
J Glob Optim (2016) 66:417–437
DOI 10.1007/s10898-016-0407-7

SOP: parallel surrogate global optimization with Pareto
center selection for computationally expensive single
objective problems

Tipaluck Krityakierne1 · Taimoor Akhtar2,3 ·
Christine A. Shoemaker2,3,4

Received: 6 October 2014 / Accepted: 19 January 2016 / Published online: 2 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper presents a parallel surrogate-based global optimization method for
computationally expensive objective functions that is more effective for larger numbers of
processors. To reach this goal, we integrated concepts from multi-objective optimization
and tabu search into, single objective, surrogate optimization. Our proposed derivative-free
algorithm, called SOP, uses non-dominated sorting of points for which the expensive function
has been previously evaluated. The two objectives are the expensive function value of the
point and the minimum distance of the point to previously evaluated points. Based on the
results of non-dominated sorting, P points from the sorted fronts are selected as centers from
which many candidate points are generated by random perturbations. Based on surrogate
approximation, the best candidate point is subsequently selected for expensive evaluation
for each of the P centers, with simultaneous computation on P processors. Centers that
previously did not generate good solutions are tabu with a given tenure. We show almost sure
convergence of this algorithm under some conditions. The performance of SOP is compared
with two RBF based methods. The test results show that SOP is an efficient method that can
reduce time required to find a good near optimal solution. In a number of cases the efficiency

Electronic supplementary material The online version of this article (doi:10.1007/s10898-016-0407-7)
contains supplementary material, which is available to authorized users.

B Tipaluck Krityakierne
tk338@cornell.edu

Taimoor Akhtar
taimoor.akhtar@gmail.com

Christine A. Shoemaker
cas12@cornell.edu

1 Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland

2 School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

3 Department of CEE, National University of Singapore, Singapore, Singapore

4 Department of ISE, National University of Singapore, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-016-0407-7&domain=pdf
http://dx.doi.org/10.1007/s10898-016-0407-7

418 J Glob Optim (2016) 66:417–437

of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock
time than the other algorithms did with 32 processors.

Keywords Radial basis functions · Tabu · Computationally expensive · Blackbox ·
Simulation optimization · Response surface · Metamodel

1 Introduction

Real-world applications in various fields, such as physics, engineering, or economics, often
have a simulation model which is multimodal, computationally expensive, and blackbox.
“Blackbox” implies that many mathematical characteristics are not known, including deriva-
tives or number of localminima.Many existing optimizationmethods for black-box functions
such as genetic algorithm, simulated annealing, or particle swarm are not suitable for this
type of problem due to the large number of objective function evaluations that these methods
generally require.

One approach for dealing with this type of problem is to use a surrogate model (alterna-
tively calledmetamodel or response surface) to approximate the objective function. Response
surface based optimization methods start by building a (computationally inexpensive) sur-
rogate surface, which is then used to iteratively select new points for the expensive function
evaluation. The surrogate surface is updated in each iteration.

We consider a real-valued global optimization problem of the form:

min
x∈D f (x) (1)

whereD = {lb ≤ x ≤ ub} ⊂ R
d .Here, lb, ub ∈ R

d are the lower and upper variable bounds,
respectively. f (x) is a computationally expensive black-box function that is continuous but
not differentiable or its gradient is computationally intractable.

The purpose of this research is to develop a new way to solve surrogate optimization
problems for computationally expensive functions in parallel. Previous efforts (mostly ser-
ial) have involved generating candidate points by normal perturbations around one center
point (usually the best solution found so far), by uniform sampling in the domain, or by
using an optimization method on the surrogate to find the point that satisfies some criterion.
In this work, we use a different approach involving non-dominated sorting on previously
evaluated points to select multiple centers, which are points on the sorted fronts. Hence, we
are using concepts from multi-objective optimization for single objective optimization of
computationally expensive functions.

1.1 Literature review

Many authors have demonstrated the effectiveness of using response surfaces for optimiza-
tion of computationally expensive problems within a limited number of function evaluations.
Jones et al. [10] used kriging as a basis function to develop a global optimization method,
Efficient Global Optimization (EGO), where the next point to evaluate is obtained by maxi-
mizing an expected improvement, balancing the response surface value with the uncertainty
of the surface. Huang et al. [9] extended Jones’ EGO algorithm and developed a global
optimization method for noisy cost functions. Booker et al. [3] also used kriging surface to
speed up the pattern search algorithms. Gutmann [6] built the response surface with radial
basis functions where the next point to evaluate is obtained by minimizing the bumpiness of

123

J Glob Optim (2016) 66:417–437 419

the interpolation surface. Sóbester et al. [23] used Gaussian radial basis functions and pro-
posed weighted expected improvement to control the balance of exploitation (of the response
surface) and exploration (of the decision variable space) to select the next evaluation point.
Regis and Shoemaker [18] also used radial basis functions in the Metric Stochastic Response
Surface algorithm (also known as the Stochastic RBF algorithm), which is a global opti-
mization algorithm wherein the next point to evaluate is chosen by randomly generating a
large number of candidate points and selecting the point that minimizes a weighted score of
response surface predictions and a distance metric. Optimization of computationally expen-
sive problems is still an active field of research as can be seen by several workshops devoted
to this subject. More recent papers on this subject include e.g. [11,12,15].

Due to the pervasiveness of parallel computing, there is a need to develop surrogate algo-
rithms that select and evaluate multiple points in each iteration to reduce the wall-clock time
(which is proportional to the number of optimization iterations). For example, Sóbester et
al. [22] developed a parallel version of EGO. Several local maximum points of the expected
improvement function are selected for the expensive evaluations in parallel. In 2009, Regis
and Shoemaker proposed a parallel version of the Stochastic RBF algorithm [19]. In each iter-
ation, a fixed number of points are selected for doing the expensive function evaluations. The
selection is done sequentially and based on the weighted score of (1) the surrogate value, and
(2) the minimum distance from previously evaluated points and previously selected points
within that parallel iteration, until the desired number of points are selected. The expensive
function evaluations at the selected points are done simultaneously. The experimental results
showed that the algorithm is very efficient compared to their previous methods. As a coun-
terpart of EGO, Viana et al. [25] proposed MSEGO that is based on the idea of maximizing
the expected improvement (EI) functions, but instead of using just one surrogate as in EGO,
multiple surrogates are used. Since different EI functions are obtained for different surro-
gates, multiple points can be selected per iteration. Although MSEGO was shown to reduce
the number of iterations, they found that the numerical convergence rate did not scale up with
the number of points selected in each iteration for evaluation.

