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Abstract
Patient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of 
human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis 
generated with such models is often confounded by the presence of host cells and can give rise to data misinterpretation. For 
instance, it is important to discriminate between xenografted and host cells in histological sections prior to performing immu-
nostainings. We developed Single Cell Classifier (SCC), a data-driven deep learning-based computational tool that provides 
an innovative approach for automated cell species discrimination based on a multi-step process entailing nuclei segmentation 
and single cell classification. We show that human and murine cell contextual features, more than cell-intrinsic ones, can be 
exploited to discriminate between cell species in both normal and malignant tissues, yielding up to 96% classification accuracy. 
SCC will facilitate the interpretation of H&E- and DAPI-stained histological sections of xenografted human-in-mouse tissues 
and it is open to new in-house built models for further applications. SCC is released as an open-source plugin in ImageJ/Fiji 
available at the following link: https://​github.​com/​Biome​dical-​Imagi​ng-​Group/​Singl​eCell​Class​ifier.
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Abbreviations
SCC	� Singe Cell Clasifier
H&E	� Haematoxylin and Eosin

HBECs	� Human Breast Epithelial Cells
HR	� Hormone Receptor
MIND	� Mouse INtraDuctal
PDX	� Patient-Derived Xenograft

Introduction

Most of our understanding of mammary gland development  
and breast carcinogenesis stems from experiments with ani-
mal models. Mice are by far the most widely used experi-
mental system due to their size, ease of use, and most impor-
tantly, the ability to establish genetically-engineered mouse 
models (transgenic mice are one subtype of genetically-
engineered mouse models). However, approximately 90% 
of potential oncology drugs fail in clinical trials [1, 2], partly 
because of the lack of adequate preclinical models, raising 
concerns on how representative of the human physiology 
and disease data derived from mice are.

Patient-Derived Xenografts (PDXs), namely preclinical 
models developed by transplanting human-derived cells into 
immunosuppressed or humanized mice, currently best reca-
pitulate the complexity of human tissues and are increasingly 
employed for translational research [3–5]. Classically, mam- 
mary xenografts are generated by transplantation of pieces 

Quentin Juppet and Fabio De Martino are contributed equally to 
this work.

 *	 Cathrin Brisken 
	 cathrin.brisken@epfl.ch

 *	 Daniel Sage 
	 daniel.sage@epfl.ch

1	 Biomedical Imaging Group, School of Engineering, Ecole 
Polytechnique Fédéralé de Lausanne (EPFL), Lausanne, 
Switzerland

2	 EPFL Center for Imaging, Ecole Polytechnique Fédéralé de 
Lausanne (EPFL), Lausanne, Switzerland

3	 Swiss Institute for Experimental Cancer Research, School 
of Life Sciences, Ecole Polytechnique Fédéralé de Lausanne 
(EPFL), Lausanne, Switzerland

4	 Institute of Bioengineering, School of Life Sciences, Ecole 
Polytechnique Fédéralé de Lausanne (EPFL), Lausanne, 
Switzerland

5	 BioImaging & Optics Platform, Ecole Polytechnique 
Fédéralé de Lausanne (EPFL), Lausanne, Switzerland

/ Published online: 17 May 2021

Journal of Mammary Gland Biology and Neoplasia (2021) 26:101–112

https://github.com/Biomedical-Imaging-Group/SingleCellClassifier
http://crossmark.crossref.org/dialog/?doi=10.1007/s10911-021-09485-4&domain=pdf


