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Abstract The standard pooling problem is a NP-hard subclass of non-convex quadratically-
constrained optimization problems that commonly arises in process systems engineering
applications. We take a parametric approach to uncovering topological structure and sparsity,
focusing on the single quality standard pooling problem in its p-formulation. The struc-
ture uncovered in this approach validates Professor Christodoulos A. Floudas’ intuition that
pooling problems are rooted in piecewise-defined functions. We introduce dominant active
topologies under relaxed flow availability to explicitly identify pooling problem sparsity and
show that the sparse patterns of active topological structure are associated with a piecewise
objective function. Finally, the paper explains the conditions under which sparsity vanishes
and where the combinatorial complexity emerges to cross over the P/N P boundary. We for-
mally present the results obtained and their derivations for various specialized single quality
pooling problem subclasses.

Keywords Standard pooling problem ·Global optimization · Piecewise structure · Sparsity ·
Discretization · P/N P boundary · Strongly-polynomial algorithms

1 Introduction

The standard pooling problem represents aNP-hard subclass [3] of non-convex quadratically-
constrained optimization problems with bilinear terms and may have a multiplicity of local
minima [33]. Pooling problems model the computational difficulties associated with inter-
mediate blending of heterogeneous feedstocks and therefore have direct application in
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process system engineering [34,56]. Specific application domains include: petroleum refin-
ing [7,20,49], mining [14], wastewater treatment [35,42], crude oil scheduling [39], natural
gas production [50], etc. We recently showed that standard pooling arises as a sub-problem
pattern in general mixed-integer nonlinear optimization (MINLP) [17].

Motivated by applications, Floudas andVisweswaran [22,23,57,58] were the first to rigor-
ously solve the pooling problem to global optimality. The Floudas andVisweswaran approach
uses duality theory andLagrangian relaxations. Subsequent global optimization contributions
to solving the pooling problem include: making further Lagrangian relaxation contribu-
tions [1], developing alternative problem formulations [5,11], augmenting models with
reformulation-linearization cuts [42,48,51,52] to create a provably dominant formulation
[53], developing problem-specific polyhedral cuts based on small pooling networks [18,19],
and identifying the P/N P boundary with respect to the topological structure [3,15,31,32].
More general techniques for non-convex quadratically-constrained optimization problems
with bilinear terms are also appropriate for the pooling problem. The more general meth-
ods include: using convex envelopes to formulate a linear relaxation [2,24,41], developing a
general branch-and-cutmethod [6], applying a sum-of-squares hierarchy [40], andusing state-
of-the-art global optimization MINLP solver software [10,12,13,37,45,46,53–55]. Further
details are available in reviews discussing the pooling problem [5,16,30,43].

But, despite significant attention to the pooling problem, deterministic global opti-
mization algorithms can have significant optimality gaps and impractical or unknown
convergence times on large-scale, industrially-relevant instances. These impractical conver-
gence properties are interesting because Beale et al. [9] report that a simple, piecewise-linear
program serves as a practical heuristic for small, pooling-like instances. Meyer and Floudas
[42] had a similar intuition that very large pooling problems may be approached via
piecewise-linear relaxation schemes. This intuition, which also appeared in Karuppiah and
Grossmann [35], suggests that the pooling problem, a continuous nonlinear optimization
problem (NLP), may be effectively approximated as a mixed-integer linear optimization
problem (MILP). Further evidence for this intuition appears in several effective algo-
rithms optimizing industrially-relevant pooling instances via piecewise-linear approaches,
e.g. [26,29,36,44,47,59]. Subsequent work used the standard pooling problem topology to
develop a state-of-the-artMILPdiscretization heuristicwith a performance bound [21,27,28].

This paper validates and substantiates Professor Floudas’ intuition by formalizing and
characterizing the piecewise structures arising in standard pooling subclasses. We build a
bottom-up, intuitive understanding of the P/N P boundary of the single quality standard
pooling problem by taking a parametric view and relaxing the flow availability box con-
straints. The relaxations employed effectively remove the flow availability bounds on feeds
and pools and fix the product demand at each output. In the semantics of Boland et al. [15],
e.g. Fig. 1 of their manuscript, our approach unifies and generalizes the |K | = 1 complexity
results. Our parametric approach yields polynomial-time subclasses with a piecewise-linear
or piecewise convex/concave monotone structure. We formalize these piecewise structures
in single quality standard pooling subclasses that offer exact global solutions in polyno-
mial time. The proofs lead to the unexpected outcome that the famous Haverly [33] pooling
instances, i.e. the first-recorded pooling instances, belong to a strongly-polynomial subclass!
The strongly-polynomial result for the Haverly [33] instances is remarkable because these
case studies have been used as test cases for exponential algorithms for more than 35 years.

This manuscript also justifies the Beale et al. [9] observation that the linear approximation
is most effective when only a few variables are active at once. Using patterns of dominating
topologies,we explicitly identify pooling problemsparsity, i.e. a limited number of activeflow
variables. We show that these sparse patterns of active topological structure are associated
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Fig. 1 Standard pooling network. Note the feeds layer is separated into two groups of nodes: input nodes
[1,…,I] that send flows to pools only and direct nodes [1,…,H] that send flows to outputs only. In general,
one feed can send flows both to pools and outputs. In this case, any of the feed’s flows is assigned, based
on the layer they are sent towards, to either an input or direct node corresponding to the feed. This explicit
input/direct separation helps build a clear understanding of the problem sparsity/structure as related to flows
to pools versus flows to outputs. The separation is generally adopted in the paper’s figures, discussions or
proofs, as needed

with a piecewise objective function and we take advantage of these structures. Lastly, we
explain the conditions under which such sparsity vanishes by reintroducing constraints on
flow availability and, together with them, the combinatorial complexity needed to cross over
the P/N P-time boundary.

The paper proceeds as follows: Section 2 introduces the single quality formulation of the
standard pooling problem and the assumptions (flow constraint relaxations) used throughout
this paper; Sect. 3 analyzes the one pool, one output subclass and uncovers both a piecewise-
monotone structure and a strongly-polynomial time algorithm for solving it; Sect. 4 extends
the results in Sect. 3 to the subclass with multiple outputs via additive decomposition over
outputs; Sect. 5 extends Sect. 3 results to the subclass with multiple pools using problem
sparsity; Sect. 6 discusses the implications and possible extensions of the results. The source
code implementation of the results discussed in this paper is available on Github [8].

2 Standard pooling p-formulation and assumptions used

Thismanuscript unpacks single quality standard pooling problem solutions by parameterizing
with respect to pool concentrations. To effectively do so, the paper employs a concentration-
based formulation, i.e. the p-formulation shown in Problem P–2.1 [5]. Table 1 introduces
the notation used for indices, sets, variables, parameters, as well as for the problem subclass
types analyzed in the following sections. Fig. 1 shows the topological structure of a standard
pooling network, represented by a feed-forward flow network of 3 node layers.

Different flows pass between the three layers, having different concentrations of various
qualities, e.g. crude oil chemical compositions. Input feeds in1 − in I send flows denoted
by x variables to be linearly blended in L pools (p1 − pL ), that further distribute y flows
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Table 1 Standard pooling problem notation [43]

Type Notation Description

Indices i ∈ {i | (i, ·) ∈ TX ∪ TZ } Input streams (raw materials or feed stocks)

l ∈ 1, L Pools (blending facilities)

j ∈ 1, J Output streams (end products)

k ∈ 1, K Attributes (qualities monitored)

Sets TX (i, l) pairs for which input to pool connection
exists, |TX | = I

TZ (i, j) pairs for which input to output connection
exists, |TZ | = H

TY (l, j) pairs for which pool to output connection
exists

Problem type I+H−L−J−K I+H feeds (inputs + directs), L pools, J outputs
and K qualities

I+H−L−J I+H feeds (inputs + directs), L pools, J outputs
and one quality

I−L−J (No directs) I inputs, L pools, J outputs and one
quality

H−L−J (No inputs) H directs, L pools, J outputs and
one quality

Variables xi,l Flow from input i to pool l

yl, j Flow from intermediate pool node l to output j

zi, j Bypass flow directly from input feed stock i to
product j

pl,k Level/concentration of quality attribute k in pool l

Parameters f The objective function of the problem

γi Unit cost of raw material feed stock i

d j Unit revenue for product j

AL
i − AUi Availability bounds (required usage to max.

availability) of input i

Sl Volumetric size capacity of pool l

DL
j − DU

j Demand bounds (required to limit demand) for
product j

Ci,k Level of quality k in raw material feed stock i

PL
j,k − PU

j,k Acceptable composition range of quality k in
product j

The standard pooling problem is a flexible formulation used for many real-world applications with different
measure units for variables/parameters, e.g. in [35]: flows(ton/hr), quality level/concentration(ppm), objec-
tive/unit cost/unit revenue($), capacity(tons)

to J outputs (o1 − oJ ) to create blended products. Additionally, H direct feeds di1 − diH
send z flows directly to the outputs layer. The standard pooling Problem P–2.1 consists of
maximizing a profit function with profits and costs associated to each network flow, subject
to flow constraints, e.g. feed availability, pool capacity, output demands, flow balance at
pools, and quality concentration constraints, e.g. quality balance at pools, product quality
bounds at outputs. This manuscript addresses a somewhat more complex pooling problem
than previous work analyzing the P/N P boundary [3,15,31,32] by considering the direct
feeds di1 − diH .
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(Objective) max{xi,l },{yl, j },
{zi, j },{pl,k }

∑

(l, j)∈TY
d j · yl, j +

∑

(i, j)∈TZ
d j · zi, j −

∑

(i,l)∈TX
γi · xi,l −

∑

(i, j)∈TZ
γi · zi, j

(Feed Availability)

⎡

⎣AL
i ≤

∑

l:(i,l)∈TX
xi,l +

∑

j :(i, j)∈TZ
zi, j ≤ AU

i ∀ i

(Pool Capacity)

⎡

⎣
∑

i :(i,l)∈TX
xi,l ≤ Sl ∀ l

(Product Demand)

⎡

⎣DL
j ≤

∑

l:(l, j)∈TY
yl, j +

∑

i :(i, j)∈TZ
zi, j ≤ DU

j ∀ j

(Material Balance)

⎡

⎣
∑

i :(i,l)∈TX
xi,l −

∑

j :(l, j)∈TY
yl, j = 0 ∀ l

(Product Quality)

⎡

⎢⎢⎢⎣

∑

l:(l, j)∈TY
pl,k · yl, j

+
∑

i :(i, j)∈TZ
Ci,k · zi, j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

≥ PL
j,k

( ∑
l:(l, j)∈TY

yl, j + ∑
i :(i, j)∈TZ

zi, j

)

≤ PU
j,k

( ∑
l:(l, j)∈TY

yl, j + ∑
i :(i, j)∈TZ

zi, j

) ∀j, k

(Quality Balance)

⎡

⎣
∑

i :(i,l)∈TX
Ci,k xi,l = pl,k

∑

j :(l, j)∈TY
yl, j ∀ l, k

(Hard Bounds)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ≤ xi,l ≤min

{
AU
i ,

∑

j :(l, j)∈TY
DU

j , Sl

}
∀ (i, l) ∈ TX

0 ≤ yl, j ≤min

{ ∑

i :(i,l)∈TX
AU
i , DU

j , Sl

}
∀ (l, j) ∈ TY

0 ≤ zi, j ≤min

{
AU
i , DU

j

}
∀ (i, j) ∈ TZ

min
i

Ci,k ≤ pl,k ≤max
i

Ci,k ∀ l, k

(P–2.1)

Remark 2.1 In Problem P–2.1, the upper hard bounds on variable sets {x}, {y}, {z} are
redundant and can be dropped. These upper hard bounds are implicitlymet by simultaneously
enforcing the constraints on feed availability, pool capacity, product demand and material
balance. Similarly, the hard bounds on pl,k ∀l, k can be dropped, as they are implicitly met
by replacing all y variables in the quality balance with x variables from the material balance.

Assumption 2.2 Problem P–2.1 is restricted to a single quality and assumed feasible, with
dropped constraints on feed availability and pool capacity and fixed product demands Dj >

0, ∀ j .

Note: Remarks 3.3.10, 4.6 and 5.6 explain how Assumption 2.2 provides tight bounds
for sparsity and polynomial-time solvability. Remark 3.3.10 shows that the sparse, piece-
wise monotone structure of subclass I+H−1−1 is tightly conditioned on Assumption 2.2.
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Remark 4.6 shows that the polynomial-time solvability of subclass I+H−1−J is also tightly
conditioned on Assumption 2.2. Remark 5.6 justifies these observations for the I+H−L−1
subclass.

