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Abstract We prove that an R-action on a compact metric space embeds equivariantly in
the space of one-Lipschitz functions R → [0, 1] if its fixed point set can be topologically
embedded in the unit interval. This is a refinement of the classical Bebutov–Kakutani theorem
(1968).
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1 Introduction

The purpose of this short paper is to refine a classical theorem of Bebutov [2] andKakutani [4]
on dynamical systems. We call (X, T ) a flow if X is a compact metric space and

T : R × X → X, (t, x) �→ Tt x
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is a continuous action of R. We define Fix(X, T ) (sometimes abbreviated to Fix(X)) as the
set of x ∈ X satisfying Tt x = x for all t ∈ R. We define C(R) as the space of continuous
maps ϕ : R → [0, 1]. It is endowed with the topology of uniform convergence over compact
subsets of R, namely the topology given by the distance

∞∑

n=1

2−n max|t |≤n
|ϕ(t) − ψ(t)|, (ϕ, ψ ∈ C(R)). (1.1)

The group R continuously acts on it by the translation:

R × C(R) → C(R), (s, ϕ(t)) �→ ϕ(t + s). (1.2)

A continuous map f : X → C(R) is called an embedding of a flow (X, T ) if f is an
R-equivariant topological embedding. Bebutov [2] and Kakutani [4] found that the R-action
on C(R) has the following remarkable “universality”:

Theorem 1.1 (Bebutov–Kakutani) A flow (X, T ) can be equivariantly embedded in C(R)

if and only if Fix(X, T ) can be topologically embedded in the unit interval [0, 1].
The “only if” part is trivial because the set of fixed points of C(R) is homeomorphic to

[0, 1]. So the main statement is the “if” part.
Although the Bebutov–Kakutani theorem is clearly a nice theorem, it has one drawback:

The space C(R) is not compact (nor locally compact). So it is not a “flow” in the above
definition. This poses the following problem:

Problem 1.2 Is there a compact invariant subset of C(R) satisfying the same universality?

The purpose of this paper is to solve this problem affirmatively. Let L(R) be the set of
maps ϕ : R → [0, 1] satisfying the one-Lipschitz condition:

∀s, t ∈ R : |ϕ(s) − ϕ(t)| ≤ |s − t |. (1.3)

L(R) is a subset of C(R). It is compact with respect to the distance (1.1) by Ascoli–Arzela’s
theorem. The R-action (1.2) preserves L(R). So it becomes a flow. Our main result is the
following. This solves [3, Question 4.1].

Theorem 1.3 A flow (X, T ) can be equivariantly embedded in L(R) if and only if Fix(X, T )

can be topologically embedded in the unit interval [0, 1].
As in the case of the Bebutov–Kakutani theorem, the “only if” part is trivial because the

fixed point set Fix(L(R)) is homeomorphic to [0, 1]. Since L(R) is compact, it is a more
reasonable choice of such a “universal flow”.

The proof of Theorem 1.3 is based on the techniques originally used in the proof of the
Bebutov–Kakutani theorem (in particular, the idea of local section). A main new ingredient
is the topological argument given in Sect. 2, which has some combinatorial flavor.

Remark 1.4 Problem 1.2 asks us to find a universal flow smaller than C(R). If we look for
a universal flow larger than C(R), then it is much easier to find an example. Let L∞(R) be
the set of L∞-functions ϕ : R → [0, 1]. (We identify two functions which are equal to each
other almost everywhere.) We consider the weak∗ topology on it. Namely a sequence {ϕn}
in L∞(R) converges to ϕ ∈ L∞(R) if for every L1-function ψ : R → R

lim
n→∞

∫

R

ϕn(t)ψ(t) dt =
∫

R

ϕ(t)ψ(t) dt.
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Then L∞(R) is compact and metrizable by Banach–Alaoglu’s theorem and the separability
of the space of L1-functions, respectively. The groupR acts continuously on it by translation.
So it becomes a flow. Note that Fix (L∞(R)) is homeomorphic to [0, 1] and that the natural
inclusion map C(R) ⊂ L∞(R) is an equivariant continuous injection. Then the Bebutov–
Kakutani theorem implies the universality of L∞(R): A flow (X, T ) can be equivariantly
embedded in L∞(R) if and only if Fix(X, T ) can be topologically embedded in [0, 1].

