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Abstract In this paper we explore the construction of arbitrarily tight αBB relaxations
of C2 general non-linear non-convex functions. We illustrate the theoretical challenges of
building such relaxations by deriving conditions under which it is possible for an αBB
underestimator to provide exact bounds. We subsequently propose a methodology to build
αBB underestimators which may be arbitrarily tight (i.e., the maximum separation distance
between the original function and its underestimator is arbitrarily close to 0) in some domains
that do not include the global solution (defined in the text as “sub-optimal”), assuming exact
eigenvalue calculations are possible. This is achieved using a transformation of the original
function into a μ-subenergy function and the derivation of αBB underestimators for the
new function. We prove that this transformation results in a number of desirable bounding
properties in certain domains. These theoretical results are validated in computational test
cases where approximations of the tightest possible μ-subenergy underestimators, derived
using sampling, are compared to similarly derived approximations of the tightest possible
classical αBB underestimators. Our tests show that μ-subenergy underestimators produce
much tighter bounds, and succeed in fathoming nodes which are impossible to fathom using
classical αBB.

Keywords αBB · Subenergy · Underestimator · Eigenvalue

1 Introduction

In this paper we discuss the problem of locating a global minimum of a generalC2 non-linear
function f : X → F ⊂ R, X = {x : x ∈ [xL , xU ]} ⊂ R

N , denoted as problem P:
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P : min
x∈X f (x) (1)

Looking past its simple description, problem P is generally very difficult to solve to
global optimality in a deterministic way (it is, in fact, NP-hard [55]), even for problems of
low dimensionality. Over the last fifty years, considerable effort has been invested towards
inventing tools to solve this problem, resulting in a multitude of methods (e.g., [19,26,34,39,
40]). Although modern deterministic global optimization methods guarantee that the global
optimum of many general C2 optimization problems can always be located with certainty,
and in finite time, this time may be too long to be viable in practice. Even if an algorithm
suitable for handling a particular mathematical structure exists, the required solution time is
often prohibitively expensive for many practical problems.

The prevalent family of methods, amidst the rich thesaurus of proposed algorithmic pro-
cedures, is that of branch-and-bound algorithms [26,29], the building blocks of which have
seen rapid development over the last few decades (e.g., [6,7,11,15,18,24,30,31,37,38,45,
50,51,54,59,60]). The central concept behind this set of methods is a divide-and-conquer
approach, in which the solution space is sequentially subdivided and bounds on the new
sub-domains are derived. This information is then used to fathom sub-regions of the solu-
tion space based on specific criteria. This process is repeated iteratively until a convergence
criterion is satisfied.

Problem P may be solved using branch-and-bound if a convex relaxation [52] of f is gen-
erated over X . This may be accomplished by introducing additional variables and constraints
to the relaxed problem, or by generating a function f̆ giving the relaxed problem:

P̆ : min
x∈X f̆ (x) (2)

This latter approach is adopted in this paper. The new function f̆ : X → F̆ must possess
the following properties: (1) it is convex on X , (2) f̆ (x) ≤ f (x), ∀x ∈ X , and (3) the
value at the global minimum of the convex function f̆ (x), which is a valid lower bound on
the value of f (x), is guaranteed to improve as X becomes smaller. Convexification of non-
convex non-linear functions is a technique commonly used to derive bounds in the context
of branch-and-bound because solving the convex problem P̆ with a local solver returns a
deterministic lower bound on the value of f in the domain of interest.

Functions may be convexified in many ways. Special functional forms may be exploited
to create tight convex relaxations. Ideally, we are interested in generating the convex enve-
lope [52] of a function in X , i.e., the tightest possible convex function which is still an
underestimator of f . However, despite good progress [52] a technique to obtain the convex
envelope of a general non-linear expression has not yet been invented, which is one of the
reasons that make problems of type P difficult to solve.

Because the tightest possible underestimators may not be calculated in the general case
(or even in many special cases), specialised techniques are used to underestimate particu-
lar functional forms, and the quality of underestimation is commonly quantified using the
maximum separation distance between the original function and its relaxation [5,20].

Convexification techniques for specific functional forms havemultifariousmanifestations;
for instance,McCormick [34] proposed a strategy to generate convex relaxations of factorable
functions.Maranas and Floudas [33] derived tight relaxations for trilinear and fractional func-
tions, while Meyer and Floudas [35] derived convex envelopes for edge-concave functions.
Zorn and Sahinidis [60] used a combination of reformulation–linearization [46] and con-
vex envelope construction techniques [53,54] to produce tight formulations for underlying
bilinear structures. Misener and Floudas [37] developed piecewise-linear approximations of
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multilinear functions for dimension N ≤ 3. Mitsos et al. [38] and Scott et al. [45] proposed
the generation of generalisedMcCormick relaxations to address more general problems. The
reader is referred to the review of Floudas andGounaris [19] formore examples of relaxations
of NLPs.

Although specialised techniques may be very effective when particular mathematical
structure is present, practical problems manifest in infinitely many mathematical configu-
rations. Thus, general methods to underestimate these problems are needed. Such methods
include: (1) directed acyclic graph representationswhere expressions are partitioned into their
component parts using auxiliary variables [9,28,49,52,54], (2) propagation of subgradients
to recursively relax expressions [38,45], and (3) the αBB [5,32] general underestimation
methodology.

Among these options, the αBB methodology and McCormick relaxation methodologies
exhibit a useful combination of properties: (1) they may be used to underestimate any C2

function (including trigonometric functions), and (2) they are proven to possess a quadratic
convergence rate [10].

Out of these properties, the latter is particularly useful: general non-linear problemsmay be
solved to global optimality using other methods as well, such as methods based on interval
analysis [21,39]. However, interval methods suffer from the dependency problem, and an
interval containment set is generally not guaranteed to improve after branching [21]. Higher-
order interval methods (e.g., [6,15,50]) have been proposed which can mitigate these factors
at the expense of additional computational cost [6]. αBB is an attractive choice to solve
problem P because its convergence rate is quadratic, regardless of the order of interval
arithmetic it employs. Reduction of the maximum separation distance of at least quadratic
rate has been shown to be an important component (an other component being the convergence
prefactor [56]), in preventing clustering [16,40,56] in branch-and-bound algorithms.

The αBB underestimator for general non-convex terms works through superposition of
a convex function onto the original non-convex term. Given a box-constrained problem, an
underestimating function L : X → L ⊂ R may be constructed for any general C2 function
f by superposing it with a sum of univariate quadratics of sufficient magnitude αi along each
basis vector:

L(x) = f (x) +
N∑

i=1

αi (x
L
i − xi )(x

U
i − xi ) (3)

where N is the number of variables and αi = max(0,− 1
2λ

min
i ) [2], λmin

i being a valid lower
bound on eigenvalue λi over the underestimation domain. Interval calculations [21,39] on
the expressions of the second derivatives of f may be used to derive its interval Hessian
matrix [21] H(X) over an interval X ⊆ X0. The range of the eigenvalues of H(X) can
provide guaranteed enclosures for the possible values of the eigenvalues of the scalar Hessian
matrix H(x), over all points x ∈ X . These enclosures may subsequently be used to perform
a rigorous calculation of α.