1 3

of primary breast tissues to the mammary fat pad of recipi-
ent immunosuppressed mice [6]. However, under these 
settings, the PDXs growth and their HR expression are 
dependent on estradiol supplementations which, result-
ing in serum E2 equivalent to mid-menstrual cycle levels 
[6, 7], alter the physiological relevance of this preclinical 
model. Recent advances in this field were achieved with 
the Mouse INtraDuctal (MIND) model, which entails the 
injection of primary human-derived breast cells directly 
into the mouse mammary ductal tree via cleaved teat [8, 
9]. In the intraductal microenvironment, primary HBECs 
and breast cancer cells grow independently of exogenous 
hormone supplementations while retaining their HR expres-
sion and hormone responsiveness, making the MIND model 
an appealing preclinical tool [8, 10–14]. Hence, the MIND 
model provides the unprecedented opportunity to study the 
role that individual HRs play in the luminal compartment 
of the human breast epithelium by, for instance, histological 
techniques [9]. However, molecular analyses in xenograft 
models are hindered by the presence of both human and 
murine cells, which can lead to data misinterpretation due 
to contamination of different cell species. Therefore, prior 
to performing specific immunostaining to assess levels of 
proteins of interest in the xenografted cells, paraformalde-
hyde-fixed paraffin-embedded sections are usually stained by 
Haematoxylin and Eosin (H&E) in order to obtain a rough 
inference of the abundance of human cells within the tis-
sue of interest based on morphological features. Although 
human cells appear usually bigger in size and more elon-
gated than their murine counterparts, manual evaluation is 
error-prone, time-consuming and subject to inter-personal 
variability. This warrants the need for better tools to reveal 
species-specific features.

Machine learning techniques have been effectively 
applied in a number of different fields and emerged as valu-
able resources to decipher the content of biological images 
[15, 16]. While some methods have already been developed 
to analyze H&E stained human histological sections, their 
aim was mainly set on tissue segmentation [17–19] and 
more sophisticated supervised learning-based tools have 
been created to perform nuclei segmentation [19]. Here, we 
hypothesized that deep learning could be employed in order 
to automate human-mouse cell discrimination in intraductal 
xenografts, a challenging task due to high biological and 
technical heterogeneity. We developed Single Cell Classi-
fier (SCC), a data-driven machine learning-based approach 
capable of classifying either normal or malignant individual 
xenografted cells from murine cells in the same histological 
section according to specific features rather than images. 
Upon evaluation of a total of 484 cell-intrinsic or contextual 
features, SCC was proven to reach up to 96% of classifica-
tion accuracy, with contextual information playing a major 
role on the classification performance. SCC is supplied 

as a publicly available plugin in ImageJ/Fiji [20] and can 
be downloaded at the following link: https://​github.​com/​ 
Biome​dical-​Imagi​ng-​Group/​Singl​eCell​Class​ifier.

Methods

Intraductal Injections

Single cells readily isolated from reduction mammoplasty 
specimens or invasive breast cancers were lentivirally 
infected with firefly luciferase (luc2) and GFP (Lenti-ONE 
CMV-GFP(2A)Luc2 WPRE VSV, ref = V621004001 or 
pR980 Luc2GFP, GEG Tech), allowing to track the growth 
of patient-derived cells in vivo, and promptly xenografted 
into 7-to-12 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 
(NSG) mice. Animals were anesthetized by intraperitoneal 
injection with 10mg/kg xylazine and 90mg/kg ketamine 
(Graeub) and intraductally injected with 10 � L of PBS con-
taining 500’000 cells per gland, as previously described [9]. 
At sacrifice, xenografted mammary glands were harvested 
for histological analyses.

Histology

Tissues were fixed in 4% paraformaldehyde and paraffin-
embedded for histological analyses. Paraffin blocks were 
cut and 4 �m-thick sections were mounted onto 75 x 25mm 
Superfrost Plus microscope slides (Thermo Scientific, 
USA, ref = J1800AMNZ). H&E staining was performed 
according to standard protocol. For immunostaining, sec-
tions were deparaffinized in xylene and re-hydrated [10]. 
Antigen retrieval was carried out in 10mmole sodium citrate 
(pH 6.0) at 95 ◦ C for 25min. Blocking was performed with 
1% BSA for 60 minutes. Sections were incubated overnight 
with primary antibodies, followed by 1-hour incubation with 
secondary antibodies. For fluorescence microscopy, nuclei 
were counterstained with DAPI (Sigma) and then mounted 
with Fluoromount-GTM (cat# 4958-02, Invitrogen). E- 
cadherin antibody: clone G10; sc-8426; dilution 1:100; 
Santa Cruz. Cytokeratin 7 antibody: clone SP52; ab183344; 
dilution 1:500; Abcam. CD45 antibody: clone 30F-11; 
14-0451-82; dilution 1:200; eBioscience. Secondary anti-
mouse antibody: Alexa 488-conjugated; clone A-11029; 
dilution 1:700; Thermo Fisher Scientific. Secondary anti-
rabbit antibody: Alexa 488-conjugated; clone A-21206; dilu-
tion 1:700; Thermo Fisher Scientific.

