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Abstract In one of our earlier works, we proposed to approximate Pareto fronts to multi-
objective optimization problems by two-sided approximations, one from inside and another
from outside of the feasible objective set, called, respectively, lower shell and upper shell.
We worked there under the assumption that for a given problem an upper shell exists. As it
is not always the case, in this paper we give some sufficient conditions for the existence of
upper shells. We also investigate how to constructively search infeasible sets to derive upper
shells. We approach this issue by means of problem relaxations. We formally show that
under certain conditions some subsets of lower shells to relaxed multiobjective optimization
problems are upper shells in the respective unrelaxed problems. Results are illustrated by a
numerical example representing a small but real mechanical problem. Practical implications
of the results are discussed.

Keywords Multiobjective optimization - Global Pareto optimum - Two-sided Pareto front
approximations - Pareto front upper approximation existence - Evolutionary multiobjective
optimization

1 Introduction

In Multiobjective Optimization (MO) problems, any finite subset of the feasible set is a lower
(we mean: feasible) discrete approximation of the efficient set. Such subsets, if containing
no dominated (in the sense of Pareto) elements, are called lower shells.

When coupled with dual constructs, namely upper shells, lower and upper shells produce
(via objective function mappings) the so-called two-sided Pareto front approximations [1].
In inexact MO, two-sided Pareto front approximations enable a natural, qualitative definition
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of global Pareto optimum: the global Pareto optimum is reached if a two-sided Pareto front
approximation is known with its lower and upper part close enough (various metrics has
been proposed) to each other." This definition can be quantified as MO problem contexts
dictate.

Roughly speaking, an upper shell (a finite set) approximates the efficient set from outside
of the feasible set. Itis required that no element of the upper shell is dominated by any element
of the efficient set, a natural prerequisite for any Pareto front (i.e., the image of the efficient
set under the objective function mapping) approximation of that kind. But this means that
verification of that requirement necessitates the knowledge of the efficient set. Hence, the
definition of upper shell is not, in general, operational.

A weaker notion is upper approximation (a finite set). An upper approximation is defined
with respect to a given lower shell. The aforementioned requirement for upper shells (no
element of the upper shell is dominated by any element of the efficient set) is weakened to
the requirement that no element of the upper approximation is dominated by any element
of that given lower shell. In consequence, the definition of upper approximation becomes
operational.

However, such a weakening may cause that some elements of an upper approximation
are dominated by some elements of the efficient set, definitely a harmful property. It is of
interest then to identify instances in which upper approximations coincide with upper shells
and such instances have been identified in this paper.

In our earlier works [1,2], where we were concerned with algorithmic issues of the deriva-
tion of lower shells and upper shells, we worked under the assumption that for a given problem
an upper shell exists. However, an upper shell not always exists (see example in Sect. 7).
A number of problems where no upper shell exists have been identified [3,4]. Therefore, the
problem of existence of upper shells deserves consideration. In this work, we give sufficient
conditions for an upper shell to exist.

Another issue is how to search the infeasible set to derive upper shells. We approach that
issue by means of problem relaxations. We show that some subsets of lower shells in relaxed
MO problems are upper shells in the respective unrelaxed problems.

The practical importance of lower and upper shells lies in that they enable calculation of
lower and upper bounds on values of objective functions for any implicit efficient solution
(an implicit efficient solution is an efficient solution which can be derived by solving a
scalarized MO problem, but as long as the problem is not solved, it remains unknown) [2,5].
In calculations of upper bounds on objective function values, upper shells can be replaced by
upper approximations if it is known that they coincide. This paves the way for approximate
(inexact) computations with controlled accuracy in MO, with applications to Multiple Criteria
Decision Making [2,5]. This fact is the main motivation of our research presented here—we
would like to identify conditions under which upper bounds on values of objective functions
can be calculated (any lower shell enables calculation of lower bounds). Thus, our results
presented below are of existential type. Considerations relating to quality issues of two-sided
Pareto front approximations have been discussed in [1,2].