Removing the feasibility assumption is not discussed, at it serves only to remove the check
for an infeasible/unprofitable problem with all feeds inactive and f ∗ = 0.

Based on Remark 2.1 and Assumption 2.2, after dropping indices k for simplicity and
denoting the objective function with f , Problem P–2.1 becomes:

max{xi,l },{yl, j },{zi, j },{pl }
f

f =
∑

(l, j)∈TY
d j · yl, j +

∑

(i, j)∈TZ
d j · zi, j −

∑

(i,l)∈TX
γi · xi,l −

∑

(i, j)∈TZ
γi · zi, j

s.t.
∑

l:(l, j)∈TY
yl, j +

∑

i :(i, j)∈TZ
zi, j = Dj ∀ j

∑

i :(i,l)∈TX
xi,l −

∑

j :(l, j)∈TY
yl, j = 0 ∀ l

PL
j D j ≤

∑

l:(l, j)∈TY
pl · yl, j +

∑

i :(i, j)∈TZ
Ci · zi, j ≤ PU

j D j ∀ j

∑

i :(i,l)∈TX
Ci xi,l = pl

∑

j :(l, j)∈TY
yl, j ∀ l

0 ≤ xi,l ∀ (i, l) ∈ TX , 0 ≤ yl, j ∀ (l, j) ∈ TY , 0 ≤ zi, j ∀ (i, j) ∈ TZ .

(P–2.2)

The following sections analyze bottom-up several subclasses of Problem P–2.2 based on
topological restrictions, proving in each case strongly-polynomial time complexity coupled
with finding sparse piecewise structures. The analysis contours the P/N P-hard boundary
for Problem P–2.2 subclasses.

3 Subclass I+H−1−1: one pool, one output

This section analyzes the topological restriction of Problem P–2.2 with I+H feeds (I inputs,
H directs), one pool, and one output. For simplicity of notation, single indices l and j are
dropped from variables and parameters via the notation transformations TZ ← {i : (i, j) ∈
TZ }, TX ← {i : (i, l) ∈ TX } leading to the restricted Problem P–3.3.

max{xi },y,{zi },p
f

f = d · y +
∑

i∈TZ
d · zi −

∑

i∈TX
γi · xi −

∑

i∈TZ
γi · zi

s.t. y +
∑

i∈TZ
zi = D

∑

i∈TX
xi − y = 0

PL D ≤ p · y +
∑

i∈TZ
Ci · zi ≤ PU D

∑

i∈TX
Ci xi = p · y

0 ≤ xi ∀i ∈ TX , 0 ≤ y, 0 ≤ zi ∀i ∈ TZ

(P–3.3)
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max{xi },{zi },p
f = max

p
( f ∗(p))

f ∗(p) = max{xi },{zi }
f (p)

f (p) = d · D −
∑

i∈TX
γi · xi −

∑

i∈TZ
γi · zi

s.t.
∑

i∈TX
xi +

∑

i∈TZ
zi = D

PLD ≤
∑

i∈TX
Ci xi +

∑

i∈TZ
Ci zi ≤ PU D

∑

i∈TX
Ci xi = p ·

∑

i∈TX
xi

0 ≤ xi ∀ i ∈ TX , 0 ≤ zi ∀ i ∈ TZ

(P–3.4)

Variables p, y can be eliminated from Problem P–3.3 by directly substituting all y, p · y
terms from their constraints. Thus, f can be rewritten:

f = d · y +
∑

i∈TZ
d · zi −

∑

i∈TX
γi · xi −

∑

i∈TZ
γi · zi =

∑

i∈TX
(d − γi ) · xi +

∑

i∈TZ
(d − γi ) · zi

= d · D −
∑

i∈TX
γi · xi −

∑

i∈TZ
γi · zi .

In Problem P–3.4, we eliminate y but retain p as a parameter controlling flows xi , ∀i ∈ TX
relative to each other. In addition, eliminating p from Problem P–3.3 produces a linear
program (LP) in the x, z variables. Since at optimality the LP has atmost three tight constraint
bounds (product quality can only have one tight bound), the cardinality of the optimal basis
is at most three, but the basic variables among x, z can not be identified directly in this
manner. Consequently, retaining parameter p allows us to analytically understand the optimal
solutions for Problem P–3.4 and identify basic variables among x, z across p-intervals,
together with any problem structure. In particular, the objective function p-parametric form
may be used to break the p-interval [mini Ci , maxi Ci ] into sub-intervals where special
properties of f arise. Section 4 uses this parametric approach for solving a non-convex/non-
linear problem subclass in strongly-polynomial time.

Active sets, dominance relations and breakpoints are essential building blocks to find the
structure of f ∗(p) in Problem P–3.4 and are all introduced in Definitions 3.1–3.4.

Definition 3.1 (Active sets, objective function and cost function) Set A of nodes from the
feed layer is:

• An input active set if A ⊆ TX , xi = 0 ∀i ∈ TX \ A, zi = 0 ∀i ∈ TZ .
• A direct active set if A ⊆ TZ , xi = 0 ∀i ∈ TX , zi = 0 ∀i ∈ TZ \ A.
• Amixed active set if A ⊆ TX ∪TZ , xi = 0 ∀i ∈ TX \ A, zi = 0 ∀i ∈ TZ \ A, A \TX /∈

{A,∅}.
For an active set A in Problem P–3.4, the objective function f is given by,

f =

⎧
⎪⎨

⎪⎩

f A(p) = d · D− ∑
i∈A∩TX

γi xi − ∑
i∈A∩TZ

γi zi , if A is an input or mixed active set,

f A = d · D− ∑
i∈A

γi zi , if A is a direct active set,

(1)
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where f is not p-parametric in the second case of no input flow to the pool since pool
concentration p is undefined. Let h = d · D − f denote the cost function associated with
objective function f .

Definition 3.2 (Feasibility with respect to product quality constraints) A Problem P–3.4
active set is feasible if the product quality bounds [PL , PU ] aremet, i.e. the second constraint
holds. An infeasible active set is not a valid Problem P–3.4 solution and is therefore strictly
dominated by any feasible active set (see Definition 3.3).

Definition 3.3 (Dominance and breakpoints between active sets) Let A1, A2 be feasible
input/mixed active sets. Let f ∗

A(p) be the optimal objective function value to Problem P–3.4
and h∗

A(p) its corresponding optimal cost function value, assuming active set A and fixed p.

• Set A1 dominates A2 at p (in the sense of maximized objective function profitability)
when,

A1�pA2 ⇔ f ∗
A1

(p) ≥ f ∗
A2

(p) ⇔ h∗
A1

(p) ≤ h∗
A2

(p). (2)

• Pool concentration p is a breakpoint between A1 and A2 if:

A1�pA2 ⇔ f ∗
A1

(p) = f ∗
A2

(p) ⇔ h∗
A1

(p) = h∗
A2

(p). (3)

• The dominance relation also extends to direct active sets, but in this case f is not paramet-
ric on p. Consequently, when comparing two direct active sets, dominance is established
similarly via Eq. (2) but independent of p, and as such no breakpoints exist. Thus, for
fixed p, a total order can be established over the set of all possible active sets.

Definition 3.4 (Dominant active sets and dominance breakpoints) Let A∗(p) be the domi-
nant active set (overall) at p if

A∗(p) = argmax
{AI ,AD ,AM }

(
f ∗
AI

(p), f ∗
AD

, f ∗
AM

(p)
)

= argmin
{AI ,AD ,AM }

(
h∗
AI

(p), h∗
AD

, h∗
AM

(p)
) (4)

and the optimal objective solution of Problem P–3.4 is f ∗ = maxp f ∗
A∗(p)(p), where:

• AI is the dominant input active set at p if AI (p) = argmax
A⊆TX

f ∗
A(p).

• AM is the dominant mixed active set at p if AM (p) = argmax
A⊆TX∪TZ , A\TX /∈{A,∅}

f ∗
A(p).

• AD is the dominant direct active set if AD = argmax
A⊆TZ

f ∗
A .

A dominance breakpoint represents a p value where the dominant active set changes, i.e.
∀ 0 < ε < ε0, where ε0 is a sufficiently small positive number,

A∗(p − ε) 
= A∗(p + ε) and A∗(p − ε) �p A∗(p + ε). (5)

Input and mixed dominance breakpoints are similarly defined as in Eq. (5) but with A∗
replaced byAI andAM , respectively. Let the sets of input and mixed dominance breakpoints
be denoted by BI and BM , respectively.

The input, direct and mixed active sets have different dominance properties and thus the
analysis proceeds in Sects. 3.1–3.3 by active set type. Section 3.1 ignores directs and product
quality constraints and focuses only on inputs. Since directs are ignored, the pool concentra-
tion p represents the output concentration, and hence p is assumed free of product quality
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bounds. The analysis of the p-parametric optimal objective f ∗(p) reveals a piecewise-linear
structure associated with pairs of inputs acting as the dominant input active set. Section 3.2
treats the complementary case, ignoring inputs and focusing only on directs while assuming
product quality constraints. Since inputs and therefore the pool are assumed to send no flow in
this case, the optimal objective f ∗ and the dominant direct active set are found independently
of p. Finally, Sect. 3.3 integrates the Sects. 3.1–3.2 results, combining both inputs and directs
under assumed product quality constraints to reveal a sparse, piecewise-monotone structure
of the p-parametric optimal objective f ∗(p).

Sections 3.1–3.3 analytically and parametrically identify all (dominance) breakpoints,
sparse dominant active sets and associated p-parametric solutions for Problem P–3.4. This
analysis leads to a strongly-polynomial algorithm in Sect. 3.3 for solving the I+H−1−1
subclass formalized in Problem P–3.4. Furthermore the full structure of the p-parametric
optimal objective function f ∗(p) developed in Sect. 3.3 is vital for Sects. 4–5.

Remark 3.5 For any i, j ∈ TX ∪ TZ with i 
= j, Ci = C j , if γi ≤ γ j precedence is given to
the node i with cheaper flow, or at cost equality a random choice is made. After pre-filtering
all feeds of equal concentrations on cost criteria, we are assured ∀i, j ∈ TX ∪ TZ , i 
= j that
Ci 
= C j . For any i, j ∈ TX ∪ TZ with i 
= j, Ci < C j if γi = γ j precedence is given to
i if Ci ∈ [PL , PU ], C j /∈ [PL , PU ] and vice versa. We apply the enumerated precedence
rules throughout Sect. 3. This pre-filtering avoids undefined expressions, e.g. denominators
with value zero in the subsequent sections.

3.1 Inputs-only analysis (I−1−1 sub-case)

This subsection considers the Problem P–3.4 restriction with no direct flows to the output
(zi = 0,∀i ∈ TZ ) and no product quality constraints on the pool concentration p. The result-
ing Problem P–3.1.5 is p-parametric, and thus we seek to find both the optimal solution and
the full p-parametric structure. While Remark 3.1.1 observes the cardinality of the dominant
input active set at any p, Proposition 3.1.5 explicitly identifies AI (p). Theorem 3.1.6 then
finds all input dominance breakpoints BI , the optimal solution and more importantly, the
full piecewise-linear structure of the p-parametric optimal objective f ∗(p) motivated by
Lemma 3.1.2. The piecewise structure is expanded in Sect. 3.3 in the presence of directs and
product quality constraints, but remains fundamental to all analytical solutions found in the
paper, including Sects. 4–5.

max{xi }
f (p) = d · D −

∑

i∈TX
γi · xi

s.t.
∑

i∈TX
xi = D

p
∑

i∈TX
xi =

∑

i∈TX
Ci xi

0 ≤ xi , ∀ i ∈ TX

(P–3.1.5)
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Fig. 2 I-1-1 pooling network
with directs ignored (hashed) and
dominant pair of inputs (blue).
(Color figure online)
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Remark 3.1.1 (Dominant input active set at p of cardinality 2) For fixed p, Problem P–3.1.5
can be rewritten as a standard LP in the x variables with two active constraints at the optimal
basis, implying the dominant input active set has cardinality 2, i.e. |AI (p)| = 2 (Fig. 2).

