient algorithm reads as follows:
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Let ψ0
0 ∈ B(ψ∗) ⊆ Hsb

(Ω) be a start value for the initial condition that lies within a
ball around the optimal initial condition. Choose λ0 > 0 and iterate for n = 1 . . . as
follows:

1. Integrate the coupled equations (1)–(5) with initial condition ψn
0 to obtain ψn(t).

2. To get ψ̃n, integrate the adjoint equation (85) with forcing

F̃ :=
∑

α∈I[tobs ,sobs ]
�αR(

ψn − ψobs
)
.

3. Apply to ψ̃n the smoothing operator S−1
sb , defined in (105) to obtain S−1

sb ψ̃(t0).

4. Define the update ψn+1
0 to initial velocity by

ψn+1
0 := ψn

0 + λnB−1S−1
sb ψ̃n (108)

5. Increase n, update the stepsize λn such that

J (ψn
0 + λnB−1S−1

sb ψ̃n) = inf

{
J (ψn

0+λB−1S−1
sb ψ̃n) : λ > 0 such that

ψn
0 + λB−1S−1

sb ψ̃n ∈ B

}
.

(109)

and go back to (1) until a stopping criterion is satisfied.

Remark 10 The difference between the iterative algorithm above and classical data assimi-
lation algorithms are the presence of the Laplace operator in the adjoint forcing in step 2,
and the occurrence of the smoothing operator S−1

sb in steps 3 and 4. The smoothing operator

takes care that the adjoint state ψ̃n resides in the same space as the initial state ψn+1
0 . Both

modifications are a consequence of the Sobolev-norms in the background and observational
term of the cost functional.

The algorithm above shows also that the required modifications can without fundamental
difficulties be integrated into an existing data assimilation framework.

The next lemma gives a conditions on the convergence of gradient algorithms in a Hilbert
space in terms of the second derivative of the cost functional.

Lemma 9 [1] Let J be a real-valued function on a Hilbert space X with norm | · |. We make
the following assumptions:

(i) J is of class C2 and has a local minimum at a point x∗ ∈ X,
(ii) there exists a ball B(x∗) ⊆ X around x∗, and two real numbers m, M, such that the

following inequalities hold:

m|x ||y| ≤ J ′′(u; x, y) ≤ M |x ||y|, for all u ∈ B, and x, y ∈ X ,

where J ′′[u; x, y] is the bilinear form associated with the second derivative of J. Then the
gradient algorithm with initial value x0 ∈ B converge to x∗.

The second derivative of the cost functional J is related to the Hessian HJ [ψ] via
J ′′(ψ0;W,Z) = 〈Z, HJ [ψ]W 〉

, for W,Z ∈ Hsb
(Ω). (110)

The calculation of the Hessian HJ of the cost functional proceeds in the following steps
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1. Integration of the coupled model (1)–(5) over T = [t0, t1] with initial condition
ψ(t0) to obtain ψ(t).

2. Integration of the linearizedmodel (56)with initial conditionΨ (t0) = W , vanishing
forcing, and nonlinear state ψ(t) given by step 1.

3. Integration of the adjoint model (85) with initial condition Ψ̃ (t1) = 0 and forcing
given by F̃ := ∑

α∈I[tobs ,sobs ] �αR(ψ − ψobs).
4. Integration of the second order adjoint (see below (112)) with initial condition

Ψ̄ (t1) = 0 and forcing F̄ = ∑
α∈I[tobs ,sobs ] �αRΨ , nonlinear state ψ(t), linear

state Ψ and adjoint state Ψ̃ as given by previous steps.
5. The final state of the second order adjoint Ψ̄ (t0) satisfies

HJ [ψ]W = SsbBW − Ψ̄ (t0) for W ∈ Hsb
(Ω). (111)

The Eqs. (110) and (111) are used to verify the boundedness of the second derivative of
the cost functional in order to apply Lemma 9. This requires information about the regularity
of the second-order adjoint equations.