There is an inherent trade-off between exploration and exploitation in surrogate-based
optimization methods. Recently, Bischl et al. [2] attempted at analyzing this trade-off and
proposed MOI-MBO which is a parallel kriging based optimization algorithm that uses a
multi-objective infill criterion that rewards the diversity and the expected improvement for
selecting the next expensive evaluation points. Many versions of MOI-MBO were proposed
based on various multi-objective infill criteria: mean of the surrogate model, model uncer-
tainty, expected improvement, distance to the nearest neighbor, and the distance to the nearest
better neighbor. Evolutionary optimization was used to handle the embedded multi-objective
optimization problem. The overall test results suggested that the version that used a combi-
nation of mean, model uncertainty, and nearest neighbor worked best.

1.2 Differences between SOP and previous algorithms

The major difference between our algorithm and other existing parallel optimization algo-
rithms is the use of a Pareto non-dominated sorting technique to select P distinct evaluated
points whose objective function values are small and that are far away from other evaluated
points, which will then serve as centers. The selected centers are subsequently used with the
addition of random perturbations for generating a set of candidate points fromwhich the next
function evaluation points are chosen and evaluated. In addition the selection of the P points
is subject to tabu constraints. This contrasts with the approachRegis and Shoemaker [19] used
to generate the P points for parallel expensive function evaluations. In [19], all the P points

123

420 J Glob Optim (2016) 66:417–437

are obtained from the same center that is the best point found so far. Selecting the P points
from different centers (as is done in this work) allows the algorithm to search more globally
simultaneously in each iteration, which is especially helpful as the number of processors
increases. The concept of non-dominated sorting has been widely used in multi-objective
optimization [1,4,26]. SOP considers the trade-off between exploration and exploitation in
single objective optimization as a bi-objective optimization problem and incorporates non-
dominated sorting into the algorithm framework. Themethod proposed in [2] is also based on
multi-objective optimization. However, their embedded multi-objective optimization prob-
lem was solved on the surrogate while in our approach, a bi-objective optimization problem
is solved on previously evaluated expensive function evaluation points.

We found no journal papers on surrogate global optimization that select a large number of
evaluation points in each iteration in order to efficiently use a large number of processors. For
example, the maximum number of points used in [2,19], and [25] were 5, 8, and 10 points,
respectively. On the other hand, SOP can do many expensive objective function evaluations
simultaneously. (SOP was tested on as many as 64 points per parallel iteration.) SOP thus
has the potential to greatly reduce wall-clock time.

The structure of this paper is as follows: The new algorithm, SOP, is described in Sect.
2, and its theoretical properties are described in Theorem 1. In Sect. 3, we illustrate the
performance of SOP and compare algorithms on a number of test functions as well as a
groundwater bioremediation problem. Lastly, we give our concluding remarks in Sect. 4.

2 Algorithm description

Surrogate Optimization with Pareto Selection (SOP) is a parallel surrogate based algorithm
where simultaneous surrogate-assisted candidate searches are performed around selected
evaluated points (referred to as centers in subsequent discussions). The search mechanism
of the algorithm incorporates bi-objective optimization, where the conflicting objectives
focus the search to achieve a balance between exploration and exploitation, tabu search, and
surrogate assisted candidate search. The motivation for using this combination of methods is
so we can generate P points (where P can be large) for evaluation in parallel that will provide
useful information for the search. Hence, these points need to be efficiently distributed and
among other factors should not be too close to each other.

A synchronous Master-slave parallel framework is employed for simultaneous surrogate-
assisted candidate search. The algorithm is adaptive and learns from the search results of
prior iterations.

2.1 General algorithm framework

The general algorithm framework1 is iterative and is described by a flowchart in Fig. 1. The
algorithm consists of three core steps, namely (1) Initialization, (2) Iterative loop and (3)
Termination.

The algorithm initialization phase (Step 1) starts by evaluating the expensive f (x) on n0

initial points from the decision space. The initial point may be selected via any experimen-
tal design method, e.g. Latin hypercube sampling. The expensive points are subsequently
evaluated before initiation of the iterative loop.

1 Pseudo-code for SOP algorithm is given in Algorithm 1 of the Online Supplement.

123

J Glob Optim (2016) 66:417–437 421

Fig. 1 General iterative framework of SOP

Step 2 of the algorithm corresponds to the iterative loop, which has four sub-components,
namely (2.1) Fit/refit surrogate model, (2.2) Select the P centers, (2.3) Parallel candidate
search, and (2.4) Adaptive learning.

In Step 2.1, all previously evaluated points and their corresponding function values are
used to fit a surrogate model. Steps 2.2, 2.3 and 2.4 constitute the core components that define
the search mechanics of SOP bymaintaining a balance between exploration and exploitation,
and incorporating the power of parallelism for improving efficiency of the surrogate-assisted
candidate search. Each of these steps will be discussed in more detail later.

At the end of the iterative loop (Step 3), the algorithm terminates after a pre-specified num-
ber of iterations (or number of function evaluations) and returns the best solution found so far.

Step 2.2 non-dominated sorting and P center selection

Given that P processors are available, Step 2.2 of SOP selects P points from the set of already
evaluated points as center points for parallel surrogate-assisted candidate search. The centers
are selected by using non-dominated sorting (an idea from multi-objective optimization)
on points where the expensive f (x) has been evaluated. This approach uses two objective
functions to find a diverse set of points that are likely to provide good function values and
be diverse enough to improve the surrogate surface when many points are being evaluated
simultaneously by parallel processors. While previous methods, such as Parallel Stochastic
RBF, define the best solution found in all previous iterations as a center for perturbations, we
instead create as many centers for perturbations as there are processors to facilitate improved
parallel performance.

Let S(n) be the set of already evaluated points after n algorithm iterations. SOP considers
the challenge of balancing the trade-off between exploration and exploitation as a bi-objective
optimization problem.

The objective function corresponding to exploitation is simply the objective function of
the expensive optimization problem and is referred to as F1(x). The second objective F2(x)

focusing on exploration is the minimum distance of an evaluated point, x ∈ S(n), from all
other evaluated points, S(n) \ {x}. A large value of minimum distance intuitively indicates
that a potential center point is in a sparsely explored region of the decision space where
the accuracy of the current solution can possibly be improved with candidate search in that

123

422 J Glob Optim (2016) 66:417–437

Fig. 2 The process for selection of P center points (Step 2.2)

region. Thus, to explore previously unexplored regions, a large value of F2(x) is desirable.
Maximizing F2(x) is the same as minimizing its negative, so the second objective F2(x) is
defined as the negative of the minimum distance to the set of already evaluated points.

Mathematically, the following bi-objective optimization over a finite set S(n) is considered
for center selection:

min
x∈S(n)

[F1(x), F2(x)], (2)

where F1(x) = f (x) from Eq. 1 and F2(x) = −mins∈S(n)\{x} ‖s − x‖ are two conflicting
objective functions that we want to minimize simultaneously.

Given that SOP considers the process of selection of centers as the bi-objective problem
defined above, P points are selected as centers from the set of evaluated points. The process
for selection of P centers is depicted in Fig. 2.