Lemma 3.1.2 (Linear f (p) and flows for active input pair) For A = {i, j} and fixed p in
Problem P–3.1.5, fA(p) is linear with respect to p:

∂ f A
∂p

= −D(γi − γ j )

Ci − C j
, (6)

with flows xi = D(p − C j )

Ci − C j
, x j = D(p − Ci )

C j − Ci
. (7)

Proof The flows in Eq. (7) result from xi + x j = D, p = (Ci xi + C j x j )/(xi + x j ). Eq.
(6) follows by substituting Eq. (7) flows into f A(p) = dD − γi xi − γ j x j and differentiating
w.r.t. p. ��

Definition 3.1.3 Input active pair {i, j} can be viewed as one joint node denoted by i j =
{i, j} with the following flow to the pool and cost at pool concentration p, i.e.:

⎧
⎪⎨

⎪⎩

xi j (p) = xi + x j ,

γi j (p) = (γi xi + γ j x j
) /

(xi + x j ) = (γi (p − C j ) + γ j (Ci − p)
)/

(Ci − C j ),

p = (Ci xi + C j x j
) /

(xi + x j ),
(8)

where the second equality for γi j (p) follows from Eq. (7). Note that γi j (p) is a weighted
average of γi , γ j , uniquely determined at a fixed p, which in turn is a weighted average of
Ci ,C j .

Proposition 3.1.4 (Domination condition between active input pairs) If i, j, k, l ∈ TX , then
i j = {i, j} �p kl = {k, l} ⇔
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p

(
γi − γ j

Ci − C j

)
+
(

γ jCi − γiC j

Ci − C j

)
≤ p

(
γk − γl

Ck − Cl

)
+
(

γlCk − γkCl

Ck − Cl

)
(p-slope form) ⇔ (9a)

γi (p − C j ) + γ j (Ci − p)

Ci − C j
= γi j (p) ≤ γkl(p) = γk(p − Cl ) + γl (Ck − p)

Ck − Cl
(cost-based form).

(9b)

Proof W.l.o.g. Ci ≥ p ≥ C j and Ck ≥ p ≥ Cl . Eq. (2) implies i j �p kl ⇔ γi xi + γ j x j ≤
γk xk + γl xl . Eq. (9b) follows from Definition 3.1.3 after substituting Eq. (7) for flows in the
previous condition. Eq. (9a) follows from separating out the terms with factor/slope p in Eq.
(9b). ��
Proposition 3.1.5 (Dominant input active set at p) For fixed p, if an input active pair i j =
{i, j} dominates at p any alternative pair, i.e.:

i j = argmin
{k,l}⊆TX

γkl(p) = argmin
{k,l}⊆TX

γk(p − Cl) + γl(Ck − p)

Ck − Cl
, (10)

then AI (p) = i j for Problem P–3.1.5.

Proof Follows from Remark 3.1.1 coupled with Proposition 3.1.4. ��
Theorem 3.1.6 (Inputs-only optimal solution and input dominance breakpoints)

(i) Input dominance breakpoints can occur only at input concentrations Ci , i ∈ TX , hence,

f ∗ = max
i∈TX

f ∗(Ci ) = max
i∈TX

D(d − γi ),

which requires I (number of inputs) evaluations.
(ii) A full description of f ∗(p) can be obtained in strongly-polynomial time O(I 3), with the

set BI of input dominance breakpoints,

BI =
{
Ci

∣∣∣∣∣ i ∈ TX , γi < argmin
{k,l}⊆TX \{i}

γkl(Ci )

}
. (11a)

Between any two consecutive elements of BI , the dominant input active set remains
constant, i.e.

Ci ,C j ∈ BI , BI ∩ (Ci ,C j ) = ∅ ⇒ AI (p) = {i, j} ∀p ∈ [Ci ,C j ] (11b)

Proof (i) Since Proposition 3.1.5 implies |AI (p)| = 2, let two such dominant active input
pairs, {i, j} and {k, l}, and w.l.o.g. assume Ci < C j , Ck < Cl . Assume, to achieve a
contradiction, that an input dominance breakpoint occurs at b, where b ∈ (Ci ,C j ) ∩
(Ck,Cl). Consequently, again w.l.o.g. assume {k, l} �p {i, j} ∀p ∈ (b,Cl). As a result,
in the geometric construction of Fig. 3, i−l− j−k forms a quadrilateral with f ∗(b) at
the intersection of its diagonals. Notice, ∀p ∈ (Ci ,Cl), the f ∗{i,l}(p) values obtained
on the side i − l (dashed green) are higher than the optimal objective values obtained
by going through the breakpoint b (lines in bold blue), contradiction. Therefore no
input dominance breakpoint can occur at a pool concentration b /∈ {Ci | i ∈ TX }. Since
Lemma 3.1.2 implies f ∗(p) is linear between any two input dominance breakpoints
when an input pair is active, the assertion made follows.

(ii) To fully describe f ∗(p), if Ci for fixed i ∈ TX is an input dominance breakpoint, then,
according to Eq. (10), node i must strictly dominate at Ci any input pair not containing
it. Eq. (11b) follows via the definitions of BI ,AI . ��
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p

f∗(p)

i

j
l

k

Ci CjClCk b

Fig. 3 i − j and l − k lines represent f ∗(p) between individual node concentrations for pairs {i, j} and
{l, k}, respectively—b is the breakpoint concentration between the two node pairs. The bold blue lines show
the optimal objective if b is a dominance breakpoint, and the green dashed line shows the optimal objective
otherwise. (Color figure online)
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Fig. 4 Optimal objective function f ∗(p) versus pool concentration p for a one pool, one output network with
five inputs (parametrized with concentrations/costs). The objective is a piecewise-linear function of the pool
concentration

Remark 3.1.7 If product quality constraints are re-added to Problem P–3.1.5, then Theo-
rem 3.1.6 still applies, with valid input dominance breakpoints (BI ∩(PL , PU ))∪{PL , PU }.

We conclude the I−1−1 sub-case analysiswith a numerical example showcasing the impli-
cations of Theorem 3.1.6. For the Fig. 4 example with five inputs and no quality constraints,
the function f ∗(p) reveals breakpoints at concentrations C2, C3 and C4 in a piecewise-
linear structure, as expected via Lemma 3.1.2. Furthermore, each p-interval between two
breakpoints identifies the sparse dominant input active sets and their corresponding pair of
active flow variables. The coupling of sparsity with piecewise-linear structure matches the
Beale et al. [9] intuition. These special structures provide motivation to further explore p-
parametric optimal objective structure on progressively more general problem subclasses in
the remaining sections.
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Fig. 5 H−1−1 pooling network with inputs ignored (hashed) and the dominant pair/single direct active set
(filled green, Theorem 3.2.7). (Color figure online)

3.2 Directs-only analysis (H−1−1 sub-case)

This subsection restricts ProblemP–3.4 to disallowflows from the input nodes to the pool node
(xi = 0,∀i ∈ TX ). The resulting Problem P–3.2.6, which is complementary to Sect. 3.1, also
incorporates the product quality constraints. Optimal solutions implying direct-only flows are
not parametric on p, since the problem is independent of pool concentration. This subsection
therefore seeks the unique, dominant direct active set and its solution. Lemmas 3.2.2–3.2.3
give feasibility results.Given an active direct pair, Proposition 3.2.4 introduces the output con-
centration obtained at the optimumofProblemP–3.2.6. This enables an ordering amongdirect
active pairs via Corollary 3.2.6 that together with the cardinality observation in Remark 3.2.1
leads to identifying the optimal solution and the dominant direct active set in Theorem 3.2.7.
The scope of this subsection goes beyond identifying the LP solution of Problem P–3.2.6 as
the results developed herein are central to the more involved analysis in Sect. 3.3.

max{zi }
f = d · D −

∑

i∈TZ
γi · zi

s.t.
∑

i∈TZ
zi = D

PL ≤

∑
i∈TZ

Ci zi

∑
i∈TZ

zi
≤ PU

0 ≤ zi , ∀ i ∈ TZ

(P–3.2.6)

Remark 3.2.1 (Dominant direct active set of maximum cardinality 2) Problem P–3.2.6 can
be rewritten as a standard LP in the z variables with at most two active constraints at the
optimal basis, implying the dominant direct active set has at most cardinality 2, i.e. |AD| ≤ 2
(Fig. 5).

Lemma 3.2.2 (Simple feasibility conditions)

(i) A feasible direct active set (solution) exists⇔ ∃i ∈ TZ s.t. PL ≤ Ci ≤ PU or ∃i, j ∈ TZ
s.t. Ci < PL ,C j > PU .

(i) A direct active pair {i, j} is feasible ⇔ i and j are feasible or (PU −Ci )(PU −C j ) < 0
or (PL − Ci )(PL − C j ) < 0.
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Proof (i) If ∃i ∈ TZ s.t. PL ≤ Ci ≤ PU then Problem P–3.2.6 is obviously feasible.
Alternatively, w.l.o.g., if Ci < PL , there must ∃ j ∈ TZ with C j > PL so an output
concentration within [PL , PU ] can be obtained. However, this case implicitly assumed �i ∈
TZ s.t. PL ≤ Ci ≤ PU , and consequently C j > PU , concluding the proof.
(ii) Both (PU − Ci )(PU − C j ) < 0 or (PL − Ci )(PL − C j ) < 0 imply Ci and C j

are on opposite sides of a product quality bound and thus the linear combination of their
concentrations implied by active {i, j} can be within [PL , PU ], making {i, j} feasible. ��
Lemma 3.2.3 (Pair dominating both its individual nodes and feasibility) If {i, j} is a feasible
direct active pair, then:

{i, j} � i, j ⇔ α = argmin
i, j

(γi , γ j ) is infeasible, i.e. Cα /∈ [PL , PU ].

Proof ’⇒’: If bothCi ,C j ∈ [PL , PU ], then argmini, j (γi , γ j ) � {i, j}, contradiction, sowe
can assume w.l.o.g.Ci /∈ [PL , PU ]. If alsoC j /∈ [PL , PU ] both i and j are infeasible alone,
but {i, j} can be feasible if the second condition in Lemma 3.2.2.i is met. In the previous
case, one of the nodes i, j has the properties needed. Else if C j ∈ [PL , PU ] and γi > γ j ,
then j � {i, j} - therefore γi < γ j . The reverse proof ’⇐’ is trivial. ��
Proposition 3.2.4 (Optimal output concentration for feasible direct pairs) Given feasible
direct active pair {i, j} with {i, j} � i, j , define P(i, j), based on properties of i, j , as

P(i, j) =
(
PU + PL

2

)
−
(
PU − PL

2

)
· sgn

(
(Ci − C j )(γi − γ j )

)

=
{
PL , if (Ci − C j )(γi − γ j ) > 0

PU , if (Ci − C j )(γi − γ j ) < 0.

(12)

Then, P(i, j) represents the output concentration at optimality, reducing Problem P–3.2.6
to

max
zi ,z j

f = d · D − γi · zi − γ j · z j
s.t. zi + z j = D

P(i, j) = (Ci zi + C j z j )
/
(zi + z j )

0 < zi , z j .

(P–3.2.7)

Proof Proof in “Appendix A”. Note that due to Remark 3.5 and Lemmas 3.2.2–3.2.3 we have
(Ci − C j )(γi − γ j ) 
= 0. ��

The result implies that for a feasible direct active pair {i, j} with {i, j} � i, j , Prob-
lem P–3.2.7 is analogous to the input-only Problem P–3.1.5, with input flows xi replaced
by direct flows zi and fixed pool concentration p replaced by a product quality limit P(i, j)
(either lower or upper). Thus, the flow and dominance results for pairs in Sect. 3.1 are mir-
rored via Corollaries 3.2.5–3.2.6. Moreover, any pair viable as the dominant direct active set
needs to first dominate both its individual nodes, so only such pairs and their solutions are
of interest.

Corollary 3.2.5 The flows of a feasible direct active pair {i, j} in Problem P–3.2.7 are:

zi = D(P(i, j) − C j )

Ci − C j
, z j = D(P(i, j) − Ci )

C j − Ci
. (13)
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Proof Analogous to Lemma 3.1.2, but for Problem P–3.2.7 rather than Problem P–3.1.5. ��
Corollary 3.2.6 (Domination condition between active direct pairs)
For i, j, k, l ∈ TZ with {i, j}, {k, l} feasible, i j = {i, j} � kl = {k, l} ⇔

P(i, j)

(
γi − γ j

Ci − C j

)
+γ jCi − γiC j

Ci − C j
< P(k, l)

(
γk − γl

Ck − Cl

)
+γlCk − γkCl

Ck − Cl
⇔ (14a)

γi (P(i, j) − C j ) + γ j (Ci − P(i, j))

Ci − C j
= γi j < γkl = γk(P(k, l) − Cl ) + γl (Ck − P(k, l))

Ck − Cl
.

