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Abstract Image restoration is one of the essential tasks in image processing. In order to
restore images from blurs and noise while also preserving their edges, one often applies
total variation (TV) minimization. Cauchy noise, which frequently appears in engineering
applications, is a kind of impulsive and non-Gaussian noise. Removing Cauchy noise can
be achieved by solving a nonconvex TV minimization problem, which is difficult due to its
nonconvexity and nonsmoothness. In this paper, we adapt recent results in the literature and
develop a specific alternating direction method of multiplier to solve this problem. Theo-
retically, we establish the convergence of our method to a stationary point. Experimental
results demonstrate that the proposed method is competitive with other methods in visual
and quantitative measures. In particular, our method achieves higher PSNRs for 0.5dB on
average.
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1 Introduction

In many imaging applications, images inevitably contain natural non-Gaussian noises, such
as impulse noise, Poisson noise, multiplicative noise, and Cauchy noise. At the same time, the
images may have been blurred by the point spread function (PSF) during their acquisition.
Therefore, the image restoration problem is an essential task. Researchers have proposed
many methods to deblur and denoise images; see [12,16,17,27,35,36,41,54] and references
therein. In this paper, we focus on recovering images corrupted by blurring and Cauchy noise.
Cauchy noise usually arises in echo of radar, in the presence of low-frequency atmospheric
noise, and in underwater acoustic signals [26,31,40]. According to [44,45], it follows Cauchy
distribution and is impulsive.
We assume that the original gray-scale image u is defined on a connected bounded domain
Q c R? with a compacted Lipschitz boundary. The observed image with blurs and Cauchy
noise is given as follows:
f=Ku+n, (1)

where f € L?(2) denotes the observed image, K € LLY(Q), LZ(Q)) represents a known
linear and continuous blurring (or convolution) operator, and n € L2(2) denotes Cauchy
noise. Our goal is to recover u from the observed image f.

In recent years, much attention has been given to Cauchy noise removal, and several
methods have been proposed. In [13], the authors applied a recursive algorithm based on
the Markov random field to reconstruct images and retain sharp edges. In 2005, Achim and
Kuruoglu utilized a bivariate maximum a posteriori estimator (BMAP) to propose a new sta-
tistical model in the complex wavelet domain for removing Cauchy noise [1]. In [34], Loza et
al. proposed a statistical approach based on non-Gaussian distributions in the wavelet domain
for tackling the image fusion problem. Their method achieved a significant improvement in
fusion quality and noise reduction. In [46], Wan et al. developed a novel segmentation method
for RGB images that are corrupted by Cauchy noise. They combined statistical methods with
denoising techniques and obtained a satisfactory performance. Since TV regularization is
able to preserve edges effectively while still suppressing noise satisfactorily [21], Sciacchi-
tano et al. proposed a convex TV-based variational method for recovering images corrupted
by Cauchy noise in [42]. The variational model in this method is as follows:

min /|Du|+§ /1og(y2+(u—f)z)dx+a||u—ﬁ||§ : )
ueBV(Q) Jo 2 \Ja
where y > 0 is the scale parameter of Cauchy distribution, and BV (£2) is the space of
functions of bounded variation. Here, u € BV () if u € L' () and its total variation (TV)

/|Du|ésup{/ wdivy dx v € (CEQ), IVlleo < 1}
Q Q

is finite, where (C(‘)”(Q))2 is the space of vector-valued functions with compact support in
€2. The space BV (£2) endowed with the norm |u| gv (@) = llullp1(q) + fQ | Du| is a Banach
space; see, e.g., [21]. In (2), A denotes the positive regularization parameter, which controls
the trade-off between TV regularization and the fitting to f and u, u is the result obtained by
the median filter, and « is a positive penalty parameter. Note that if 82 > 1, the objective
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functional in (2) is strictly convex and leads to a unique solution. Because of strict convexity,
the model avoids the common issues of nonconvex optimization: the solutions depend on
the numerical methods and how they are initialized. But the last term in (2) in fact pushes
the solution close to the median filter result, and the median filter does not always provide
satisfactory removals of Cauchy noise. Hence, in this paper we turn our focus back to a
nonconvex model.

Recently, researchers have discovered some useful convergence properties of the optimiza-
tion algorithms for solving nonconvex minimization problems [24,47,48,53]. In particular,
the paper [48] established the global convergence (to a stationary point) of the alternating
direction method of multipliers (ADMM) for nonconvex nonsmooth optimization with linear
constraints. To take advantages of the recent results, in this paper we develop the ADMM
algorithm to solve the following nonconvex variational model directly for denoising and
deblurring simultaneously:

- A 2 2
ue%%l}mfg |Du| + 5 /Qlog (v* + (Ku — f)”)dx. 3)
We prove that our algorithm starting from any initialization is globally convergent to a
stationary point under certain conditions. Furthermore, we compare our proposed method
to the state-of-the-art method proposed in [42] and show the effectiveness of our method in
terms of restoration quality and noise reduction.

The outline of the paper is summarized as follows. In the next section, we analyse some
fundamental properties of Gaussian distribution, Laplace distribution and Cauchy distribu-
tion. In Sect. 3, we illustrate the nonconvex variational model for denoising and deblurring,
and prove the existence and uniqueness of the solution. In Sect. 4, we develop our algo-
rithm for the proposed nonconvex model and present the convergence results. In Sect. 5, we
demonstrate the performance of our algorithm by comparing with other existing algorithms.
Finally, we conclude the paper with some remarks in Sect. 6.