The selection process initiates by ranking all evaluated points (xi , f (xi)) according to
the two-tier ranking system.2 This corresponds to the upper left box in Fig. 2. The first tier
of ranking is based on the concept of non-dominated sorting method [5] on the bi-objective
problem defined in Eq. 2, which divides the evaluated set into mutually exclusive subsets
which are referred to as fronts, where each front has a unique rank. The first rank (Pareto
front) is given to the non-dominated solutions in the evaluated set. These solutions are then
removed, and the non-dominated solutions identified in the remaining set are given the second
rank. This process continues until all solutions are sorted into fronts (see Fig. 3b).

Since multiple solutions may be on the same front, we introduce the second tier of ranking
to differentiate between these solutions. The solutions on the same front are ranked according
to their objective function values f (x) (best to worst). Hence, the best evaluated point found
so far has the best rank (since it lies on the first front and has the best objective function value).
The secondary ranking tends to focusmoreon exploitation than exploration.Wewill denote by
RankedList the set (list) of evaluated points sorted according to this two-tier ranking system.

Let C denote the set of (to be) selected centers, where initially C = ∅. First, the best
evaluated solution found so far, x∗, is always selected as the first center c1. This corresponds

2 Pseudo-code describing the two-tier ranking system can be found in Figure A.2 (two_tier_ranking) of the
Online Supplement.

123

J Glob Optim (2016) 66:417–437 423

A1 A2

A3

B1

B2

B3

C1

C2

D1

D2

X1

X 2

F
1

F 2

A1
A2

A3

B1

B2

B3

C1

C2

D1

D2

Front 1
Front 2

Front 3

Front 4

non−tabu
tabu
selected center

(a) (b)

Fig. 3 Example of point classification into tabu, non-tabu or selected center. Previously evaluated points x ∈
S(n) are shown in (a) in terms of decision variable values and (b) in terms of objective function [F1(x), F2(x)]
values. a Decision space. (b) Objective space

to the second box of the flowchart in Fig. 2. Next, the algorithm traverses through points in
the Ranked List, sequentially adds a selected point to C , and stops when C = {c1, ..., cP }.
While traversing through the ranked points, two additional criteria are checked before points
are selected as centers:3

The first selection criteria is that a point in the Ranked List is only selected as a center if it
is not in theTabuList. TheTabuList is a subset of evaluated points and contains pointswhich,
after being chosen as center points in Nfail algorithm iterations, did not induce an improvement
in the exploration-exploitation trade-off. Details of the process of how points are added and
removed from the Tabu List are later discussed in Step 2.4 of SOP. The premise behind
maintaining a Tabu List is to induce adaptive learning within the SOP search mechanism that
could ensure that points which do not induce improvement in the exploration-exploitation
trade-off after repeated candidate searches are identified and subsequently removed from
consideration as search centers in subsequent algorithm iterations. This selection condition
is referred to as the Tabu Rule.

The second selection criteria is that a point is only selected as a center if its distance
from every point that is already selected as a center is greater than the candidate search
neighborhood sampling radius of the selected center. The candidate search neighborhood
sampling radius for all evaluated points is adaptive, with an initial value equal to rint. The
effect of changing this parameter was examined in [20]. Their results suggest that on more
complicated surfaces a relatively large initial search radius is more effective since it allows
the algorithm to explore a large region initially before focusing the search on a smaller region.
Step 2.4 of SOP explains how the value of the candidate search neighborhood of a center
point adapts. This selection criteria maintains the notion of exploration within the center
selection framework by not selecting a point as a center if it lies within the candidate search
sampling radius of an already selected center of the current algorithm iteration. This selection
condition is referred to as the Radius Rule.

3 Pseudo-code describing the P center selection procedure can be found in Figure A.3 (P_centers_sel) of the
Online Supplement.

123

424 J Glob Optim (2016) 66:417–437

At the end of this process, we will have obtained C = {c1, . . . , cP }, the set of P selected
centers.

Figure 3 illustrates an example of the center selection process. First the points in S(n) are
sorted according to the two-tier ranking system (Fig. 3b). In this example, four center points
(P = 4) are selected sequentially from the Ranked List. First, the point A1 on the first front
is selected because A1 has the minimum value of F1(x). Since A2 is within the candidate
search neighborhood radius of A1, and A3 is in the Tabu List, neither of these two points are
selected as centers. We move on to the second front and the next point that will be selected is
therefore B1 (since it has the lowest objective function F1(x) value on this front). Continuing
with the selection process, the four points that satisfy both the Radius Rule and the Tabu Rule
are A1, B1, B3, and C2, and are thus selected as centers, and the process stops.

In the special case where all points in the Ranked List have already been examined but
the number of selected centers is less than P (the number of centers needed), we re-examine
points in theRankedList with only theRadiusRule imposed. If the number of centers selected
is still less than P , the next P − i centers, ci+h, h = 1, .., P − i , will be selected iteratively
by cycling through the set of already selected centers {c1, ..., ci }, i.e. cqi+l = cl for q ≥ 1
and 1 ≤ l ≤ i , until a total of P centers are selected. This is because good solutions often
lie in a very small neighborhood. Therefore, it may be beneficial to focus the local candidate
search around those promising centers.

Step 2.3 candidate search

Once P center points have been selected, in Step 2.3 of SOP, simultaneous surrogate-assisted
candidate searches are performed around each center for selection of new points for expensive
evaluation. For every center point, one new point is selected for expensive evaluation after
candidate search, and subsequently evaluated.

The candidate search around each of the P center points is performed in parallel, within a
synchronousMaster-slave parallel framework. Themaster process selects the P center points
(Step 2.2) and sends one center point to each slave process. There are P slave processes.
Let us assume that the center ci is sent to slave process i for a fixed i ∈ {1, . . . , P}. Slave
process i performs a surrogate-assisted candidate search around the center point ci to select
a new evaluation point, xnewi , for expensive evaluation before returning the evaluated point
to the master process. The rest of this section provides a description of the mechanism of the
surrogate-assisted candidate search used to select xnewi from a center ci .

The surrogate-assisted candidate search mechanism employed in SOP is referred to as the
candidate search method, and is based on the idea of a candidate point method in which
we randomly generate a large number of candidate points around the center ci , and then
evaluate them on the surrogate. Müller and Shoemaker [14] compared the candidate point
method to the alternative, which is to search for a minimum with an optimization method
on the surrogate surface. Based on comparison of a number of test functions and surrogate
types, they found no statistical difference between overall algorithm performance when the
surrogate surface is searched either with candidate points or with an optimization search such
as Genetic Algorithm.

In the candidate search method, the center point ci is perturbed to generate a set of Ncand

candidate points,
{
v1, ..., vNcand

}
.4 For every candidate point v j where j = 1, . . . , Ncand,

we randomly select the dimensions of ci that will be perturbed, where each coordinate of
the center ci has a probability of ϕ(n) to be perturbed. If no dimension k of ci is selected for

4 Pseudo-code describing the candidate search method can be found in Figure A.4 (candidate_search) of the
Online Supplement.