The outline of the paper is as follows. Section 2 relates our work to the relevant literature of
the field. In Sect. 3, we present preliminaries. In Sect. 4, we identify instances in which upper
approximations coincide with upper shells. In Sect. 5, we show how upper approximations,

I Byan analogy to singleobjective optimization, where “local optimum” is not necessarily the true (global)
optimum, the majority of inexact MO methods solve MO problems “locally”, i.e., not necessarily solutions
they provide are true Pareto optima (true Pareto fronts). This as a consequence of method inexactness, but
such solutions can be regarded as solutions to the problem only if they satisfy the above definition of global
Pareto optimum.
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whenever they exist, can be derived by relaxations of MO problems, whereas in Sect. 6
we discuss invariance of upper approximations under order invariant transformations of
objectives. In Sect. 7, we give sufficient conditions for existence of upper shells, and in
Sect. 8, we present an application of these results to a practical problem. Section 9 concludes.

2 Related works

The need for Pareto front (PF) approximations was realized in the MO community early. Fol-
lowing [7], approximation concepts can be divided into those based on exact MO methods and
inexact ones (i.e., all kinds of heuristics, evolutionary computations including). According to
the classification scheme proposed in [7], Oth order approximations are discrete (pointwise)
approximations and consist of a number (usually limited) of elements of PFs generated by
a solution method. Higher order approximations consist of some constructs built on those
elements, cf. e.g. [6].

The survey [7] concentrates on exact methods and covers the period of 1975-2005. Since
2005, other approximation concepts based on exact methods have been proposed [8-10,12—
14]. In [8,9], the efficient set is approximated from inside of the feasible set by solving series
of optimization problems. The approach has been recently refined in [10] by an application of
the decomposition principle. The method proposed in [11,12] interpolates a number of ele-
ments of the Pareto front, and this interpolation gives rise to a mixed-integer linear surrogate
problem. Properties of e-Pareto set approximations, once they are given, are investigated in
[13]. In the same work, a method to derive e-Pareto set approximations with the Lipschitz
type information, extending earlier works in that direction [15] is given. A statistical model
(Kriging) is applied in [14] to facilitate feasible solution set sampling in a quest for the Pareto
front. All those works provide higher than Oth order approximations. Of higher that Oth order
approximations are also those which hybridize exact and inexact approaches [8,9]. All those
methods also explicitly or implicitly assume (with an exception for [13]) that the feasible set
has interior, thus excluding combinatorial problems from considerations.

However, works on PF approximations in discrete (combinatorial) problems are also
represented in the literature. In [16], definitions of lower and upper bound sets, which coincide
with the definition of lower shell and is quite close to the definition of upper shell used in this
work, is introduced in the context of multiobjective knapsack problem with integer variables,
solved via dynamic programming. Approximations of the Pareto front for the general case
(no assumption on the problem considered), based on deriving efficient elements by solving
MO problems scalarized by the Chebyshev function, are proposed in [17]. In [18], the idea of
lower and upper bound sets is applied to multiobjective combinatorial problems; bound sets
are derived by solving a number of scalarized problems. The same approach as in [13,15] is
applied to mixed-integer nonlinear problems in [19]. Recently, an idea of cover sets, based
on the dominance relation, to represent PFs has been elaborated in [20].

In [21], lower and upper shells were applied to provide bounds on optimal solutions to
biobjective knapsack problems in cases commercial mixed-integer programming solvers (like
CPLEX) hit time or memory limits.

In all those works, with no exception, no attempt is made to exploit information which is
provided by some specific infeasible solutions. In contrast to that, in this work we follow the
other course, namely we are interested in approximations based exclusively on inexact MO
methods (to ensure generality of the course, no assumption is made on whether the feasible
set has interior). We have been inspired by the success story of population based methods
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[22,23] (in the MO domain customarily termed Evolutionary Multiobjective Optimization—
EMO), when applied to a wide range of practical problems, cf. e.g. [24-29]. Population based
methods, though by their nature inexact, have gained much popularity in application oriented
communities which have no problem with accepting suboptimal solutions in exchange for
method generality, versatility and simplicity, allowing easy in-house codings.