2 Topological Preparations

Let a be a positive number. We define L[0, a] as the space of maps ϕ : [0, a] → [0, 1]
satisfying

∀s, t ∈ [0, a] : |ϕ(s) − ϕ(t)| ≤ |s − t |.
L[0, a] is endowed with the distance ||ϕ − ψ ||∞ = max0≤t≤a |ϕ(t) − ψ(t)|. We define
FL [0, a] ⊂ L[0, a] as the space of constant functions ϕ : [0, a] → [0, 1], which is homeo-
morphic to [0, 1].

Let (X, d) be a compact metric space.We defineC (X, L[0, a]) as the space of continuous
maps f : X → L[0, a], which is endowed with the distance

max
x∈X || f (x) − g(x)||∞ .

Lemma 2.1 Let f ∈ C (X, L[0, a]) and suppose there exists 0 < τ < 1 satisfying

∀x ∈ X,∀s, t ∈ [0, a] : | f (x)(s) − f (x)(t)| ≤ τ |s − t |. (2.1)

Then for any δ > 0 there exists g ∈ C (X, L[0, a]) satisfying
(1) maxx∈X || f (x) − g(x)||∞ < δ.
(2) g(x)(0) = f (x)(0) and g(x)(a) = f (x)(a) for all x ∈ X.
(3) g(X) ∩ FL [0, a] = ∅.
Proof We take 0 < b < c < a satisfying b = a − c < δ/4. We take an open covering
{U1, . . . ,UM } of X satisfying

∀1 ≤ m ≤ M : diam f (Um) < min

(
δ

4
,
(1 − τ)b

2

)
. (2.2)

We take a point pm ∈ Um for each m. We choose a natural number N satisfying

N > M, �
def= c − b

N − 1
<

δ

4
.

We divide the interval [b, c] into (N − 1) intervals of length �:

b = a1 < a2 < · · · < aN = c, an+1 − an = � (∀1 ≤ n ≤ N − 1).

Set A = {a1, . . . , aN } and define a vector e ∈ R
A by e = (1, 1, . . . , 1). Notice that f (pm)|A

is an element of [0, 1]A. Since N > M we can choose u1, . . . , uM ∈ [0, 1]A satisfying

(1) | f (pm)(an) − um(an)| < min (δ/4, (1 − τ)b/2) for all 1 ≤ m ≤ M and 1 ≤ n ≤ N .
(2) |um(an+1) − um(an)| < � for all 1 ≤ m ≤ M and 1 ≤ n ≤ N − 1.
(3) The (M + 1) vectors e, u1, . . . , uM are linearly independent.
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Let {hm}Mm=1 be a partition of unity on X satisfying supp hm ⊂ Um for all m. For x ∈ X
we define a piecewise linear function g(x) : [0, a] → [0, 1] as follows. (We set a0 = 0 and
aN+1 = a.)

• g(x)(0) = f (x)(0) and g(x)(a) = f (x)(a).
• g(x)(an) = ∑M

m=1 hm(x)um(an) for 1 ≤ n ≤ N .
• We extend g(x) linearly. Namely, for t = (1 − λ)an + λan+1 with 0 ≤ λ ≤ 1 and

0 ≤ n ≤ N we set g(x)(t) = (1 − λ)g(an) + λg(an+1).

�
Claim 2.2 g(x) ∈ L[0, a] and ||g(x) − f (x)||∞ < δ.