2 Statistical Properties for Cauchy Distribution

The Cauchy distribution is a special kind of the «-stable distributions with « = 1 and is
important as a canonical example of the “pathological” case [3,15,29]. Itis closed under linear
fractional transformations with real coefficients [30]. However, different from most «-stable
distributions, it possesses a probability density function that can be expressed analytically
[19,28] as:
14

m (e —mw?+y?)
where the parameter p specifies the location of the peak and the parameter y > 0 decides
the half-width at half-maximum. Here, we let C(u, y) denote the Cauchy distribution. Its
mode and median are both p while the mean, variance, and higher moments are undefined.
In addition, the Cauchy distribution is infinitely divisible, that is, for every positive integer n,
there exist n independent identically distributed (i.i.d.) random variables X, 1, X,2, ... Xu,
such that X, + X,2 + --- + X, follows the Cauchy distribution. Due to their infinite
divisibility, random variables following the Cauchy distribution obey the generalized central
limit theorem [37].

The Cauchy distribution is closely related to some other probability distributions. The
Cauchy distribution is heavy-tailed, and its tail’s heaviness is determined by the scale param-
eter y. In particularly, if X and Y are two independent Gaussian random variables with mean

Pc(x) =
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0 and variance 1, then the ratio X /Y follows the standard Cauchy distribution C(0, 1) [6,38].
In Sect. 5, we will apply this property to simulate images corrupted by Cauchy noise.

Further to show the statistical properties of the Cauchy distribution, we compare it with
two most commonly used probability distributions: the Gaussian distribution (\ (11, o'2) with
mean y and variance o2) and the Laplace distribution £ (s, b) with mean u and variance
2b?. Since the Gaussian and Cauchy distributions are a-stable distributions with & = 2 and
o = 1, respectively, they are both bell-shaped. Moreover, we can easily obtain the following
relation between them at x = 0.

Proposition 2.1 Let X| and X, be two independent random variables. Assume that X| ~
N(0, 1) and X, ~ C(0, \/g). Then the values of their probability density functions (PDFs)

at x = 0 are equal.

In addition, both the Laplace and Cauchy distributions are heavy-tailed distributions. We
demonstrate their relation by the tails of their distribution curves in the following proposition.

Proposition 2.2 Let Pg, Py and Pc denote the PDFs for N'(0. o), £(0, b) and (0. 2),
respectively. Then, the followings hold:

1. Atx =0 =b =y, the ratio of PG, Pp and Pc is 1 : /5. [ 5=/
2. Atx = 30 = 3b = 3y, the ratio of Pg, Pp and Pc is 1 : \/ge% :,/50%6%.

Based on Proposition 2.2, we can see that the probability density value of the Gaussian
distribution at a rather small x, saying x = 0 = b = y, is the largest, which shows that the
additive Gaussian noise tends to mainly produce small perturbations. However, at larger x,
saying x = 30 = 3b = 3y, the density of the Laplace distribution is more than 5 times that
of the Gaussian distribution, and the density of the Cauchy distribution is even more than 7
times. Hence, the Laplace and Cauchy distributed additive noise tend to corrupt images with
high perturbations.

Figure 1 depicts the PDFs of the Gaussian, Laplace, and Cauchy distributions. From
Fig. 1a, we see that these three distributions have different behaviours at the peaks and
tails. See the details in the zoom-ins. Figure 1b depicts the portion around the peaks of the
three distributions. The Gaussian distribution has the same peak as the Cauchy distribution
while the density of the Gaussian distribution is slightly higher on both sides of the peak.
Figure 1c depicts the portion around the tails of the three distributions. The tail of the Laplace
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distribution is closer to that of the Cauchy distribution than Gaussian distribution, but there
still exists a big gap between the densities of the Laplace and Cauchy distributions. Therefore,
the Cauchy distribution cannot be simply replaced with the Gaussian or Laplace distribution
during image restoration.

3 Nonconvex Variational Model

This section describes our model of deblurring and denoising. In [42], a variational model
for denoising was proposed. To make our exposition self-contained, we deduce a similar
nonconvex variational model for deblurring and denoising based on the maximum a posteriori
(MAP) estimator and Bayes’ rule.

3.1 Nonconvex Variational Model Via MAP Estimator

We consider f(x) and u(x) as random variables for each x € Q2. The MAP estimator of u
is the most likely value of u given f, i.e., u™ = arg max, P (u|f). Based on Bayes’ rule and
the independence of u(x) and f(x) for all x € 2, we obtain

argmax P(u|f) = arg max %}f(“)
= argmin — log P(f|u) — log P (u) )

= arg min —/ log P(f(x)|u(x)) dx —log P(u),
u Q

where the term log P (f (x)|u(x)) describes the degradation process that produces f from u
based on (1), and log P (u) is the prior on u. Since 1 (x) follows C(0, y) for each x € 2, we

have
14

7 ((Ku)(x) — f))2 +y?)