TheαBBmethodologyhas seennumerousmodifications.Akrotirianakis andFloudas [3,4]
proposed γBB, an underestimatorwhich is based on exponential functions instead of the stan-
dardαBBquadratics, which they proved to be at least as tight asαBB.Meyer and Floudas [36]
produced a refinement of the classical αBB underestimator using a piecewise quadratic per-
turbation function. This perturbation function was shown to be able to produce significantly
tighter underestimators than αBB because, unlike classical αBB, it can be non-convex. Skjal
et al. [48] generalised the classical αBB perturbation methodology using the non-diagonal
βi j elements of the perturbation Hessian matrix. This method comes at relatively small com-
putational overhead, as the perturbation Hessian can be found by solving a linear problem,
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with the resulting underestimators being at least as tight as the original αBB ones. Skjal and
Westerlund [47] and Guzman et al. [20] performed computational studies benchmarking the
performance of commonly used components in the αBB framework, concluding that, for
their test sets, the classical αBB algorithm using the scaled Gerschgorin theorem [2] is a
balanced choice for a default configuration.

However, the advantages of the αBB functional form come at a price. Intuitively, because
the underestimator is produced by adding another function to the original one,αBBmay reach
a maximum separation distance limit for certain geometries. Since the second, convexifying
function is always a sum of univariate quadratics, there must be cases where that sum is
as tight as possible, and may not be tightened further without compromising convexity, or
changing the functional form of the underestimator.

In this paper we formalise this intuition by deriving the conditions for which an αBB
underestimator may yield an exact lower bound over a general domain, and provide the
theoretical foundation for the GLOBIE algorithm [23]. Given the theoretical certainty that
the underestimator will not give an exact lower bound under certain predictable conditions,
even for very small boxes, the purpose of this work is to demonstrate that it is theoretically
possible to overcome this theoretical limit through mathematical manipulation. We prove
this concept by constructing a methodology which allows a priori control over the maximum
separation distance between the original function and the convex underestimator in some
domains that do not contain the global solution.

Specifically, we propose the transformation of f to a modified subenergy (μ-subenergy)
function [8,12], originally proposed as a tunnelling [27,58] technique, and demonstrate
that, provided exact bounds on the eigenvalues can be obtained, our method may pro-
duce arbitrarily tight αBB underestimators and fathom nodes in the branch-and-bound
tree in cases where it is otherwise theoretically impossible to do so using the classical
αBB methodology. The purpose of this work is to prove that it is possible to achieve
arbitrarily tight αBB underestimators, but we would like to stress that this is a theo-
retical proof-of-concept: in practice, there is no way to obtain exact eigenvalue bounds
for a general function, and therefore we investigate the computational behaviour of the
approach based on eigenvalue sampling, similar to [17,57], in some domains that do not
contain the global solution. The results of this investigation are in line with our theo-
retical predictions, as using this heuristic approach we are able to fathom nodes which
may not be fathomed using classical αBB. In fact, this is the first method that we are
aware of which may theoretically produce a convex relaxation of arbitrary tightness (i.e.,
where the underestimator is arbitrarily close to the original function) for a general non-
convex function in some domains. Our work highlights the benefits of producing exact
lower bounds by post-processing underestimators (e.g., using mathematical transforma-
tions), and suggests two avenues of research: the formulation of such transformations, and
the invention of methods to derive rigorous values of α without the use of interval analy-
sis.

This paper is structured as follows: in Sect. 2 we derive the necessary conditions to get
exact lower bounds using αBB. In Sect. 3 we introduce theμ-subenergy function and discuss
its theoretical properties. In Sect. 4 we use this function in conjunction with αBB to produce
tight convex relaxations, and then apply our method to a step-by-step example in Sect. 5.
This is followed by numerical experiments on some well known test functions in Sect. 6, and
our conclusions in Sect. 7.
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2 Dependence of αBB underestimators on function concavity

2.1 Preliminaries

Before proceeding, we introduce key notation. Given the optimization problem P described
in Eq. (1), function f : X0 → F0 ⊂ R, X0 = {x : x ∈ [xL , xU ]} ⊂ R

N , is a general C2

function. The αBB underestimator is defined over a box, therefore we assume that each node
in the branch-and-bound tree is a box.

The domain X0 is defined to be the root node, while a sub-domain X ⊆ X0 refers to an
arbitrary node X during the process of a branch-and-bound tree (which may also be the root).
The set V = {v1, v2, . . . , vNvertices } ⊂ X refers to the set of vertices of the box.

A value f ∗ ∈ F0 refers to an arbitrary value of f , but in practice it is preferred to be the
best upper bound (BUB) across the entire branch-and-bound tree, and x∗ ∈ X0 is a point
such that f (x∗) = f ∗.

A sub-domain of X0 will be referred to as sub-optimal with respect to the current value
of f ∗, if f acquires values greater than f ∗ everywhere in that sub-domain.

A value f † ∈ F0 is the function value at a global minimum x† over the whole domain
X0.

The value at the globalminimum xm of f in a sub-domain X is denoted as f m ≥ f †, f m ∈
F ⊆ F0.

2.2 Motivation

Consider a convex αBB underestimator L of a general function f , over some domain X ⊆
X0 ⊂ R

N where f is non-convex. The tightest possible form of this underestimator may be
calculated if exact eigenvalue bounds (λmin

i , i = 1, ..., N ) are known. Because L is the sum
of a convex function and the original function f , the distance between the minimum value of
f and that of L in X will always be strictly greater than zero unless the minima of f over X
lie on the vertices of the box. If the minimum in node X does lie on a vertex, it is interesting
to derive the conditions for which getting an exact lower bound using αBB is theoretically
possible. In order to motivate this approach, consider the following optimization problem:

min
x∈X0

f (x) = sin(5x) + x2 + 2, X0 = [− 2, 2] (4)

After rounding down all results at the second decimal, the solution x† ≈ −0.29 of this
problem yields an objective value of f † = f (−0.29) ≈ 1.09. Now consider that, during the
course of a branch-and-bound tree, we wish to formulate the lower bounding problem for
node X = [−2,−1]. The minimum value of the second derivative of f in X may be derived
analytically, i.e., f ′′(X) = λmin = f ′′(−1) = 2 − 25 sin(5(−1)) ≈ −21.97 ⇒ α ≈ 10.99
(rounded up), forming an αBB relaxation of the original function:

min
x∈[−2,−1]L(x) = sin(5x) + x2 + 2︸ ︷︷ ︸

f (x)

+ 10.99(x + 2)(x + 1)︸ ︷︷ ︸
convex quadratic perturbation q(x)

(5)

This problem is illustrated in Fig. 1. Note that even if the value at the global minimum
f † ≈ 1.09 is known, domain X may not be fathomed without branching anew.
The αBB underestimator convexifies f by adding enough convexity to compensate for the

worst-case scenario of non-convexity. The quadratic, which has a constant second derivative
throughout X, compensates for this by adding constant curvature at every point in the interval.
In node X , this scenario is the minimum value of the second derivative of f in X , at x = −1.
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Fig. 1 Illustrationof the tightest possibleαBBunderestimator L(x)of f (x) = sin(5x)+x2+2, x ∈ [−2,−1].
It is impossible to fathom this region using αBB without branching.

This convexification, however, comes at a price: the relaxation will onlymatch the original
function at the vertices of the box X , forcing a gap between the two functions everywhere
else. For instance, at the minimum of f in X , q adds q(−1.44) ≈ −2.71 making the result
such that the node may not be fathomed. It can be proven that this can not be avoided: if a
smaller α is used, there will be at least one point in X where L is non-convex. Furthermore,
because f is non-convex in X , α must be non-zero. Thus, minx∈X ( f (x)) > minx∈X (L(x)),
unless the optimal solution lies on one of the vertices v ∈ V of the box, where it is possible
for these two minima to coincide.

Theorem 1 If f is non-convex over a non-singleton domain X ⊆ X0 and a unique global
minimum exists in X, an αBB underestimator may only yield the minimum value f m =
min
x∈X f (x) if the global solution xm ∈ X ofmin

x∈X f (x) which corresponds to f m lies on a vertex

v ∈ V of X.