Image Acquisition

Slides were scanned with Olympus VS120-L100 slide scan-
ner using a 20x/0.75 objective connected to a Pike F505 
C Color camera. Because of the size of the resulting data 
(Figs. 1a and 2a), images were loaded into QuPath [21] 
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using the BioFormats extension1. The slide images are pub-
licly available on Zenodo2.

Data Extraction

Due to the pyramidal nature of the whole slide scanner 
images, a version of each image was extracted to define 
areas likely to contain ducts. Because ducts can be defined as 
relatively large, densely packed cell regions having a dense 
Eosin signal, we can use this information to extract them 
using Fiji’s [20] Color Deconvolution with the built-in H&E 
DAB vectors. First, a 4-fold downsampled version of each 

whole slide image was sent from QuPath [21] to ImageJ 
[20]. The extracted signal was then filtered with a Gauss-
ian kernel of � = 2px before thresholding with ImageJ’s 
Default method. Finally, connected components analysis 
(AnalyzeParticles) was used to obtain ROIs. The bounding 
boxes of these ROIs were extracted and enlarged slightly 
to ensure no ducts were touching the edge of the image. 
Resulting bounding boxes were reimported into QuPath [21] 
as annotations and used to perform the export of the full 
resolution ducts as .tif images.

Nuclei Detection

As defining precise boundaries between neighboring cells 
can be challenging, we segmented the nuclei as a first step 
using StarDist [22, 23] (Fig. 2b), a state-of-the-art method 

Fig. 1   Characterization of 
histological images of H&E-
stained mouse mammary gland 
intraductally xenografted with 
human breast cells. a Complete 
slide image, image size of 
approximately 1 billion pixels. 
Boxed areas mark human and 
mouse cell clusters. Scale bar, 
5000 � m. b Magnified area 
of a human cluster. Scale bar, 
100 � m. c Magnified area of 
human cells. Scale bar, 20 � m. 
d Manual annotations of the 
human nuclei associated with 
the cells of interest randomly 
colored for distinction purpose. 
Scale bar, 20 � m. e Magnified 
area of a murine cluster. Scale 
bar, 100 � m. f Magnified area of 
murine cells. Scale bar, 20 � m. 
g Manual annotations of the 
murine nuclei associated with 
the cells of interest randomly 
colored for distinction purpose. 
Scale bar, 20 �m

1  https://​github.​com/​qupath/​qupath-​biofo​rmats-​exten​sion
2  https://​zenodo.​org/​record/​39602​70
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outperforming classical approaches to detect star-convex 
objects for 2D images using a neural network. Such networks 
can be trained from various image types and the detection is 
represented as a labeled image where each nucleus is associ-
ated with a label.

A StarDist model was trained with a set of 24 images of 
size 320x320 pixels extracted from H&E-stained sections of 
normal human breast xenografted mammary glands (Supp. 
Fig. 7). The training data is publicly available on the GitHub 
of SCC. The nuclei of these images were manually anno-
tated for a total of approximately 2500 nuclei (Fig. 1b-g). 
The training was performed in Python using TensorFlow 
on Google Colab with GPU on 100 epochs for 40 minutes. 
The StarDist model was configured to detect 48 rays objects 
and a dropout of 0.5 was added to the network to avoid 
overfitting.

Cell Delineation

The estimation of the cells (Fig. 2.c,f) was computed accord-
ing to two criteria: (i) cells should not overlap with each 
other and (ii) their thickness, defined as distance to the 
nuclei, should not exceed Δ = 2�m . This maximal value is 
an estimation of the expected thickness for the type of cells 
we aim to classify, and can be edited by the users. The mask 
of the first criterion was computed using a Voronoi diagram 

on the nuclei labels and of the second criterion by thresh-
olding, at Δ , a distance map of the nuclei labels. Hence, 
each detected cell will be associated with its nucleus. These 
criteria can be represented as masks that can be integrated 
to delineate each cell.