123

J Glob Optim (2016) 66:417–437 425

perturbation, then one dimension is chosen at random. Any candidate point is then generated
by perturbing the selected variables of the center.

The algorithm updates ϕ(n) by

ϕ(n) = ϕ0 × [1 − ln(n P + 1)/ ln(MAXIT × P)], (3)

for all 0 ≤ n ≤ MAXIT − 1, where ϕ0 = min(20/d, 1), and MAXIT is the maximum
number of optimization iterations.

Equation 3 is adapted from [20] with n denoting here the number of optimization iterations
rather than the number of function evaluations. The rationale for the use of ϕ (n) is to reduce
the number of dimensions that are perturbed at any iteration. ϕ (n) gets smaller with each
iteration, gradually reducing the expected number of dimensions perturbed. An intuitive
explanation for why this approach is effective is that after many iterations, the solution is
possibly quite a good solution so one probably does not want to change the values in all
of a large number of dimensions at once. For many black-box problems the sensitivity of
the objective function to different decision variables may vary, and hence perturbing only a
subset of decision space may improve search efficiency. The efficiency of this approach has
been demonstrated on a related algorithm in [20], but the evidence supporting that efficiency
increases by reducing the number of perturbed dimensions is empirical, and is based on the
test problems previously studied.

Two candidate generation methodologies, using truncated normal and uniform random
perturbation, are employed within SOP and are referred to as nSOP and uSOP, respectively.

Let Iperturb be the subset of dimensions of ci that are selected to be perturbed, and define
ub(k) and lb(k) as the upper and lower bounds for values of variables of dimension k in
the domain. The following explains how a candidate point v j of the two versions of SOP is
generated via random perturbation of the center point ci :

V1 nSOP: v j = ci + Z , where Z(k) ∼ Ntruncated
(
0, r2i ; a(k), b(k)

)
, a(k) = lb(k)− ci (k)

and b(k) = ub(k) − ci (k) for k ∈ Iperturb, and Z(k) is zero for k /∈ Iperturb. See Online
Supplement for a description of Ntruncated, the truncated normal distribution.

V2 uSOP: v j (k) = U [a(k), b(k)] where a(k) = max(lb(k), ci (k) − ri), b(k) =
min(ci (k) + ri , ub(k)) for k ∈ Iperturb, and v j (k) = ci (k) for k /∈ Iperturb. Here,
U[u1, u2] is a uniform random variable on [u1, u2].

The perturbation neighborhood of ci in both of the above random candidate generation
methods is dependent upon the candidate search neighborhood radius ri . This radius ri is
adaptive. Step 2.4 of SOP provides an overview of how the value adapts for each center point.

After Ncand candidate points are generated, the candidate point whose estimated objective
functionvalue (from the surrogatemodel) is smallest is selected as the next function evaluation
point xnewi . Because the surrogate evaluation is inexpensive, this calculation is very fast, even
for large Ncand. Finally, the slave process evaluates (via expensive simulation) and returns
both xnewi and its function value f

(
xnewi

)
to the master process.

Step 2.4 adaptive learning and tabu archive

Once new points have been selected and evaluated through simultaneous candidate searches
in Step 2.3, Step 2.4 of SOP archives the performance of the search at the end of the current
algorithm iteration. This is done for adaptive learning and for subsequently changing the
search mechanism of the algorithm.

There are two core components of the adaptive learning process of SOP. In the first
component, the algorithm evaluates the candidate search around each center point ci as a

123

426 J Glob Optim (2016) 66:417–437

F
1

F 2

P1

P2

P3

v_ref

F
1

F 2

P1

P2

P3

v_ref

P_new

(a) (b)

Fig. 4 Example of hypervolume improvement. The initial Pareto front is {P1, P2, P3}. The hypervolume
corresponding to this Pareto front is the shaded area in (a). After adding the new point, the Pareto front
becomes {P1, P_new, P3}. The light area in (b) is the improvement made after the new point is added. a
Hypervolume. b Hypervolume improvement

success or a failure so as to (1) update the candidate search neighborhood radius ri of the
center point ci , and (2) update the failure count corresponding to the center point.

Candidate search around a center point ci is considered a success if xnewi induces a signifi-
cant improvement in the exploration-exploitation trade-off defined in Eq. 2. The hypervolume
improvement metric is employed to quantitatively measure this improvement.

Let S(n)
Pareto be the set of points in the decision space on Front 1 (Pareto set) based on the

bi-objective problem in Eq. 2 derived from the set S(n).
The decision about which points on the Ranked List will be made tabu will be made on

basis of the quantitative assessment of the performance of the best candidate point generated
around that point in the past. This assessment is based on the hypervolume. The hypervol-
ume of S(n)

Pareto is the area of the objective space that is dominated by S(n)
Pareto. Hypervolume

improvement of xnewi is simply the difference in the hypervolume of previously evaluated
points (non-dominated) with and without the newly evaluated point:5

HIi = HV
(

S(n)
Pareto ∪ xnewi

)
− HV

(
S(n)
Pareto

)
, (4)

where HV (S) refers to the hypervolume of a set S, and HIi refers to the hypervolume
improvement of xnewi corresponding to the center ci . Figure 4 shows an example of the
hypervolume improvement in the objective space.

If xnewi does not generate significant hypervolume improvement, i.e. HIi is smaller than
a pre-defined threshold τ , then the candidate search around ci is tagged as a failure. In
this case the algorithm search adapts via reduction of candidate search neighborhood of the
center point ci by a factor of two. This is done to concentrate the search around closer to
this center point, since a wider search radius did not induce an improvement. Furthermore,
the failure count of the center point is increased by one. If the failure count goes beyond a

5 Pseudo-code for hypervolume improvement can be found in Figure A.5 (hypervol_improv_indc) of the
Online Supplement.

123

J Glob Optim (2016) 66:417–437 427

pre-defined threshold, N f ail, the center point is added to the Tabu List, as it did not produce
an improvement in the exploration-exploitation trade-off after multiple candidate searches.6

However, we do not wish to keep a center point in the Tabu List forever. This is because
as the algorithm progresses and new points are evaluated, the surrogate model is updated
and it may be beneficial to reconsider a tabu point for center selection. Hence, SOP also
incorporates a mechanism for removing a point from the Tabu List. In the second component
of the adaptive mechanism, the Tabu List is updated, where a center point is removed from
the Tabu List if it has been in the Tabu List for the last Ntenure algorithm iterations. Ntenure is
referred to as the tenure length and is an algorithm parameter.

2.2 Convergence of nSOP

Theorem 1 Suppose that x∗ = minx∈D f (x) > −∞ is the unique global minimizer of f
in D such that minx∈D, ‖x−x∗‖≥η f (x) > f (x∗) for all η > 0. If infn≥0 ϕ(n) > 0, nSOP
converges almost surely to the global minimum.