Proof Assume that xm is not a vertex of the box X . Then, at x = xm :

L(xm) = f (xm) +
N∑

i=1

αi (x
L
i − xmi )(xUi − xmi ) (6)

f is non-convex over X , therefore αi > 0,∀i = 1, . . . , N . Thus, the quadratic perturbation
in this equation is strictly negative if xm does not belong to the set of vertices V . This means
that if xm /∈ V , L(xm) < f (xm).

Theorem 2 If f is non-convex over X ⊆ X0, its minimum xm lies on a vertex v ∈ V ⊂ X,

and if x Li = xUi , minx∈X L(x) = f (xm) ⇔ αi ≤ ∇xi f |xm
xUi +x Li −2xmi

, i = 1, . . . , N.
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Proof Because L is convex, if it has a stationary point in X then its minimum value must be
at this particular point xm . We discern two cases when the optimum of f belongs in V : (1)
L has a stationary point in X , and (2) it does not. For each case, we show that the relation in
the theorem holds.

(1) There is a stationary point. Then, if xm ∈ V :

∇L|xm = 0 ⇔∇xi f |xm + αi (2x
m
i − xUi − x Li ) = 0, ∀i = 1, . . . , N

⇔αi = ∇xi f |xm
xUi + x Li − 2xmi

, ∀i = 1, . . . , N (7)

Note that αi is always defined because the denominator is equal to xUi + x Li − 2xmi = 0
only at the midpoint M of X . Since x Li = xUi (M /∈ V by definition), the denominator
cannot be equal to zero for any xm .

(2) There is no stationary point in X . In this case, for the minimum to lie at a vertex, L
must vary monotonically in each xi , as per the rules of monotonicity over an interval
(otherwise there would be a stationary point). Therefore, the partial derivative of L with
respect to any xi is non-zero. We examine the value of αi for the different signs of the
gradient of L with respect to xi at a vertex:

1. ∇xi L|xm > 0. If the function is increasing, then xmi = x Li . Then:

xUi > x Li ⇔xUi − x Li > 0

⇔xUi + x Li − 2x Li > 0

⇔2xmi − xUi − x Li < 0 (8)

Now that the sign of this expression is known, the value of αi may be bounded from
above:

∇xi L|xm > 0 ⇔∇xi f |xm + αi (2x
m
i − xUi − x Li ) > 0

⇔αi <
−∇xi f |xm

2xmi − xUi − x Li

⇔αi <
∇xi f |xm

xUi + x Li − 2xmi
(9)

2. ∇xi L|xm < 0. Similar to before, if the function is decreasing then xmi = xUi ⇔
2xmi − xUi − x Li > 0. Then:

∇xi L|xm < 0 ⇔∇xi f |xm + αi (2x
m
i − xUi − x Li ) < 0

⇔αi <
−∇xi f |xm

2xmi − xUi − x Li

⇔αi <
∇xi f |xm

xUi + x Li − 2xmi
(10)

which is the final condition to prove the original statement. ��
It follows that, even if all interval calculations on the curvature of f in X are exact, it

is impossible to get an exact lower bound on the minimum value of the objective function
using a classical αBB underestimator, unless the solution of problem P̆ satisfies Theorems 1
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and 2 in that box. This means that if any of the αi components is greater than
∇xi f |xm

xUi +x Li −2xmi
in

a box, it is impossible to get that exact lower bound regardless of whether the minimum lies
on a vertex or not. In fact, if the function has highly negative eigenvalues in some parts of the
region, the separation distance can be very large, even with exact eigenvalue calculations, as
inferred by the maximum separation distance [5] (dmax) formula:

dmax = 1

4

N∑

i=1

αi (xL , xU )(xUi − x Li )2 (11)

A simple, yet naive, way to reduce this distance would be to scale the entire problem by
some factor K ∈ (0, 1), because scaling the underestimator L would also scale its eigenval-
ues:

LK (x) = K f (x) + K
N∑

i=1

αi (x
L
i − xi )(x

U
i − xi ) (12)

It follows from Eq. (12) that, as K → 0 the maximum separation distance K f (x) − LK (x)

between the new αBB underestimator and the scaled function also goes to 0. This naive
approach may not, of course, yield any benefit. The functions are scaled uniformly, therefore
the relative distances between all points of the hypersurface remain the same, i.e., the geomet-
rical shape of the hypersurface and its underestimator is exactly the same, only scaled down.
This means that even if the function in Fig. 1 is scaled down by a factor of K = 10−3, the
lower bound f ∗ = K ·0.55 (where 0.55 is the value at the solution of L(x) in X = [−2,−1])
obtained through exact αBB underestimation of domain X is still not large enough to fathom
node X , when compared to the scaled global minimum f † = K · 1.09.

Although this simple approach does not allow any improvement, Eq. (12) illustrates a
mechanic which may be exploited: the maximum separation distance using the αBB func-
tional form may become arbitrarily small by scaling down the problem.

Hypothesis 1 If a functionmay be scaled down in a non-uniformway, such that LK (x) → 0
in some region X that does not contain the global solution, but in the neighbourhood of the
global solution |K f †| ≥ ε, ε ∈ R

+, and at the same time all points in the new function
maintain their relative positions to each other, the new αBB underestimator over X ⊂ X0

may then be tight enough to enable fathoming X , even if f does not satisfy Theorems 1 and 2
over X .

A non-uniform transformation of this type, called the subenergy function, was proposed by
Cetin et al. [8,12] as part of a tunnelling [27,58] technique.

3 The μ-subenergy function

The subenergy function of a C2 function f is defined as follows [8]:

E(x; f ∗, a) = ln

(
1

1 + e−( f (x)− f ∗)−a

)
(13)

where f ∗, a1 are parameters. For the purpose of this work, this function is modified such
that it is bounded from above by a logarithmic barrier at 0. This step is necessary to give

1 This a [only used in Eq. (13)] should not be confused with the α symbol used for αBB.
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the function useful bounding properties because it fixes the value range of the subenergy
function. We will refer to the modified version of this function as the μ-subenergy function,
defined as follows:

S(x; f ∗, μ) = − ln(1 + e−μ( f (x)− f ∗)) (14)

where f ∗ and μ ∈ R
+ are parameters. Parameter μ will be referred to as the subenergy

magnitude; we will show that by appropriate choice of this magnitude it is possible to impose
a number of desirable bounding properties on the μ-subenergy function.

3.1 Properties of the μ-subenergy function

In order to perform an analysis on the properties of the new function, the following definitions
need to be introduced:

Definition 1 A function f : X0 → F0 ⊂ R, X0 ⊂ R
N , is said to be subenergy flattened (or

flattened, for brevity) across X1 ⊂ X0, if the function is mapped onto aμ-subenergy function
S with the following properties: (1) the eigenvalues of the Hessian matrix of S(x; f ∗, μ) are
of smaller magnitude than those of the Hessian matrix of f (x) ∀x ∈ X1, and (2) S has the
same monotonicity and stationary points as f . A function which has been flattened will be
referred to as flat over X1, and the property of having been flattened will be referred to as
flatness.

Definition 2 A μ-subenergy function is said to become flatter in X1 as the magnitude of
each of the eigenvalues of its Hessian matrix in that domain gets closer to zero.

Intuitively, if f maybe transformed such that the transformation is flatter in somedomains, but
not flat in others,αBBunderestimators in the flat domainswill produce proportionally smaller
maximum separation distances than in the less flat ones, which would satisfy Hypothesis 1.