Measurement

For classification, cells needed to be properly described 
(Fig. 2d). To do so, 484 features were extracted from the 
detected nuclei and cells. These features can be related to the 
object itself (i.e. cell-intrinsic features), or related to their 
neighbors and their organization (i.e. contextual features). 
Out of these, 47 concern cell-intrinsic features, 376 contex-
tual features are related to the cell-intrinsic features of the 
neighboring cells and the remaining 61 contextual features 
describe the organization of the neighbors.

Shape and Size Features

Cell-intrinsic features related to the shape and the size of 
both nuclei and cells were measured by fitting an ellipse 
on the targeted object to extract its elongation, minor axis, 
and major axis as features. Additionally, the area, and in 
particular the area ratio between the nuclei and the cell, was 
exploited for the analysis.

a

b

c

d

e

f h

g i

MICROSCOPY

NUCLEI DETECTION

CELL DELINEATION

CLASSIFICATION

2 µm

MEASUREMENT

Fig. 2   SCC pipeline. a  Source example for the pipeline, an H&E-
stained “humanized” mouse mammary duct. b  Label image of the 
nuclei detected by StarDist randomly colored for distinction pur-
poses. c Label image of the cells estimated from the nuclei randomly 
colored for distinction purpose. d  Features are extracted from the 
nuclei and the cells. e  Input image overlaid with the cell class com-
puted from their associated features with a neural network. Green 
color defines human cells and red murine cells. f Diagram of the cell 
delineation with respect to two criteria: cells should not overlap with 

each other and the cell thickness (distance to the nuclei) should not 
exceed 2 � m. g Source example for the contextual features, an H&E-
stained “humanized” mouse mammary duct. h  The Delaunay graph 
in red over the detected nuclei associated with the source, randomly 
colored for distinction purpose. i. The cell chain graph over the 
detected nuclei associated with the source, randomly colored for dis-
tinction purpose, red segments correspond to cell chain. Scale bars, 
100 �m
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Textural Features

Cell-intrinsic textural features were extracted from the pix-
els of the source images at specific areas for each cell. The 
cells were divided into two areas: (i) their nuclei and (ii) 
their estimated cytoplasms, defined as the cell area without 
the nucleus. Such features can be divided between features 
related to the color and features related to the texture itself, 
i.e. the local pattern and spatial organisation of pixel intensi-
ties. For the color-related features, the mean and the varia-
tion of the values of each color channel were computed. For 
the features related to the texture, the Haralick texture fea-
tures [24, 25] were calculated on a gray level version of the 
source image. The Haralick texture features provide 13 sta-
tistical parameters related to the pixels such as their entropy 
or their contrast. The gray level image was computed from 
a principal component analysis (PCA) on the channels of 
the image, with the first component corresponding to the 
factors to apply on the channels, thereby maximizing their 
variance, so that the maximum amount of information can 
be measured for the texture.

Contextual Features

Our contribution was to propose an additional set of features 
based on spatial arrangement of each cell and its neighbor-
ing cells, hereafter referred to as contextual features.

To efficiently determine the closest neighbors of a cell, we 
computed a neighborhood graph using the Delaunay Trian-
gulation algorithm [26] (Fig. 2h). The cells are represented 
as nodes on this graph, with each node corresponding to the 
centroid of the cells. We identified the cluster of closed cells 
using the shortest-path algorithm (Djikstra).

In sake of versatility, several kinds of neighboring struc-
tures were inspected:

	 (i)	 The neighbors directly connected to the cell on the 
Delaunay graph give information about the position 
of a given cell in the cluster given the mean and the 
variance of their distance. A cell described by high 
distance variance from its direct neighbors will have 
a high probability to be located at the border of a 
cluster.