The proof of convergence of the nSOP algorithm can be intuitively explained. First, in each
iteration, each dimension of the P centers has a bounded-away-from-zero probability of being
perturbed. Second, the range of sampling for a variable is a truncated normal distribution
covering the entire compact hyperrectangle domain D. Finally, the variance of the normal
distribution (perturbation distribution) is bounded above zero because it can only be reduced
in half at most Nfail times. Based on these three conditions, the probability of trial points
being inside a ball with a small radius centered at any point x in the compact domain is
bounded away from zero. Hence, as the number of iterations goes to infinity, the sequence of
random trial points visited by the algorithm is dense inD. The proof in theOnline Supplement
addresses the convergence of stochastic nSOP by building on an earlier proof with only one
center [18], which is in turn based on Theorem 2.1 in [24] for stochastic algorithms.

This argument that the trial points form a dense set does not apply to the uSOP version.
This is because when a dimension is perturbed, the range of perturbation does not cover the
whole domain D, so every ball around a point in the domain does not necessarily have a
positive probability of being sampled.

3 Numerical experiments

3.1 Alternative parallel optimization algorithms

We compare our algorithm to Parallel Stochastic RBF [19] and an evolutionary algorithm
that uses radial basis function approximation (ESGRBF) [17,21]. Parallel Stochastic RBF
was used to solve an optimization problem arising in groundwater bioremediation introduced
in [13], and ESGRBF was used to calibrate computationally expensive watershed models.
Regis and Shoemaker reported good results for their Parallel Stochastic RBF method com-
pared to many alternative methods including asynchronous parallel pattern search [8] and
a parallel evolutionary algorithm. ESGRBF was shown to significantly outperform conven-
tional Evolution Strategy (ES) algorithms and ES algorithms initialized by SLHDs [17]. We
thus compare our algorithms with these two methods.

6 Pseudo-code for tabu archiving can be found in Figure A.6 (update_tabu_archive) of the Online Supplement.

123

428 J Glob Optim (2016) 66:417–437

Table 1 Parameter values for SOP

Parameter Value Corresponding step

Ncand min (500d,5000) Step 2.3

rint (nSOP) 0.2 × l (D) Steps 2.2–2.4

rint (uSOP) 0.1 × l (D) Steps 2.2–2.4

Nfail 3 Step 2.4

Ntenure 5 Step 2.4

τ 10−5 Step 2.4

3.2 Experimental setup

All algorithms are run with P = 8 and P = 32 function evaluations per iteration. We use the
notation A-8P and A-32P to distinguish the number of function evaluations per iteration of
algorithm A. For example, Parallel StochRBF algorithm simulating 8 function evaluations
per iteration is denoted by StochRBF-8P.

We use a cubic RBF interpolation model [16] for the surrogate and Latin hypercube
sampling [27] to generate the initial evaluation points for all three examined algorithms. The
size of the initial experimental designs was set to n0 = min {n ∈ N : n ≥ 2(d + 1) and P|n},
which is the smallest integer larger than 2(d + 1) and divisible by P. The number 2(d + 1)
has previously been used and shown to be an efficient size for initial experimental data set
(see e.g. [18,19]).

The definition of n0 is based on the assumption that (1) each function evaluation takes
approximately the same time and (2) P parallel processors are available so that the P expen-
sive evaluations can be distributed to these P processors to use the available computing power
efficiently.

We do ten trials for each algorithm and each test problem. All algorithms use the same
initial experimental design in order to facilitate a fair comparison. Table 1 summarizes the
values of the algorithm parameters for SOP. l (D) denotes the length of the shortest side
of the hyperrectangle D. For Parallel StochRBF, all algorithm parameter values are set as
recommended in [19]. For ESGRBF, the parameters are set to μ = 4, λ = 20, and ν = 8 for
P = 8 and μ = 14, λ = 80, and ν = 32 for P = 32.

3.3 Test functions

We use ten benchmark functions taken from the BBOB test suite [7], namely the func-
tions F15–F24. All of them are 10 dimensional problems and multimodal. The functions are
listed in the Online Supplement. For definition and properties of these functions, refer to
[7].

3.4 Progress curve in wall-clock time

Although the test functions are computationally inexpensive, we assume that each function
evaluation takes one hour computation time and that other computational overhead arising,
for example, from updating the response surface is negligible. When the objective functions
are computationally expensive and function evaluations are done in parallel, the stopping
criterion for the optimization is typically a given limit on the allowable wall-clock time.

123

J Glob Optim (2016) 66:417–437 429

Under the assumption that P function evaluations are simulated simultaneously in each unit
of wall-clock time, we plot a progress curve as a function of wall-clock time. The progress
curve enables us to compare the performance of the different algorithms over a range of the
allowable computation time.

We set the maximum wall-clock time to be 60h. The total number of function evaluations
(= 60P) for P = 8 and P = 32 will then be 480 and 1920, respectively.

3.5 Experimental results and discussion

Figure 5 shows the progress curves of selected test functions. The mean of the best objective
function value is plotted on the vertical axis and thewall-clock time is plotted on the horizontal
axis. The figure shows both the case for doing simultaneously 8 expensive evaluations and
32 parallel evaluations for a comparison. For each test function, in addition to the main plot,
the last 15 iterations are plotted separately in the small sub-figure so that the tail of the plot
before the algorithm terminates can be seen clearly.

Overall, SOP together with either normal or uniform strategies leads to a very good
performance, clearly outperforming the other two alternative methods. We also find that for
P = 8, StochRBF-8P performs better than ESGRBF-8P. However, when P = 32,ESGRBF-
32P performs better than StochRBF-32P.

When doing more function evaluations per iteration, it should be expected that the
algorithm improves the objective function value in less wall-clock time since more infor-
mation is obtained for refining the response surface. However, in some cases, SOP-8P
outperformed the alternative methods that do 32 evaluations per iteration. For exam-
ple, for function F15, nSOP-8P and uSOP-8P with 8 processors got better results in a
shorter wall-clock time than StochRBF-32P and ESGRBF-32P. For function F16, both
ESGRBF-8P and ESGRBF-32P are worse than nSOP-8P, uSOP-8P, and StochRBF-8P.
In addition, ESGRBF-8P even outperformed ESGRBF-32P after around 15h indicating
that parallel ESGRBF is not efficient for higher number of processors on some func-
tions.

As for functions F21 and F22, nSOP and uSOP converge fastest and to a better final
solution. Moreover, nSOP-8P and uSOP-8P again outperformed both StochRBF-32P and
ESGRBF-32P by finding a lower objective function value in less wall-clock time. StochRBF-
32P did very poorly on these two test functions and StochRBF-8P even surpassed StochRBF-
32P in both functions.