An example of a μ-subenergy transformation is illustrated in Fig. 2, for f ∗ = f †. The
new function appears to be non-uniformly smoother, i.e, the magnitude of its curvature is
smaller at its maxima, and the monotonicity and stationary points are invariant with respect
to the transformation. This is a fundamental property of the μ-subenergy function, i.e., it is a
continuous bijective transformation of the original objective function that does not preserve
curvature but preserves monotonicity and stationary points. These properties are established
in Theorem 3:

Theorem 3 Let f : X → F ⊆ F0 ⊂ R, X ⊆ X0 ⊂ R
n be a C2 function, μ ∈ R

+ be a

constant, and S(x; f ∗, μ) = − ln
(
1 + e−μ( f (x)− f ∗)

)
, x ∈ X be its μ-subenergy function,

where f ∗ ∈ F0 is an arbitrary value for some x ∈ X0. Then, S and f have the same
monotonicity and stationary points.

Proof Consider a partial derivative of S(x; f ∗, μ), with respect to an arbitrary xi :

∂

∂xi
S(x; f ∗, μ) = μ

1 + eμ( f (x)− f ∗)
∂

∂xi
f (x) (15)

Let A = μ

1+eμ( f (x)− f ∗)
. Function f is bounded, which means that f (x) − f ∗ = ±∞. This

means that the expression 1
1+eμ( f (x)− f ∗)

∈ (0, 1), since the denominator is always strictly
greater than 1. Multiplying this expression by μ yields:

0 <
μ

1 + eμ( f (x)− f ∗) < μ (16)
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Fig. 2 Illustration of the μ-subenergy transformation of f (x) = sin(5x) + x2 + 2 for f ∗ = 1.09 and μ = 1

Hence, A ∈ (0, μ). Since A is always positive, all first derivatives of S and f have the same
sign ∀x ∈ X . Furthermore, by Eq. (15) and A > 0:

∂

∂xi
f (x) = 0 ⇔ ∂

∂xi
S(x; f ∗, μ) = 0 (17)

Therefore, the two functions have the same monotonicity as well as stationary points. ��
Corollary 1 Theμ-subenergy function preserves the relative positions of the image of every
point of the original function, including the global minimum. In other words, f (x1) ≥
f (x2) ⇔ S(x1; f ∗, μ) ≥ S(x2; f ∗, μ),∀x1, x2 ∈ X, including x, x† : f (x) ≥ f † ⇔
S(x; f ∗, μ) ≥ S(x†; f ∗, μ).

Remark 1 Since the relative positions of all points are preserved, all local extrema are pre-
served as well.

Lemma 1 The μ-subenergy function acquires a value of S(x; f ∗, μ) = − ln(2) if and only
if x = x∗.

Proof x = x∗ ⇔ S(x; f ∗, μ) = − ln(1 + e0) = − ln(2). ��
Note that, as a consequence of Corollary 1, the global minimizer x† is preserved, i.e., it is
also the global minimizer of S. Hence, by Lemma 1, if f ∗ = f † the value of the μ-suben-
ergy function at the global minimum is S(x†; f †, μ) = − ln(2). This observation is very
important because it indicates that, if f ∗ = f †, the global minimum will attain a constant
value, regardless of the flatness of theμ-subenergy function in other sub-domains. Subenergy
values are straightforward to map back to the f -space, as shown in Lemma 2.
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Lemma 2 For all x ∈ X0, any value in the S-space may be mapped back to the f -space
using the reverse μ-subenergy transformation:

f (x) = − 1

μ
ln(e−S(x; f ∗,μ) − 1) + f ∗ (18)

Proof For all x ∈ X0:

S(x; f ∗, μ) = − ln(1 + e−μ( f (x)− f ∗)) ⇔ e−S(x; f ∗,μ) − 1 = e−μ( f (x)− f ∗)

⇔ − ln(e−S(x; f ∗,μ) − 1) = μ( f (x) − f ∗)

⇔ f (x) = − 1

μ
ln(e−S(x; f ∗,μ) − 1) + f ∗ (19)

��
It has been established that the μ-subenergy mapping preserves all local extrema, and it is
known that each point is non-uniformly mapped to the new hypersurface, therefore the next
step is to derive bounds on the new values after the mapping (Hypothesis 1). In order to do
so, it is necessary to first give the following definition of a special case of sub-optimality:

Definition 3 For some f1 > f ∗, sub-domain X1 = {x ∈ X0 : f (x) ≥ f1} is defined as
f1-sub-optimal with respect to problem P .

The concept of f1-sub-optimality is central to the analysis that follows. In Fig. 2 we see
that the value of the μ-subenergy function is − ln(2) at x = x∗, and that it approaches the
logarithmic barrier of 0 as the function acquires values greater than f ∗. This is a sign of
desired behaviour: the function becomes flat at values sufficiently far from f ∗. In the general
case however, the function may not be visualised, therefore this raises the question of what
happens to the points which correspond to the values in-between, i.e., whether it is possible to
bound the value range of the original function in certain sub-domains of X , in their respective
μ-subenergy-domains. Specifically, it is desired to bound these values within a predictable
value range, between some predefined tolerance −ε and 0. In order to answer this question,
the concept of f1-sub-optimality is introduced.

Assume a user-defined constant tolerance c ∈ R
+, c = f1 − f ∗ that defines a distance

between f ∗ and f1, and a tolerance ε in the S-space such that ε ∈ (0, ln(2)). It is possible
to derive a minimum value of μ such that all points with values greater than f1 in f -space
are mapped between two barriers in S-space: −ε and 0. In other words, f1 in f -space may
be mapped to −ε in S-space, and all values greater than c may be mapped to values greater
than −ε. This gives the user control over the magnitude of S in f1-sub-optimal domains.

Theorem 4 Any f1-sub-optimal point x (such that f (x) ≥ f1) is mapped within [−ε, 0), by
the transformation S with parametersμ and f ∗, iffμ ≥ − ln(eε−1)

c , where ε ∈ (0, ln(2)), c =
f1 − f ∗.

Proof Let x1 ∈ X1 : S(x1; f ∗, μ) ≥ −ε and f (x1) = f1 > f ∗:

− ln(1 + e−μ( f1− f ∗)) ≥ −ε ⇔ 1 + e−μ( f1− f ∗) ≤ eε

⇔ e−μ( f1− f ∗) ≤ eε − 1

⇔ −μ( f1 − f ∗) ≤ ln(eε − 1)

⇔ μ ≥ − ln(eε − 1)

f1 − f ∗ = − ln(eε − 1)

c
(20)

��
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Because of these bounding properties, and because the μ-subenergy transformation
appears to make the function more flat in certain sub-domains, it is of interest to investi-
gate possible advantages of calculating the αBB relaxation of the μ-subenergy function and
subsequently mapping the resulting lower bound from S-space to f -space. The success or
failure of such an endeavour is linked to the following items: (1) the effect of varying the
two parameters, f ∗ and μ (before and while a branch-and-bound tree is in progress), and (2)
how these parameters affect the derivatives and the eigenvalues of the Hessian matrix of the
μ-subenergy function. In particular, it is desired to derive a link between these parameters
and the bounds on the eigenvalues of the Hessian matrix of the μ-subenergy function in
flat sub-domains, because eigenvalues directly affect αBB lower bounds. However, before
investigating this link, the treatment of the μ-subenergy parameters in a branch-and-bound
process must be discussed.

3.2 The effect of varying the subenergy parameters f ∗ and μ

Having defined the mathematical significance ofμ, f1, c, and ε, we may now investigate how
the variation of the μ and f ∗ parameters affects the transformation, particularly its lower
bounds and flatness. Furthermore, in order to be able to use the μ-subenergy function with
αBB in a branch-and-bound context, we determine whether μ and f ∗ should be allowed to
acquire different values between different nodes in a branch-and-bound tree, i.e., whether a
lower bound derived using a particular combination of μ and f ∗ is still valid if a different
combination is used elsewhere in the tree.