	 (ii)	 The lateral neighbors are the two cells located on the 
left and the right of a given cell given the orientation 
of the nucleus ellipse. Let’s define a line N normal 
to the major axis of the cell c

1
 and passing by the 

center of c
1
 . Then a cell c

2
 is considered to be the 

lateral neighbor of c
1
 if the closest distance between 

the center of c
2
 and the line N is lower than half of 

the major axis of c
1
 . Features like the alignment, the 

distance, and the difference in orientation were meas-
ured. When two cells are mutually lateral neighbors, 

they can be iteratively connected to create a chain of 
cells (Fig. 2i). Features related to these chains, which 
are relatively abundant in human cell clusters, are 
their tortuosity and size.

	 (iii)	 To cover different types of cell aggregates, 4 sizes 
of vicinity were analyzed represented by K equal 
to 5, 10, 20, and 40 cells. These K neighbors are 
the set of the K closest neighbors to the current cell. 
The simultaneous use of a range of K values allows 
the extraction of both local (K small) and global (K 
large) features. It is possible to extract distance fea-
tures (mean and variance) between the K neighbors 
and the current cells and, in particular, the distance 
of the current cell to the centroid of the set of K 
neighbors. The distance between the current cell and 
the centroid of the set provides information about the 
homogeneity in the set since, in a homogeneous clus-
ter, it is expected that the current cell is very close to 
the position of the centroid as the neighbors should 
be spread around the current cell homogeneously.

	 (iv)	 The K connected neighbors are the set of the K clos-
est neighbors to the cells that are physically con-
nected to each other. Like the K neighbors, the K 
connected neighbors provide at the same time both 
local and global information of the neighborhood of 
the cell taken into account, by considering the same 
K values. Moreover, a peculiar evidence is that cells 
that are physically connected share common features. 
This property motivated the extraction of the cell-
intrinsic features of the neighbors through means 
and variances. It is also relevant to observe the shape 
of the cluster formed by the neighbors, which can 
be performed by computing an ellipse in a similar 
fashion than what was previously performed for the 
nuclei and cells shape features.

Classification

To classify the cells based on their features (Fig. 2e), a neu-
ral network model was trained by supervised learning in 
Python using TensorFlow. A set of 174 images of various 
sizes were extracted from H&E-stained xenografted mouse 
mammary glands (Supp. Fig. 8). Among these images, 96 
mostly contain normal human cells, whereas 78 contain only 
mouse cells. To ensure that an image contains normal human 
cells, a human-specific E-cadherin (E-CAD) antibody was 
used in order to uniquely probe for xenografted cells (Supp. 
Fig. 10). This set of images represented about 60’000 cells 
after detection, of which 26’000 were human. Thereby, 
26’000 mouse cells were considered to balance the number 
of cells between the two classes of interest such that their 
influence on the training is equivalent.
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To classify tumor-derived PDXs, 17 images that contain  
mostly human tumor cells were added to the previous set. 
In order to circumvent interpretation problems due to vari-
able E-cadherin protein expression levels in tumor cells [27], 
tumor cells were uniquely detected exploiting a human- 
specific cytokeratin 7 (CK7) antibody (Supp. Fig. 11). The final  
set represented about 80’000 cells with about 40’000 mouse 
cells, 26’000 normal human cells, and 14’000 human tumor 
cells.

To classify PDXs in fluorescence single channel DAPI-
stained images, 12’000 cells in each class were extracted 
from DAPI and E-CAD stained xenografted mouse mam-
mary glands. The E-CAD channel was used as control and 
the DAPI channel as source for the classification.

To define the species of a cell, classes masks were manu-
ally annotated for each of the images based on their fluores-
cent controls, namely they were compared to adjacent sections 
that were probed for xenografted cells by means of the above 
described human-specific antibodies (Supp. Fig. 10, 11).

A neural network adapted to the problem was design which 
takes as input the 484 features and returns the probability of a 
cell to belong to both human or mouse class as output.

Training for Further Applications

Our ImageJ/Fiji [20] plugin named “Single Cell Classifier” 
has been implemented to allow users to perform cell clas-
sification with our method using built-in or custom models. 
The parameters of the methods such as the K values for the 
neighbors, the factors to convert in gray value, or the cell 
thickness Δ are also editable by the user.