Following the classification given in [7], one can perceive EMO methods as population
based Oth order approximations, however with the distinction that EMO methods, as a rule,
produce lower (we mean: feasible) approximations of PFs with no guarantee that they include
any PF elements. By this, in contrast to approximations based on exact methods, EMO
methods have no built-in “secure anchors” in PFs. Without knowing, at least some, elements
of the PF, there is no trustworthy measure of accuracy of EMO approximations. This fact
inspired the authors to investigate the possibility to provide two-sided PF approximations
which give rise to such measures [1-4]. The authors are aware of only one work in which a
similar reasoning is present [30]; however, in that work two-sided approximations were not
generated intentionally, as the authors pursuit in their works.

Another reason why we focus on approximations based on inexact MO methods is that such
methods seem to rise less concerns to the question of scalability than their exact MO method
based counterparts. In population based approximations, we have no formal constructs to
recalculate/update, except objective functions or a fitness function built on them. So it seems
that in large multiobjective optimization problems the curse of dimensionality will trouble
the exact MO methods and exact method based approximations to a much larger extent than
the population based approximations.

3 Preliminaries

Consider the MO problem
”max”f(x)

x € Xop, M
where X9 C R" is a compact (i.e., closed and bounded) set, f : R" — Rk, f =
fiseo s f)s it R" > R, I =1,...,k, k > 2, f; are objective functions; “max”
denotes the operator of deriving the set (denoted N) of efficient (as defined below) elements
of Xo. We assume that N is not empty.

Below we will use the following notation: P = f(N), Z = f(Xo) (feasible objective
set), Rk = {y e RK |yr>0,1=1,...,k}. Set P is called Pareto front.

Dominance relation < on R" is defined as

x<x & f) < fx),

where < denotes f;(x) < fi(x"), I =1,...,k,and fj(x) < f;(x) for at least one .
Elements x of X for which there exists no x” € X such that x < x/, are called efficient.
In subsequent sections, we will refer to the concept of lower shell and upper shell, already
presented in a series of publications [1-4].
Lower shell is a finite nonempty set Sy € X, elements of which satisfy

VxeS, Ax' eSS, x <x. 2)

The condition (2) ensures that a lower shell does not contain redundant (in the sense of
the dominance relation) elements. No element of Sz, is dominated by any other element of
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this set. In terms of relations, set Sy, consists only of elements which are maximal to relation
<. In [11], sets satisfying (2) have been called inherently nondominated.
Element y"#¢ is defined as

ypad =min fi(x), [ =1,....k

Upper shell is a finite nonempty set Sy € R" \ Xo, elements of which satisfy

VxeSy fx' eSSy x' <x, 3)
VxeSy Ax' eN x<x/, @
VxeSy y" < fx). ®)

Condition (3) ensures that an upper shell does not contain redundant (in the sense of the
dominance relation) elements. No element of Sy dominates any other element of this set.

Condition (4) ensures that no element of an upper shell is dominated by an element of set
N (i.e., by an efficient element).

Condition (5) precludes inclusion into upper shells elements which in no circumstances
can dominate an element of N.

Element y"¢4(S; ) is defined as

yed(Sp) = min fi(x), [ =1,... k.
xeSy

Given a lower shell Sy, upper approximation is a finite nonempty set Ay € R" \ Xo,
elements of which satisfy

VxeAy Px' e Ay x' <x, (6)
VxeAy Fx' eS, x <x, 7
Vxe Ay y“(SL) < fx). (8)

Condition (6) plays the same role as condition (3).
Conditions (7) and (8) are consequences of the fact that in general set N is not known.

Remark 1 An upper shell is an upper approximation (the opposite statement does not hold).
Hence, a problem with no upper approximation possesses no upper shell.

Intuitively, upper approximations are meaningful only if Sy + ¢ = N with ¢ > 0 suffi-
ciently small, but such an intuition is valid only for sets with interior. In the case of discrete
sets, one should rather work with upper shells.

4 MO instances where upper approximations are upper shells

Lower shells are meant to be one-sided representations of N from inside of the feasible set.
Similarly, upper shells and upper approximations are meant to be one-sided representations
of N from outside of the feasible set.

The following propositions identify cases where condition (7) implies condition (4), hence
upper approximation Ay is an upper shell Siy. No assumption about the nature of the under-
lying problem, such as continuity, discreetness, convexity or connectivity, is made here.