In contrast to Stochastic RBF and ESGRBF, SOP with 32 processors always found the
solution with lower value in less wall-clock time than for SOP with 8 processors, indicating
that SOP was much more efficient at utilizing higher number of processors.

Although Parallel StochRBF was shown to work well in [19], we find that our method
outperformed it here.While SOP sophisticatedly selects various centers for generating candi-
date points using the Pareto trade-off strategy, Parallel StochRBF uses the current best point
as the only center and generates only one batch of candidate points from which the next P
function evaluation points are selected. We assume this is why Parallel StochRBF is not as
effective when P is large.

Additional results can be found in the Online Supplement. In particular, there is a compari-
son of the number of problems onwhich nSOP or uSOP is significantly better than alternative
algorithms in terms of the final solution. In this regard, both nSOP and uSOP are significantly
better than Parallel StochRBF on three and six (while worse on one and no) problems when
using 8 and 32 processors, respectively. We note that these results in the Online Supplement
are based only on the final values at the maximum number of iterations. However, looking at

123

430 J Glob Optim (2016) 66:417–437

0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F15

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60
−30

−20

−10

0

10

20

0 10 20 30 40 50 60
−260

−255

−250

−245

−240

−235

−230

−225

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F16

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

−255

−250

−245

0 10 20 30 40 50 60
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F18

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60
−38

−36

−34

−32

0 10 20 30 40 50 60
42

44

46

48

50

52

54

56

58

60

62

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F19

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

43.5

44

44.5

45

45.5

0 10 20 30 40 50 60310

320

330

340

350

360

370

380

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F21

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

312

314

316

318

320

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods on F22

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60
45

50

55

60

Fig. 5 Best objective function value found averaged over ten trials versuswall-clock time. Eight and thirty-two
points are simulated per iteration. Assume that each function evaluation takes 1h

the progress curves (Fig. 5), the reader can see that in many cases SOP could achieve accurate
solutions much more quickly (e.g. less than 20h of wall-clock time) than the other methods,
which is not reflected in these tables.

In addition to the BBOB testbed, we also tested our algorithms on a 12-dimensional prob-
lem arising in the detoxification of contaminated groundwater using aerobic bioremediation
[28]. The description of this problem is given in the Online Supplement. The parameters

123

J Glob Optim (2016) 66:417–437 431

0 10 20 30 40 50 60
300

400

500

600

700

800

900

1000

1100

1200

1300

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods with 8 points
 per iteration on GWB12D

nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60

360

380

400

420

0 10 20 30 40 50 60
300

350

400

450

500

550

600

650

700

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods with 32 points
 per iteration on GWB12D

nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

330

335

340

345

350

355

0 10 20 30 40 50 60
300

350

400

450

500

550

600

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

Global optimization methods with 64 points
 per iteration on GWB12D

nSOP−64P
uSOP−64P
StochRBF−64P
ESGRBF−64P

45 50 55 60

320

325

330

335

340

Fig. 6 Best objective function value on groundwater problem GWB12D averaged over ten trials versus wall-
clock time. Eight (top left), thirty-two (top right) and sixty-four (lower left) expensive evaluations are done
simultaneously per iteration

μ = 26, λ = 160, and ν = 64 are set for ESGRBF-64P. All other algorithm parameters are
the same as those used for BBOB testbed, and the results are given in Fig. 6.

From Fig. 6, both nSOP and uSOP can yield a faster reduction in function values than the
alternative methods at each wall-clock time unit. The mean and the standard deviation of the
best function value after 60 iterations are also reported in Table 2. We see that SOP can reach
the lowest average final value with the smallest standard deviation in all cases (uSOP is best
on P = 8, 32 while nSOP is best on P = 64).

We carry out a Mann-Whitney-Wilcoxon test to compare the final results of GWB12D
obtained in Table 2(a). For any two algorithmsA1, A2, we writeA1 ≈ A2 ifA1 andA2 are
not significantly different and write A1 ≺ A2 if A1 is significantly better than A2 at the 5%
level of significance. The statistical results are summarized in Table 2(b). As can be seen,
the results indicate that SOP can reduce the function values faster and achieve a better final
solution than the alternative methods.

3.6 Relative speedup

To compute parallel speedups for computationally expensive functions, we need to be able
to compare the number of function evaluations an algorithm required to reach a solution of a

123

432 J Glob Optim (2016) 66:417–437

Table 2 Results for GWB12D after 60h

Alg nSOP uSOP StochRBF ESGRBF

P Mean Std Mean Std Mean Std Mean Std

(a) Mean and standard deviation of the best function value after 60h for P = 8, 32 and 64 processors on
GWB12D. The best value for each P is shown in bold font

8 350.964 17.940 346.727 15.606 390.614 31.145 377.373 27.752

32 329.166 8.034 326.112 5.016 342.550 13.997 329.128 9.875

64 318.774 2.465 319.182 3.658 332.473 4.390 325.420 8.837

P Mann–Whitney–Wilcoxon test results

(b) Mann–Whitney–Wilcoxon test results for GWB12D at 5% significance level

8 nSOP ≈ uSOP ≺ ESGRBF ≈ StochRBF

32 nSOP ≈ uSOP ≈ ESGRBF ≺ StochRBF

64 nSOP ≈ uSOP ≺ ESGRBF ≺ StochRBF

certain accuracy. The results can vary according to the accuracy level, which we call α−level.
We define

α-Speedup(P) := I(α)(1)/I(α)(P) = n(α)(1)/
⌈

n(α)(P)/P
⌉

, (5)

where
n(α)(P) = argmini { f (xi) ≤ α given P processors} (6)

and
I(α)(P) =

⌈
n(α)(P)/P

⌉
. (7)

So n(α)(P) is the number of function evaluations and I(α)(P) is the number of iterations
that an algorithm required to reach a specified α−level of accuracy. Note that SOP is not
designed to run in serial. If SOP selects only one center per iteration, the point with the lowest
objective function valuewill be selected as the center in each iteration regardless of the results
obtained from the Pareto non-dominated sorting. We thus use Stochastic RBF, which was
proven to be very efficient [18] as a serial algorithm to compute I(α)(1) and n(α)(1).

The relative α-Speedup(P) for each test function is calculated for different α-levels,
α1 > α2 > α3 of accuracy. To get the three α-levels of nSOP for test functions in BBOB
testbed, nSOP(8) and Stochastic RBF are run for 496 function evaluations and nSOP(32)
for 1984 function evaluations. Let y∗

1 , y∗
8 , and y∗

32 be the average best objective func-
tion values obtained from Stochastic RBF, nSOP(8) and nSOP(32), respectively. We set
α3 = max

{
y∗
1 , y∗

8 , y∗
32

}
, α2 = α3 + |α3| × 0.01 and α1 = α3 + |α3| × 0.05. For

the GWB12D test function, we ran in addition nSOP(64) for 3968 function evaluations.
Let y∗

64 be the average best objective function values obtained from nSOP(64), and define
α3 = max

{
y∗
1 , y∗

8 , y∗
32, y∗

64

}
, α2 = α3 + |α3| × 0.01 and α1 = α3 + |α3| × 0.05.