Second-Order Adjoint Equations The second-order adjoint equations are derived by
linearizing the system of model and adjoint equations (1)–(5) and (85). For more infor-
mation we refer to [20,37]. The evolution of second-order adjoint variables Ψ̄ :=
(Ū a, V̄ a, Θ̄a, Ū o, V̄ o, Θ̄o) is governed by the following equations

Atmosphere: − ∂Ū a

∂t
− ua ∂Ū a

∂x
− va ∂ V̄ a

∂ y
− Ū a ∂va

∂ y
+ V̄ a ∂va

∂x
− 1

Roa
V̄ a⊥

+ 1

Roa
θa ∂Θ̄a

∂x
= σ Ū o + 1

Rea
�Ū a + Ga

Ū
+ F̄a

Ū
,

−∂ V̄ a

∂t
− Ū a ∂ua

∂ y
+ ua ∂ V̄ a

∂x
− V̄ a ∂ua

∂x
− va ∂ V̄ a

∂ y
+ 1

Roa
Ū a⊥

+ 1

Roa
θa ∂Θ̄a

∂v
= σ V̄ o + 1

Rea
�V̄ a + Ga

V̄ a + F̄a
V̄
,

−F̃r
a ∂Θ̄a

∂t
− 1

Roa

(
∂Ū a

∂x
+ ∂ V̄ a

∂ y

)
− ua ∂Θ̄a

∂x
− va ∂Θ̄a

∂ y
= 1

Pea
�Θ̄a + Ga

Θ̄
+ F̄a

Θ̄
,

Ocean: − ∂Ū o

∂t
− uo ∂Ū o

∂x
− vo ∂ V̄ o

∂ y
− Ū o ∂vo

∂ y
+ V̄ o ∂vo

∂x
− 1

Roo
V̄ o⊥ + 1

Roo
θo ∂Θ̄o

∂x

= 1

Reo
�Ū o + Go

Ū
+ F̄o

Ū
,

−∂ V̄ o

∂t
− Ū o ∂uo

∂ y
+ uo ∂ V̄ o

∂x
− V̄ o ∂uo

∂x
− vo ∂ V̄ o

∂ y
+ 1

Roo
Ū o⊥ + 1

Roo
θo ∂Θ̄o

∂v

= 1

Reo
�V̄ o + Go

V̄ o + F̄o
V̄
,

−∂Θ̄o

∂t
− uo ∂Θ̄o

∂x
− vo ∂Θ̄o

∂ y
= 1

Peo
�Θ̄o − γ Θ̄a + Go

Θ̄
+ F̄o

Θ̄
,

∂Ū o

∂x
+ ∂ V̄ o

∂ y
= 0,

(112)
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where the additional terms on the right-hand side are defined by

Ga
Ū

:= −Ṽ a ∂V a

∂x
+ U a ∂Ũ a

∂x
+ V a ∂U a

∂ y
− Ũ a ∂V a

∂ y
+ Θa ∂Θ̃a

∂x

Ga
V̄

:= −Ũ a ∂U a

∂x
− U a ∂ Ṽ a

∂x
+ Ṽ a ∂U a

∂ y
− U a ∂ Ṽ a

∂ y
+ Θa ∂Θ̃a

∂ y

Ga
Θ̄

:= U a ∂Θ̃a

∂x
+ V a ∂Θ̃a

∂ y
.