Proof For proving g(x) ∈ L[0, a] it is enough to show |g(x)(an+1)−g(x)(an)| ≤ |an+1−an |
for all 0 ≤ n ≤ N . For 1 ≤ n ≤ N − 1, this is a direct consequence of the property (2) of
um . So we consider the case of n = 0. (The case of n = N is the same).

|g(x)(b) − f (x)(0)| ≤
M∑

m=1

hm(x)|um(b) − f (pm)(b)| +
M∑

m=1

hm(x)| f (pm)(b) − f (x)(b)|

+ | f (x)(b) − f (x)(0)|.
Weapply to each term of the right-hand side the property (1) of um , diam f (Um) < (1−τ)b/2
in (2.2) and | f (x)(b) − f (x)(0)| ≤ τb in (2.1) respectively. Then this is bounded by

(1 − τ)b

2
+ (1 − τ)b

2
+ τb = b.

This proves g(x) ∈ L[0, a].
Next we show |g(x)(an) − f (x)(an)| < δ/2 for all 0 ≤ n ≤ N + 1. For n = 0, N + 1,

this is trivial. For 1 ≤ n ≤ N , we can bound |g(x)(an) − f (x)(an)| from above by

M∑

m=1

hm(x)|um(an) − f (pm)(an)| +
M∑

m=1

hm(x)| f (pm)(an) − f (x)(an)|

<
δ

4
+ δ

4
= δ

2

(
by the property (1) of um and diam f (Um) <

δ

4
in (2.2)

)
.

Finally, let an < t < an+1. We can bound |g(x)(t) − f (x)(t)| by
|g(x)(t) − g(x)(an)| + |g(x)(an) − f (x)(an)| + | f (x)(an) − f (x)(t)|

< 2(an+1 − an) + δ

2
(by f (x), g(x) ∈ L[0, a])

< δ

(
by an+1 − an ≤ max(b,�) <

δ

4

)
.

�
For every x ∈ X , the function g(x) : [0, a] → [0, 1] is a non-constant function because

g(x)|� =
M∑

m=1

hm(x)um /∈ Re (by the property (3) of um).

This proves the statement. �
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We need two lemmas on linear algebra. For u = (x1, . . . , xn+1) ∈ R
n+1 we set

Du = (x2 − x1, x3 − x2, . . . , xn+1 − xn) ∈ R
n .

Lemma 2.3 Let l ≥ m + 1 and set e = (1, 1, . . . , 1︸ ︷︷ ︸
l

) ∈ R
l . The set of (u1, . . . , um) ∈

R
l+1 × · · · × R

l+1 = (
R
l+1

)m
such that

the vectors e, Du1, Du2, . . . , Dum are linearly independent (2.3)

is open and dense in
(
R
l+1

)m
.

Proof The condition (2.3) defines a Zariski open set in
(
R
l+1

)m
. So it is enough to show that

the set is non-empty because a non-empty Zariski open set is always dense in the Euclidean
topology. We set

ui = (−1, . . . ,−1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
l+1−i

), (1 ≤ i ≤ m).

Then

Dui = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
l−i

).

The vectors e, Du1, . . . Dum are linearly independent. �
Lemma 2.4 Let n > l ≥ 2m. The set of (u1, . . . , um) ∈ R

n × · · · ×R
n = (Rn)m such that,

for any integer α with 2 ≤ α ≤ n − l + 1,

u1|l1, u1|α+l−1
α , u2|l1, u2|α+l−1

α , . . . , um |l1, um |α+l−1
α are linearly independent in Rl (2.4)

is open and dense in (Rn)m. Here for ui = (xi1, . . . , xin)

ui |l1 = (xi1, . . . , xil), ui |α+l−1
α = (xi,α, . . . , xi,α+l−1).

Proof The defined set A = ∩n−l+1
α=2 Aα , where

Aα = {(u1, . . . , um) ∈ (
R
n)m | (2.4) is satisfied},

is a Zariski open set in (Rn)m . Hence it is enough to show that every Aα is nonempty. For
each fixed 2 ≤ α ≤ n − l + 1, we define ui = (xi1, . . . , xin) (1 ≤ i ≤ m) by

xi j = 1 ( j = i, α + l − i) , xi j = 0 (otherwise).