3.2.1 Effect of f ∗

The effect of varying f ∗ is displayed in Fig. 3, for a fixed value ofμ = 1. It may be observed
that, as better (smaller) f ∗ are discovered, sequentially increasing subsets of X0 become
flatter and are mapped between two natural barriers: − ln(2) < S(x; f ∗, μ) < 0. Ideally,
it is desired to always use f ∗ = f † because it translates into flattening f over the largest
possible subset of the solution space, for a given μ. However, in modern algorithms which
make use of convexification techniques, the optimal objective value is rarely available from
the beginning, and upper bounds are improved incrementally.

Theorem 5 Let f ∗
1 , f ∗

2 be arbitrary values of f in X0, such that f ∗
1 > f ∗

2 . Then, ∀x ∈ X0,
S(x; f ∗

1 , μ) < S(x; f ∗
2 , μ) ⇔ f ∗

1 > f ∗
2 .

Proof f ∗
1 > f ∗

2 ⇔ −μ( f (x) − f ∗
1 ) > −μ( f (x) − f ∗

2 ), ∀x ∈ X0. The exponential
function is monotonically increasing, so, ∀x ∈ X0, −μ( f (x) − f ∗

1 ) > −μ( f (x) − f ∗
2 ) ⇔

e−μ( f (x)− f ∗
1 ) > e−μ( f (x)− f ∗

2 ). The subenergy magnitude is always positive, therefore ∀x ∈
X0:

e−μ( f (x)− f ∗
1 ) > e−μ( f (x)− f ∗

2 ) ⇔ 1 + e−μ( f (x)− f ∗
1 ) > 1 + e−μ( f (x)− f ∗

2 )

⇔ ln(1 + e−μ( f (x)− f ∗
1 )) > ln(1 + e−μ( f (x)− f ∗

2 ))

⇔ − ln(1 + e−μ( f (x)− f ∗
1 )) < − ln(1 + e−μ( f (x)− f ∗

2 ))

⇔ S(x; f ∗
1 , μ) < S(x; f ∗

2 , μ) (21)

��
Corollary 2 If f † is the value at a global minimum of f over X0, then S(x; f ∗, μ) <

S(x; f †, μ) ∀x ∈ {
X0\x : f (x) = f †

}
.
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Fig. 3 Illustration of the μ-subenergy transformation of f (x) = sin(5x) + x2 + 2 for three different values
of f ∗

Assume a current upper bound f ∗
1 in a branch-and-bound tree, and a new upper bound

f ∗
2 , such that f ∗

1 > f ∗
2 . Further assume some lower bounds SL1 and SL2 derived for each of

these μ-subenergy instances respectively, using αBB underestimators of S1(x; f ∗
1 , μ) and

S2(x; f ∗
2 , μ) respectively. As illustrated in Fig. 3, every time f ∗ is updated for a smaller

value, the old instance of S is an underestimator of the new one. In fact, any underes-
timator of an old instance will be a valid underestimator of any new one, as proven in
Theorem 5, provided that μ remains unchanged. In other words, Theorem 5 guarantees
that the lower bound derived from the old instance, SL1 , is still a valid lower bound on
the new instance. Therefore, it is safe to update the value of f ∗ during the branch-and-
bound process, and all previously calculated lower bounds using some value of f ∗ will
still be valid if a better (smaller) value is used in future iterations of a branch-and-bound
tree.

3.2.2 Effect of the subenergy magnitude

The effect of varying the subenergy magnitude is illustrated in Fig. 4a. Greater subenergy
magnitudes make theμ-subenergy function flatter across f1-sub-optimal domains, and result
in curvature of greater magnitude in optimal domains, i.e., where f (x) ≤ f ∗. In Sect. 4 it
is shown that this flattening effect is guaranteed across f1-sub-optimal domains, while in
all other domains the μ-subenergy function may exhibit mixed behaviour (may be flatter
or not), as seen in the close-up in Fig. 4b. The extent of this effect may effectively be
controlled across all sub-optimal domains because c and ε can be chosen such that X1 ∩ X ≈
∅.

Furthermore, Fig. 4 illustrates the result of Theorem 4, where increasing μ maps f closer
to zero in the f1-sub-optimal domains. This effect is also observed by examining the mono-

123



828 J Glob Optim (2018) 71:815–844

-2 -1 0 1 2

-10

-5

0

5

10

15

-2 -1.5 -1 -0.5 0
-1

0

1

2

3

4

5

Mixed behaviour

f
1

-

(a)

(b)

Fig. 4 Illustration of the μ-subenergy transformation of f (x) = sin(5x) + x2 + 2 for three different values
of μ. a The μ-subenergy transformation for varying values of the subenergy magnitude μ. b An expanded
view of the μ-subenergy transformation in the neighbourhood of x∗

tonicity of Eq. (20) as, for a fixed value of c, an increase in μ brings the −ε barrier closer to
0. Note that, as seen in Fig. 4b, for values of f smaller than f ∗, μ-subenergy lower bounds
are not preserved if μ is changed. Thus, μ should always be kept constant in order to avoid
recalculation of lower bounds.
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4 Convex relaxation of the μ-subenergy function using αBB

4.1 Properties of using exact eigenvalue bounds

Let a convex underestimator be formulated over a domain X .

Definition 4 An underestimator may have the same optimal value as the original function,
without being the tightest possible. In this case, the bound of the underestimator is said to
be exact.

Remark 2 If the underestimator is derived using interval arithmetic, and the interval bounds
are exact, i.e., they correspond to the true extreme values of the function in that domain, it will
generally not provide an exact lower bound, but it will be the tightest possible underestimator
for the particular functional form of that underestimator.

An αBB underestimator is said to be exact if the α vector is obtained using exact eigenvalue
calculations, i.e., the bounds on the eigenvalues of the set of the Hessian matrices of f over
X are exact. In this case, the underestimator is the tightest that may be achieved using the
αBB functional form. Because x∗ may not (by definition) be part of any f1-sub-optimal node,
all nodes which are f1-sub-optimalmay in principle be fathomed. Therefore, it is of interest
to derive bounds on their derivatives in the μ-subenergy-domain.

We begin the analysis of the derivatives of the μ-subenergy function by deriving bounds
on the gradient of S(x; f ∗, μ), ∀x ∈ X1.

Theorem 6 The magnitude of the gradient of S(x; f ∗, μ) approaches 0 as μ → ∞, ∀x ∈
X1.

Proof Consider an arbitrary first derivative of S:

∂

∂xi
S(x; f ∗, μ) = μ

1 + eμ( f (x)− f ∗)
∂

∂xi
f (x) = A

∂

∂xi
f (x) (22)

We wish to derive a bound on A = μ

1+eμ( f (x)− f ∗)
, as μ → ∞. Because x ∈ X1:

f (x) ≥ f1 ⇔ f (x) − f ∗ ≥ f1 − f ∗

⇔ 1 + eμ( f (x)− f ∗) ≥ 1 + eμ( f1− f ∗)

⇔ μ

1 + eμ( f (x)− f ∗) ≤ μ

1 + eμ( f1− f ∗)

⇔ μ

1 + eμ( f (x)− f ∗) ≤ μ

1 + eμc
(23)

A is always positive, therefore it is bounded from below by 0. By Eq. (23), as μ → ∞,
A is also bounded from above by:

0 ≤ A ≤ lim
μ→∞

μ

1 + eμc
= lim

μ→∞
1

ceμc
= 0 (24)

where de l’Hospital’s Theorem was used. At the limit, because A is equal to 0, the subenergy
gradient will always go to 0 regardless of the sign or magnitude of ∂

∂xi
f (x) as μ → ∞. ��
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Corollary 3 The minimum value of μ which imposes some arbitrary bound K on the mag-
nitude of the gradient of S may be calculated by solving the following optimization problem:

PK : min
μ∈R+ μ

s.t.
μ

1 + eμc
≤ K

max(|∇ f |, |∇ f |) (25)

Because Theorem 6 holds, there must exist a μ ∈ R
+ which solves PK . Therefore, large

values of μ map not only the μ-subenergy function values, but also its gradient, arbitrarily
close to 0. It is thus possible to impose arbitrary bounds on the gradient of S over X1, if any
bounds on the gradient of f are known. Because f and, by extent, S, are assumed to be C2

differentiable and bounded, it follows that the eigenvalues of S also approach zero when the
conditions of Theorem 4 are met:

Theorem 7 Given thatμ satisfies Theorem4, themagnitude of all eigenvalues of S(x; f ∗, μ)

approaches 0 as μ → ∞, ∀x ∈ X1.