(113)

The oceanic terms
(
Go

Ū
,Go

V̄
,Go

V̄

)
are defined analogously. The forcing is denoted by

F̄ =
(

F̄a
Ū

, F̄a
V̄
, F̄a

Θ̄
, F̄o

Ū
, F̄o

V̄
, F̄o

Θ̄

)
. For the data assimilation problem under investigations

the forcing is given in terms of the linearized state

F̄ :=
∑

α∈I[tobs ,sobs ]
�αRΨ . (114)

Theorem 6 (Regularity of Second-Order Adjoint Equations) Let s = (sua , sθa , suo , sθo) ∈
Z
4+ such that all components of s are greater or equal than 3. Let the following conditions

be fulfilled

1. the initial condition of the coupled equation (1)–(5) satisfy ψ0 ∈ Hs(Ω)

2. the initial condition of the linearized coupled equations (56) satisfy Ψ0 ∈ Hs(Ω)

3. the initial condition of the coupled adjoint equations (85), specified at t = t1 satisfy
Ψ̃ (t1) ∈ Hs(Ω)

4. the forcing satisfies F̄ ∈ L2(T ,Hs−1).

Then the system (112) has a unique solution on T with the properties

Ψ̄ (t) ∈ C(T ,Hs) ∩ L2(T ,Hs+1),

and the state vector Ψ̄ of (112) satisfies

||Ψ̄ (t)||2Hs ≤ ||Ψ̄ (t1)||2Hse

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dy

+
∫ t

t0

[
(Pea + Peo)(||F̄Θa ||2

Hsθa −1 + ||F̄Θo ||2
Hsθo −1 + ||Ga

Θ ||2
Hsθa −1 + ||Go

Θ ||2
Hsθo −1)

+ (Rea + Reo)(||F̄Ua ||2
Hsua −1 + ||F̄U o ||2

Hsuo −1 + ||Ga
U ||2

Hsua −1 + ||Go
U ||2

Hsuo −1)
]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy

(115)
where Ms, ν∗ and FU , FΘ are defined in Theorem 2.

Proof (Sketch of proof) The second-order adjoint equations (112) resemble formally the first-
order adjoint equations (85) if one identifies the first-order adjoint variable Ψ̃ with the second-
order adjoint variable Ψ̄ . Then the difference between the two equations are the additional
G-terms defined in (113). These terms consist of products of linear and adjoint variable
Ψ := (U a,Θa, U o,Θo) and Ψ̃ := (Ũ a, Θ̃a, Ũ o, Θ̃o) and their respective derivatives.
From the regularity of linear and adjoint state in Theorems 2 and 3 we conclude that the
atmospheric Ga

Ū
,Ga

V̄
,Ga

Θ̄
and oceanic terms Go

Ū
,Go

V̄
,Go

Θ̄
are bounded in Hs−1. If we now

define F̃ := G+ F̄ we can cast the second-order adjoint equations in the formof the first-order
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adjoint equations and apply the arguments in the proof of Theorem 3 to prove the assertion.
��

From the previous theorem we infer that the right-hand side of (111) is well-defined in Hs,
i.e. for W ∈ Hs(Ω) we have

HJ [ψ]W = SsBW − Ψ̄ (t0). (116)

The convergence of the descent algorithm is the content of the following Theorem.

Theorem 7 (Convergence) We assume that the assumptions of Theorem 4 are satisfied. Addi-
tionally we impose for the observational part of the cost functional that

sobs
ua ≤ 1, sobs

θa ≤ 1, sobs
uo ≤ 1, sobs

θo ≤ 1. (117)

Let ψ∗
0 ∈ Hsb

(Ω) be an optimal initial condition for the data assimilation problem (8)

with cost functional specified by (88). Let ψ0
0 ∈ Hsb

(Ω) be an initial value for the descent

algorithm 6.2 that lies within a ball B(ψ∗
0 ) ⊆ Hsb

(Ω) around ψ∗
0 . Define the sequence (ψn

0 )n

by (108). Then (ψn
0 )n converges to ψ∗

0 in Hsb
(Ω).

