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Abstract In this paper, the propagation of dust-ion-

acoustic (DIA) waves in a magnetized collisionless com-

plex (dusty) plasma consisting of superthermal electrons

are investigated. In the discharge plasma, the electron

temperature is usually much greater than ion temperature.

Thus, the electron distribution function DF), is generally

nonmaxwellian, has to be modeled. For this purpose, the

generalized Lorentzian (j)-DF is used to simulate the

electron DF. Two types of modes (fast and slow DIA

modes) exist in this plasma. By deriving Korteweg-de

Vries (KdV) equation, using reductive perturbation

method, both regions of solitary waves, rarefactive (dark)

and compressive (bright) solitary waves, are allowed to be

propagated in this plasma. Properties of DIA solitary waves

are investigated numerically. How dust grains and super-

thermal electrons affect the sign and the magnitude of

nonlinear coefficient of KdV equation is also discussed in

detail. It is noted that the velocity, amplitude, and width of

a DIA soliton is studied as well.

Keywords Superthermal electrons � Kappa distribution

function � DIA waves � Magnetized dusty plasma

Introduction

In last years, complex (dusty) plasmas have achieved a

large interest because of their importance in astrophysical

and upper atmosphere (planetary rings, comets and mag-

netosphere) as well as in the lower part of the Earth’s

ionosphere [1–5].

Dusts are micron-sized particles and become electrically

charged through interaction with the background plasma,

causing them to act as a third charged plasma species.

However, when an electron–ion plasma contains extre-

mely massive, micrometer-size charged dust grains, there

are appeared the possibility of new normal modes. Such as

dust-acoustic (DA) waves [2, 6, 7], dust-ion-acoustic (DIA)

waves [6, 7], dust-lattice (DL) waves [7–9], etc.

Dusty plasma is also an important issue for the industrial

community [10]. Since plasmas are used to produce

microchips, thin film coatings and hardened metals which

in all of these cases, dust might produced from materials in

the plasma reactor. Accordingly, the study of dusty plasma

has been advanced regarding to these two reasons.

Solitons are nonlinear and localized structures that propa-

gate when the nonlinearity and dispersion are balanced. They

are a subject of continuing interest because of their practical

importance. A comprehensive nonlinear theory for arbitrary

amplitude ion-acoustic solitary (IAS) waves was suggested by

Sagdeev [11] for an unmagnetized plasma. The theory has

been extended to cover oblique soliton propagation with

respect to a constant magnetic field [12–15]. Recently, some

works have been done on the propagation of dust acoustic

solitary (DAS) waves in different views. Several investiga-

tions [13, 16–19] have shown that the dust charge variation

plays an important role in the nonlinear properties of solitary

waves structure. Also, the propagation of DAS in cylindrical

and spherical geometry has been studied [20, 21] which show

different behavior of DAS in cylindrical and spherical

geometry rather than planar geometry.

In this paper, we focus our attention on the nonlinear

properties of DIA solitary waves in the presence of
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superthermal electrons in magnetized complex plasma in

planar geometry.

Although, the electron DF in the Q-machine is almost

Maxwellian. In the RF discharge, it is non-Maxwellian

[22]. There are a numerous researches based on non-

Maxwellian DF for the plasma particles [23–25]. Among

the most popular non-Maxwellian DF is the generalized

Lorentzian (j) DF.

The kappa DF applications include, for instance, an

interpolation of observations in the Earth’s foreshock

(3\j\6) [23, 26] and solarwind models with coronal

electrons satisfying (2\j\6) [23, 27, 28]. In laser matter

interactions or plasma turbulence, a superthermal DF was

also observed [23, 29]. Therefore, we use it to simulate the

electron DF.

The manuscript is organized as follows: the basic equa-

tion, describing the dusty plasma system under consideration

and incorporating the variable dust charge, is given in ‘‘Basic

Equation’’. ‘‘Linear Dispersion Relation’’ is devoted to lin-

ear approximation by which linear dispersion relation is

given. In ‘‘Derivation of the Nonlinear KdV Equation’’, we

drive a KdV equation for small amplitude nonlinear DIA

soliton wave. In fifth section the ‘‘Results’’ are discussed.