Remark 2 The dominance relation x < x holds <& f(x) # f(x) and f(x) € f(X) — Rﬁ.
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int(R¥\ (P — RY)

Fig. 1 An illustration to Proposition 1, the discrete case; bullets—elements of P

Proposition 1 An upper approximation Ay is an upper shell only if
Ay € (x| f() € int(RE\ (P — R))).

Proof The proof follows as an immediate consequence of the definition of upper shell and
Remark 2. O

Remark 3 Sets
{x | f(x) €int(R*\ (P — R%)))
and

(x| f(x) e (P —RY))

are disjoint.
Figures 1 and 2 give a graphical interpretation of Proposition 1.
Proposition 2 An upper approximation is an upper shell only if

ZN{f) | f(x) € f(Ay) + RE) = 0.

Proof Since Z C P — R*, the assertion of the proposition follows from Proposition 1 and
Remark 3. O

Proposition 3 Any subset of the inverse image of any set in P 4+ int (Ri),
elements of which satisfy conditions (3) and (5), is a valid upper shell.

Proof The proof follows immediately from the definition of upper shell. O
Proposition 3 relates the concept of upper shells and upper approximations to works on

higher than Oth order PF approximations mentioned in Introduction, with hyperplanes as
the simplest construct. Indeed, any construct in P + int (Ri) which satisfies Proposition 3
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int(R*\ (P - RY))

P— Rk

Fig. 2 An illustration to Proposition 1, the continuous case; thick line—P

is an upper shell. However, in this work we are concerned with Oth order (pointwise) PF
approximations.

Propositions 1-3 give no specific guidelines how to select Ay from R" \ X to satisfy
the respective assumptions for Ay = Sy to hold. In general, this issue has to be investigated
for each MO problem individually. However, there are classes of problems with the property

that a specific subset of the infeasible set, containing no dominating elements, is an upper
shell. We discuss this in Sect. 7.

Now we turn to the problem of derivation of upper approximations.

5 Derivation of upper approximations

Usually it is not known which part of R" \ X should be searched for elements of Ay .

However, upper approximations can be derived from some relaxations of problem (1), as
shown by Proposition 4.

Let Xo C X;; € R". Consider the problem

//max//f(x)
x € X{, ®

with the set of efficient elements N'.
Let Sz denote a lower shell for problem (1) and S ’L denote a lower shell for problem (9).

Proposition 4 Let © C S and let elements x of © satisfy

x ¢ Xo, (10)
Vxe® M eSS, x<x, (11)
Y (S < f(x). (12)

Then O is an upper approximation for problem (1).
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Proof By condition (10), ® € R" \ Xo.
Moreover, since @ is a subset of S’L, by the definition of lower shell [formula (2)]

Vxe® Fx' €e® x' <x,

i.e., ® satisfies condition (6).
By condition (11), ® satisfies condition (7). By condition (12), @ satisfies condition (8).
Hence, ®@ satisfies the definition of upper approximation. O

6 Invariance of approximations

Considerations of this section apply to upper approximations as well as to lower shells.
Let us consider problem (1) with f (x) replaced by some f’(x), i.e., the problem

//max//f/(x)

x € Xo. (13)

We say that lower shells (upper approximations) are problem invariant if every lower shell
(upper approximation) to problem (1) is a lower shell (an upper approximation) to problem
(13).

Proposition 5 Let foreachl =1, ..., k, fi(x) and f](x) generate the same linear order on
R. Then, lower shells and upper approximations are problem invariant.

Proof The proof follows from the fact that since for each / = 1,...,k, f;(x) and fl’ (x)
generate the same linear order on R, f (x) and f’(x) generate the same dominance relation.
Since both problems have the same set X, every lower shell in problem (1) satisfies the
definition of lower shell in problem (13). The same is true for the upper approximation part
of the proposition. O

By Proposition 5, under specified conditions two-sided approximations in problem (1),
which could have been derived with a significant computational effort, are with no change
two-sided approximations in problem (13).