Wecalculate also threeα-levels for uSOPusing the sameapproach as in nSOP.Theα-levels
for nSOP and uSOP are given in the Online Supplement. Table 3 shows the α-Speedup(P)
values.

The algorithm results will change as P changes since P centers are used to generate
candidate points and the response surface is updated only once every P evaluations. On
some problems, the change is quite helpful and actually reduces the number of evaluations

123

J Glob Optim (2016) 66:417–437 433

Table 3 α-Speedup of nSOP and uSOP

Test function P nSOP uSOP

α1 α2 α3 α1 α2 α3

F15 8 11.805 11.976 12.195 11.524 11.690 11.905

32 19.360 19.640 20.000 20.167 20.458 20.833

F16 8 2.318 2.545 3.159 3.105 3.182 4.889

32 5.100 4.308 5.378 6.556 5.600 9.059

F17 8 10.333 23.706 27.500 8.857 21.211 24.750

32 24.800 57.571 61.875 20.667 44.778 49.500

F18 8 17.529 23.000 24.800 12.417 15.607 17.103

32 37.250 48.556 55.111 29.800 39.727 45.091

F19 8 8.800 6.500 5.689 7.600 9.639 8.267

32 29.333 37.143 34.700 22.800 31.545 19.840

F20 8 5.636 5.333 2.032 6.200 6.400 2.143

32 20.667 16.000 3.048 15.500 12.800 3.649

F21 8 3.818 14.056 19.192 3.500 14.056 10.848

32 8.400 31.625 38.385 7.000 31.625 38.385

F22 8 12.391 10.258 10.578 17.375 13.714 4.698

32 40.714 31.800 8.207 39.714 36.000 32.889

F23 8 2.000 8.375 1.746 2.000 13.800 2.651

32 2.000 33.500 5.000 2.000 23.000 4.071

F24 8 7.275 9.226 8.197 6.577 7.220 7.267

32 13.741 14.382 14.706 24.429 20.286 18.957

GWB12D 8 3.850 3.255 3.000 4.289 3.345 3.397

32 9.059 8.950 9.000 8.150 7.462 7.926

64 12.833 11.933 11.812 12.538 12.125 12.588

required to reach an α-level. In this case, the speedup is “superlinear”, i.e. α-Speedup(P)
is greater than P . The superlinear speedup holds at many α-levels for problems F17, F18,
F21, and F22. F17 is Schaffers function, which is highly multimodal– both the frequency and
amplitude of themodulation vary. F18 is amoderately ill-conditioned counterpart to F17,with
conditioning of about 1000. Both F21 and F22 are Gallagher’s Gaussian function, where F21
consists of 101 local optima, and the conditioning around the global optimum is about 30. F22
consists of 21 local optima and the conditioning around the global optimum is about 1000 [7].

The three functions that have rather poor scalability (i.e. speedup low compared to P)
are F16, F20, and F23. These functions are described in [7] as being highly rugged and
moderately to highly repetitive.

For F15, the superlinear speedup holds for 8 processors but not for 32 processors. As for
F19, and F24, although they do not achieve a superlinear speedup, we can see that the speedup
seems to improve in the number of processors. These three functions, despite being highly
multimodal, are not as rugged as thosementioned in the previous paragraph. The global ampli-
tude of F15 is large compared to local amplitudes. As for F24, the function was constructed
to be deceptive for some evolutionary algorithms with large population size. This might be
the reason why the scalability of SOP on this test function deteriorates with 32 processors.

123

434 J Glob Optim (2016) 66:417–437

Finally, we do not get good scalability for the groundwater bioremediation problem. The
speedup is around 3, 9, and 12 for 8, 32, and 64 processors. Recall however none of the other
algorithms did as well as SOP on this black-box problem (Fig. 6).

3.7 Sensitivity of SOP to Nfail

Alarger Nfail allows the algorithm to search longer around a particular centerwith no improve-
ment until it is declared as tabu (search more locally). On the other hand, a small Nfail allows
the algorithm to leave the region around centers with no improvement earlier (search more
globally).

To examine the effect of changing Nfail, SOP is implemented also with Nfail = 0 (which is
the extreme case where any unimproved center is immediately tabu) and Nfail = 10 (longer
length before being tabu), while our default implementation is Nfail = 3. Figure 7 shows the
comparison between these implementations on some problems with nSOP-8P and uSOP-8P.

The results suggest that the best Nfail varies from problem to problem. For example, for
uSOP-8P (Fig. 7b), on the test function F18, the algorithm implemented with Nfail = 10
results in faster progress while the algorithm with the default Nfail = 3 is better on the test
function F15. In addition, for the same test problem, the best Nfail of nSOP and uSOP can
also be different (e.g. F18).

0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

nSOP with different N
fail

 on F15

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60
−15

−10

−5

0

5

0 10 20 30 40 50 60
−255

−250

−245

−240

−235

−230

−225

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

nSOP with different N
fail

 on F16

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60

−254

−252

−250

0 10 20 30 40 50 60
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

nSOP with different N
fail

 on F18

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60

−36

−35

−34

0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

uSOP with different N
fail

 on F15

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60
−15

−10

−5

0 10 20 30 40 50 60
−260

−255

−250

−245

−240

−235

−230

−225

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

uSOP with different N
fail

 on F16

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60
−256

−254

−252

−250

−248

−246

0 10 20 30 40 50 60
−35

−30

−25

−20

−15

−10

−5

0

5

Wall clock time (hours)

M
ea

n
be

st
 fu

nc
tio

n
va

lu
e

uSOP with different N
fail

 on F18

N
fail

= 0

N
fail

= 3

N
fail

= 10

45 50 55 60

−35

−34

−33

−32

(a)

(b)

Fig. 7 Best objective function value found by SOP-8P with different Nfail averaged over ten trials versus
wall-clock time. a nSOP-8P. b uSOP-8P

123

J Glob Optim (2016) 66:417–437 435

We briefly discuss the results using a large number of processors without providing the
plots. When P = 32, similar results are obtained when using Nfail = 3 and Nfail = 10. This
is because when P is large, multiple tasks take place at the same time around each of the P
centers, and so thememory archive for tabu list does notmatter thatmuch. Also, we found that
in one case the result obtained with Nfail = 0 is best. Although this is not typical, the reason
might be that immediate tabu allows the algorithm to explore the surface more globally.

4 Conclusions

Parallel computation has the potential to greatly reduce the wall-clock time to solve a global
optimization problem for a computationally expensive objective function, but that potential
can only be realized if the parallel algorithm is able to effectively select the work to be
computed in parallel. The efficiency of the parallel surrogate algorithms depends on the P
decision vectors selected for function evaluations in each iteration to provide the most useful
information over the course of many iterations. We want these values to both help improve
the surrogate surface accuracy and to help identify the neighborhood of the global minimum.