As most deep learning models, the provided pre-trained 
models can only be used with images that are similar to the 
one used in their training (i.e. same modality of microscope, 
tissue, cell, staining, image contrast,...) [28, 29]. To use our 
method with other images, new models need to be trained, 
our GitHub provides a set of Python scripts and explana-
tion to help the user performing such task. The nuclei detec-
tion and the classification models are trained independently 

which allows detecting other classes with the same kind of 
images by re-training only the classification model.

This plugin depends on three other plugins: StarDist [22, 
23] for the nuclei detection, MorphoLibJ [30] for its mor-
phological and analysis tools used in cells delineation and 
features extraction, and finally CSBDeep [31] that executes 
our classification neural network.

Results

Nuclei Detection

The nuclei detection performed by our StarDist model 
reaches a detection accuracy of 74.74% (Table 1), remain-
ing accurate to distinguish nuclei even under challenging 
conditions (Fig. 3). A detailed description of all computed 
object detection metrics is available in Supp. Note 1.

Features Analysis

Next, we performed a comparison of distribution and cor-
relation between human and mouse features to characterize 
the impact of each feature on the neural network to assess 
the morphology of the engrafted human cells in the intra-
ductal environment. Our correlation index corresponds to 
the absolute value of the Pearson correlation, as the correla-
tion direction is not relevant to our problem. The analysis of 
the features distribution and their correlation with the classes 
revealed that shape and size of individual cells poorly dis-
criminate the two classes, with a correlation index lower 
than 0.2, suggesting that they do not help the discrimina-
tion task (Fig. 4a, 4b). However, the contextual features for 

Table 1   Segmentation result 
statistics

Accuracy 74.74%

Precision 86.52%

Sensitivity 84.59%

F1 score 85.54%

Fig. 3   Nuclei segmentation per-
formance. Examples of nuclei 
segmentation, with detection 
outlined in yellow. Scale bars, 
50 �m
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shape and size have a better correlation ranging between 0.3 
and 0.4, highlighting the importance of the context for this 
purpose (Fig. 4a, 4c). Interestingly, textural features seem 
to offer better help in the cell species discrimination than 
shape and size, as highlighted by the resulting small degree 
of overlap between the two cell species and their global bet-
ter correlation with the classes, concentrated between 0.15 
and 0.35 but reaching a maximum of 0.5. The context seems 
to decrease the correlation for most of the features, concen-
trated between 0.05 and 0.3 (Fig. 4a, 4d). However, some 
exceptions in the contextual texture features still reach a high 
correlation of 0.5, making them appealing for such analysis.

Classification of Normal Breast PDXs in H&E‑stained 
Histological Sections

SCC performs normal human breast cell discrimination 
reaching an accuracy of 96.51% (Fig. 5), as assessed by 
quantifying the number of accurate calls upon manual 
annotation of humanized mouse mammary ducts based on 
fluorescence labeling by human-specific E-cadherin anti-
body. Both sensitivity and precision are higher than 96% 
for the classification of both classes taken into consideration 
(Table 2). The Area Under the Curve of the Receiver Operat-
ing Characteristics (AUC ROC) was used as a standard to 

Mouse Human

a b

c

Area Ratio
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2
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4

5

Class Correlation

Shape and size (9)

Textural (38)

Contextual
Shape and size (72)
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Other contextual (61)
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Fig. 4   Features analysis. a Violin plot of the correlation between the 
features, grouped by categories, and the classes. The features number 
in each category is indicated in parenthesis. The other contextual fea-
tures refer to the contextual features related to the organization of the 
neighbors and not related to cell-intrinsic features. b Violin plots of 

shape and size features. Area ratio as assessed by ratio between cyto-
plasms and nuclei areas. px=pixels. c  Violin plots of some textural 
features. d Violin plots of some contextual features. The value 0 (or 1 
for the left plot) are assigned to cells that do not have enough neigh-
bours

107Journal of Mammary Gland Biology and Neoplasia (2021) 26:101–112



1 3

estimate the predictive power and revealed that SCC effi-
ciently predicts both human and mouse cells with probabili-
ties associated with each of the analyzed cells close to the 
extrema 0 and 1, suggesting high confidence of our model. 
Interestingly, the feature importance previously discussed 
impinges on the classification task (Table 3). In line with our 
predictions, we observed that the contextual features without 
any texture information allow for a very good classification 
with 89.02% of accuracy, compared to the shape and size 
features alone achieving an accuracy of 66.84% , highlighting 
the importance of contextual features for such classifica-
tion task. In order to dispel the possibility that our analysis 

may be confounded by host-derived tissue-resident immune 
cells [32–36], we performed a co-immunostaining using 
anti-CD45, antigen expressed on all leucocytes, and anti 
human-CK7 antibodies that revealed the lack of host-derived 
immune cells in intraductal xenografts (Supp. Fig. 12).