To stress the importance of the concept of invariance of approximations, it is worth men-
tioning that in a similar manner invariance of the efficient set (V) was investigated in [31]
and successfully exploited in multiobjective optimization of radiotherapy planning in [32].
From the latter work we learn that out of many functions proposed to measure the so-called
tumor control probability in organs to be protected against excessive radiation, one has the
form as follows:

a

1 v
gEUD(®) = ;Zd;l , (14)
j=1

where d; is radiation dose deposited in voxel (an element of a 3D mesh) j, v is the number
of voxels in the protected organ, a is a parameter, 1 < a < oo. Since all d; are nonnegative,
as physics dictates, clearly this function and the linear function

1U
EUDW) = | - d; 1
gEUD(d) v;,, (15)

produce, with other objective functions unchanged, the same efficient set N. By the same
argument (Proposition 5), both functions produce, with other objective functions unchanged,
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Fig. 3 An example of problem A fi1(x)
with no upper shell. With X¢, X{) —10

specified as in Example 1, the Lo >
curve represents f(N) for X fa(x)

and at the same time f(N') for
any X, defined as in (17)

1 -10

invariant lower shells and invariant upper approximations. Since in optimization problems
related to radiation oncology the number of voxels depend on the mesh resolution and can
reach hundreds of thousands, a simple function replacement can result in significant savings
in computation load.?

7 Identification of problems with upper shells

In this section, we investigate existence of upper shells. As mentioned already, there exist
problems without upper shells. This fact is illustrated by the following example.

Example 1 Let us consider the following problem

i) = —(x1 =3)* — (2 — 4)?

”max”f(x) —
Hrx) = —(x) =42 — (x2 — 1)
Xo={x|1=<x1 =5, 1<x2=<5}, (16)
and its relaxation
fi(x) = —(x1 —3)% — (x2 — 4)?
”max”f(x) —

frx) = =@ =4 — (2 —1)?
Xé:{xlafxlsb,agxsz,a<1,b>5}. 17

The Pareto fronts of problem (16) and all its relaxations are represented in Fig. 3 and they are
all the same. With the maximum for fj(x) at x = (3, 4) where f(3,4) = (0, — 10), and the
maximum for f>(x) at x = (4, 1) where f(4, 1) = (— 10, 0), the only region of R"” where
one function increases and the other decreases is defined by {x | f1(x) > —10, fa(x) <
0, fikx) <0, fo(x) = —10} € Xg. Thus, the problem (16) has no upper shell.

However, problem (16) can be hardly regarded a constrained problem; its two objective
functions attain their maxima inside the feasible set. Usually, problems which emerge from
applications are constrained by a sort of budget constraint(s), witnessing limited resources,
monetary or physical, and precluding objective functions attaining optima inside the feasible

2 The average speed-up when calculating the value of function (15) instead of function (14) (averaged over
20000 calculations, @ = 3) on an off-the-shelf laptop ranges 23.
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sets. In that sense, problem (16) becomes a constrained problem for e.g. Xo = {x | 1.5 <
X1 <25, 15<x <25}

In general, identification of problems having upper shells is far from being trivial. However,
in some instances the existence of upper shells is relatively simple to ascertain. We recall that
afunction ¢ : R" — R, is called strongly monotonically increasing on R" if x < x', x' # x,
implies ¢(x) < @(x') [33].

Let us observe that condition (4) is equivalent to

AxeSy Ix e N x <x'. (18)

Proposition 6 Let objective function fi«, 1* € {1,...,k}, be strongly monotonically

increasing on R". Then, x' € Xo and x' < x, implies x 4 x'.

Proof For any element x’ of X and any element x such that x’ < x, and for strongly
monotonically increasing function f;+, we have fj(x") < fi(x). Thus, x 4 x’. O

Proposition 7 Let objective function fi=, 1* € {1,...,k}, be strongly monotonically

increasing on R". Then, x’ € N, x € R" \ Xg and x' < x, implies x £ x’.

Proof Since N € Xy, by Proposition 6, x £ x’. Elements x such that x € R" \ X and
x" < x exist since X is compact. m]

Proposition 7 shows how to select condidates for upper shells, which satisfy condition
(18), or equivalently, condition (4). Below, we shall make use of a stronger condition, namely

VxeSy 3x' e N x' <x. (19)
Elements of Sy which satisfy the above condition satisfy also condition (5).