Proof Consider an arbitrary second derivative of S:

∂2

∂xi∂x j
S(x; f ∗, μ) = μ

1 + eμ( f (x)− f ∗)
︸ ︷︷ ︸

A

∂2

∂xi∂x j
f (x)

− μ2eμ( f (x)− f ∗)

(1 + eμ( f (x)− f ∗))2︸ ︷︷ ︸
B

∂

∂xi
f (x)

∂

∂x j
f (x)

= A
∂2

∂xi∂x j
f (x) − B

∂

∂xi
f (x)

∂

∂x j
f (x) (26)

A has already been shown to go to 0 as μ → ∞, ∀x ∈ X1. B is rearranged by factoring out
μ2 and adding and subtracting 1 from the numerator:

B = μ2
(

1

1 + eμ( f (x)− f ∗) − 1

(1 + eμ( f (x)− f ∗))2

)
(27)

Now consider the limit of B as μ → ∞:

lim
μ→∞ B = lim

μ→∞

(
μ2

1 + eμ( f (x)− f ∗) − μ2

(1 + eμ( f (x)− f ∗))2

)

= lim
μ→∞

(
2μ

( f (x) − f ∗)eμ( f (x)− f ∗) − 2μ

2(1 + eμ( f (x)− f ∗))( f (x)− f ∗)eμ( f (x)− f ∗)

)

= lim
μ→∞

(
2

( f (x) − f ∗)2eμ( f (x)− f ∗)

− 2

2( f (x) − f ∗)2e2μ( f (x)− f ∗) + 2( f (x) − f ∗)2(1 + eμ( f (x)− f ∗))eμ( f (x)− f ∗)

)

= 0 (28)

where de l’Hospital’s Theorem was used. Since all second derivatives go to 0, so do all
eigenvalues of S(x; f ∗, μ), ∀x ∈ X1. ��
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Corollary 4 All components of α for a μ-subenergy function approach 0 continuously
for large values of μ regardless of the curvature of the original function, in f1-sub-
optimal domains.

Lemma 3 The maximum separation distance between a μ-subenergy function and its
αBB underestimator can be imposed to be arbitrarily close to 0 in f1-sub-optimal domains.

Proof Let d be the maximum separation distance between the μ-subenergy function and
its αBB underestimator LS . Then, by the formula of Androulakis et al. [5] the maximum
separation distance dS between S(x; f ∗, μ) and LS in the f1-sub-optimal domain is:

dS = 1

4

N∑

i=1

αi (x
L
i − xUi )2 ≤ 1

4
αmax

N∑

i=1

(x Li − xUi )2 (29)

where αmax = max{α1, α2, . . . , αN }. The maximum separation distance will be arbitrarily
small if the right hand-side of Inequality 29 can be shown to be less than or equal to some
arbitrary positive tolerance ε1. Then,

1

4
αmax

N∑

i=1

(x Li − xUi )2 ≤ ε1 ⇔ αmax ≤ 4ε1∑N
i=1(x

L
i − xUi )2

(30)

The denominator of Inequality 30 is always positive becauseαBBunderestimators are defined
over non-singleton domains. By Theorems 7 and Corollary 4, since αmax tends to zero con-
tinuously then there must exist some real value of μ such that Inequality 30 is satisfied.

��
Corollary 4 and Lemma 3 follow naturally from Theorem 7 and the functional form of the
αBB underestimator. As the α vector for S, αS → 0, the quadratic perturbation vanishes, and
LS(x; f ∗, μ) → S(x; f ∗, μ). A direct result of this is that, regardless of the original values
of the original α vector (in the f -space), these values will approach zero in the S-space for
the f1-sub-optimal domain.

Theorem 8 An underestimator of f (x), acquired by the reverse transformation of the αBB
underestimator of itsμ-subenergy functionback to f -space, canbearbitrarily tight,∀x ∈ X1.
In other words, if ε f an arbitrary tolerance, ∃μ : d f ≤ ε f ∀x ∈ X1, where d f is themaximum
separation distance between the underestimator acquired through the reverse transformation
and f (x).

Proof If f (x) is detected to be convex over the domain then themaximumseparation distance
is 0 by definition. If f (x) is non-convex, then dS is:

dS = S(x; f ∗, μ) − LS(x; f ∗, μ) (31)

Because the relative positions of all points are maintained through the μ-subenergy transfor-
mation (Corollary 1), the maximum separation distance in the f -space (d f ) can be expressed
based on the reverse transformation of each of the two functions in dS (Lemma 2):

d f = max
x∈X1

(
− 1

μ
ln(e−S(x; f ∗,μ) − 1) + f ∗ −

(
− 1

μ
ln(e−LS(x; f ∗,μ) − 1) + f ∗

))

= max
x∈X1

(
1

μ
ln

(
e−LS(x; f ∗,μ) − 1

e−S(x; f ∗,μ) − 1

))
(32)
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Fig. 5 Behaviour of second derivative coefficients A(x) = μ

1+eμ( f (x)− f ∗)
, B(x) = μ2eμ( f (x)− f ∗)

(1+eμ( f (x)− f ∗))2

depending on the sign of f (x) − f ∗, for different values of μ

By Lemma 3, as μ → ∞, LS → S, therefore:

lim
μ→∞ d f = max

x∈X1

(
lim

μ→∞
1

μ
ln

(
e−LS(x; f ∗,μ) − 1

e−S(x; f ∗,μ) − 1

))
= max

x∈X1

(
1

∞ ln(1)

)
= 0, ∀x ∈ X1

(33)
From the definition of a limit and because d f is always positive, ∀ε f > 0 there exists
c f : d f ≤ ε f , ∀μ > c f . ��

Thus, by Theorem 8, an exact μ-subenergy-αBB underestimator can produce better
lower bounds than the exact αBB underestimator of the original function, in an f1-sub-
optimaldomain. As the value of μ grows, the maximum separation distance in the f -domain
will arbitrarily approach zero.