P(f()|u(x)) =

In addition, we use the prior P(u) = exp(—% fQ |Du|). Then, we arrive at the variational
model for deblurring and denoising:

min 5/ log (Ku — £)* +y?) dx—i—/ |Dul, S)
Q Q

ueBV(Q) 2

where A > 0is the regularization parameter. Although |, | Du|is convex, due to the logarithm
in the data-fitting term, fQ log (y2 + (Ku—f )2) dx is nonconvex. Therefore, the numerical
solution of (5) depends on the numerical approach and how it is initialized.

3.2 Solution Existence and Uniqueness of the Model (5)

According to the properties of the total variation, we prove that there exists at least one
solution for the nonconvex variational problem in the BV space.

Theorem 3.1 Assume that 2 is a connected bounded set with compacted Lipschitz boundary

and f € L*(). Supposethat K € L(L'(2), L*()) is nonnegative and linear with K1 # 0.
Then the model (5) has at least one solution u* € BV ().
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Proof Let E(u) = [ |Dul+% [ log (y* + (Ku — f)?) dx. Obviously, E (u) is bounded
from below. For a minimizing sequence {u¥}, we know that E(u¥) is bounded, so both
{ /o I1Du*|} and [, log (y* + (Ku* — f)?) dx are bounded.

Now we apply proof by contradiction to show that {Ku*} is bounded in L?(2) and
therefore also bounded in L' (€2). Assume that || K u¥ ||, = 400, so there exists a set £ C €,
whose measure is not zero, such that for any x € E we have Ku*(x) = +00. Then, with
f € L*() we will also have log (y* + (Ku*(x) — f(x))?) = +oo forall x € E, which
derives a contradiction with [, log (¥ + (Ku* — £)?) dx < +oc.

Based on { fQ | Du* |} being bounded, by the Poincaré inequality [2], we have

I = ma@hla =€ [ |D (it = mawt))| = [ 1Dit) ©)
Q Q

where mq(u¥) = ‘lﬁ fQ ukdx, Cis a positive constant, and | 2| represents the measure of
Q. As Q is bounded, ||u* — mgq(u¥)||> and ||uF — mgq(u*)||; are bounded for each k. Because
K € £L(LY(), L%()) is continuous, we have that {K (u¥ — mq (u*))} is bounded in L2(2)
and L1 (). Thus, we conclude

ma )] - 1K1 < | K (u = ma@h)| -+ 1Ka 1.

Due to K1 # 0, mq(u*) is uniformly bounded. Combining with (6), this gives that the
sequence {u*} is bounded in L%(2) and in L1 (Q). Recalling that {fQ IDukI} is bounded, we
obtain the boundedness of {1f} in BV ().

Therefore, there exists a subsequence {u"*} in BV (2) that converges strongly in LY()
to some u* € BV (R2) as k — oo, while {Du"**} converges weakly as a measure to Du*.
Since K is linear and continuous, {K u"*} converges strongly to K u* in L2(£2). By the lower
semicontinuity of total variation and Fatou’s lemma, we conclude that u* is a solution of the
model (5). ]

Although the objective function in (5) is nonconvex, we are still able to obtain a result on
the uniqueness of the solution.

Theorem 3.2 Assume that f € L2(Q) and K is injective. Then, the model (5) has a unique
solution u® in Qu :={u € BV(Q) : f(x) —y < (Ku)(x) < f(x)+y forall x € Q}.

Proof For each fixed x € 2, we define a function g : R — R:
g() =log (y* + (1 = f())?).

Since the second order derivative of g:

2(r? = (= f)))

(v2+ ¢ = f0)?)?

is positive when f(x) —y <t < f(x) 4+ y, g is strictly convex in this case. Since K is
injective, we have that, if f(x) —y < (Ku)(x) < f(x) + vy, g((Ku)(x)) is strictly convex.
By the convexity of TV and linearity of K, the objective function of the model (5) is strictly
convex in Q. Hence, there exists a unique solution for the model (5) in Q. O

gt =

Note that Cauchy noise is so impulsive that, even with a small y, many points in f are
still heavily corrupted and thus some impulsive noise is still left in the images in Q. If we
also take the smoothing property of K into account, then the unique solution in Q¢ will not
be satisfactory. In Sect. 5.1, we will demonstrate this point numerically.
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4 Proposed ADMM Algorithm

Due to the nonconvexity of the variational model (5), different numerical algorithms and
initializations may yield different solutions. Taking advantage of the recent result in [48], in
this section we apply the ADMM algorithm to the minimization problem (5), which restores
images degraded by blurring and Cauchy noise. Then, we prove that the proposed algorithm
is globally convergent to a stationary point.

4.1 The ADMM Algorithm for Nonconvex and Nonsmooth Problem

We briefly review the ADMM algorithm and its recent convergence result under nonconvexity
and nonsmoothness.