(14b)

Proof Analogous to Proposition 3.1.4, but for Problem P–3.2.7 rather than Problem P–3.1.5.
��

Theorem 3.2.7 (Directs-only optimal solution and dominant direct active set)
Given {i, j} a feasible direct active pair that dominates any such alternative pairs, i.e.:

{i, j} = argmin
feasible {k,l}⊆TZ ,

{k,l}�k,l

γkl = argmin
feasible {k,l}⊆TZ ,

{k,l}�k,l

γk(P(k, l) − Cl) + γl(Ck − P(k, l))

Ck − Cl
, (15)

which can be found in strongly-polynomial time O(H2), then either:

(a) If {i, j} � i, j then AD = {i, j} with the flows in Eq. (13) and f ∗ = D · (d − γi j ).
(b) Else, AD = α = argminα∈{i, j} γα with zα = D and f ∗ = D · (d − γα).

Proof Eq. (15) follows directly from Corollary 3.2.6.

(a) If {i, j} � i, j , Lemma 3.2.3 implies one of the nodes, w.l.o.g j , is infeasible, so w.l.o.g
C j > PU ,Ci < PU and γ j < γi . If ∃k ∈ TZ \ {i} s.t. Ck < PU , γk < γi , then
{k, j} � {i, j}, contradiction. Therefore (feasible) i dominates any other alternative
feasible direct, and by transitivity, {i, j} � i � k ∀k ∈ TZ \ {i},Ck ∈ [PL , PU ] . The
latter and Remark 3.2.1 imply that AD = {i, j}.

(b) Assume i � {i, j}, so i is feasible with PL ≤ Ci ≤ PU . If γ j < γi then {i, j} as a pair
with a linearly weighted cost would dominate i , contradiction, and therefore γ j > γi .
If more restrictively, PL < Ci < PU , since by transitivity i � {i, j} � {i, k} ∀k ∈
TZ \ {i, j} ({i, k} feasible due to PL < Ci < PU ), therefore γk > γi ∀k ∈ TZ \ {i}
and AD = i . Now the complementary restriction of Ci = PU is assumed (Ci = PL is
analogous). If ∃k ∈ TZ \{ j}, Ck < PU , γk < γi then {i, k} � i � {i, j}, contradiction,
therefore ∀k ∈ TZ \ { j}, Ck < PU we have γk > γi . Additionally, since {i, j} feasible
implies C j < PU , if ∃k ∈ TZ s.t. Ck > PU , γk < γi then {k, j} � {i, j}, contradiction,
thus ∀k ∈ TZ , Ck > PU , γk > γi . Therefore, all sub-cases after assuming i � {i, j}
result in AD = i . ��

3.3 Inputs and directs analysis (I+H−1−1 subclass)

This subsection considers the original p-parametric Problem P–3.4, allowing mixed active
sets of both input and direct nodes. Theorem 3.3.1 uses the interplay of earlier results for
both input (Sect. 3.1) and direct (Sect. 3.2) active sets to pinpoint mixed active sets that
can be dominant (overall) active sets as triples of two inputs and one direct. This section
focuses on mixed triples not dominated by the dominant input active setAI . Definition 3.3.2
first extends the feasibility conditions from Sect. 3.2 for mixed triples viewed as direct pairs
to p-intervals by partitioning any p-interval Φ around {PL , PU } if necessary and building
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Q(Φ), the set of directs making the mixed active set feasible. Definition 3.3.2e also extends
the directs domination result in Lemma 3.2.3 to p-intervals. Lastly, Definition 3.3.2f splits
p-intervals Φ into sub-intervals ΦI and ΦM based on whether the dominant mixed active
triple is dominated or not by AI over the sub-intervals, respectively. Using the breakpoints
betweenmixed and input active sets identified in Lemma3.3.3, Lemma3.3.4 then implements
the ΦI /ΦM split of any interval Φ.

Based on the latter results, Proposition 3.3.5 finds the dominant mixed active set for
fixed p and all mixed dominance breakpoints, while Proposition 3.3.6 finds all dominance
breakpoints. Moreover, Proposition 3.3.7 finds the p-parametric optimal objective function
to be monotone convex/concave for mixed active sets. Consequently, Theorem 3.3.8 summa-
rizes all cases of optimal objective monotonicity. Finally, Theorem 3.3.9 uses all objective
monotonicity results to find the optimal solution at a breakpoint dominance point in strongly-
polynomial time.

Theorem 3.3.1 (Dominant mixed active set that can dominate overall at fixed p and its
flows) For fixed p and i, j ∈ TX , AI (p) = {i, j} = i j (as in Sect. 3.1, with no product
quality constraints) ⇒ AM (p) = {i, j, q}, q ∈ TZ , with flow solutions,

xi = D(p − C j )(P(i j, q) − Cq)

(Ci − C j )(p − Cq)
, x j = D(p − Ci )(P(i j, q) − Cq)

(C j − Ci )(p − Cq)
,

zq = D(p − P(i j, q))

(p − Cq)
,

(16)

or else AM (p) �p AI (p).

Proof Fixing p, the concentration the active input set delivers via the pool towards the
output concentration, implies product quality constraints on output concentration become
irrelevant when considering only the active inputs part of a mixed active set. This observation
allows to first pre-solve the inputs-only sub-Problem P–3.3.8, where the objective function
f A(p, xA(p)) is now also parametric on variable total input flow xA(p) for an active input
set A. According to Proposition 3.1.5, A = i j = {i, j} at optimality for Problem P–3.3.8,
with the solution in Eq. (18).

max{xi |i∈A} f A(p, xA(p)) = d·xA(p)−
∑

i∈A

γi ·xi
s.t.
∑

i∈A

xi = xA(p)

p =
∑

i∈A

Ci xi

/∑

i∈A

xi

0 ≤ xi , ∀ i ∈ A ⊆ TX
(P–3.3.8)

�⇒
Sect. 3.1

AI (p) = {i, j} = i j

f ∗
A(p, xA(p)) = fi j (p, xi j (p))

= d · xi j (p) − γi j (p) · xi j (p)
xi = xi j (p)(p − C j )

Ci − C j

x j = xi j (p)(p − Ci )

C j − Ci

(18)

Now the optimal input-only parametric solution in Eq. (18) can be incorporated into the
full Problem P–3.4. This results in a direct-only Problem P–3.3.9 that is augmented by
the active joint input node i j acting via the pool as an active (additional) direct node with
fixed concentration p and variable flow xi j (p). Denote the dominant direct active set for the
augmented Problem P–3.3.9 at fixed p with Ap

D and note that Problem P–3.3.9 accounts for
any possible dominant mixed active setAM (p). Applying Theorem 3.2.7 to Problem P–3.3.9
and taking into account i j must be active implies that, given {i j, q} �p {i j, l} ∀l ∈ TZ , {i j, l}
feasible and p fixed, if {i j, q} �p i j then Ap

D = {i j, q} = AM (p) or else Ap
D = i j =

123



J Glob Optim (2018) 71:655–690 671

AI (p) �p AM (p). Therefore, a mixed active set can be the overall dominant active set if
Ap

D = {i j, q} = AM (p) and Eq. (20a) is the solution to Problem P–3.3.9.

max{zk }, xi j (p)
f (p) = d·D−γi j (p)·xi j (p)−

∑

i∈TZ
γk ·zk

s.t.
∑

k∈TZ
zk + xi j (p) = D

PL · D ≤
∑

k∈TZ
Ck zk + p · xi j (p) ≤ PU · D

0 ≤ zk ∀k ∈ TZ , 0 < xi j (p) for i, j ∈ TX ,

(P–3.3.9)

�⇒
Sect. 3.2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ap
D = {i j, q} = AM (p)

f ∗(p) = f{i j,q}(p)

xi j (p) = D(P(i j, q) − Cq )

p − Cq

zq = D(p − P(i j, q))

p − Cq

(20a)

or

Ap
D = AI (p) = i j �p AM (p) (20b)

Finally, the flow solutions in Eq. (16) are found by combining Eq. (18) with Eq. (20a). ��

Definition 3.3.2 (Feasibility/domination extensions to p-intervals around quality bounds)

(a) Let sub-intervals of the partition {PL , PU } of inputs/directs concentrations be denoted
by:

I XL = [min
i∈TX

Ci , P
L),

I ZL = [min
i∈TZ

Ci , P
L),

ILU = [PL , PU ],
I XU = (PU ,max

i∈TX
Ci
]
,

I ZU = (PU ,max
i∈TZ

Ci
]
.

(b) Let Φ ⊆ [Ci ,C j ] denote a closed p-interval between two consecutive input dominance
breakpoints, i.e. Ci ,C j ∈ BI , BI ∩ (Ci ,C j ) = ∅, with (∀p ∈ Φ) AI (p) = i j . Let
Φ ∈ {[Ci ,C j ] ∩ I XL , [Ci ,C j ] ∩ ILU , [Ci ,C j ] ∩ I XU } such that:

1Φ⊆I XL
+ 1Φ⊆I XLU

+ 1Φ⊆I XU
= 1.

(c) Let Q(Φ) be the set of directs with concentration outsideΦ’s partition around {PL , PU },
i.e.:

Q(Φ) = {q∈TZ
∣∣ Cq ∈[min

i∈TZ
Ci ,max

i∈TZ
Ci ] \ I Zβ , where Φ ⊆ I Xβ , β ∈ {L , LU,U }}

= {q ∈ TZ
∣∣ mixed active set {i j, q} is feasible, where (∀p ∈ Φ) AI (p) = i j

}
.

(d) Let R(Φ) ⊆ Q(Φ) denote a subset s.t. (∀q ∈ R(Φ))(∀p ∈ Φ) γq < γi j (p). Since
γi j (p), as defined in Eq. (8), is a linear function of p with extremes at Φ endpoints,

R(Φ) = {q ∈ Q(Φ)
∣∣ γq < max{γi j (bl), γi j (bu)}, where Φ = [bl , bu]

}
.

(e) Let Θ(Φ) =
{
R(Φ) if R(Φ) 
= ∅ or Φ ⊆ ILU ,

Q(Φ) if R(Φ) = ∅ and Φ � ILU .

(f) Let ΦI , ΦM be partition sub-intervals of Φ, where AI ,AM dominate, respectively.
Assuming (∀p ∈ Φ) AI (p) = i j ,

ΦI = {p∈Φ| (∀q∈Θ(Φ)) γi j (p)≤γq ⇒ if Φ ⊆ ILU then (∀q) i j �p {i j, q},AI (p) �p AM (p)
}
,

ΦM = {p ∈ Φ| (∃q ∈ Θ(Φ)) γi j (p) ≥ γq ⇔ (∃q ∈ Θ(Φ)) i j �p {i j, q} ⇔ AI (p) �p AM (p)}.
(21)

Thus, Θ(Φ) extends Lemmas 3.2.2 and 3.2.3 from fixed p to interval Φ (see proof of
Lemma 3.3.4.i).
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Lemma 3.3.3 (Domination/breakpoints between dominant input and mixed active sets)
If i, j ∈ TX , q ∈ TZ , then i j = {i, j} �p {i j, q} = {i, j, q} ⇔

γi j (p) ≥ γq ⇔ γi j (p) ≥ γ{i j,q}(p) := γq(P(i j, q) − p) + γi j (p)(Cq − P(i j, q))

Cq − p
,

(22)
with {i, j} �p {i, j, q} at breakpoint pool concentration p = Ci (γq−γ j )−C j (γq−γi )

γi−γ j
.

Proof Proof in “Appendix A”. ��
Lemma 3.3.4 For a given p-interval Φ = [bl , bu], where bl , bu ∈ BI ∪ {Ci ,C j }, (∀p ∈
Φ) AI (p) = i j , we have:

(i) (∀p ∈ Φ) (AM (p) = {i j, q} ⇒ q ∈ Θ(Φ)).
(ii) (∀Φ) Sub-intervals ΦI , ΦM can be found explicitly as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) ΦI = Φ, ΦM = ∅, if Θ(Φ) = ∅,

(b) ΦI = {p ∈ Φ| bl ≤ p ≤ min(S)}, ΦM = {p ∈ Φ| min(S) ≤ p ≤ bu}, else if
γi − γ j

Ci − C j
> 0,

(c) ΦI = {p ∈ Φ|max(S) ≤ p ≤ bu}, ΦM = {p ∈ Φ| bl ≤ p ≤ max(S)}, else if
γi − γ j

Ci − C j
< 0,

(23)
where:

S = {p| {i, j} �p {i, j, q}, ∀q ∈ Θ(Φ)}
=
{
Ci (γq − γ j ) − C j (γq − γi )

γi − γ j

∣∣∣∣ ∀q ∈ Θ(Φ)

}
.