Classification of Breast Cancer‑derived PDXs 
in H&E‑stained Histological Sections

As patient-derived xenografts are mainly used in the context 
of cancer research, we went on to assess whether SCC was 
also able to classify cell species on tumor-derived PDXs. 

Fig. 5   Cell species classifica-
tion of normal H&E human 
breast-derived PDXs. a Exam-
ple of a cluster of murine cells. 
Green and red dots correspond 
to human and mouse class, 
respectively. For the fluorescent 
controls, the green signal cor-
responds to a human-specific 
E-cadherin, blue signal cor-
responds to DAPI. The source 
images are on the left, the clas-
sification result in the middle 
and the fluorescent control on 
the right. b Example of a cluster 
of human cells. Green and red 
dots correspond to human and 
mouse class, respectively. For 
the fluorescent controls, the 
green signal corresponds to a 
human-specific E-cadherin, 
blue signal corresponds to 
DAPI. The source images 
are on the left, the classifica-
tion result in the middle and 
the fluorescent control on the 
right. c Example of a cluster 
containing both murine and 
human cells. Green and red 
dots correspond to human and 
mouse class, respectively. For 
the fluorescent controls, the 
green signal corresponds to a 
human-specific E-cadherin, blue 
signal corresponds to DAPI. 
The source images are on the 
left, the classification result in 
the middle and the fluorescent 
control on the right
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Whereas the segmentation model remained unchanged 
compared to the one developed for normal human breast 
epithelial cells, we prepared a new classification model in 
order to discriminate human cancer cells from mouse cells 
by integrating new tumor intraductal xenografts-derived 
images to the previous model. Estimation of accuracy in 
both Invasive Lobular Carcinoma (ILC) and Non-Special 
Type (NST) breast cancer histological subtypes based on 
20 images representing a range of 5’000 to 10’000 cells per 
type revealed that SCC successfully classified more than 
90% of xenografted cells (Table 4). Overall, this new model 
reaches an accuracy of 96.21% when both ILC and NST 
breast tumors were taken into consideration (Fig. 6). The 
analysis of how the features impinged on the classification 
was performed and showed that the textural features have a 
higher impact compared to the normal human cells, reaching 
an accuracy of 95.50% (Table 3).

Classification of Normal Breast PDXs in fluorescence 
DAPI‑stained Images

Having established the accuracy of SCC in H&E-stained 
histological sections, we went on to test its performance on 
fluorescence single-channel DAPI-stained images (Supp. 
Fig. 9), representing a more challenging task because of the 
lack of any contextual features available. For nuclei detec-
tion, a built-in model named “Versatile” was used and a 
new model for classification of human and mouse cells was 
trained. Noticeably, SCC reached an accuracy of 94.78% in 
these settings. The analysis of the features impact revealed 
similar tendencies than the ones previously observed for 
the H&E counterparts (Table 3). While on one hand, shape 
and size features allowed to reach an accuracy of 70.91%, 

suggesting that these features are sufficient to perform the 
classification task under these settings, on the other hand 
textural features appeared less relevant, in line with cyto-
plasms providing fewer information in single-channel DAPI-
stained images than H&E.

Comparison with an Image‑based Single‑stage 
Method

Finally, we investigated whether both the nucleus segmen-
tation task and cell classification task could be performed 
jointly by a single-stage model. To that end, we extended 
the model architecture of StarDist [22] and added a dedi-
cated classification head that predicts the probability of a 
nucleus belonging either to a human or a mouse cell. We 
then annotated nucleus outlines and cell types (human/
mouse) for 16 images of size 330x320 containing in total 
1’450 human and 300 mouse nuclei. After training, the 
extended model achieved a classification accuracy of 85.90% 
across all matched nucleus instances, well below the accu-
racy achieved by SCC. This suggests that decoupling the 
segmentation and classification tasks is beneficial in our case 
possibly due to the availability of only few annotated train-
ing data, and that SCC outperforms standard image-based 
single-stage methods.