Letx = [xir,~-~ ,x;'—]—r e RY and A = [A, -, A;] € RMXN where x; € R™,
A; € RMxni| Zf —1 i = N. We consider the minimization problem formulated as:
min F(x) + () (M

s.t. Ax + By =0,

where F(x) is a continuous function, G(y) is a differentiable, and y € R” is a variable with the
corresponding coefficient B € RM*L In general, F can be nonsmooth and nonconvex, and
G can be nonconvex (but is differentiable as stated). By introducing a Lagrangian multiplier
w € RM for the linear constraint Ax + By = 0, we obtain the augmented Lagrangian:

Lg(x, y; w) = F(x) +G(y) +w' (Ax+ By) + §||Ax + Byl

where 8 > 0 is a penalty parameter.
Extending from the classic ADMM [7,20], the multi-block ADMM generates the iterates
(Xk+1 , yk-H) by

xf“ € argmin Lg (xl,xfz‘, e ,xf, yk; wk)
X1
€
k+1 : k+1 k+1 k. k
x e argmin Lg (xl+ ,)52+ s Xg, YW ) ®)
Xs

Y1 € arg min Lg (XkH, y; wk)
y

W = k4B (Axk+1 + Byk+l)’

where we use € arg min when minimizers are not necessarily unique (in which case, any
minimizer is fine). The general assumption is that all subproblems have minimizers. The
convergence result of the ADMM algorithm under nonconvexity and nonsmoothness is sum-
marized as follows [48]. We present the conditions that are simplified to fit our need yet more
restrictive than those in [48].

Theorem 4.1 LetD = {(X, y) € RV*L i Ax 4+ By = 0} be anonempty feasible set. Assume
F(X) + G(y) is D-coercive, that is, for (x,y) € D, F(x) + G(y) — o0 as ||(x, y)|| = oo.
Also, assume that A, B have full column rank! and Im(A) C Im(B). Further assume that

! The full column rank assumption can be weakened to the following assumption: for the general matrix
A and B, there exists two Lipschitz continuous maps such that H(x) € argmin, {F(x) : AXx = u} and
Ho(v) € argrniny{g(y) : By = v}.
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F(x) is either restricted prox-regular® or piecewise linear, and G(y) is Lipschitz differentiable
with the constant Lyg > 0. Then, for any B larger than a certain constant By and starting
from any initialization (x°, y°, w®), ADMM (8) produces a sequence of iterates that has
a convergent subsequence, whose limit is a stationary point (X*, y*, w*) of the augmented
Lagrangian Lg (X, y; w). If in addition Lg satisfies the Kurdyka—t.ojasiewicz (KL) inequality
[4,8,32,33], then the result improves to global convergence to that stationary point.

4.2 The ADMM Algorithm for Solving (5)

Taking advantage of the ADMM convergence result, we apply it to solve the nonconvex
variational model in (5) for simultaneous denoising and deblurring. Hereafter, we switch to
the discrete form, but, for the sake of simplicity, we still use the same letters defined in the
continuous context. We assume that the discrete image domain 2 contains n X n pixels. The
discrete minimization nonconvex model of (5) is formulated as follows:

. A
min [|Vull + 2 {log (v* + (Ku = )?) 1), ©)
uelR”

where f € R”’ is obtained by stacking the columns of the corresponding n x n gray-scale
image, and K € R"*n* The TV regularization ||Vu||; is defined as:

n2
IVulls =Y (Vaw)? + (Vyu)?,

i=1

where V, € R *7* and vV, € R™*"* are the discrete first order forward differences in
the x- and y-directions, respectively. The discrete gradient of u, Vu, is defined as Vu =
(Vo) (V) T]T € R

To derive the ADMM algorithm for our model, we introduce a new auxiliary variable
v € R" and obtain the following constrained nonconvex minimization problem:

A
min [ Vul + 3 {log (v* + (v = /)?) . 1) (10)

u,veR"z
s.t. Ku = v.

Let w € R™ be the Lagrangian multiplier for the constraint Ku = v. Then we have the
corresponding augmented Lagrangian:

B
2
where 8 > 0 is a penalty parameter. The whole algorithm for restoring the blurred images
corrupted by Cauchy noise is given in Algorithm 1.

In Algorithm 1, the dominant computation is the steps to solve the two minimization
subproblems in (11) and (12). The u-subproblem (11) can be efficiently solved by many

A
Lot v, w) = [Vulli + 5 {log (v* + (v = /7). 1)+ (w, Ku = v) + S| Ku = vl

2 A function b : RN — R is restricted prox-regular, if for any sufficiently large M € R and any bounded
set T C RV, there exists T > 0 such that

h(y) + %le — V1> > h(x) + (d,y —x), forallx,y € T\ Sy, d € dh(x), |d|| < M

where Sys 1= {d € dom(dh) : ||d|| > M foralld € 9h} is the exclusion. When x has multiple subblocks
X1yenns Xn, on the first block x1, the function F is only required to be proper and lower semi-continuous.
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Algorithm 1 ADMM algorithm for solving (9)

1: Initialize uo, vo, wo; set A, B.
2: Fork =1,2, ..., calculate uk+l, phtl gkl by

2

k+1 . B k wk

u € argmin |Vull{ + = |[Ku —v* + — ¢8))
u 2 B N

k1 _ i 2 02} 1)1 Bl gk wk |? (12)

v —arglfnm5<0g(y +(v—f)), >+5 Wt v = i

Wk = wk 4 BRukH! = kT (13)

3: If ukt! satisfies the stopping criteria, return uk 1 and stop.

methods, for instance, the dual algorithm [10], the split-Bregman algorithm [9,23,43,50], the
primal-dual algorithm [11, 18], the infeasible primal-dual algorithm of semi-smooth Newton-
type [25], the ADMM algorithm [14,52], as well as the max-flow algorithm [22]. Here, we
apply the dual algorithm proposed in [10]. Since the objective function in (12) is twice
continuously differentiable, we can utilize the Newton method to solve it efficiently. Inspired
by [48], as a special case of (7), we have the following convergence result for Algorithm 1.
In addition, taking some specific properties of the variational model (9) into account, we
provide a relatively simple proof.