The ‘‘Conclusion’’ is given in the Last section.

Basic Equation

We consider a tree-component complex plasma consisting

of cold positively charged ions, negatively charged dust

grains and hot electrons, in the presence of an external

magnetic field B~¼ Bẑ where B is the strength of the

magnetic field and ẑ is a unit vector along the z direction.

Thus, the set of equations in this case are as follows:

oni

ot
þr � niv~ið Þ ¼ 0; ð1Þ

ov~i

ot
þ v~i � rð Þ � v~i ¼

zie

mi
�ruþ v~i � Bẑ

c

� �
; ð2Þ

ond

ot
þr � ndv~dð Þ ¼ 0; ð3Þ

ov~d

ot
þ v~d � rð Þ � v~d ¼

�zde

md
�ruþ v~d � Bẑ

c

� �
: ð4Þ

The dust grains, positive ions and electrons are coupled

through Poisson’s equation

r2u ¼ 4pe ne þ zdnd � zinið Þ: ð5Þ

And in equilibrium, the following charge neutrality

condition

n0e þ zdn0d � zin0i ¼ 0; ð6Þ

is fulfilled. The variables nd; ni and ne refer to dust grain

density, ion density and electron density respectively which

n0d; n0i and n0e being their equilibrium values. v~iðv~dÞ is the

ion (dust) fluid velocity vector, u is the self-consistent

electric potential, ziðzdÞ is the charge state of an ion (dust

grain), e is the magnitude of the electrocharge, c is the

speed of light, and miðmdÞ is the mass of an ion (a dust

grain) in the plasma.

The electron DF is considered to be non-Maxwellian.

The j DF is a convenient option for this purpose. As was

mentioned, the following j DF that is modified by the

presence of an electrostatic potential is introduced.

f vek; ve?
� �

¼ n0Cðjþ 1Þffiffiffi
p
p

vTe;jj3=2Cðj� 1=2Þ 1þ
mev2

ek
� 2eu

mejv2
Te;j

" #�j
dðve?Þ
2pve?

;

ð7Þ

where f is the velocity DF, ?ðkÞ is the sign denotes the

perpendicular (parallel) direction to the B, n0n0 is the

equilibrium electron density, me is the electron mass, C is

the gamma function, d is the Dirac delta function and is

used to model the electron temperature anisotropy, Tek �
Te?; by this choice, Te? does not appear in the formalism,

vTe is the electron thermal velocity

ffiffiffiffiffi
Tek
me

q� �
; j is the

spectral index j[ 3=2ð Þ and vTe;j is the modified thermal

speed vTe;j ¼ vTe
2j�3

j

� �1=2
� �

:

The electron density is then obtained by integrating the

DF over the whole velocity range,

ne ¼
Z1

0

2pve?dve?

Z1

�1

f vek; ve?
� �

dvek:

The electron density, in the weak nonlinear regime

eu=Tek\1
� �

; has the following expression,

ne

n0e
¼ 1þ aj

eu
Tek
þ bj

eu
Tek

� �2

; ð8Þ

where

aj ¼
2j� 1

2j� 3
; ð9Þ

bj ¼
4j2 � 1

2 2j� 3ð Þ2
: ð10Þ

Linear Dispersion Relation

Let us first study the linear dispersion relation. To do that,

assume a DIA wave whose propagation vector k~; is in the

x–z plane and the angle between k~ and B~ is h: Thus, for

positive ions the model equations in this case are as,
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oni