Proof To ease notation we denote the Sobolev index of the background term by s := sb. We
establish the convergence of the descent algorithm in Sect. 6.2 by invoking Lemma 9. The
necessary bounds on the cost functionals derivative are obtained from the regularity of the
second-order adjoint by means of equations (110) and (111). For the derivation of upper and
lower bound of the Hessian we need an estimate of the second-order adjoint state. We infer
from Theorem 6 with Ψ̄ (t1) = 0

||Ψ̄ (t)||2Hs ≤ μ

∫ t

t0

[||F̄ ||2Hs−1 + ||G||2Hs−1

]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy,

(118)

where μ := max{(Pea + Peo), (Rea + Reo)} and where the components of G are defined
in (113). The forcing F̄ in (118) is given by (114) and satisfies with assumption (26) on the
covariance operators for t ∈ T = [t0, t1] the estimate

||F̄(t)||Hs−1 ≤
∑

α∈I[tobs ,sobs ]
||�αRΨ (t)||Hs−1 =

∑
α∈I[tobs ,sobs ]

||RΨ (t)||H2α+s−1

≤ ||R||
∑

α∈I[tobs ,sobs ]
||Ψ (t)||H2α+s−1 ≤ Csobs ||R|| ||Ψ (t)||Hs+1 ,

(119)

with Ψ ∈ L∞([t0, t1],Hs)∩ L2([t0, t1],Hs+1) and where we have used that due to (117) we
have 2α + s − 1 ≤ s + 1 for α ∈ I[tobs, sobs]. For the non-linear forcing terms G in (113)
we derive with the inequalities of Cauchy–Schwarz and Poincaré the following estimate that
is valid on the time interval T = [t0, t1]

||Ga
Ū

||Hs−1 ≤C ||∇ Ṽ a(t)||Hs−1 ||∇V a ||Hs−1 + C ||∇U a ||Hs−1 ||∇Ũ a ||Hs−1

+ C ||∇V a ||Hs−1 ||∇U a ||Hs−1 + C ||∇Ũ a ||Hs−1 ||∇V a ||Hs−1

+ C ||∇Θa ||Hs−1 ||∇Θ̃a ||Hs−1 ≤ C ||∇Ψ a ||Hs−1 ||∇Ψ̃ a ||Hs−1 .

(120)
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Since an analogous estimate holds for all other terms in (113) we find

||G||Hs−1 =||Ga ||Hs−1 + ||Go||Hs−1

≤ C ||∇Ψ a ||Hs−1 ||∇Ψ̃ a ||Hs−1 + C ||∇Ψ o||Hs−1 ||∇Ψ̃ o||Hs−1

≤ C ||Ψ ||Hs ||Ψ̃ ||Hs ,

(121)

with Ψ̃ ∈ L∞([t0, t1],Hs)∩ L2([t0, t1],Hs+1). The linear state ||Ψ ||Hs in (121) is according
to Theorem 2 bounded for t ∈ T

||Ψ (t)||2Hs ≤ ||Ψ0||2Hse

∫ t
t0

(
Ms (y)+C K 2

s C2
P (Pea ||γ (y)||2

H
sa
θ

+Reo||σ(y)||2
Hso

u

)
−C−1

P ν∗ dy

= L1(t)||W||2Hs ,

(122)

withW :=Ψ0 (cf. boxbelow (110)) andwhere L1(t) := e
∫ t

t0
Ms (y)+||γ ||Hsa

θ
2+||σ ||Hso

u
2−C−1

P ν∗ dy

is bounded on T and where we have used the fact that the forcing of the linearized equations
is zero. For the adjoint state ||Ψ̃ ||Hs in (121) we find with the zero initial condition from
Theorem 3 that for t ∈ T

||Ψ̃ ||2Hs ≤μ

∫ t

t0

[||F̃Θ ||2Hs−1 + ||F̃U ||2Hs−1

]

× e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy.

