Corrections to: Differentiable McCormick relaxations

Kamil A. Khan ${ }^{1}$ • Matthew Wilhelm ${ }^{2}$ • Matthew D. Stuber ${ }^{2}$ • Huiyi Cao ${ }^{1}$. Harry A. J. Watson ${ }^{3}$ • Paul I. Barton ${ }^{3}$

Published online: 25 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Corrections to: J Glob Optim
 https://doi.org/10.1007/s10898-016-0440-6

This note lists corrections to various errors in a recent article [1] by Khan, Watson, and Barton. Though these errors appear in the text of [1], they were not present in the C++ implementation used in Section 7 of [1]; hence, the examples in that section were not affected by these errors.

- In the bottom row of Table 1 of [1], concerning relaxations of $\frac{1}{\xi^{2 k-1}}$ for $k \in \mathbb{N}$, the entry in the leftmost column should be " \mathbb{R}_{-}" instead of " \mathbb{R}_{+}". (The $B:=\mathbb{R}_{+}$case is addressed by the earlier row concerning $\frac{1}{\xi^{k}}$.)
- Proposition 6 of [1] concerns the procedure for obtaining \mathscr{C}^{2} relaxations of expressions involving odd powers. In this proposition, in the construction of $\bar{\phi}^{\mathrm{C}}$, the "max" function should instead be "min"; the corrected construction is:

$$
\bar{\phi}^{\mathrm{C}}: x \rightarrow \mathbb{R}: \xi \mapsto \begin{cases}\xi^{2 k+1}, & \text { if } \bar{x} \leq 0, \\ \bar{x}^{2 k+1}\left(\frac{\xi-\underline{x}}{\bar{x}-\underline{\underline{x}}}\right)+(\min \{0, \xi\})^{2 k+1}, & \text { if } \underline{x}<0<\bar{x}, \\ \underline{x}^{2 k+1}+\left(\bar{x}^{2 k+1}-\underline{x}^{2 k+1}\right)\left(\frac{\xi-\underline{x}}{\bar{x}-\underline{x}}\right), & \text { if } 0 \leq \underline{x} .\end{cases}
$$

- In Definition 3 of [1], in the constructions of x^{*} and y^{*}, the σ_{μ} terms should be subtracted rather than added. This affects the Whitney- \mathscr{C}^{1} relaxations of products described in

[^0][^1]Theorem 6. The corrected constructions are:

$$
\begin{aligned}
& x^{*}:(y, \zeta, \eta) \mapsto \underline{\zeta}+(\bar{\zeta}-\underline{\zeta})\left(\frac{\bar{\eta}-y}{\bar{\eta}-\underline{\eta}}-\sigma_{\mu}\left(\frac{\underline{\eta}+\bar{\eta}}{(\mu+1)(\bar{\eta}-\underline{\eta})}\right)\right), \\
& y^{*}:(x, \zeta, \eta) \mapsto \underline{\eta}+(\bar{\eta}-\underline{\eta})\left(\frac{\bar{\zeta}-x}{\bar{\zeta}-\underline{\zeta}}-\sigma_{\mu}\left(\frac{\underline{\zeta}+\bar{\zeta}}{(\mu+1)(\bar{\zeta}-\underline{\zeta})}\right)\right) .
\end{aligned}
$$

The proof of Theorem 6 in [1] is valid after this correction.

- Proposition 15 of [1] provides partial derivatives for the relaxations of products described in Theorem 6. In Proposition 15, in the provided expressions for partial derivatives of $\underline{\psi}_{\times, \mathrm{A}}$, the exponents should be $\mu-1$ rather than $\mu+1$. The corrected partial derivatives are:

$$
\begin{aligned}
& \frac{\partial \underline{\psi}_{x, \mathrm{~A}}}{\partial x}(x, y, \zeta, \eta)=\frac{1}{2}\left(\underline{\eta}+\bar{\eta}+(\mu+1)(\bar{\eta}-\underline{\eta})\left(\frac{y-\underline{\eta}}{\bar{\eta}-\underline{\eta}}-\frac{\bar{\zeta}-x}{\bar{\zeta}-\underline{\zeta}}\right)\left|\frac{y-\underline{\eta}}{\bar{\eta}-\underline{\eta}}-\frac{\bar{\zeta}-x}{\bar{\zeta}-\underline{\zeta}}\right|^{\mu-1}\right), \\
& \frac{\partial \underline{\psi}_{\times, \mathrm{A}}}{\partial y}(x, y, \zeta, \eta)=\frac{1}{2}\left(\underline{\zeta}+\bar{\zeta}+(\mu+1)(\bar{\zeta}-\underline{\zeta})\left(\frac{y-\underline{\eta}}{\bar{\eta}-\underline{\eta}}-\frac{\bar{\zeta}-x}{\bar{\zeta}-\underline{\zeta}}\right)\left|\frac{y-\eta}{\bar{\eta}-\underline{\eta}}-\frac{\bar{\zeta}-x}{\bar{\zeta}-\underline{\zeta}}\right|^{\mu-1}\right) .
\end{aligned}
$$

References

1. Khan, K.A., Watson, H.A.J., Barton, P.I.: Differentiable McCormick relaxations. J. Glob. Optim. 67, 687729 (2017)

[^0]: The original article can be found online at https://doi.org/10.1007/s10898-016-0440-6.

[^1]: Paul I. Barton
 pib@mit.edu
 1 Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
 2 Process Systems and Operations Research Laboratory, University of Connecticut, Storrs, CT, USA
 3 Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