Theorem 4.2 Let (1%, 00, w®) be any initial point and {(u*, v*, w5)} be the sequence of
iterates generated by Algorithm 1. Then, if B > % and K has full column rank, the sequence

*

{(uk, vk, wh)} converges globally to a point (u*, v*, w*), which is a stationary point of Lg.

In order to prove Theorem 4.2, based on the model in (7), we define the following functions:

FiRY SR, F) = ||Vul

G:R"” SR, GU)= %(log (V+@-H?.1). (14)
The feasible set is Qr = {(u,v) € R? ® R” . Ku—v= 0}. First, we give some useful
lemmas that will be used in the main proof.
Lemma 4.1 The iterates of Algorithm 1 satisfy:
1. forallk € N, VG(F) = wk;

2. Jlwk — wk | < Zpjjok — ok,
)/2

Proof Substituting (13) on w* into the first-order optimality condition of the v-subproblem
on vk: VG(v*) — wk=! + B(v* — Ku¥) = 0, we have VG(v¥) = wF for all k € N.
Since G is smooth, we can calculate its second derivative
y:-wi-f* _ &
2+ = HH? 7y

and thus Lyg = % is a Lipschitz constant for VG. Consequently, we obtain the bound

IA

VeG=1 (15)

[wk — Wk = VG F) — VGA Y| < Lyg vk — vf ).

[m}
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Lemma 4.2 Let {(u*, vF, wh)} be the sequence of iterates generated by Algorithm 1. If
B> %, then {(u*, v*, wk)} satisfies:
Y

1. Lg (uk, vk, wk) is lower bounded and nonincreasing for all k € N;
2. {@k, vk, wk)} is bounded.

Proof According to the optimality condition of the u-subproblem (11), we define
dt = (Kka + BK T (Kult! — vk)) € F k. (16)
From (11) and the definition of subgradient F, it follows

[,ﬂ(uk, Uk, wk) _ Cﬁ(’/lk+l, vk, wk)

= Fb) — Fe* + Wk, Kuk — Ku* 1y + gllKuk —F2 = gIIKuk'H — k)2

— F) = F@y + (K Twk + BK T (Kuk+! — oy, uf — uk+1y gHKMk — Kuk )2
— Fb) — FhH) — @+ gk — gy 4 gllKuk _ Kk

> gnKu" — Ku* )2 (17)

where the second equality follows from the cosine rule: ||b + cll?=lla+cl®> = |b—al®+
2(a + ¢, b — a) and the last inequality follows from the convexity of F(u).
For the updates of v**!, w*k*!, by the cosine rule and Lemma 4.1, we have

k+1 k. k k+1  k+1 . k+1
Eﬂ(u+,v,w)—£ﬂ(u+,v+,w+)

— g(vk) _ g(vk+l) 4 (wk+1’ Uk+1 _ Uk) _ ﬁ||Kuk+1 _ Uk+1||2 4 gnvk _ Uk+1||2
1
— g(vk) _ g(karl) _ <Vg(vk+l), Uk _ Uk+l> _ E”wk _ wk+l”2 _|__ gnvk _ vk+l||2

Lvg o gw12 Bk kg2
> ——Z 0 = P+ St =

> 8 >
— C|ok — ofH 2 (18)
where we have applied the inequality
G(v) = GW) = (VG(),v—v) >0
and used the constant C = g — L%g In order to ensure C > 0, we need the penalty parameter

B to satisfy:

(15 A

According to (17) and (18), we have

Lﬂ(lfik, Uk, wk) _ ﬁﬂ(ukJrl, 'Uk+l, wk“rl) Z C”Uk _ vk+1”2 + g”KMk _ Kuk“rl ”2'
This means that Lg (uk, vk, wk) is nonincreasing in k € N.
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As K has full column rank, there exists 9 such that Ku* — § = 0. Therefore, we have

]-'(uk) +G) > I}{ligl{]-'(u) +GWw): Ku—v =0} > —o0.

Thus, we arrive at

Lkt — o2

= 7 + 608 + (voh), o — vk + £
> Fub) + G — L%gnﬁ R gnKu" e

. —L
= FWh) + () + ﬁ%nmk — 52 > —o0.

Lk, vF, wh) = Fu) + G000 + (wk, Kub — k) +

I Kuk — k)2

Since Lg Wk, vk, wh) is upper bounded by Lg @®, v°, wY) and obviously F(u) + G(v) is
coercive over Qr, we conclude that {1*} and {v¥} are bounded. By Lemma 4.1, { w¥} is also
bounded. ]

Lemma 4.3 Let 0L(uft! vt wktly = (3,L£, VoL, Vi £). Then, there exists a constant
C1 > 0 such that, for all k > 1, for some pkJrl € LWL, vE T wk Ty ye have A <
Crlv* =¥t

Proof Because V,, £ = Kukt! — vkt = Lkt — Ky and v, £ = wh*+! — wk, based on

B
Lemma 4.1, we have
L
VL] < %gnvk —o*H, (19)
VoLl < Lyglvk — oF . (20)

By the definition of the subgradient, we have

WL = 0F W + KTwkt! 4 BT (Kuft! — oft1
= 0F )y + K Twk + BK T (Kuk ! — %) 1)
4 KT(wk+l _ wk) +ﬂKT(Uk _ Uk+1).