(123)

The adjoint forcing in (123) is given by

F̃ =
∑

α∈I[tobs ,sobs ]
�αR(

ψn − ψobs
)

and satisfies the estimate

||F̃(t)||Hs−1 ≤
∑

α∈I[tobs ,sobs ]
||�αR(

ψn − ψobs
)||Hs−1

=
∑

α∈I[tobs ,sobs ]
||R(

ψn − ψobs
)||H2α+s−1

≤ ||R||
∑

α∈I[tobs ,sobs ]
||ψn − ψobs ||H2α+s−1

≤ ||R||
∑

α∈I[tobs ,sobs ]
(||ψ∗ − ψn ||H2α+s−1 + ||ψ∗ − ψobs ||H2α+s−1)

≤ ||R||(||ψ∗ − ψn ||Hs+1 + ||ψ∗ − ψobs ||Hs+1) =: L2(t),

(124)

where L2(t) > 0 is bounded on T , sinceψ∗, ψn, ψobs ∈ L∞([t0, t1],Hs)∩L2([t0, t1],Hs+1).
The function L2 is bounded uniformly in n, because (ψn)n ⊆ B(ψ∗

0 ). From (124) we
conclude for (123)

||Ψ̃ ||2Hs ≤ μ

∫ t

t0
L2(y)e

∫ t
y

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz
dy =: L3(t),

(125)
where the function L3(t) is bounded on T . From (125) and (122) it follows for (121) that on
T

||G(t)||Hs−1 ≤ C L3(t)L1(t)||W(t)||2Hs . (126)
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With (126) and (119) we derive for the upper bound on the second-order state in (118) for
t ∈ T

||Ψ̄ (t)||2Hs

≤ μMse

∫
T

(
Ms (z)+C K 2

s C2
P (Pea ||γ (z)||2

H
sa
θ

+Reo||σ(z)||2
Hso

u

)
−C−1

P ν∗ dz

×
∫

T

[
||R||Csobs L1(t) + C L3(t)L1(t)

]
dy||W||2Hs ≤ K ||W(t)||2Hs ,

(127)

where K > 0 is defined by the right-hand side of the second inequality and depends on the
parameter of the problem but not on time. We are now in the position to derive bounds on
the Hessian. In view of (110) the following estimate follows for W,Z ∈ Hs(Ω)〈Z, HJ [ψ]W 〉

Hs = 〈Z,SsbBW − Ψ̄ (t0)
〉
Hs

≥ −||Z||Hs ||SsbBW − Ψ̄ (t0)||Hs

≥ −||Z||Hs
∣∣||SsbBW||2Hs − ||Ψ̄ (t0)||Hs

∣∣.
(128)

In case that ||SsbBW||Hs > ||Ψ̄ (t0)||Hs we derive the lower bound〈Z, HJ [ψ]W 〉
Hs ≥ −||Z||Hs ||SsbBW||Hs + ||Ψ̄ (t0)||Hs

≥ −||Z||Hs ||SsbB|| ||W||Hs .
(129)

If ||SsbBW||2Hs ≤ ||Ψ̄ (t0)||2Hs we find with (127)
〈Z, HJ [ψ]W 〉

Hs ≥ ||Z||Hs ||SsbBW||Hs − ||Ψ̄ (t0)||Hs

≥ −||Z||Hs ||Ψ̄ (t0)||Hs

≥ −||Z||Hs
√

K ||W||Hs .

(130)

This proves the lower bound of the Hessian. The upper bound follows from (127)〈Z, HJ [ψ]W 〉
Hs = 〈Z,SsbBW − Ψ̄ (t0)

〉
Hs

≤ ||Z||Hs ||SsbBW − Ψ̄ (t0)||Hs

≤ ||Z||Hs(||SsbBW||Hs + ||Ψ̄ (t0)||Hs)

≤ ||Z||Hs(||SsbB|| + √
K ||)W||Hs .

(131)

Equations (129), (130) and (131) establish together with (110) the bounds on the second
derivative of the cost functional and the application of Lemma 9 proves the assertion of the
Theorem. ��
Remark 11 (The case of two uncoupled models) We continue here the Remarks 3 and 9 on
two uncoupled models that are obtained if one replaces the coupling term by external forcing.
The convergence of the steepest descent algorithm of Theorem 8 applies to this case as well.