In this paper we introduced the algorithm, SOP, which is based on the selection of center
points through non-dominated sorting. To improve the diversity, promising points on the
sorted fronts whose function values are small and are far away from other evaluated points
are selected as centers. The selected centers are then used for generating a set of candidate
points from which the next function evaluation points are chosen. Multiple centers gener-
ate a more diverse set of candidate points. We also incorporate a tabu structure to further
diversify the search by not allowing some points on the better fronts to be selected under
certain conditions. Two versions of SOP, nSOP and uSOP, relying on the different candidate
generation methodologies are proposed. It can be shown that the nSOP algorithm converges
to the global optimum almost surely.

In the numerical experiments, we compared SOPwith two parallel RBF-based algorithms,
Parallel StochRBF and ESGRBF. Our numerical results indicate that overall SOP was more
effective than the alternative methods on the synthetic test functions. In some cases, SOP
with just 8 processors could obtain a better result in less wall-clock time than the alternative
algorithms with 32 processors. The results on a groundwater bioremediation problem using
up to 64 processors also showed that our algorithmwas significantly better than the alternative
methods. Hence, these results are expected to have a positive impact in the field of expensive
black-box optimization, which applies to many areas, in particular in (but not limited to)
engineering.

Acknowledgments This research was conducted primarily when Dr. Krityakierne was a PhD student in
Applied Mathematics at Cornell University. During that time, her time and that of Prof. Shoemaker were
supported in part by NSF grants 1116298 (CISE) and 1049033 and DOE-SciDAC DE-SC0006791 and by
the Fulbright and the King Anandamahidol Foundation of Thailand fellowships to Dr. Krityakierne. All the
authors continued to work on the manuscript in their new positions after leaving Cornell. Financial support
for completing the manuscript was provided by National University of Singapore.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

436 J Glob Optim (2016) 66:417–437

References

1. Akhtar, T., Shoemaker, C.A.: Multi objective optimization of computationally expensive multi-modal
functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64, 17–32 (2015)

2. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: Moi-mbo: multiobjective infill for parallel
model-based optimization. In: Learning and Intelligent Optimization, pp. 173–186. Springer, New York
(2014)

3. Booker,A.J., Dennis Jr, J.E., Frank, P.D., Serafini,D.B., Torczon,V., Trosset,M.W.:A rigorous framework
for optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1–13 (1999)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II. Lect Notes Comput Sci 1917, 849–858 (2000)

5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, London (2001)
6. Gutmann, H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227

(2001)
7. Hansen, N., Finck, S., Ros, R., Auger, A., et al: Real-parameter black-box optimization benchmarking

2009: Noiseless functions definitions (2009)
8. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for nonlinear optimization.

SIAM J. Sci. Comput. 23(1), 134–156 (2001)
9. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via

sequential kriging meta-models. J. Glob. Optimiz. 34(3), 441–466 (2006)
10. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions.

J. Glob. Optim. 13(4), 455–492 (1998)
11. Li,Y., Liu, L., Long, T., Chen,X.:Multiple-optima searchmethod based on ametamodel andmathematical

morphology. Eng. Optim. 48(3), 437–453 (2016)
12. Liu, H., Shengli, X., Ma, Y., Wang, X.: Global optimization of expensive black box functions using

potential lipschitz constants and response surfaces. J. Glob. Optimiz. 63(2), 229–251 (2015)
13. Mugunthan, P., Shoemaker, C.A., Regis, R.G.: Comparison of function approximation, heuristic, and

derivative-based methods for automatic calibration of computationally expensive groundwater bioreme-
diation models. Water Resour. Res. 41(11) (2005). doi:10.1029/2005WR004134

14. Müller, J., Shoemaker, C.A.: Influence of ensemble surrogatemodels and sampling strategy on the solution
quality of algorithms for computationally expensive black-box global optimization problems. J. Glob.
Optimiz. 60(2), 123–144 (2014)

15. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased disimpl algorithm for expen-
sive global optimization. J. Glob. Optimiz. 59(2–3), 545–567 (2014)

16. Powell, M.J.D.: The theory of radial basis function approximation in 1990. In: Advances in Numerical
Analysis, vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press,
Oxford, pp. 105–210 (1992)

17. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms for the optimiza-
tion of costly functions. IEEE Trans. Evol. Comput. 8(5), 490–505 (2004)

18. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of
expensive functions. INFORMS J. Comput. 19(4), 497–509 (2007)

19. Regis, R.G., Shoemaker, C.A.: Parallel stochastic global optimization using radial basis functions.
INFORMS J. Comput. 21(3), 411–426 (2009)

20. Regis, R.G., Shoemaker, C.A.: Combining radial basis function surrogates and dynamic coordinate search
in high-dimensional expensive black-box optimization. Eng. Optim. 45(5), 529–555 (2013)

21. Shoemaker, C.A., Regis, R.G., Fleming, R.C.: Watershed calibration using multistart local optimization
and evolutionary optimization with radial basis function approximation. Hydrol. Sci. J. 52(3), 450–465
(2007)

22. Sobester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high
fidelity computer simulations. Struct. Multidiscip. Optim. 27(5), 371–383 (2004)

23. Sóbester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response
surface approximation models. J. Glob. Optimiz. 33(1), 31–59 (2005)

24. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol.
65. Wiley, London (2005)

25. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple
surrogate techniques. J. Glob. Optimiz. 56(2), 669–689 (2013)

26. Vrugt, J. A., Robinson, B. A.: Improved evolutionary optimization from genetically adaptivemultimethod
search, Proc Nat Acad Sci, 104(3), 708–711 (2007)

123

http://dx.doi.org/10.1029/2005WR004134

J Glob Optim (2016) 66:417–437 437

27. Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric latin hypercube designs.
J. Stat. Plan. Inference 90(1), 145–159 (2000)

28. Yoon, J.-H., Shoemaker, C.A.: Comparison of optimization methods for ground-water bioremediation. J.
Water Resour. Plan. Manag. 125(1), 54–63 (1999)

123

	SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Differences between SOP and previous algorithms

	2 Algorithm description
	2.1 General algorithm framework
	Step 2.2 non-dominated sorting and P center selection
	Step 2.3 candidate search
	Step 2.4 adaptive learning and tabu archive
	2.2 Convergence of nSOP

	3 Numerical experiments
	3.1 Alternative parallel optimization algorithms
	3.2 Experimental setup
	3.3 Test functions
	3.4 Progress curve in wall-clock time
	3.5 Experimental results and discussion
	3.6 Relative speedup
	3.7 Sensitivity of SOP to Nfail

	4 Conclusions
	Acknowledgments
	References