Proposition 8 Let all objective functions f;, | = 1,...,k, be strongly monotonically
increasing on R". Then, x' € Xo and x’ < x, implies x' < x.

Proof The proof is an immediate consequence of the assertion that all objective functions
are strongly monotonically increasing on R". O

Proposition 9 Let all objective functions f;, | = 1,...,k, be strongly monotonically
increasing on R". Then, x’ € N and x' < x, implies x' < x and x € R" \ Xj.

Proof Since N C X, by Proposition 8, x" < x. Suppose x € Xy. But this contradicts the
assumption that x’ € N. Hence, x € R" \ Xo. O

Proposition 8 shows how to select candidates for upper shells, which satisfy conditions
(18) and (5), or equivalently, conditions (4) and (5).

The condition in Propositions 8 and 9 that all objective functions are strongly monoton-
ically increasing cannot be relaxed, as illustrated in Fig. 4. Dashed lines are contours of
strongly monotonically increasing objective function fi, dotted lines are contours of objec-
tive function f> which is not strongly monotonically increasing, the thick line shows set N.
Function f] attains its maximum at x* and function f attains its maximum at x, thus x* € N
and ¥ € N.Elements x!, x2 satisfy x < x, however neither x! € R” \ Xp norx < x! holds,
and x> € R" \ Xo holds but not ¥ < x2. Figure 5 represents this situation in the space of
objective function values. Analogous drawings can be made for any strongly monotonically
increasing function and any set Xo.

Proposition 9 is of the existential type since set N is in general unknown. However, there
is a class of MO problems, defined in Theorem 1, in which x” € X, x € R"\ Xgand x’ < x
implies x” < x. Thus, any subset of elements x € R" \ X which satisfy g(x) > b, x’ < x
for some x” € Xy, and condition (3), is a valid upper shell.
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Fig. 4 An example illustrating 4
why the assumption in
Propositions 8 and 9 that all
objective functions are strongly
monotonically increasing cannot
be relaxed

Fig. 5 An example illustrating |
why the assumption in | |
Propositions 8 and 9 that all

L . fa(z)d — - — — — —
objective functions are strongly 2
monotonically increasing cannot |
be relaxed—the situation in the | P |
space of objective function values |

|

Theorem 1 Let all objective functions f;, | =1, ..., k, be strongly monotonically increas-
ing on R". Let one of the conditions defining Xo be of the form

g(x) = b,

and let g(x) be strongly monotonically increasing on R". Then, x’ € Xgandx € {x | g(x) >
b} and x' < x, implies x’ < x.

Proof Any element x such that g(x) > b belongs to R" \ X. For any element x’ of Xo
and any element x of R" \ Xy such that x’ < x, and for strongly monotonically increasing
functions fj(x), [ = 1,...,k, we have fj(x") < f;(x). Elements x such that x € R" \ Xg
and x’ < x exist since X is compact. Thus x” < x. o

Theorem 1 is illustrated in Fig. 6. Dashed and dotted lines are the contours of the strongly
monotonically increasing functions f1 and f>, dashed thick line is the contour of the strongly
monotonically increasing function g(x). For all infeasible elements x € {x', x%, x3, x*}
relation x” < x for some x” € X holds. This time no information on N is assumed. Figure 7
represents this situation in the space of objective function values.
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Fig. 6 An illustration to \
Theorem 1
ZTo A
1
Fig. 7 An illustration to f 3?3) |
Theorem 1—the situation in the | N | f ( CU2)
space of objective function values PY
e — o —— - - 1T
F(@) fat)
| * I f(ah)
I | ®
I |
|
fla)!
_____ Y_ — —
|
f1(z)

Theorem 1 is constructive. If the assumptions of the theorem hold, any subset of elements
x € R"\ X which satisfy g(x) > b, x’ < x for some x” € Xy, and condition (3), is a valid
upper shell.