(24)

(iii) (∀q ∈ Θ(Φ))(∀p ∈ Φ̂ ∈ {ΦI , ΦM }) if AM (p) = {i j, q} then P(i j, q) reduces to:

P(i j, q) =
{
PL , if ((Cq < bu) ⊕ (Φ̂ = ΦM )) ∧ (PL − Cq)(PL − bu) < 0,

PU , if ((Cq > bu) ⊕ (Φ̂ = ΦM )) ∧ (PU − Cq)(PU − bu) < 0,
(25)

independent of specific p ∈ Φ̂.

Proof (i) The restriction Q(Φ) ∈ TZ , and its subset R(Φ) ∈ TZ , enforces Lemma 3.2.2
feasibility for {i j, q}, ∀p ∈ Φ viewed as a direct active set. Set Θ(Φ) also enforces the
Lemma 3.2.3 domination condition {i j, q} �p i j ⇔ ∀p ∈ Φ γq ≤ γi j (p) via Θ(Φ) =
R(Φ). When R(Φ) = ∅ and Φ ⊆ ILU then i j feasible and (∀q ∈ Q(Φ))(∀p ∈ Φ) γq ≥
γi j (p) ⇔ (∀p ∈ Φ) i j � AM (p), in which case Θ(Φ) = R(Φ) = ∅ since (∀p ∈
Φ) AM (p) 
= A∗(p). When R(Φ) = ∅ and Φ � ILU then i j infeasible, and since a direct
needs to be active for feasibility, in this case Θ(Φ) = Q(Φ) and (∀q ∈ Q(Φ))(∀p ∈
Φ) γq ≥ γi j (p) but {i j, q} �p i j, q . Therefore in this case, Θ(Φ) is extended from R(Φ)

to Q(Φ).
(ii) Case (a) results by construction of ΦI , ΦM ,Θ(Φ). For Case (b)-(c), S is built as

the set of all breakpoints from Lemma 3.3.3 where γi j (p) = γq ,∀p ∈ S, q ∈ Θ(Φ).
From Eq. (8), ∂γi j (p)/∂p = (γi − γ j )/(Ci − C j ), which implies if ∂γi j (p)/∂p > 0 then
γi j (p) is increasing with p. Therefore, given ∀b ∈ S, γi j (b) = γq , if ∂γi j (p)/∂p > 0
then ∀p ≤ b γi j (p) ≤ γq and vice-versa. Consequently, if ∂γi j (p)/∂p > 0 then ΦI is the
restriction of Φ up till min(S), and otherwise ΦI is the restriction of Φ from max(S).

Consequently, ∀p ∈ ΦI , if i j is feasible (Φ ⊆ ILU ) then i j dominates any mixed active
set {i j, q} and Theorem 3.3.1 then implies (∀p ∈ ΦI ) AI (p) �p AM (p). Complementary,

123



J Glob Optim (2018) 71:655–690 673

{i j, q} is feasible by construction (q ∈ Θ(Φ)), and therefore ∀p ∈ ΦM ∃q ∈ Θ(Φ) γi j (p) ≥
γq ⇔ ∃q ∈ Θ(Φ) i j �p {i j, q} ⇔ AI (p) �p AM (p).

(iii) Assume first Φ̂ = ΦI 
= ΦM . Then, Eq. (21) implies (∀q ∈ Θ(Φ))(∀p ∈
Φ̂) γi j (p) ≤ γq . Consequently, the expression for P(i j, q) according to Eq. (12) reduces
to Eq. (25). Now assume Φ̂ = ΦM 
= ΦI . Then, Eq. (21) implies (∀p ∈ Φ̂) AM (p) =
{i j, q} �p AI (p) and hence (∀p ∈ Φ̂) γi j (p) ≥ γq . Thus, again, the expression for P(i j, q)

reduces to Eq. (25). For both possible Φ̂ ∈ {ΦI , ΦM }, due to the construction ofΦ andΘ(Φ)

with q ∈ Θ(Φ), (∀p ∈ Φ̂) (Cq < p) = (Cq < bu), and thus the comparison becomes
independent of a specific p ∈ Φ̂. Furthermore, to ensure feasibility of {i j, q} according to
Lemma 3.2.2.ii, (P(i j, q) − Cq)(P(i j, q) − bu) < 0 is enforced explicitly in Eq. (25). ��

Proposition 3.3.5 For Φ̂ = [bl , bu] ∈ {ΦM ; ΦI � ILU } ⊆ Φ, (∀p ∈ Φ) AI (p) = i j ,
Q(Φ) 
= ∅:
(i) (The dominant mixed active set at p) For fixed p ∈ Φ̂, AM (p) = {i j, q} �p AI (p)

with

q = argmin
r∈Θ(Φ)

(
γ{i j,r}(p) := γr (P(i j, r) − p) + γi j (p)(Cr − P(i j, r))

Cr − p

)
. (26)

(ii) (The set of mixed dominance breakpoints over Φ̂)

BM ⊇
{
p ∈ int Φ̂| {i j, q} �p {i j, r} ∧ q, r ∈ AM (p), ∀q, r ∈ Θ(Φ)

}

=
{
p ∈ int Φ̂| p ∈ SqrRoots

(
Γ
(
p, P(i j, q), P(i j, r)

)) ∧ q, r ∈ AM (p), ∀q, r ∈ Θ(Φ)
}

,

(27)
with (∀q ∈ Θ(Φ)) P(i j, q) as in Eq. (25) and independent of p; bl , bu ∈ BM as well.

Proof (i) If Φ̂ � ILU , then AI (p) = i j is infeasible and by default AM (p) �p AI (p).
If Φ̂ = ΦM , then, from the construction of ΦM in Eq. (21), AM (p) �p AI (p). Thus
Theorem 3.3.1 asserts via Eq. (20a) that Ap

D = {i j, q} = AM (p) for a q ∈ Θ(Φ), as
required by Lemma 3.3.4.i. By viewing {i j, q} as a dominant direct pair with i j active in
order to findAp

D , the condition Eq. (15) in Theorem 3.2.7 becomes Eq. (26). Since p is fixed,
Eq. (26) can be solved using the original Eq. (12) for P(i j, q) ∀q ∈ Θ(Φ).

(ii) “Appendix A” proves Eq. (27) and introduces function Γ
(
p, P(i j, q), P(i j, r))which

is quadratic in p and linear in P(i j, q), P(i j, r). To solve the function Γ
(
p, P(i j, q), P(i j,

r)
)
as a quadratic of p, (∀q ∈ Θ(Φ)) P(i j, q) has to be independent of p via the form in

Eq. (25). First, Lemma 3.3.4.iii implies ∀p ∈ Φ̂ that if {i j, q} = AM (p) then P(i j, q) in
Eq. (25) is correct; therefore any dominant breakpoint within Φ between {i j, q} and another
dominant mixed set is captured in BM . Second, Lemma 3.3.4.iii implies if Eq. (25)�Eq.
(12) for P(i j, q), q ∈ Θ(Φ), then feasible {i j, q} 
= AM (p). Consequently, the conjunctive
condition q, r ∈ AM (p) eliminates not only those mixed breakpoints that are not dominant,
but also those calculated on potentially incorrect P(i j, q) from Eq. (25). Note that, unlike
the inputs-only case of Sect. 3.1, two breakpoints between any {i j, q} and {i j, r} can occur,
because f{i j,q}(p) and f{i j,r}(p) are convex or concave functions (see Proposition 3.3.7)
which can intersect at two points. The endpoints of Φ̂ also represent mixed dominance
breakpoints, since for p ∈ {bl , bu}, given AM (p) = {i j, q}, either i j , q or P(i j, q) change
at p, creating a breakpoint. ��
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Proposition 3.3.6 For a p-interval Φ = [bl , bu], (∀p ∈ Φ) AI (p) = i j :

(a) (∀p ∈ ΦI ⊆ ILU ), i j feasible and A∗(p) ∈ {AI (p),AD} with dominance breakpoint
{
p ∈ ΦI

∣∣∣∣ i j �p AD := α ⇔ γi j (p) = γα ⇔ p = Ci (γq − γ j ) − C j (γq − γi )

γi − γ j

}
⊆ B. (28)

(b) (∀p ∈ Φ̂), for Φ̂ ∈ {ΦM ; ΦI � ILU } ⊆ Φ, A∗(p) ∈ {AD,AM (p)} with dominance
breakpoints
{
p ∈ Φ̂

∣∣∣∣
({i j, q} �p AD := α ⇔ p = b{i j,q},α

) ∧ q ∈ AM (p), ∀q ∈ Θ(Φ)

}
⊆ B

where b{i j,q},α = (Ci − C j )(γαCq − P(i j, q)γq) + (Cq − P(i j, q))(γ jCi − γiC j)

(Ci − C j )(γα − γq) + (Cq − P(i j, q))(γi − γ j )
,

P(i j, q) as in Eq. (25).
(29)

Proof (a) By construction, (∀p ∈ ΦI ⊆ ILU ) AI (p) �p AM (p) and thus A∗(p) ∈
{i j,AD}. The breakpoint in Eq. (28) follows directly from Lemma 3.3.3.

(b) The breakpoint condition in Eq. (29) is similar to the one of Lemma 3.3.3, but with
the input active set replaced by AD = α. The associated dominance breakpoint b{i j,q},α
is also found analogously as in Lemma 3.3.3 (details omitted for brevity). The use of the
p-independent expression for P(i j, q) in Eq. (25) for every q ∈ Θ(Φ) is justified by the
same arguments as in the proof for Proposition 3.3.5.ii (mixed set only on one side of any
potential breakpoint). ��
Proposition 3.3.7 (Derivatives of objective function w.r.t. p and convex/monotone proper-
ties) For fixed p and mixed active triple A = {i, j, q} = {i j, q}, i, j ∈ TX , q ∈ TZ in
Problem P–3.4,

∂n fA
∂pn

= (−1)nn! D
(
P(i j, q) − Cq

)

(Ci − C j )(p − Cq)n+1 ·
(
Cq(γ j − γi ) +C j (γi − γq) +Ci (γq − γ j )

)
,

(30)
which implies fA(p) is monotone convex/concave:

• If p > Cq then sgn( ∂ f A
∂p ) 
= sgn( ∂2 f A

∂p2
) and fA(p) is concave increasing or convex

decreasing.

• If p < Cq then sgn( ∂ f A
∂p ) = sgn( ∂2 f A

∂p2
) and fA(p) is concave decreasing or convex

increasing.

Proof Proof in “Appendix A”. ��
Theorem 3.3.8 (p-Parametric structure of the optimal objective function f ∗(p))
Consider a given p-interval Φ between two consecutive dominance breakpoints for Prob-
lem P–3.4. Functions f ∗, A∗, AI , AM are p-parametric with the following cases,

(a) (direct) (∀p ∈ Φ) A∗(p) = AD = {l, r} or r ⇒ f ∗|Φ(p) is constant,
(b) (input) (∀p ∈ Φ) A∗(p) = AI (p) = i j ⇒ f ∗|Φ(p) is linear,
(c) (mixed) (∀p ∈ Φ)A∗(p) = AM (p) = {i j, q} ⇒ f ∗|Φ(p) ismonotone convex/concave,

where (∀p ∈ Φ) i, j ∈ TX , l, r, q ∈ TZ are fixed.
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Proof Case (a) follows from Theorem 3.2.7 and the independence of the results therein
w.r.t. p; Case (b) from Lemma 3.1.2 and Proposition 3.1.5; Case 3 from Theorem 3.3.1 and
Proposition 3.3.7. ��
Theorem 3.3.9 (Optimal solution and dominance breakpoints for I+H−1−1 subclass)
For Problem P–3.4, let BI M ∈ BI ∪ BM and exclude from BI M any redundant breakpoints
with the same active sets on both sides. Then

f ∗ = max

(
max
p∈BI M

f ∗(p), f ∗
AD

)
, (31)

with the optimal objective value f ∗
AD

for the dominant direct active set acting as a threshold.
Both f ∗ and a full description of f ∗(p) via all dominance breakpoints B (BI M plus all
dominance breakpoints withAD) can be obtained in strongly-polynomial time O(I 3 + H3).