Thus, according to the optimal condition 0 € 3 F (u**t!) + K Tw* + BK T (Ku*t!1 — v¥), we
have K T (wkt! — wk) + BK T (vF — vkt € 9, L. Letting

pk+1 L (KT(U)kJr] _ wk) + ﬂKT(vk _ Uk+1), %(wk+1 _ wk)’ wk-l—] _ wk)
and combining (19), (20), (21), and Lemma 4.1, we arrive at

1
I < <ng (1 t5t ||K||> + ﬂllKH) [vf —o*Fh

= Cyllv* —o*
whereCl:(ng(1+%+||K||)+ﬂ||K||)~ o

Now we give the proof to our main convergence theorem.
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Proof of Theorem 4.2 As K has full column rank, the feasible set Qf is nonempty. By
Lemma 4.2, the iterative sequence { (u¥, v*, wk)} is bounded, so there exists a convergent sub-
sequence {(u", v, w*)}, i.e., (u"*, v, W) converges to (u*, v*, w*) as k goes to infinity.
Since Lg @k, vk, whyis nonincreasing and lower-bounded, we have || K uF=u*t1y| — 0and
||vk — kil | = 0as k — oo. According to Lemma 4.3, there exists pk €dLp (uk, vk, wk)
such that || pk || = 0. Further, this leads to || p"**|| — 0 as k — oo. Based on the definition
of the general subgradient [39], we obtain that 0 € dLg(u*, v*, w*), ie., (u*, v*, w*) is a
stationary point.

Referring to [47,51], the function F(u) is semi-algebraic, and G(v) is a real analytic
function. Thus, we conclude that Lg satisfies the KL inequality [8]. Then, as in the proof
of Theorem 2.9 in [5], we can deduce that the iterative sequence {(u*, o5, wh)) is globally
convergent to (u*, v*, w*). O

Remark 1 In Theorem 4.2 we need K to have full column rank. Since K is a blurring matrix
in our problem, this requirement is satisfied.

5 Numerical Experiments

In this section, we present the results of several numerical experiments to demonstrate the
performance of the proposed method for restoring images corrupted by blurs and Cauchy
noise. Here, we use ten 8-bit 256-by-256 gray-scale test images, see Fig. 2. All numerical
results are performed under Windows 10 and Matlab Version 7.10 (R2012a) running on a
Lenovo laptop with a 1.7 GHz Intel Core CPU and 4GB RAM.
We utilize the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)
[49] as performance measures, which are respectively defined as
255n

PSNR = 20log 10 <7> , SSIM =
ll — ull2

2y (20 + c2)
M2+ uk+ (o +02+c2)

where i is the restored image, u is the original image, u; and u, denote their respective
means, 0';2 and Juz represent their respective variances, o is the covariance of # and u,

Fig. 2 Original images a Parrot, b Cameraman, ¢ Baboon, d Boat, e Bridge, f House, g Leopard, h Plane, i
Test, j Montage
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Table 1 PSNR and SSIM for the
test images “Parrot” and

“Cameraman” with different PSNR SSIM PSNR SSIM
initial values

Noise Condition Parrot Cameraman

y=>5 I 29.06 0.8729 28.72 0.8520
1I 27.83 0.8505 26.31 0.8500
111 24.88 0.7730 23.75 0.7275
y =10 I 27.12 0.8268 26.67 0.7949
I 26.68 0.8218 25.60 0.8093
i1 22.87 0.6895 2243 0.6653

@ o © @

Fig. 3 Comparison of different initial values for removing Cauchy noise in the image “Parrot”, with y = 5
(in the 1st row) and 10 (in the 2nd row). a Noisy images, b restored images of (I), ¢ restored images of (II),
d restored images of (III)

and cq, co > 0 are constants. PSNR is a good measure of the human subjective sensation,
and a higher PSNR implies better quality of the restored image. SSIM conforms with the
quality perception of the human visual system (HVS). If the SSIM value is closer to 1, the
characteristic (edges and textures) of the restored image is more similar to the original image.
In our method, we set the stopping condition based on the following relative improvement
inequality: . .
+
E@™") — E(") . 22)
E( uk+1 )
where E is the objective functionin (9) ande = 5 x 1073 In addition, since the regularization
parameter A balances the trade-off between fitting f and TV, we manually tune it in order
to obtain the highest PSNRs of the restored images. The selection method of A is out of the
scope in this paper. The parameter 8 in Algorithm 1 affects the convergent speed. Based on
Theorem 4.2, we round 8 > % up to the nearest value with two digits after the decimal
point as B. In addition, we set the iteration number for the Newton method while solving the
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Fig. 4 Plots of the objective function values versus iterations for the noisy images “Parrot” and “Cameraman”
with y = 5 (in the 1st row) and 10 (in the 2nd row). a I b II ¢ III

Table2 PSNR and SSIM for the noisy images and the restored images by applying different methods (y = 5)