Linear multiobjective and linear mixed-integer problems with positive coefficients in
objective and constraint functions and < type constraints are the simplest examples of prob-
lems which fall to this class. The property persists if linear functions are replaced by any
strongly monotonically increasing function. As already mentioned above, this property has
been exploited in the context of biobjective multidimensional knapsack problems [21] but
the approach is directly extendable to any number of criteria.

8 A numerical example

Consider the MO modeling problem—a round beam with mass and deflection as objective
functions [34].
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The MO problem.

- fid,g) =—m(d+ g)gpl

”max”f(d,g)

_ 4FP
— 2. 8) = = sEr@ag-an
8FL__(d+2g)
T @tret—at = ke

Xo=10, 98 0<d<0.1

0.001 < g <0.1

where

fid, g) (mass [kg]),

frd, g (deflection [m]),

d (internal diameter [m]),

g (wall thickness [m]),

F =10* (bending force [N7),

=3 (beam length [m]),

p =17.86- 10°  (material density [%]),
E=21-10" (Young modulus [Pa]),

kg =150 - 10°  (maximal bending stress [Pa]).
To remain consistent with the problem formulation (1) and the definition of the dominance

relation, we maximize — fi(d, g) and — f>(d, g).

The second objective function is strongly monotonically increasing on R? but the first is
not. Thus, in this case an upper shell has been succesfully constructed by the combination of
Proposition 7 and the relaxation approach (Proposition 4).

It is also worth observing that by Proposition 5, replacement of the second objective
function by — f;(d, g) = —WIM leaves the efficient set N unchanged.

Figures 8 and 9 present examples of a lower shell and an upper approximation, represented
by the objective function mapping. They were derived by the algorithm described in [2].

-f(S,)

-1500 -1300 -1100 -900 -700 -500 -300 -100 100
0.000

-0.002
-0.004
-0.006
-0.008
-0.010
‘ -0.012

[ -0.014

. -0.016

Fig. 8 The image — f(Sy,) of a lower shell Sy, for the numerical example of Sect. 8 (mass—horizontal axis)
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-f(Ay)

-1500 -1300 -1100 -900 -700 -500 -300 -100 100
0

(L XTI N . TV ™9 ..h
-0.002
\ -0.004

i -0.006

5 -0.008
0.01
-0.012
-0.014
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Fig. 9 The image — f(Ay) of an upper approximation Ay for the numerical example of Sect. 8 (mass—
horizontal axis). Here Ay satisfies the definition of upper shell

9 Concluding remarks

The results presented in the paper are inspired by attempts to provide tools for solv-
ing large and computationally expensive MO problems. As already said, with a pair of
a lower shell S; and an upper shell Sy it is possible to approximate selected efficient
elements of Xo with controllable accuracy [1,2]. In consequence, in the full analogy
to singleobjective optimization, this enables stopping computations whenever satisfactory
approximation accuracy is reached. We have shown that with a rather mild conditions
on problem (1) there exist elements which form upper approximations to that prob-
lem. We have also shown that some problem modifications, if admissible, guarantee that
upper approximations have properties of upper shells. This adds to the fact that there
are instances of problem (1) where this is always the case. For example, multidimen-
sional knapsack and multidimensional multiple choice knapsack problems, set covering
(after a suitable transformation) and set packing problems have this feature if infea-
sible x are confined to {0, 1}". Identification of other classes of problems for which
upper approximations have properties of upper shells will be the subject of our further
research.

Proposition 5 can be particularly useful in large-scale computations, where the cost of
computing f(x) becomes a limiting factor. Lower shells and upper approximations can
be derived with functions fl’ (x) which generate the same linear order as functions f;(x),
but of lower computing cost. Linear functions and polynomial functions when defined on
appropriate domains can serve here as the simplest example.

One might rightly argue that a natural vehicle to implement the concept of the two-sided
Pareto front approximations is evolutionary multiobjective optimization, as presented e.g.
in the monographs [22,23], and numerous papers published on the subject. Moreover, in
our earlier papers [1-3,5,34] we have made use of this vehicle. However, seeing EMO as
a natural but not necessarily the only mechanism to populate PF approximations, in this
work we purposely have not related directly our results to that specific kind of heuris-
tics, because they are applicable to heuristics (to derive lower and upper shells) of any
sort.
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