Proof Denoting by T (·) the time-complexity of calculating result (·),
T ( f ∗) = T (BI ) + T (BM ) + T (AD) = T (Eq. (11a)) + T (Eq. (27)) + T (Eq. (15))

= O(I 3) + O(H3) + O(H2) = O(I 3 + H3).
(32)

Eq. (27) can be solved in O(H3) because all mixed dominance breakpoints for all p-intervals
Φ can be found in one pass of complexity O(H3) and then assigned to each p-interval. Since
T (Eq. (29)) + T (Eq. (28)) = O(H2), T (B) = T ( f ∗). ��

Figure 6 illustrates the I+H−1−1 subclass with a numerical example showcasing the
implications of Theorem 3.3.8. For a chosen parametrization of five inputs (same inputs as

1 1.5
p

2 2.5 3 3.5 4 4.5 5

f* (p
)

0

1000

2000

3000

4000

5000

6000

7000

breakpoint

breakpoint

breakpoint

breakpoint

Active
{di

1
, di

3
}

Active
{in

2
, in

3
}

breakpoint

Active
{in

1
, in

2
,

di
3
}

Active
{in

1
, in

2
}Active

{in
1
, in

2
,

di
2
}

breakpoint Active
{in

3
, in

4
, di

1
}

Active
{in

4
, in

5
, di

1
}

Pool Output
Cin1 = 1, γin1 = 135

Cin2 = 2, γin2 = 105

Cin3 = 3, γin3 = 90

Cin4 = 4, γin4 = 111

Cin5 = 5, γin5 = 140

Cdi1 = 1.5, γdi1 = 150

Cdi2 = 8, γdi2 = 115

Cdi3 = 4.5, γdi3 = 120

p o

D = 100, d = 150

PL = 1, PU = 3

Fig. 6 Optimal objective function f ∗(p) versus pool concentration p for a one pool, one output network with
five inputs and three directs (parametrized with concentrations/costs). The objective is a piecewise-monotone
convex/concave/linear function of the pool concentration
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in Fig. 4) and three directs with quality constraints, the p-parametric function f ∗(p) reveals
additional breakpoints compared to Fig. 4 between mixed and input active sets and between
mixed and direct active sets. The structure is still piecewise-monotone, but is extended to
piecewise p-intervals exhibiting convexity or concavity, e.g. when 3 ≤ p ≤ 4 where mixed
active set {in3, in4, di1} is dominant.

Similar to the results in Sect. 3.1, the coupling between the piecewise structure and sparse
active sets (up to a mixed node triple) is still present, allowing a full description of the
p-parametric optimal solution space. Section 4 explicitly uses this full description to find
optimal solutions in strongly-polynomial time for a multiple outputs instance.

Remark 3.3.10 (From analytical solutions/sparsity/piecewise structure to non-sparse LP)
Section 3 finds analytically the optimal solution for a I+H-1-1 pooling topologywithAssump-
tion 2.2. Beyond the knowledge of sparsity in the Problem P–3.4 LP, this section identifies
the active feeds in the p-parametric optimal objective f ∗(p), and as a result the piecewise-
monotone f ∗(p) structure. In fact, these results are tightly conditioned by Assumption 2.2,
as follows:

• Reinstating constraints on feed availability (or analogously pool capacity) will erode
solution sparsity proportionately to tightness of the flow bounds on dominant feeds. For
fixed p, if the dominant active set reaches its upper flowbounds, the next-in-line dominant
active set would send flow and so on, recursively. If the bounds on cheaper feeds are very
tight, this effect would create a hierarchy of dominant active sets participating in the
solution. Therefore, the tighter the flow bounds, the more active feeds, and the less
sparsity. The piecewise function f ∗(p) would hence have more breakpoints accounting
for dominance relations and optimal balancing between all active sets in the dominance
hierarchy, not just the top active set.Moreover, because f ∗(p)would represent an addition
over a hierarchy of active sets, f ∗(p) can be piecewise non-monotone as in Sect. 4.
Equally importantly, balancing the flows among the hierarchy of dominant active sets
under flow constraints is an inherent LP, i.e. not solvable analytically.

• Introducing multiple qualities (K > 1) keeps the problem as an LP, but its polynomial
complexity increases in line with K as the dominant active set cardinality becomes K+1
(this extension is possible for one pool, one output topologies).

• Relaxing the fixed product demand assumption implies the same solution with product
demand reaching its upper limit if the problem is (assumed) feasible.

4 Subclass I+H−1−J: one pool, multiple outputs

This section extends the analysis in Sect. 3 with Assumption 2.2 to I+H feeds (I inputs, H
directs), one pool and multiple J outputs. Again, for simplicity of notation, single index l is
dropped via the notation transformations TX ← {i : (i, l) ∈ TX }, TY ← { j : (l, j) ∈ TY }.
This leads to Problem P–4.10, where for each output only connected to directs surplus
variables y j ∀ j ∈ 1, J \ TY are introduced and set to 0 as a surplus condition. Note that
eliminating p and y j ∀ j ∈ TY from Problem P–4.10 does not produce a linear program as
in Sect. 3, but instead a bilinear problem that can be non-convex.

To analyze Problem P–4.10, Theorem 4.1 first proves its equivalence to Problem P–4.11.
The result allows additively decomposing Problem P–4.11 over outputs into sub-problems
P–4.11- j , which are all p-parametric and equivalent to the subclass I+H-1-1 studied in Sect. 3.
Definition 4.2 then extends dominance breakpoints and dominant active sets for a multiple
outputs problem setting. Proposition 4.3 shows that the composed master Problem P–4.11
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can present p-parametric non-monotonicity or non-convexity on specific p-intervals. This
hurdle is cleared by Theorem 4.4, which finds in polynomial time all stationary points on
non-monotone breakpoint intervals by solving a univariate rational polynomial. Finally,
Corollary 4.5 offers a strongly-polynomial worst-case time complexity for solving Prob-
lem P–4.11 to optimality.

The section concludes by Remark 4.6, showing the I+H-1-J subclass lies on the P/NP
boundary due to the fact that any relaxation of the assumptions made leads to an NP-hard
problem.

max{xi },{y j },
{zi, j },p

f =
∑

j∈1,J
d j · y j +

∑

(i, j)∈TZ
d j · zi, j −

∑

i∈TX
γi · xi −

∑

(i, j)∈TZ
γi · zi, j

s.t. y j +
∑

i :(i, j)∈TZ
zi, j = Dj ∀ j ∈ 1, J

∑

i∈TX
xi −

∑

j∈1,J
y j = 0

PL
j ≤

(
p · y j +

∑

i :(i, j)∈TZ
Ci · zi, j

)/(
y j +

∑

i :(i, j)∈TZ
zi, j

)
≤ PU

j ∀ j ∈ 1, J

∑

i∈TX
Ci xi = p

∑

j∈1,J
y j

0 ≤ xi ∀ i ∈ TX
0 ≤y j ∀ j ∈ TY

0 =y j ∀ j ∈ 1, J \ TY
0 ≤ zi, j ∀ (i, j) ∈ TZ

(P–4.10)

Theorem 4.1 (p-Parametric additive decomposition over multiple outputs)
As visualized in Fig. 7, Problem P–4.10 can be reformulated as a Problem P–4.11 of maxi-
mizing the total sum of J p-parametric optimal objectives over p, each associated to a one
output sub-problem P–4.11- j (same type as Problem P–3.4).
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Fig. 7 p-Parametric additive decomposition of a multiple outputs problem into a sum of one output problems
based on which output feed flows arrive at
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max
p

f ∗(p) = max
p

( ∑

j∈1,J
f ∗
j (p)

)

with xi =
∑

j∈1,J
xi, j ∀i ∈ TX , y j =

∑

i∈TX
xi, j ∀ j ∈ 1, J , p =

∑

i∈TX
Ci xi

/ ∑

j∈1,J
y j

(P–4.11)

s.t. ∀ j ∈ 1, J

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ∗
j (p) = max{xi, j },{zi, j }

f j (p)

f j (p) = d j · Dj −
∑

i∈TX
γi · xi, j −

∑

i∈TZ
γi · zi, j

s.t.
∑

i∈TX
xi, j +

∑

i∈TZ
zi, j = Dj

PL
j ≤

⎛

⎝
∑

i∈TX
Ci xi, j +

∑

i∈TZ
Ci zi, j

⎞

⎠
/

Dj ≤ PU
j

p =
∑

i∈TX
Ci xi, j

/∑

i∈TX
xi, j

0 ≤xi, j ∀ i ∈ TX , j ∈ TY
0 =xi, j ∀ i ∈ TX , j /∈ TY

0 ≤ zi, j , ∀ (i, j) ∈ TZ

(P–4.11- j)

Proof Each xi ∀i ∈ TX can be split into a sum of flows xi, j ∀ j ∈ 1, J , with each xi, j
representing the flow output j gets via the pool from input i . This allows similar output-
based splits for the two constraints in Problem P–4.10 that apply jointly over all outputs, i.e.
flow and quality balance:

xi =
∑

j∈1,J
xi, j ∀i ∈ TX ⇒

∑

i∈TX
xi, j−y j = 0 ∀ j ∈ 1, J ,

∑

i∈TX
Ci xi, j = p·y j ∀ j ∈ 1, J .

Furthermore, the objective f as a function of p in Problem P–4.10 can be rewritten as,

f (p) =
∑

j∈1,J

(
d j · y j +

∑

i :(i, j)∈TZ
d j · zi, j −

∑

i∈TX
γi · xi, j −

∑

i :(i, j)∈TZ
γi · zi, j

)
:=
∑

j∈1,J
f j (p),

where each f j contains a different set of variables and parameters for a fixed j except for
common variable p which it is parametrized on. In the context of maximizing f (p), we have:

max{xi },{y j },{zi, j },p
f = max

p

(
max{xi },{y j },{zi, j }

f (p)

)
= max

p

(
max{xi, j },{y j },{zi, j }

f (p)

)

= max
p

(
max{xi, j },{y j },{zi, j }

∑

j∈1,J
f j (p)

)
= max

p

( ∑

j∈1,J
max{xi, j },{zi, j }

f j (p)

)

= max
p

( ∑

j∈1,J
f ∗
j (p)

)
.

Finally, separating out both the objective and constraints parts for all j ∈ 1, J from Prob-
lem P–4.10, we obtain a collection of J sub-problems P–4.11- j , all parametric on and
therefore linked via a common p but otherwise independent. However, as shown in Sect. 3.3,
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each p-parametric sub-problem P–4.11- j can be solved analytically using the piecewise
structure of f ∗

j (p), and each solution can be used directly towards solving the master Prob-

lem P–4.10 linking all J sub-problems. Note that, for each sub-problem P–4.11- j ∀ j ∈ 1, J ,
y j is eliminated as in Problem P–3.4, with the surplus condition enforced through the x
variables set to 0; when j /∈ TY , the sub-problem is thus a directs-only one. ��

Definition 4.2 (Dominance breakpoints and dominant active sets)

• Let BJ = ⋃ j∈1,J B j be the joint dominance breakpoint set for Problem P–4.11- j over
all J outputs/sub-problems, with B j the set of all dominance breakpoints for the j-th
sub-problem P–4.11- j , found as in Sect. 3.

• Let ΦJ denote any closed interval with two consecutive elements in BJ as endpoints.
• Let A∗

j (p) denote the dominant active set at p for the j-th sub-problem P–4.11- j , as
found in Theorem 3.3.8; by construction, A∗

j (p) remains constant over ΦJ s.t. ∀p ∈
ΦJ A∗

j (p) = A∗
j (ΦJ ).

Proposition 4.3 In Problem P–4.11, for ∀p ∈ ΦJ , f ∗(p) can be non-monotone or non-
convex.

Proof From Theorem 3.3.8, for a given ΦJ , (∀ j ∈ 1, J )(∀p ∈ ΦJ ) f ∗
j (p) can be either

constant, linear or monotone convex/concave depending on dominant active set A∗
j (ΦJ ).