Image Noisy PSNR SSIM
Median conRE Ours Median conRE Ours

Parrot 19.20 27.18 27.19 29.06 0.8341 0.8465 0.8729
Cameraman 18.98 25.94 26.51 28.72 0.7996 0.8225 0.8520
Baboon 17.74 19.18 21.18 22.56 0.5069 0.7178 0.7781
Boat 18.01 25.94 27.03 27.94 0.7779 0.8165 0.8541
Bridge 19.13 22.63 24.32 25.25 0.6312 0.7857 0.8097
House 17.94 24.06 25.25 26.26 0.7510 0.7774 0.8308
Leopard 19.07 25.34 26.54 27.51 0.7787 0.7861 0.8309
Plane 17.37 25.09 25.83 27.23 0.8235 0.8354 0.8611
Test 19.19 34.79 39.55 40.77 0.8922 0.9726 0.9864
Montage 19.14 27.52 27.94 31.08 0.8772 0.9180 0.9135
The largest values are given in bold

v-subproblem as 3. The iteration number for solving the u-subproblem equals 5 in denoising
and 10 in simultaneous deblurring and denoising.

5.1 Different Initializations

Since our model (9) is nonconvex, though we are able to prove that the ADMM algorithm
converges globally to a stationary point from any given starting point (1°, v0, w©), the local
minimizers that we obtained may still depend on the initial points. To study the influence of
initializations and obtain better restorations, in this section we test three different choices of

uY in denoising:
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Table3 PSNR and SSIM for the noisy images and the restored images by applying different methods (y = 10)

Image Noisy PSNR SSIM
Median conRE Ours Median conRE Ours

Parrot 16.35 25.51 26.74 27.12 0.7254 0.8202 0.8268
Cameraman 16.06 24.68 25.68 26.67 0.6801 0.7896 0.7981
Baboon 14.87 18.79 20.27 20.96 0.4671 0.6336 0.6634
Boat 15.11 24.39 25.71 25.79 0.6843 0.7710 0.7769
Bridge 16.30 21.94 23.37 23.58 0.5870 0.7123 0.7033
House 15.01 2291 24.24 24.37 0.6631 0.7465 0.7582
Leopard 16.16 24.16 25.40 25.60 0.6981 0.7649 0.7800
Plane 14.49 23.64 24.85 25.25 0.7104 0.8085 0.8161
Test 16.29 30.45 37.38 38.01 0.7078 0.9607 0.9793
Montage 16.27 26.10 27.16 28.89 0.7451 0.8922 0.8850

The largest values are given in bold

(I u® = max (0, min( f, 255));
(1) 1’ = medfile2(f);
arn ° = f,

where medfile2( f) denotes the result from the median filter with window size 3. Note that
due to the impulsive feature of Cauchy noise, the median filter usually provides fairly good
results. In addition, based on Theorem 3.2 with 1° in case (III), we obtain the unique solution
in QU.

In Table 1, we list PSNRs and SSIMs for different initial points for the test images
“Parrot” and “Cameraman” at the noise levels y = 5 and 10. The noisy images are obtained
viaf =u+y Z—; where 11 and 1 are independent random variables following the Gaussian
distribution with mean 0 and variance 1. It is obvious that both PSNRs and SSIMs are highest
in the case (I), and are lowest in the case (III), which shows that the unique solution in Qg
is not a satisfactory local minimizer.

Figure 3 depicts the restored “Parrot” images in order to compare the visual performance
due to different initial points. Figure 3d shows the unique solution in €, and we can see
that there is still some noise left in the restored images. The reason is that Cauchy noise is so
impulsive that by corrections in a small range, [—y, ¥ ], it is not enough to remove all noise.
Compared with the results from (II), the ones from (I) include clearer features and less noise,
especially in the region around the eye and black stripes of “Parrot”. Hence, we choose (I)
as initialization in our remaining numerical experiments.

Theorem 4.2 demonstrate that with any given initial points, Algorithm 1 converges globally
to a stationary point. Figure 4 depicts the plots of the objective function values in (9) versus
the number of iteration in order to observe the convergence of our method. It is clear that
the objective function value keeps decreasing over the iterations. Furthermore, our method
converges very fast except in case (III), which does not provide good restorations.
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Fig. 5 Comparison of different methods for removing Cauchy noise, with y = 5. a Noisy image:19.20,
b Median:27.18, ¢ conRE:27.91, d Ours:29.06, e Noisy image:18.98, f Median:25.94, g conRE:26.51,
h Ours:28.72, i Noisy image:17.74, j Median:19.18, k conRE:21.18, 1 Ours:22.56, m Noisy image:18.01,
n Median:25.94, o conRE:27.03, p Ours:27.94, q Noisy image:17.37, r Median:25.09, s conRE:25.83,
t Ours:27.25
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Fig. 6 Comparison of different methods for removing Cauchy noise, with y = 10. a Noisy image:16.35,
b Median:25.51, ¢ conRE:26.74, d Ours:27.12, e Noisy image:16.06, f Median:24.68, g conRE:25.68,
h Ours:26.67, i Noisy image:14.87, j Median:18.79, k conRE:20.27, 1 Ours:20.96, m Noisy image:15.11
n Median:24.39, o conRE:25.71, p Ours:25.79, q Noisy image:14.49, r Median:23.64, s conRE:24.85,
t Ours:25.25
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Fig.7 Zoomed version of the restored images in Fig. 5. a original images; b the median filter; ¢ the “conRe”
model; d our method

5.2 Comparisons of Image Deblurring and Denoising

In order to demonstrate the superior performance of our proposed method, we compare it with
two other well-known methods: the median filter (matlab function ‘medfilt2’) with window
size 3 and the convex variational method in [42] (“conRE” for short). For fair comparison, we
use the same stopping rule in the convex variational method and adjust the two parameters
in the model for highest PSNRs.