ot
þ o nivixð Þ

ox
þ o nivizð Þ

oz
¼ 0; ð11Þ

ovix

ot
þ vix

o

ox
þ viz

o

oz

� �
vix ¼

�zie

mi

ou
ox
þ zie

mic
Bviy; ð12Þ

oviy

ot
þ vix

o

ox
þ viz

o

oz

� �
viy ¼ �

zie

mic
Bvix; ð13Þ

oviz

ot
þ vix

o

ox
þ viz

o

oz

� �
viz ¼

�zie

mi

ou
oz
; ð14Þ

for dust grains are,

ond

ot
þ o ndvdxð Þ

ox
þ o ndvdzð Þ

oz
¼ 0; ð15Þ

ovdx

ot
þ vdx

o

ox
þ vdz

o

oz

� �
vdx ¼

zde

md

ou
ox
� zde

mdc
Bvdy; ð16Þ

ovdy

ot
þ vdx

o

ox
þ vdz

o

oz

� �
vdy ¼

zde

mdc
Bvdx; ð17Þ

ovdz

ot
þ vdx

o

ox
þ vdz

o

oz

� �
vdz ¼

zde

md

ou
oz
; ð18Þ

and passion equation is,

r2u ¼ 4pe ne þ zdnd � zinið Þ; ð19Þ

where vjðj ¼ x; y; zÞ is the j component of the ion (dust)

hydrodynamic velocity.

To linearize (8) and (11–19), the following dispersion

relation is obtained.

1þ ajðkkDeÞ�2

� sin2 h
x2

pd

x2 1� x2
Bd

	
x2

� �þ x2
pi

x2 1� x2
Bi=x2ð Þ

 !

� cos2 h
x2

pd

x2
þ

x2
pi

x2

 !

¼ 0; ð20Þ

where kDe ¼ Te

4pe2n0e

� �1=2

is the electron Debye length,

xpd ¼
4pz2

de2n0d

md

� �1=2

is the dust plasma period, xpi ¼
4pz2

i e2n0i

mi

� �1=2

is the ion plasma period, xBd ¼
zdeB

md
is the

dust-cyclotron frequency and xBi ¼
zieB

mi
is the ion-cyclo-

tron frequency.

Because of the large mass of the dust grains xpd � xpi

and xBd � xBi; therefore (20) can be rewritten in the

following form:

1þ ajðkkDeÞ�2 �
x2

pi sin2 h

x2 1� x2
Bi=x

2ð Þ �
x2

pi cos2 h

x2
¼ 0:

ð21Þ

And with some straightforward manipulations, the

spectrum of the DIA waves is obtained as follows:

where q ¼ z2
i n0i

n0e
and cs ¼ Te

mi

� �1=2

is the ion-acoustic

velocity.

If k2c2
s � x2

Bi and k2k2
De � 1 (22) gives the dispersion

relation of the fast DIA wave

x ¼
ffiffiffiffiffi
q
aj

r
kcs 1þ ajl2 sin2 h

2k2k2

De

�
k2k2

De

2aj

" #
; ð23Þ

where l ¼ xBi=xpi. The effect of the magnetic field thus is

small, since k2l2 � 1: The plasma must be dense and the

magnetic field weak to support this mode because

xpi � xBi:

If k2c2
s � x2

Bi and k2k2
De � 1 (22) yields the disper-

sion relation of the slow DIA mode

x ¼
ffiffiffiffiffi
q
aj

r
kcs cos h 1�

k2k2

De
sin2 h

2ajl2
�

k2k2

De

2aj

" #
: ð24Þ

This mode is supported by rare plasma in the presence of

a strong magnetic field. The effect of magnetic field is

strong as in the slow mode because in this case k2l2 � 1.

Derivation of the Nonlinear KdV Equation

As has been shown, the effects of including the equations

of motion of the massive dust component of the dusty

plasma introduce a very small correction to the physics of

the dispersion relation of the DIA waves (similar to [25]).