Consider a two-output Problem P–4.11 with,

f ∗(p) = f ∗
1 (p) = f ∗

j1(p) + f ∗
j2(p),

and f ∗
j1
(p) concave increasing and f ∗

j2
(p) concave decreasing. Then

∃p1 ∈ int(ΦJ ) s.t.
∂ f ∗(p)

∂p
= ∂ f ∗

j1
(p)

∂p
+ ∂ f ∗

j2
(p)

∂p
= 0,

meaning f ∗(p) has a local maximum at p1 and is non-monotone. Now consider a four-output
ProblemP–4.11with f ∗(p) = f ∗

1 (p)+ f ∗
2 (p)with f ∗

2 (p) constructed analogously as f ∗
1 (p)

but having a local maximum at p2 ∈ ΦJ , p2 
= p1. In this case, f ∗(p) is multi-modal with
at least two local maxima and therefore non-convex. ��

Theorem 4.4 Assuming Problem P–4.11 has all parameters rational, given interval ΦJ ,
then finding f ∗|ΦJ = maxp∈ΦJ ( f

∗(p)) requires finding all stationary points of f ∗(p) over
ΦJ by solving a univariate rational polynomial of maximum degree 2 · |TY |, i.e.:

∂ f ∗(p)
∂p

=
( ∑

j∈TY ,
s.t.A∗

j={i,k,q}
i,k∈TX , (q, j)∈TZ

D j
(
Cq − P j (ik, q)

)

(Ci − Ck)(p − Cq )2
· (Cq (γk − γi ) + Ck(γi − γq ) + Ci (γq − γk)

))

+ C = 0,
(34)

where C is a constant and P j (·, ·) is defined as in Eq. (25) but for bounds PL
j , PU

j . The
polynomial in Eq. (34) can be solved in strongly-polynomial time with respect to TY , |TY | ≤
J .
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Proof Section 3 implies that for Problem P–4.11,

∂ f ∗(p)
∂p

=
∑

j∈1,J

∂ f ∗
j (p)

∂p
Section 3.2=

∑

j∈TY

∂ f ∗
j (p)

∂p

=
∑

j∈TY ,
s.t. A∗

j={i,k,q}
i,k∈TX , (q, j)∈TZ

∂ f ∗
j (p)

∂p
+

∑

j∈TY ,
s.t. A∗

j={i,k}
i,k∈TX

∂ f ∗
j (p)

∂p

Theorem 3.3.8,
Lemma 3.1.2= Eq. (34).

(35)

Thevalue f ∗|ΦJ corresponds to themaximumobjective functionvalue evaluated at all station-
ary points. To find all roots/stationary points of f ∗(p) ∀p ∈ ΦJ , the common denominator
can be multiplied out in Eq. (34) to form a polynomial. The resulting polynomial from Eq.
(34)will havemaximumdegree 2·TY if∀ j ∈ TY A∗

j (ΦJ ) = {i, k, q}, i, k ∈ TX , (q, j) ∈ TZ
and if q1 
= q2 given q1 ∈ A∗

j1
(ΦJ ), q2 ∈ A∗

j2
(ΦJ ), (q1, j), (q2, j) ∈ TZ . Furthermore, by

assumption, the polynomial in Eq. (34) has rational coefficients. Consequently,

∂ f ∗(p)
∂p

=
∑

0≤i≤2 Ĵ , Ĵ≤TY

ai · pi , ∀i ai ∈ Q, (36)

which, as a rational univariate polynomial, can be solved deterministically in strongly-
polynomial time, using for example the algorithm in [38] with worst-case time bound
T (UnivPoly),

T (UnivPoly) = O

(
(2|TY |)12 + (2|TY |)9

(
log

∣∣∣∣
∂ f ∗(p)

∂p

∣∣∣∣

)3)
,

where

∣∣∣∣
∂ f ∗(p)

∂p

∣∣∣∣ =
(
∑

i

a2i

)1/2
.

(37)

��
Corollary 4.5 (Strongly-polynomial time complexity)
Problem P–4.11 ⇔ Problem P–4.10 with all parameters rational is solved in strongly-
polynomial worst-case time

O((I 3 + H3) · J ) + O(I · H2) · (O(UnivPoly) + O(J )) , (38)

where O(UnivPoly) is polynomial w.r.t. |TY | <= J (see Theorem 4.4, Eq. (37)).

Proof In the worst case, on all intervals between two joint dominance breakpoints in BJ the
additive decomposition over outputs in Problem P–4.11 requires solving a univariate rational
polynomial as in Theorem 4.4. Denoting by T (·) the time-complexity of calculating result
(·), this implies

T ( f ∗) = T (BJ ) + O(|BJ |) · (O(UnivPoly) + O(J ))

= O(I 3 + H3) · O(J ) + O(|BJ |) · O(UnivPoly).
(39)

Eq. (39) accounts for both the size of BJ and the time to find BJ assuming for simplicity
|TY | = J . Eq. (39) also includes objective evaluations at maximum J stationary points found
after applying Theorem 4.4 (time O(UnivPoly)) for any breakpoint interval. Furthermore,
due to Theorem 3.3.9, max |BJ | ⇒ max |BI M | when all breakpoints between input and
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Fig. 8 Optimal objective function f ∗(p) versus pool concentration p for a one pool, two-output network with
two inputs and two directs (parametrized with concentrations/costs). The objective f ∗(p) = f ∗

1 (p) + f ∗
2 (p)

is a sum of the objectives corresponding to one output sub-problems, and is a piecewise (possibly non-
monotone/non-convex) function of the pool concentration

mixed sets are dominant. Assuming a breakpoint between the dominant mixed/input set and
the dominant direct set on any interval between two consecutive elements of BI M does not
change the order of |BI M |. Therefore,

O(|BJ |) = O(|BI M |) = O(|BI |) · O(|BM |) = O(I · H2), (40)

since on each interval between two input dominance breakpoints there can be mixed dom-
inance breakpoints between a pair of mixed sets, therefore between a pair of directs (see
Proposition 3.3.5). Finally, combining Eqs. (39) and (40) results in Eq. (38). ��

Fig. 8 illustrates the I+H-1-J subclass analysis with a numerical example showcasing the
implications of Proposition 4.3 and Theorem 4.4. For a chosen parametrization of two inputs,
directs and outputswith quality constraints for each output in Fig. 8, the p-parametric function
f ∗(p) is decomposed additively in the optimal objectives of the one output sub-problems.
Hence, in the particular example, f ∗(p) has a non-monotone piecewise section as proven in
Proposition 4.3 for p ∈ (1.3, 2) with a stationary point which can be deterministically found
via Theorem 4.4.

Remark 4.6 (A new P/N P boundary point for standard pooling)
The Sect. 4 results address a gap in the literature for the P/N P boundary for standard pooling
problems. The time-complexity gap [4, Corollary 2] occurs between the single quality I+H-L-
J class that is strongly NP-hard and the I-1-J class with a bounded number of qualities that is
polynomial-time solvable. Theorem4.4 andCorollary 4.5 show that the single quality I+H-1-J
class restricted by Assumption 2.2 is strongly-polynomial. Any relaxation of Assumption 2.2
is NP-hard:
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• Reinstating constraints on feed availability/pool capacity for any particular j ∈ TY
implies the mixed active set term in Eq. (34) gets split into a hierarchy of potential mixed
active sets (see Remark 3.3.10) each with total flow an unknown proportion of Dj . This
hierarchy of sets leads to a bivariate rational polynomial which is NP-hard to solve [25].

• Introducing multiple qualities (K > 1) implies variables pk, k ∈ 1, K , are not inde-
pendent - a specific pool concentration in one quality restricts the concentration range in
another. Consequently, Eq. (34) becomes an NP-hard multivariate polynomial system.

• Relaxing the fixed product demand assumption - if any of Dj ∀ j ∈ TY are not fixed but
unknown, then Eq. (34) becomes an NP-hard bivariate polynomial system.

• Extending to the full topology I+H−L−J , again Eq. (34) translates to a coupled mul-
tivariate polynomial system when two pools send non-zero flow to the same output (as
in Sect. 5, Theorem 5.2) and one of the two pools also sends non-zero flow to a different
output.

In summary, when feed to output connections (directs) are considered, the I+H−1−J class
following Assumption 2.2 lies on the P/N P boundary, and can be solved analytically as
shown in this section despite f ∗(p) being piecewise non-monotone or non-convex.

Remark 4.7 (Haverly [33] is strongly-polynomially solvable) The Haverly [33] instances,
i.e. the first set of three pooling problems in the literature, are part of the single-quality
I+H-1-J class following Assumption 2.2. We can obtain their exact solutions analytically in
strongly-polynomial time!

Remark 4.8 (Connection to queueing theory) Woodside and Tripathi [60] report similar,
piecewise-monotone structure in a central processor queueing problem where workstation
files are assigned to file servers. The Woodside and Tripathi [60] proofs cannot be directly
applied to standard pooling, but the similarity recalls the deep connection between pooling
and queueing.

5 Subclass I+H−L−1: multiple pools, one output

This section extends the analysis in Sect. 3 with Assumption 2.2 to I+H feeds (I inputs, H
directs), L pools and one output. Again, for simplicity of notation, single index j is dropped
via the notation transformations TZ ← {i : (i, j) ∈ TZ }, TY ← {l : (l, j) ∈ TY }. This
leads to Problem P–5.12, where eliminating variables pl , yl ∀l ∈ TY results in an LP as for
Problem P–3.4 in Sect. 3, limited to a maximum cardinality of four in terms of the x, z
variables. We further identify this solution analytically, understanding pool sparsity and the
parametric structure of the optimal objective in the process. To analyze Problem P–5.12,
Definition 5.1 first introduces active pools. Theorem 5.2 then finds a maximum of two active
pools contribute to the optimal solution and further shows all cases induced are parametric on
pools concentrations. Furthermore, Theorem 5.3 proves all cases involved in Theorem 5.2 in
fact reduce to the I+H-1-1 subclass studied in Sect. 3. Finally, Corollary 5.4 offers a strongly-
polynomial bound on solving Problem P–5.12 and the section concludes with an illustrative
numerical example.

Definition 5.1 (Active pools)

• Let the L = |TY | pools in Problem P–5.12 be denoted by i with concentration pi ,
∀i ∈ 1, L .
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• An active pool has incoming and outgoing flows strictly non-zero. A non-active pool
l ∈ TY has well-defined concentration by assuming only yl = 0 but xi,l 
= 0, ∀i :
(i, l) ∈ TX . However, any non-active pool is disconnected via yl = 0 from the output,
does not influence objective function f , and can be removed along with any of its flow
connections from Problem P–5.12.

max{xi,l },{yl },{zi },{pl }
f =

∑

l∈TY
d · yl +

∑

i∈TZ
d · zi −

∑

(i,l)∈TX
γi · xi,l −

∑

i∈TZ
γi · zi

s.t.
∑

l∈TY
yl +

∑

i∈TZ
zi = D

∑

i :(i,l)∈TX
xi,l − yl = 0 ∀ l

PL · D ≤
∑

l∈TY
pl · yl +

∑

i∈TZ
Ci · zi ≤ PU · D

∑

i :(i,l)∈TX
Ci xi,l = pl yl ∀ l

0 ≤ xi,l ∀ (i, l) ∈ TX , 0 ≤ yl ∀ l ∈ TY , 0 ≤ zi ∀ i ∈ TZ

(P–5.12)

Theorem 5.2 (Pool sparsity and pool-parametric objective function)
For fixed pl ∀l ∈ TY , at optimality, Problem P–5.12 has a maximum of two active pools with
the optimal objective function parametric on their concentrations:

max{xi,l },{yl },{zi },{pl }
f =

⎧
⎪⎨

⎪⎩

max{xi,m },{xi,n}
f (pm, pn), if m, n ∈ TY active, TY \ {m, n} not active,

max{xi,m },{zi }
f (pm), if m ∈ TY active or not, TY \ {m} not active.

(41)

Proof Variables pl ∀l ∈ TY and yl ∀l ∈ TY can be substituted out from Problem P–5.12 using
the penultimate (quality balances) and second (flow balances) constraint types, respectively.
Hence, Problem P–5.12 becomes parametric on pl ∀l ∈ TY with optimal objective

max{xi,l },{yl },{zi },{pl }
f = max{xi,l },{zi }

f (p1, . . . , pL ). (42)

For fixed pool concentrations pl ∀l ∈ TY , all pools have fixed optimal cost γl (obtained as
γl = γi j (pl) withAI (pl) = i j for the I-1-1 subclass according to Sect. 3.1) and thus behave
like additional directs sending flow directly to the output. Consequently, Theorem 3.2.7 for
the directs-only subclass from Sect. 3.2 applies, implying that maximum two nodes among
pools and directs are active.

The case with two pools active (see Fig. 9) is treated separately in Eq. (41) as a two
pool parametric restriction of Eq. (42) where no directs are active (therefore associated flow
variables {zi } can be eliminated). The second case in Eq. (41) aggregates the cases with
maximum one pool active, and corresponds directly to the class of Problems P–3.4 solved in
Sect. 3.3. ��

Theorem 5.3 (Solution for two active pools at an input dominance breakpoint)
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Fig. 9 Two active pools (filled
nodes) in an I+H-L-1 instance

...

Inputs [1,. . . ,I]

...

Directs [1,. . . ,H]
...