First, we compare the three methods for Cauchy noise removal, i.e., by setting K as the
identity matrix. Tables 2 and 3 list the PSNRs and SSIMs of the restored images at the noise
levels y = 5 and y = 10, respectively. Obviously, comparing to the two variational methods,
the median filter provides the worst PSNRs and SSIMs. Our method always yields the highest
PSNRs. Especially at the lower noise level (y = 5), our PSNRs are about 1dB higher than
the convex method [42]. Furthermore, in most cases, our SSIMs are also higher than others.

In Figs. 5 and 6, we present the results from different methods for removing Cauchy
noise from the images “Parrot”, “Cameraman”, “Baboon”, “Boat” and “Plane”. Although
the median filter effectively removes Cauchy noise, it also oversmooths the edges and destroys
many details. It is obvious that two variational methods outperform the median filter. Com-
paring to the convex method, our nonconvex method can provide better balance between
preserving detail and removing noise. To further illustrate the performance of our method,
we show the zoomed regions of the restored images “Parrot”, “Baboon” and “Boat” in Figs. 7
and 8, where we can clearly see the difference among the results from the three methods,
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Fig. 8 Zoomed version of the restored images in Fig. 6. a Original images; b the median filter; ¢ the “conRe”
model; d our method

e.g., the stripes around the eye in “Parrot”, the nose and whiskers of “Baboon”, and the ropes
and iron pillars of “Boat”.

In the following experiments, we compare the three methods on recovering images cor-
rupted by blurs and Cauchy noise. Here, we consider the Gaussian blur with size 7 and
standard deviation 3, and the out-of-focus blur with size 5. Further, Cauchy noise with y =5
is added into the blurry images. Tables 4 and 5 list the PSNRs and SSIMs by applying dif-
ferent methods to the images “Parrot”, “Cameraman”, “Plane” and “Test”. Figures 9 and 10
show the restored images.

Table 4 PSNR and SSIM for the images degraded by Gaussian blur and Cauchy noise (y = 5) and the
restored images by different methods

Image Noisy PSNR SSIM

Median conRE Ours Median conRE Ours
Parrot 17.16 21.13 23.73 24.45 0.6698 0.7174 0.7649
Cameraman 17.17 21.61 23.51 24.10 0.6397 0.6846 0.7490
Plane 15.74 20.52 22.11 22.57 0.6508 0.6666 0.7521
Test 18.86 29.60 32.31 36.71 0.8713 0.8263 0.9647

The largest values are given in bold
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Table 5 PSNR and SSIM for the images degraded by the out-of-focus blur and Cauchy noise (y = 5) and
the restored images by different methods

Image Noisy PSNR SSIM

Median conRE Ours Median conRE Ours
Parrot 17.59 22.26 25.02 25.45 0.7157 0.7496 0.8005
Cameraman 17.42 22.36 24.62 25.08 0.6777 0.7125 0.7735
Plane 15.98 21.31 2341 23.77 0.6956 0.7210 0.7854
Test 18.94 30.61 33.68 36.97 0.8784 0.8553 0.9560

The largest values are given in bold

@ (M T (© o)

Fig. 9 Comparison of the restored results by applying different methods for deblurring and denoising the
images degraded by a Gaussian blur (G, 7, 3) and Cauchy noise (y = 5). a Degraded images; b the median
filter; ¢ the “conRe” model; d our method

From Tables 4 to 5, we find that our method provides the highest PSNRs and SSIMs.
Comparing with the convex method, our method can improve by at least 0.36dB on PSNR. In
Figs. 9 and 10, it is easy to see that the restored images by the median filter are oversmoothing
as the median filter does not deblur. The convex method can recover edges and textures, but
some noise is not removed. However, our method not only preserves the fine features but
also effectively removes Cauchy noise, which can be clearly seen in the zoomed regions in
Fig. 11.
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@ (O  © @

Fig. 10 Comparison of the restored results by applying different methods for deblurring and denoising the
images degraded by the out-of-focus blur (A, 5) and Cauchy noise (y = 5). a Degraded images; b the median
filter; ¢ the “conRe” model; d our method

Fig. 11 Zoomed version of the restored results for the image “Parrot” degraded by the Gaussian blur (in the
st row) and the out-of-focus blur (in the 2nd row), respectively. a Degraded images; b the median filter; ¢ the
“conRe” model; d our method
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6 Conclusion

In this paper, we have reviewed and analyzed the statistic properties of the Cauchy distri-
bution by comparing it with the Gaussian and Laplace distributions. Based on the MAP
estimator, we have developed a nonconvex variational model for restoring images degraded
by blurs and Cauchy noise. Taking advantage of a recent result in [48], the alternating direc-
tion method of multiplier (ADMM) algorithm is applied to solve the nonconvex variational
optimization problem with a convergence guarantee. Numerical experiments show that the
proposed method outperforms two well-known methods in both qualitative and quantitative
comparisons.
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