4.2 Properties for α calculated with interval arithmetic

Theα vector of anαBB relaxationmay be calculated in a number of ways. A standardmethod
to produce a rigorous α is interval arithmetic, i.e., to produce an interval Hessian matrix
derived from the symbolic expressions of the second derivatives of f , and subsequently use
an eigenvalue bounding theorem [2,47] to derive eigenvalue bounds of that matrix. Due to
the underlying mathematical structure, and in particular due to the presence of the expression
f (x) − f ∗ in the derivatives of the μ-subenergy function, the μ-subenergymethod does
not seem to benefit from eigenvalue bounds estimated through current interval arithmetic
techniques. This is because the flattening effect is dependent on the sign of the expression
f (x)− f ∗, as illustrated in Fig. 5. In particular, when f (x) > f ∗, both A(x) and B(x) vanish.
Deriving this information using interval calculations, so that a node X may be subenergy-
fathomed, is only possible using a result where the interval lower bound of f over X, f I

is such that f I > f ∗ ∀x ∈ X . However, this constitutes a circular requirement, i.e., this
node may only be fathomed by making use of information that can be used to fathom it
anyway. The proposed method would benefit greatly from rigorous bounds derived through
geometrical means; nevertheless, to the authors’ best knowledge, such a technique does not
yet exist.
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4.3 Properties for α calculated using sampling

Rigorous α calculations are not always possible or practical [17,25,57]. For instance, rigor-
ous α calculations are generally not possible in black-box problems. Despite being primarily
employed as a deterministicmethod,αBBhas been used successfully in the context of incom-
plete methods [40] multiple times. Westerberg and Floudas [57] calculated α heuristically,
using uniform sampling, in order to calculate all transition states of potential energy surfaces.
Esposito and Floudas [17] solved the Respiratory Mechanical Model described in [14] using
constant values of α, as well as numerically calculated ones, while Klepeis et al. [25] showed
that αBB can be used to guide a conformational space annealing (CSA) algorithm, producing
a powerful hybrid algorithm.

Calculation of α using a rectangular sampling grid of points {xk} is particularly attractive
for this method. Sampling eliminates the dependency between flattening and an a priori sign
for f (x) − f ∗, therefore allowing the user to exploit the special structure. More importantly
however, sampling serves the primary goal of this paper: it allows a computational comparison
of the tightest possible underestimators (subject to sampling accuracy) produced using μ-
subenergy and classical αBB. This is fundamental to this work because it enables us to
demonstrate that it is theoretically possible to achieve arbitrarily tight bounds using αBB,
even in nodes where Theorem 2 is not satisfied. This comparison is otherwise impossible
to make unless closed-form eigenvalue limits can be derived, which, according to the Abel
Ruffini theorem [13], is impossible for matrices of dimension greater than 4. In the numerical
experiments that follow, a rectangular sampling grid is used, which always contains all the
vertices of the sampling box.

5 Illustrative example

Let us return to the original example in order to demonstrate the proposed underestimation
strategy. Consider once again the problem of underestimating f (x) = sin(5x)+ x2 +2, x ∈
X = [−2,−1]. Assume that the global minimum f † = 1.09 has already been found, and
set f ∗ = f †. Furthermore, let us choose a desired f1-sub-optimal precision ε = 10−3 and
a tolerance c = 0.69 such that f1 = 1.78 is just below the next best local minimum. The
resulting value of μ is μ = − ln(eε−1)

c = 10.0.
Using this value ofμ guarantees that all points with values greater than 1.78 in the f -space

will have S values between 0 and −ε in the μ-subenergy domain, as illustrated in Fig. 6.
Initially, αBB underestimators for both functions are built using an extremely fine resolu-

tion of 100,000 points, which yields a very precise value of α for the original problem,
i.e., α = 10.98, while the corresponding value of α for the μ-subenergy problem is
αS = 1.79·10−8. The resulting underestimators are displayed in Fig. 6. Even though the tight-
est possible αBB underestimator of f does not allow fathoming this particular sub-domain,
the μ-subenergy underestimator does.

Lemma 2 is used to map the μ-subenergyunderestimator back to the f -space for a better
overview of the underestimator, and also tomap theμ-subenergy lower bounds back to the f -
space, for easier comparison. It is observed inFig. 6 that the exactμ-subenergyunderestimator
is much tighter than the exact classical αBB underestimator; enough so that the node may
now be fathomed.

Similar resultsmay be achieved usingmuch lower sampling resolutions. The lower bounds
on f that are achievedusingdifferent sampling resolutions for node X are displayed inTable 1.
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Fig. 6 Illustration of the tightest αBB underestimators of f (x) = sin(5x)+ x2 +2 and itsμ-subenergy func-
tion, for x ∈ [−2,−1], f ∗ = 1.09, and μ = 10

Table 1 Lower bounds on f (x) = sin(5x) + x2 + 2, x ∈ [−2, −1] using μ = 10, f ∗ = 1.09 (sampling
density given as the number of samples per unit length)

# sampling points
(excluding vertices)

Sampling density f -lower boundusing
αBB

f -lower boundusing
subenergy-αBB

1 3 0.54 3.30

3 5 0.54 3.14

5 7 0.54 3.04

7 9 0.54 3.11

10 12 0.54 3.01

50 52 0.54 3.01

100 102 0.54 3.00

1000 1002 0.54 3.00

10,000 10,002 0.54 3.00

100,000 100,002 0.54 3.00

All f -lower bounds using the μ-subenergy function are consistently tighter than the αBB f -
lower bounds on the original function, with their accuracy improving, as expected, with more
sampling points. For this simple example, one sampling point (excluding the vertices of the
node) appears to be sufficient to fathom this f1-sub-optimalnode. In fact, because the value of
f ∗ = 1.09 is considerably smaller than f m = 3.28, any sample will be adequate to produce
a fathoming underestimator.

For lower sampling resolutions (i.e., a density of 3 points per unit length) the lower bound
is less accurate,2 meaning that a false positive is possible, i.e., fathoming the node which

2 In the first row of Table 1, f
S

> f m .
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Table 2 Lower bounds on f (x) = sin(5x) + x2 + 2, x ∈ [−1, 0] using μ = 10, f ∗ = 1.09

# sampling points
(excluding vertices)

Sampling density f -lower boundusing
αBB

f -lower boundusing
subenergy-αBB

1 3 −1.39 0.95

3 5 −1.39 0.95

5 7 −1.39 0.16

7 9 −1.39 0.58

10 12 −1.47 0.23

50 52 −1.51 0.09

100 102 −1.51 0.10

1000 1002 −1.51 0.09

10,000 10,002 −1.51 0.09

100,000 100,002 −1.51 0.09

Table 3 Lower bounds on f (x) = sin(5x) + x2 + 2, x ∈ [−1, 2] using μ = 10, f ∗ = 1.09

# sampling points
(excluding vertices)

Sampling density f -lower boundusing
αBB

f -lower boundusing
subenergy-αBB

1 1 −22.16 2.14

3 1.66 −22.16 2.14

5 2.33 −22.16 0.12

7 3 −22.28 1.53

10 4 −22.45 − 6.64

50 17.33 −23.30 − 7.85

100 34 −23.30 − 7.73

1000 334 −23.30 − 7.84

10,000 3334 −23.30 − 7.85

100,000 33,334 −23.30 − 7.85

The node is incorrectly fathomed for small sampling sizes (cells marked in bold)

holds the global solution due to poor sampling. This is further investigated by performing
tests in a node which contains the global solution (x ∈ [−1, 0]). The sampling results are
shown in Table 2, where robustness with respect to the sampling size is observed, and even
for very small sample sizes the node is not incorrectly fathomed.

It is possible however to incorrectly fathom the node if all sampling points happen to
be in flattened parts of the domain. In order to demonstrate this, we widen the bounds to
x ∈ [−1, 2]. The resulting lower bounds are presented in Table 3, where for sampling sizes
smaller than 10, the method is not consistently reliable.

Overall, it is observed that, in this example, lower bounds on f are consistently tighter
than standard αBB when μ-subenergy underestimation is used.