Pools [1,. . . ,L]

Output

in1

di1

p1

in2

di2

p2

inI

diH

pL

o

The solution of Problem P–5.12 with two active pools m, n is found at (pbm, pbn), where
(∀i ∈ {m, n}) pbi is an input dominance breakpoint along pi in a single i pool I-1-1 subclass
(Sect. 3.1), i.e.

max{xi,m },{xi,n}
f (pm, pn) = max

(pbm , pbn )∈BI (m)×BI (n)

f ∗(pbm, pbn),

where BI (r) as in Theorem 3.1.6, Eq. (11a) for f ∗ = max
pr

f ∗(pr ) = max{xi,r },{zi }
f (pr ).

(43)

Proof Suppose concentration pn is fixedwhich implies pool n acts as an additional directwith
fixed concentration and cost (optimal). Since pm, pn are independent, parametric optimal
objective f ∗(pm, pn) behaves like f ∗(pm) in a single m pool problem where n acts as a
direct, not as a pool. Pools m, n both active implies that ∀pm the dominant active set for
f ∗(pm) is a mixed active set {i, j, n} with n as a direct and {i, j} the dominant active input
set sending flow to m. Since n must be active and therefore part of the dominant active set,
a change in the dominant active set can only occur with a change of dominant active input
set {i, j}, independently of n and therefore fixed value pn . Consequently, the dominance
breakpoints of f ∗(pm, pn) w.r.t. pm occur independently of the value of pn and are always
breakpoints between dominant active input sets for pool m. The vice-versa independence
also holds. Excluding input dominance breakpoint pairs of f ∗(pm, pn) w.r.t both pm, pn in
BI (m) × BI (n), function f ∗(pm, pn) is linear (Lemma 3.1.2) in at least one parameter (with
gradient non-zero). Hence, Eq. (43) follows. ��

Corollary 5.4 (Strongly-polynomial time complexity)
Problem P–5.12 is solved in strongly-polynomial worst-case time

O
(
(I 3 + H3) · L + I 2 · L2) (44)

Proof According to Theorems 5.3 and 3.1.6, the first case in Eq. (41) for two given active
pools involves 2 · O(I 3) time for finding the two sets of input dominance breakpoints and
O(I 2) for evaluating the optimal parametric objective function at all breakpoint pairs. Since
there are

(L
2

)
possible pairs of active pools, the total time for the first case of Eq. (41) is

O(I 3 · L) + O(I 2 · L2).
The second case in Eq. (41) for one possibly active pool is equivalent to solving Prob-

lemP–3.4 (Theorem3.3.9) and there are L active pool choices for a total timeO((I 3+H3)·L).
Adding the two cases of Eq. (41) yields the time complexity in Eq. (44). ��
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Fig. 10 Parametric optimal objective function f ∗(p1, p2) versus pools concentrations p1, p2 for a two-pool,
one output network with four inputs and three directs (parametrized with concentrations/costs). The objective
is a piecewise-monotone convex/concave/linear function w.r.t. p1 or p2 individually

Figure 10 illustrates the I+H-L-1 subclass with a numerical example showcasing the
implications of Theorem 5.2 and Theorem 5.3. For a chosen parametrization as in Fig. 10,
the parametric function f ∗(p1, p2) reveals portions of the domain where only one pool is
active (around the edges of the cube) corresponding to the second case in Eq. (41) with
piecewise-monotone structure (as shown in Sect. 3.3). Other portions of the domain (in the
neighbourhood of p1 = 2.5, p2 = 3), however, correspond to the first case in Eq. (41), when
both pools are active.

Remark 5.5 (Sparsity results extend to a multi-layered network) Theorem 5.2 extends the
sparsity results from the input layer to the pool layer. These sparsity results would also hold
for networks with more layers.

Remark 5.6 (From analytical solutions/sparse piecewise structure to non-sparse LP/NP-
hardness)
Section 5 finds analytically the optimal solution for a I+H−L−1 pooling topology with
Assumption 2.2. Since the I+H−L−1 subclass is an LP extension of the I+H−1−1 instance,
relaxing any constraint assumption, as described in Remark 3.3.10, leads to intractable ana-
lytical solutions and vanishing sparse structure. As explained in Remark 4.6, expanding to
full topology I+H−L−J results in NP-hardness.

6 Concluding remarks

This paper builds a framework analyzing standard pooling problem subclasses by parametriz-
ing the objective function with respect to pool concentrations. The bottom-up analysis
develops strongly-polynomial time algorithms for multiple pooling network topological sub-
classes, all in the presence of a single quality, an unbounded number of feeds to pools and
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also outputs (direct bypass flows) and certain flow assumptions. Patterns and hierarchies of
dominating topologies are used to find active network structure. The sparsity identified in
the active network structure at optimality is then linked to a pool parametric piecewise struc-
ture of the objective function. The result reveals analytically Professor Floudas’ intuition of
piecewise structure in pooling problem instances.

The parametric objective function is then shown to be piecewise-monotone for instances
with one output, allowing exact global solutions in strongly-polynomial time as alternatives
to black-box linear programming. The insights are further used for non-linear instances with
multiple outputs and one pool to overcome piecewise non-monotonicity via stationary points
found in strongly-polynomial time. This result introduces a new reference point on the P/N P
boundary for standard pooling subclasses, as any relaxation of assumptions or full topology
(multiple pools and outputs) are shown to reach NP-hardness. The multiple outputs subclass
and its assumptions includes the Haverly [33] pooling problems, showing for the first time
they have exact, analytical solutions.

The position on the P/N P boundary of the multiple outputs and one pool subclass is thus
an ideal starting point for approximating algorithms that cross into NP-hardness. Moreover,
this paper developed intuition around sparse solutions and the conditions underwhich sparsity
vanishes. This encourages future research in building disjunctive cuts based on the structures
identified to partition feasible space in the non-sparse NP-hard subclasses, an approach taken
by the state-of-the-art heuristic developed in [21].
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A Omitted proofs

Proof of Proposition 3.2.4 Lemma 3.2.3 implies w.l.o.g. that Ci > PU (the other case Ci <

PL is analogous). Then C j < PU , otherwise (Ci zi +C j z j )/(zi + z j ) > PU implying {i, j}
infeasible. Two cases now arise:

1. C j > PL : Then γi < γ j , otherwise j � {i, j}. Therefore increasing the cheaper flow
zi maximizes f , but since Ci > C j , doing so also increases concentration (Ci zi +
C j z j )/(zi + z j ), which should not exceed PU for feasibility. Consequently, (Ci zi +
C j z j )/(zi + z j ) = PU .

2. C j < PL : If γi < γ j then, as in the previous case, (Ci zi + C j z j )/(zi + z j ) = PU .
Otherwise, if γi > γ j , decreasing output concentration till bound PL and therefore
increasing weight of lower cost γ j maximizes f , so (Ci zi + C j z j )/(zi + z j ) = PL .

Analogously when Ci < PL , if PL < C j < PU then (Ci zi + C j z j )/(zi + z j ) = PL , or
else if C j > PU then (Ci zi +C j z j )/(zi + z j ) = PL or PU (depending on whether γi < γ j

or γi > γ j , respectively). Aggregating all the cases analyzed, (Ci zi +C j z j )/(zi + z j ) = PL

if (Ci − C j )(γi − γ j ) > 0 and (Ci zi + C j z j )/(zi + z j ) = PU if (Ci − C j )(γi − γ j ) < 0,
corresponding to P(i, j) defined in Eq. (12). ��
Proof of Lemma 3.3.3 For Problem P–3.4, fi j = dD − xiγi − x jγ j and f{i j,q} = dD −
x ′
iγi − x ′

jγ j − zqγq . Therefore,
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i j �p {i j, q} ⇔ xiγi + x jγ j ≥ x ′
iγi + x ′

jγ j + zqγq ,

which, by replacing all flows with their solutions from Eq. (7) and Eq. (16), can be rewritten
as:

γi j (p) ≥ γ{i j,q}(p) ⇔ D(p − P(i j, q))
(
γi (p − C j ) + γ j (Ci − p) + γq(C j − Ci )

)

(Ci − C j )(p − Cq)
≥ 0.

Since constant demand D > 0 and output concentration P(i j, q) is a linear combination of
p,Cq , then D(p − P(i j, q))

/
(p − Cq) ≥ 0 and the dominance condition becomes:

γi (p − C j ) + γ j (Ci − p) + γq(C j − Ci )

Ci − C j
≥ 0 ⇔ γi j = γi (p − C j ) + γ j (Ci − p)

Ci − C j
≥ γq .

with the breakpoint achieved by solving for p at equality. ��
Proof of Proposition 3.3.5.ii For any breakpoint p between {i, j, q} and {i, j, r}, the follow-
ing must hold,

{i, j, q} �p {i, j, r} Eq. (3)⇔ γi xi + γ j x j + γq zq = γi x
′
i + γ j x

′
j + γr zr ,

which after replacing the flow variables on both sides from Eq. (16), becomes,

γi (p − C j )(P(i j, q) − Cq))

(Ci − C j )(p − Cq)
+ γ j (p − Ci )(P(i j, q) − Cq))

(C j − Ci )(p − Cq)
+ γq(p − P(i j, q))

p − Cq

= γi (p − C j )(P(i j, r) − Cr ))

(Ci − C j )(p − Cr )
+ γ j (p − Ci )(P(i j, r) − Cr ))

(C j − Ci )(p − Cr )
+ γr (p − P(i j, r))

p − Cr
.

Multiplying out the common denominator of all terms and then grouping the first two terms
from each side and factoring out p results in:

p2(γi − γ j )
(
(P(i j, q) − Cq ) − (P(i j, r) − Cr )

)

+ p

((
P(i j, r)Cq − P(i j, q)Cr

)
(γi − γ j ) − (γi C j − γ j Ci )

(
(P(i j, q) − Cq ) − (P(i j, r) − Cr )

))

− (γi C j − γ j Ci )(P(i j, r)Cq − P(i j, q)Cr )

+ p2(Ci − C j )(γq − γr ) + p(Ci − C j )
(
γrCq + γr P(i j, r) − γqCr − γq P(i j, q)

)

+ (Ci − C j )
(
γqCr P(i j, q) − γrCq P(i j, r)

) = 0.

Assuming P(i j, q) and P(i j, r) are independent of p results in a quadratic equation in terms
of p,

Γ
(
p, P(i j, q), P(i j, r)

) = p2(a1b1 +a3c1)+ p(a1b2 −a2b1 +a3c2)+ (a3c3 −a2b2) = 0,

with the following notation:

a1 = γi − γ j , b1 = (P(i j, q) − Cq ) c1 = γq − γr ,

a2 = γi C j − γ j Ci , − (P(i j, r) − Cr ), c2 = γr (Cq + P(i j, r)) − γq (Cr + P(i j, q)),

a3 = Ci − C j , b2 = P(i j, r)Cq − P(i j, q)Cr , c3 = γqCr P(i j, q) − γrCq P(i j, r).

Assuming 
2 > 0, Γ has up to two roots as possible breakpoints,

p1,2 = −(a1b2 − a2b1 + a3c2) ±√(a1b2 − a2b1 + a3c2)2 − 4(a1b1 − a3c1)b2(a3 − a2)

2(a1b1 − a3c1)
.

��
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Proof of Proposition 3.3.7 The first constraint of Problem P–3.4 implies zq = D − xi − x j ,
which in turn implies,

f A(p) =d · D − γi xi − γ j x j − γq xq = (d − γq)D − (γi − γq)xi − (γ j − γq)x j ,

∂ f A
∂p

= ∂

∂p

(
(γi − γq)xi + (γ j − γq)x j

)

Eq. (16)= D
(
P(i j, q) − Cq

)

Ci − C j
· ∂

∂p

(
(γi − γq)(p − C j )

p − Cq
− (γ j − γq)(p − Ci )

p − Cq

)

=D
(
P(i j, q) − Cq

)

Ci − C j
·
(

∂

∂p

p(γi − γ j )

p − Cq
+ ∂

∂p

Ci (γ j − γq) − C j (γi − γq)

p − Cq

)

=D
(
P(i j, q) − Cq

)

Ci − C j
· C j (γi − γq) + Ci (γq − γ j ) + Cq(γ j − γi )

(p − Cq)2

= − D
(
P(i j, q) − Cq

)

(Ci − C j )(p − Cq)2
·
(
Cq(γ j − γi ) + C j (γi − γq) + Ci (γq − γ j )

)
.

By deriving to further orders and due to ∂2 f A
∂p2

= −2
(p−Cq )

∂ f A
∂p , the desired assertions are

obtained. ��
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