We can then safely assume that the dust grains are

immobile. Then we introduce the normalizations cs=kDet �
t; x=kDe � x; v=cs � v; ni=n0i � ni and eziu=Te � u:

After these normalizations (8) can be expanded to obtain

x2 ¼ 1

2
x2

Bi þ
qk2c2

s

k2k2

De
þ aj

� x2
Bi þ

qk2c2
s

k2k2

De
þ aj

 !2

� 4qk2c2
s cos2 h

k2k2

De
þ aj

2
4

3
5

1=2
2
64

3
75; ð22Þ
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ne

n0e
¼ 1þ aj

zi
uþ bj

z2
i

u2: ð25Þ

Substituting (25) into (19), (11–19) can be rewritten in

the following forms,

oni

ot
þ o nivixð Þ

ox
þ o nivizð Þ

oz
¼ 0; ð26Þ

ovix

ot
þ vix

o

ox
þ viz

o

oz

� �
vix ¼ �

ou
ox
þ q1=2lviy; ð27Þ

oviy

ot
þ vix

o

ox
þ viz

o

oz

� �
viy ¼ �q1=2lvix; ð28Þ

oviz

ot
þ vix

o

ox
þ viz

o

oz

� �
viz ¼ �

ou
oz
; ð29Þ

o2u
ox2
þ o2u

oz2
¼ ajuþ

bj

zi

u2 þ q 1� nið Þ: ð30Þ

For simplicity, a new axis g is defined in the x–z plane

which has angle h with the z-axis. Then the 1-D wave

propagating is considered along the g-axis. Therefore, the

complete set equations are:

oni

ot
þ sin h

o nivixð Þ
og

þ cos h
o nivizð Þ

og
¼ 0; ð31Þ

ovix

ot
þ vix sin h

ovix

og
þ viz cos h

ovix

og
¼ � sin h

ou
og
þ q1=2lviy;

ð32Þ
oviy

ot
þ sin hvix

oviy

og
þ cos hviz

oviy

og
¼ �q1=2lvix; ð33Þ

oviz

ot
þ sin hvix

oviz

og
þ cos hviz

oviz

og
¼ � cos h

ou
og
; ð34Þ

o2u
og2
¼ ajuþ

bj

zi

u2 þ q 1� nið Þ: ð35Þ

To study DIA solitary waves in this dusty plasma

system, we employ a reductive perturbation theory and

construct a weakly nonlinear theory for DIA solitary waves

with small but finite amplitude.

According to this method we introduce the stretched

time–space coordinates:

f ¼ e1=2 g� vmtð Þ; s ¼ e3=2t; ð36Þ

where the velocity vm t ¼ f ; sð Þ is determined later. Also we

expand ni; vi and u in power series in e, as follows:

ni ¼ 1þ enð1Þ þ e2nð2Þ; ð37Þ

vi ¼ evð1Þi þ e2v
ð2Þ
i ; ð38Þ

u ¼ euð1Þ þ e2uð2Þ; ð39Þ

where e is a smallness parameter.

From the dispersion relation, it is obvious that l� 1

(weak magnetic field) for fast mode and l� 1(strong

magnetic field) for the slow mode, therefore O lð Þ ¼ e3=2

for fast mode and with straightforward manipulation we

obtain a KdV equation as follows:

ou
os
þ au

ou
of
þ b

o3u

of3
¼ 0; ð40Þ

where

a ¼
3aj 1

	
q1=2

� �
� 2bj q1=2

	
zi

� �
2a3=2

j

; ð41Þ

b ¼ q1=2

2a3=2
j

; ð42Þ

u ¼ uð1Þ: ð43Þ

And vf the phase velocity of the linear fast mode

propagation is given as:

vf ¼
ffiffiffiffiffi
q
aj

r
; ð44Þ

To obtain the proper order of l, in the case of the slow

mode, we have to consider O lð Þ ¼ e�1=2 (strong magnetic

field) and get the following KdV equation:

ou
os
þ a cos hu

ou
of
þ b cos h

o3u

of3
¼ 0; ð45Þ

where a and b are the same of (41) and (42) and u ¼ uð1Þ:
Also vs; the phase velocity of the linear slow mode

propagation, is obtained as:

vs ¼
ffiffiffiffiffi
q
aj

r
cos h: ð46Þ

To study the nonlinear stage, it is necessary to obtain the

soliton solution of (40) and (45). The stationary single

soliton of (40) is obtained by assuming u ¼ u g� uf s
� �

;

where uf is the constant soliton velocity in the moving

frame (the frame which moves with vf :) Then by imposing

the appropriate conditions, namely, u! 0; ofu! 0; and

offu! 0; as g� uf s


 