6 Computational experiments

In this section we present results using the sampling approach with μ-subenergy underesti-
mators on a selection of widely-used optimization test functions. The purpose of these tests
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is to validate our theoretical results and demonstrate that, despite being a proof-of-concept
methodology, μ-subenergyunderestimation may be a viable alternative to classical αBB in a
heuristic context. The construction of all underestimators and the calculation of their bounds
are performed inMATLABR2016a using INTLABV6 [44], and the code is publicly available
at https://zenodo.org/deposit/238684.

The tests are performed on a set of 16 test functions [1,22,41–43] in two configurations:
(1) in a sub-optimal box and (2) in an optimal box. In order to keep the function ranges in
comparable levels, boxes of different sizes are selected, which can be seen in “Appendix”.

In all calculations in this section, μ is set to μ = 10, and f ∗ for each case study is set
to the global minimum of the corresponding function, and all numbers are rounded down
to the second decimal. Tables 4 and 5 illustrate the f -lower bounds using μ-subenergy and
classical αBB respectively, in boxes which do not contain the global solution, for different
sampling resolutions. In those tables we also provide the approximate lower bound (rounded
down to the second digit) of f in the corresponding sub-optimal node.

The lower bounds derived using the μ-subenergy method are much tighter than the corre-
sponding ones using standard αBB. With the classical αBB it is possible to fathom 8 out of
16 nodes. With the μ-subenergy it is possible to fathom 6 more nodes, otherwise impossible
to fathom using the αBB relaxation of the original function. Interestingly, the sub-optimal
nodes of problems hatflda (fathomed by αBB) and biggs5 (not fathomed by αBB) are not
fathomed. We observe that the bounds are not invalid, as they are smaller than the values at
the global minimum, which indicates that the value ofμmay not be large enough. In the same
table we also present the corresponding calculations using μ = 20 for these two functions,
where the larger value of the subenergy magnitude enables us to fathom both nodes.

The next step is to investigate the sampling size necessary in order to avoid false pos-
itives. Thus, the μ-subenergymethod is used to build relaxations in boxes which contain
the global minimum. The results for μ-subenergyand αBB respectively are presented in
Tables 6 and 7, where it may be observed (Table 6) that we avoid false positives in every
case, with the exception of the Rastrigin function, where a sampling size greater than 100
samples is necessary. The data for large sample sizes may lead to Hessian matrices that
contain −∞. This occurs because, in the process of flattening sub-optimal domains, the μ-
subenergy function inevitably increases the curvature in optimal domains. The sharp bend of
the μ-subenergy function as it transitions from a flat region to an optimal one may produce
eigenvalues of very high magnitude in X1 ∩ X0. However, this does not pose a problem in a
branch-and-bound context because such behaviour flags a region as optimal: these infinitely
negative eigenvalues yield a LB of minus infinity, which correctly preserves the node for
further branching. The corresponding results for αBB suggest that classical αBB is more
robust in all tests in optimal nodes, as no node is incorrectly fathomed, and fewer samples
are required to achieve reliable lower bounds. Although sampling is generally sensitive to
the dimensionality of the problem, we find that 100 samples are sufficient in most cases
investigated, with up to 1000 samples being necessary to properly capture the curvature of
the functions. In this small test set, increasing the number of dimensions does not appear to
require significantly more samples to achieve similar levels of accuracy.

Collectively, the tests confirmour theoretical expectation: if exact eigenvalues are available
(indicated by the results for high sampling resolutions across all tests), the μ-subenergy
methodology may produce much tighter bounds than classical αBB in the domains were
these bounds may actually be used for fathoming, i.e., f1-sub-optimaldomains.
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7 Conclusions

In this paperweproved that a generalαBBunderestimatormayonly give an exact lower bound
if certain conditions are satisfied (Theorems 1 and 2). We then presented a new methodology
to produce αBB underestimators which allow the fathoming of nodes even in cases where
the rigorous conditions described in Theorems 1 and 2 are not satisfied.

This was achieved by introducing a modified transformation, the μ-subenergy function,
based on the concept of subenergy functions initially proposed for tunneling [8,12], and by
deriving a number of useful properties. Given two arbitrary pre-defined tolerances in the
f -space and S-space, a parameter μ may be calculated such that all values greater than
the f -tolerance (c) are mapped between 0 and the S-tolerance (−ε). Thus, it is possible to
bound values in certain sub-domains of X0 between two barriers in S-space, by controlling
the mapping. It was shown that these bounding properties extend to the derivatives of the
μ-subenergy function, where we provided the conditions to calculate μ in order to impose
arbitrary bounds. Using this methodology, domains otherwise impossible to fathom using a
standard αBB relaxation may theoretically be fathomed.

This method was shown not to benefit from the established method of deriving a rig-
orous α vector using interval arithmetic [2]; thus, there is no method currently known to
the authors which may be employed both to calculate the α vector rigorously, and to pro-
duce tighter bounds than classical αBB; we consider this to be a promising subject of future
research.

The method is not beyond practical use however; a series of numerical tests were
performed in order to compare the tightest possible μ-subenergy underestimator against
the tightest possible αBB underestimator using sampling-based eigenvalues. The μ-
subenergy method was shown in all tests to be able to fathom domains which may not
theoretically be fathomed using classical αBB, as predicted by the theory. Thus, the
μ-subenergy theory, beyond its purpose as a proof-of-concept that the αBB theoretical under-
estimation limit might be overcome, may be applied in cases where αBB is used as a heuristic
method.

This method successfully demonstrates that, through appropriate manipulation, an αBB
underestimator may be used to produce tighter bounds than the theoretical conditions derived
in this paper would allow, up to a maximum separation distance arbitrarily close to zero. The
μ-subenergymethodology is a promising starting point for future research regardingmethods
to overcome the theoretical limits of superposition-type underestimators.
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Table 8 Nodes used in numerical experiments

Function Optimal node Sub-optimal node

rastrigin [−1 2 −2 1] [−2 −1 −2 −1]

rosenbrock [0.5 1.5 0.5 1.5] [0.15 .25 0.15 .25]

ackley [−1 1 −1 1] [−2 −1 −2 −1]

beale [2 4 0 1] [1 2 1 2]

goldstein [−1 1 −1.5 −0.5] [0.01 0.3 −0.9 −0.8]

box3 [−9 −8 −9 −8 −1 1] [−9 −8.5 −9 −8.5 1 1.5]

allinit [−2 0 1 2 −2 −1] [−2 −1.5 1.5 2 −1 0]

biggs3 [0.5 1.5 9 11 4 6] [2 3 1 2 1 2]

denschnd [−1 1 −1 1 −1 1] [1 2 1 2 1 2]

allinitu [1 2 −0.5 0.5 −0.5 0.5 −1 0] [0 1 1 2 1 2 1 2]

brownden [−11.6 −11.4 13 13.5 −0.5 −0.3 0 .3] [−1.2 −1 1 1.2 1 1.2 1 1.2]

hatflda [0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5] [1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5]

biggs5 [9 11 0 2 −6 −4 −2 0 4 5] [1 2 2 3 −3 −2 −3 −2 1 2]

genhumps [−1 1 −1 1 −1 1 −1 1 −1 1] [1 2 1 2 1 2 1 2 1 2]

hs045 [0.5 1.5 1.5 2.5 2.5 3.5 3.5 4.5 4.5 5.5] [2 3 1 2 1 2 1 2 1 2]

hart6 [0 1 0 1 0 1 0 1 0 1 0 1] [1 2 1 2 1 2 1 2 1 2 1 2]

s273 [0.5 1.5 0.5 1.5 0.5 1.5 [−0.1 0.9 0.5 1.5 0.5 1.5

0.5 1.5 0.5 1.5 0.5 1.5] 0.5 1.5 0.5 1.5 0.5 1.5]

The variable bounds are presented in the following format: xL1 xU1 xL2 xU2 . . . xLN xUN
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