Discussion

PDXs are innovative preclinical models and important  
for translational research. However, their usage is hampered 
by difficulty in data interpretation arising from the presence 
of host cells and no methods are currently available for spe-
cies discrimination of individual cells in PDX models. To 
fill this gap, we developed SCC, a publicly available deep 
learning-based tool distributed as an ImageJ/Fiji plugin aim-
ing at classifying human and mouse cells in PDX-derived 
histological sections. For the first time, SCC elaborates a 
comprehensive set of information to efficiently classify the 

Table 2   Classification result 
statistics

Accuracy 96.51%

Mouse precision 96.17%

Mouse sensitivity 96.91%

Mouse F1 score 96.54%

Mouse AUC - ROC 99.48%

Human precision 96.86%

Human sensitivity 96.10%

Human F1 score 96.48%

Human AUC - ROC 99.48%

Table 3   Features impact on 
classifier accuracy

Textural/Contextual

Image type No/No No/Yes Yes/No Yes/Yes
H&E normal 66.84% ± 0.71% 89.02% ± 0.54% 85.68% ± 0.33% 96.41% ± 0.21%

H&E normal+tumor 65.47% ± 0.42% 88.65% ± 0.16% 95.50% ± 0.20% 97.26% ± 0.18%

DAPI normal 70.91% ± 0.46% 88.51% ± 0.55% 82.68% ± 0.36% 94.78% ± 0.17%

Table 4   Tumor type classification accuracies

Tumor type Accuracy

Invasive Lobular Carcinoma 94.40%

No Special Type 92.62%
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species of individual cells based on both cell-intrinsic and 
contextual features proper of the neighboring tissue. The 
set of features taken into account by our tool is very general 
and allows any cell classification task within its reach. Sur-
prisingly, features analysis revealed that contextual features 
were more important than cell-intrinsic ones for accurate 
cell classification in H&E-stained histological sections, 
suggesting that xenografted human cells retain their typi-
cal morphologies while creating clusters characterized by 
distinctive conformations in the host. Although SCC was ini-
tially designed for detection of normal breast epithelial cells 
in H&E-stained sections, we show that our method equally 
extends to cancer cell discrimination and to fluorescence 
DAPI-stained images because of the completeness of the 
set of features taken into consideration yielding, on average, 
up to 96% of discrimination accuracy for both normal and 
malignant xenografted cells derived from different breast 
cancer histological subtypes. The automated classification 
of individual human and mouse cells performed by SCC can 
facilitate the work of researchers dealing with PDXs-derived 
histological sections, making the subsequent image analyses 
faster and more reproducible, and will enable quantifica-
tion of xenografted cells to assess grafting efficiency or cell 
growth. Moreover, SCC can be employed to input new in-
house models in order to perform classifications between 
any cells of interest. For instance, to discriminate between 
normal human breast epithelial cells, hyperplastic and breast 
cancer cells, as well as to distinguish different tumor grades 
are just some of the potential future applications of SCC. 
Finally, SCC is an easy-to-use and dynamic software that 

can be employed to perform classifications between any cells 
of interest, making it an appealing resource in the field of 
image analysis and breast cancer research.
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Fig. 6   Cell species classifica-
tion results on H&E breast 
cancer-derived PDXs. a Clusters 
of human tumor cells: source 
image (left), with its classifi-
cation result (middle) and its 
fluorescent control (right). At 
the top, a cluster of human-
derived cells from No Special 
Type (NST) tumor growing in 
the intraductal microenviron-
ment. At the bottom, an instance 
of Invasive Lobular Carcinoma 
(ILC). Green and red dots cor-
respond to human and mouse, 
respectively. For the fluores-
cent controls, the green signal 
corresponds to human-specific 
CK7, blue signal corresponds to 
DAPI. Scale bars, 100 �m
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