7 Conclusion

We have suggested a formulation of the variational data assimilation problem that reflects the
regularity of the model solution in the norms appearing in the background and observational
termof the cost functional. The use of derivative-based norms implements a scale-selective fil-
tering capabilitywithin the data assimilation algorithmwithout affecting themodel dynamics.
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For an idealized coupled atmosphere–ocean model we could show that that this formulation
leads to a solvable optimization problem for which we can prove the existence of optimal
initial conditions. The coupled optimization problem is also computable in the sense of local
convergence of a gradient-based descent algorithm to optimal initial conditions. This work
can be extended and continued in several respects.

Most importantly, the impact of the Sobolev-type of cost functional has to be investigated
in numerical experiments. These experiments need to study the difference between a well-
defined (Sobolev-type) cost functional suggested here and a standard cost functional with
square-integrable norms only. The scale-selective filtering property of the Sobolev norms
has to be investigated experimentally with respect to its physical impacts on the optimal
initial condition that is determined by coupled data assimilation. The filtering has also to be
compared against regularization approaches such as using increased dissipation in the adjoint
equations as compared to the nonlinear equations to regularize the computation of the gradient
of the cost functional (see e.g. [17]). Most notably it has to study if our scale selective filtering
is beneficial in avoiding local minima during the cost functional minimization.

For both coupled and uncoupled data assimilation algorithm the modelling of multivariate
covariance matrices for model error and observational error is of paramount importance.
Modelling the error covariance between different components of the state vector of the
coupled system poses a fundamental challenge. In our approach derivatives are additionally
taken of the model-background difference, weighted by the model error covariance matrix
B. An analogous procedure is applied to the model-data difference (see (89) and (91)).
The interaction between the derivatives, created by the Sobolev norm, and the two error
covariance matrices constitutes a new constituent of the data assimilation algorithm that
was not addressed in this paper and remains to be understood. Since we have not focused on
model error covariancemodellingwe have used for simplicity a singlemodel error covariance
operator that is applied to all derivatives of the model-background difference. This does not
necessarily have to be the optimal choice and one can imagine to use different error covariance
operators for different derivative terms. The standard cost functional with the L2-norm has
an interpretation as statistical least-square estimation technique (see e.g. [18], [40]). If there
is a corresponding interpretation of the Sobolev-norm cost functional as a Bayesian estimator
is an open question.

We mention also a complementary research path towards understanding and practical
implementation of coupled data assimilation. Here onemakes a compromise on the complex-
ity of the assimilation algorithm but not on the coupled model, i.e. to apply less sophisticated
data assimilation algorithms to complex three-dimensional coupled atmosphere ocean equa-
tions. An example of such an assimilation technique are downscaling and continuous data
assimilation algorithms that have been used in a series of papers (see e.g. [4,13] and refer-
ences therein) to study fundamental aspects of data assimilation for a variety of (uncoupled)
models.

The final frontier of coupled data assimilation is of course the data assimilation for coupled
models consisting of three-dimensional general circulation models of atmosphere and ocean.
For such models well-posedness theorems are not available and the knowledge about the
regularity of the solution is limited. The deepest results is the series of papers by Lions–
Temam–Wang [21–23], who established for a coupled atmosphere–oceanmodel based on the
(hydrostatic) primitive equations the existence of weak solutions, with uniqueness remaining
anopenquestion andonlyweakly continuous dependencyon initial conditions. For uncoupled
primitive equations the breakthrough result of [9] establisheswell-posedness for initial data in
H1. For these equations the solvability of the variational data assimilation problemusingweak
solutions has been shown in [3]. The extension to strong solutions remains open. For coupled
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general circulation model we are not aware of any solvability and computability result of the
data assimilation problem. In order to make progress towards general circulation models we
have to abandon our notion of classical solutions of the atmosphere–ocean equations and
extend our approach to more general notions such as weak and strong solutions.
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