!1; one obtains

u ¼ 3uf

a
sec h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

12b










ufm

s
g� uf s
� �" #

; ð47Þ

ufm ¼
3uf

a
; ð48Þ

Df ¼ 4

ffiffiffiffiffiffiffiffiffi
3b
a












s
u�1=2

fm cosh�1
ffiffiffi
2
p

; ð49Þ

where um is the maximum amplitude and Df is the half

width at half maximum of the soliton.
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In the laboratory frame, the soliton velocity is

uf ;lab ¼ uf þ
ffiffiffiffiffi
q
aj

r
: ð50Þ

The nonlinear evolution of the slow DIA wave follows

(45). The stationary solution of this equation, in a quite

similar manner, is obtained by assuming u ¼ u g� ussð Þ,
where us is the constant soliton velocity in the moving

frame (the frame which moves with vs). After imposing the

proper boundary conditions, that is, u! 0; ofu! 0; and

offu! 0; as g� ussj j ! 1; the following is obtained:

u ¼ 3 us

a cos h
sec h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

12b










usm

s
g� ussð Þ

" #
; ð51Þ

usm ¼
3 us

a cos h
; ð52Þ

Ds ¼ 4

ffiffiffiffiffiffiffiffiffi
3b
a












s
u�1=2

sm cosh�1
ffiffiffi
2
p

: ð53Þ

In the laboratory frame the soliton velocity is

us;lab ¼ us þ
ffiffiffiffiffi
q
aj

r
cos h: ð54Þ

Results

At first, let us to study the effect of the dust grains and

superthermal electrons on the linear dispersion relation of

fast mode (23) and slow mode (24).

Figures 1 and 2 exhibit the variation of phase velocity

for fixed zi = 1 and two different q.

In the absence of dust, q = zi while, q = 2zi signifies the

case that the total negative charge of electrons and dusts are

equal. Precisely, in agreement with the physical prediction

[based on (23) and (24)], for larger q, both the fast mode

(Fig. 1b) and the slow mode (Fig. 2b), the phase velocity

has been larger in comparison to q = zi (Figs. 1a, 2a).

It is also observed from Figs. 1 and 2 that by increasing the

population of the superthermal electrons (smaller j), both of

modes propagate with smaller phase velocity in comparison

with the Maxwellian plasma (similar to the results of [30]).

Figure 3 shows the changes of coefficients a; b with j
for different q. It appears that the dust grains can have a

signification influence on the behavior of DIA solitary

waves and deeply modify its nonlinear feature.

It is found from our numerical analysis with appearances

of dust grains (Fig. 3b), the coefficient a of nonlinear-

ity increases for larger j (the smaller population of

Fig. 1 The linear dispersion

relation of fast mode with h ¼
0:7rad and l ¼ 10�3 for fixed

zi = 1 and (a) q = zi,
(b) q = 2zi

Fig. 2 The linear dispersion

relation of slow mode with h ¼
0:7rad and l ¼ 103 for fixed

zi = 1 and (a) q = zi,
(b) q = 2zi
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superthermal electrons). This means, DIA solitons should

move faster in moving frame which moves with vf ðvsÞ:
Also for 2	 j\3; the coefficient a becomes negative (it

has been proved the KdV equation with a negative coef-

ficient for the nonlinear term governs the propagation of

dark (rarefactive) solitons) [12, 31].

Nevertheless, in the absence of dusts (Fig. 3a), q = zi,

for larger j; nonlinear term in the KdV equation is smaller

and therefore IA solitons should move slower in moving

frame which moves with vf ðvsÞ:
In both of figures, for the larger population of super-

thermal electrons (smaller j), the coefficient of the dis-

persive term of the KdV equation, b; becomes smaller and

consequently the solitons have to be much slimmer [30].

Figure 4 depicts the influence of the charge state of ions,

zi, on the coefficients a; b for fixed q = 2zi.

It is clear from the Fig. 4 that for larger number of

charge on ions, the coefficients a; b become larger there-

fore DIA solitons have to be faster and wider.

It is obvious from this investigation that dusts and

superthermal electrons, affect on the properties of DIA

solitary waves in dusty plasma. In order to obtain a better

insight into the role of the dusts and superthermal electrons

on the nature of DIA solitary waves, we perform a

numerical simulation of the velocity, u, of DIA solitary

waves and their width.

Figure 5 depicts the normalized soliton velocity versus

j for ufm ¼ usm ¼ 0:1 and h ¼ 0:7 rad: As seen from this

figure, the presence of superthermal electrons, for both

modes, is that for a larger population of superthermal

electrons (smaller j) the soliton velocity significantly

decreases [30]. Also for larger q, (Fig. 5b, c), the DIA

waves have been faster [32, 33] and the velocity of DIA

soliton in the Maxwellian limit (j [ 15) is supersonic for

both modes, but the soliton velocity of the slow mode is

always subsonic when the dust grains are absent (i.e.

q = zi) [30].

It is clear from the Fig. 5c that the soliton velocity from

zi = 2 is larger in comparison to zi = 1 (Fig. 5b) and the

soliton velocity of the fast mode, is always supersonic.

The last figure is about the effect of j; q and zi on the

width of DIA solitons.

The width of both modes does not depended on h (49),

(53) therefore, if we choose equal maximum amplitude for

the slow and fast DIA solitons, their width would be the

same.

Fig. 3 The changes of

coefficients a;b with j for fixed

zi ¼ 1 when (a) q = zi,
(b) q = 2zi

Fig. 4 The coefficients a;b
versus j for fixed q = 2z and

(a) zi = 1, (b) zi = 2
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Figure 6a exhibits, in the absence of dusts, q = zi, for

larger population of superthermal electrons (smaller j) the

soliton width is smaller [30, 32] but Fig. 6b and c indicate

for 2\j\3 (that dark solitons are propagated), for larger

j; the soliton width becomes larger but for j 
 3 (that

bright solitons are propagated) for larger j; the solitons

become slimmer and on approaching the Maxwellian limit

the width becomes near its minimum. The meaningful

dependence of soliton width on the q variation shows the

important role of dust grains.

Also, it is clear from that the Fig. 6c for larger zi, the

soliton width becomes wider [32].

Conclusions

We have derived a nonlinear KdV equation for the non-

linear propagation of DIA waves in a magnetized complex

(dusty) plasma with superthermal electrons by applying the

standard reductive perturbation theory.

For this purpose, we considered plasma composed of the

cold positively charged ions, negatively charged dusts and

hot electrons. We have then derived a linear dispersion

relation. The linear dispersion relation predicts that two

types of modes (fast and slow DIA modes) are allowed to

propagate in the plasma. We have found a narrow domain

in j where the nonlinear coefficient of KdV equation takes

the negative sign. So DIA waves can propagate either an

envelope hole sometimes called a dark soliton or rarefac-

tive soliton. We investigated influence of j; dust grains (q)

and charge of ions (zi) on the velocity and width of soli-

tons. Also it is found, that with increasing j; zi and q the

soliton velocity increase and they can be propagated in

supersonic form.

We have also found, in appearance of dust grains with

increasing j; dark solitons become wider but bright soli-

tons become slimmer.

Finally, it is stressed the results of our investigations

should be useful to understand the feature of DIA

waves in magnetized dusty plasma with superthermal

electrons.

Fig. 5 The normalized soliton

velocity in the laboratory frame

versus j for ufm ¼ usm ¼ 0:1

and h ¼ 0:7rad: The dashed
line shows the border of the

subsonic and supersonic regime

(for 2\j\3; dark solitons and

for j� 3 bright solitons are

propagated)
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