Then it is direct to check that (u1, . . . , um) ∈ Aα . One can also use a proof from [5, Lemma
5.5]. �
Lemma 2.5 Let f ∈ C (X, L[0, a]) and suppose there exists 0 < τ < 1 satisfying (2.1).
Then for any δ > 0 there exists g ∈ C (X, L[0, a]) satisfying
(1) maxx∈X || f (x) − g(x)||∞ < δ.
(2) g(x)(0) = f (x)(0) and g(x)(a) = f (x)(a) for all x ∈ X.
(3) If x, y ∈ X and 0 ≤ ε ≤ a/2 satisfy

∀t ∈ [0, a − ε] : g(x)(t + ε) = g(y)(t)

then ε = 0 and d(x, y) < δ.
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Proof Except for the use of the above two lemmas on linear algebra, the proof is close to
Lemma 2.1. We take 0 < b < c < a with b = a − c < min (δ/4, a/4). We take an open
covering {U1, . . . ,UM } satisfying diamUm < δ and diam f (Um) < min (δ/4, (1 − τ)b/2)
for all 1 ≤ m ≤ M . Take pm ∈ Um for each m. Let N ≥ 2 be a natural number and
set � = (c − b)/(N − 1). We introduce a partition b = a1 < a2 < · · · < aN = c by
an = b + (n − 1)�. We set A = {a1, . . . , aN } and � = A ∩ [b, a/4] = {a1, . . . , aL }. We
also set e = (1, 1, . . . , 1︸ ︷︷ ︸

L

) ∈ R
L . We choose N sufficiently large so that

� <
δ

4
, N > L ≥ 2M.

Since L ≥ 2M ≥ M + 1, by using Lemmas 2.3 and 2.4, we can choose u1, . . . , uM ∈
[0, 1]A satisfying

(1) | f (pm)(an) − um(an)| < min (δ/4, (1 − τ)b/2) for all 1 ≤ m ≤ M and 1 ≤ n ≤ N .
(2) |um(an+1) − um(an)| < � for all 1 ≤ m ≤ M and 1 ≤ n ≤ N − 1.
(3) Define DLum = (um(a2)−um(a1), . . . , um(aL+1)−um(aL)) ∈ R

L . Then the (M +1)
vectors e, DLu1, . . . , DLuM in R

L are linearly independent.
(4) For any ε > 0 with ε + � ⊂ A,

u1|�, u1|ε+�, u2|�, u2|ε+�, . . . , um |�, um |ε+� are linearly independent in R�

For x ∈ X we define g(x) : [0, a] → [0, 1] in the same way as in the proof of
Lemma 2.1. Namely, we set g(x)(0) = f (x)(0), g(x)(a) = f (x)(a) and g(x)(an) =∑M

m=1 hm(x)um(an) for 1 ≤ n ≤ N , where {hm} is a partition of unity satisfying
supp hm ⊂ Um . We extend g(x) to [0, a] by linearity. It follows that g(x) ∈ L[0, a] and
||g(x) − f (x)||∞ < δ as before. We need to check the property (3) of the statement. Suppose
there exist x, y ∈ X and 0 ≤ ε ≤ a/2 satisfying g(x)(t +ε) = g(y)(t) for all 0 ≤ t ≤ a−ε.

First we show ε+� ⊂ A. Otherwise, (ε+�)∩A = ∅. Then it follows from the piecewise
linearity that the function g(y)(t) becomes differentiable at every t ∈ �, which implies

g(y)(an+1) − g(y)(an) = g(y)(an+2) − g(y)(an+1) (1 ≤ n ≤ L − 1),

and hence

M∑

m=1

hm(y) (um(an+1) − um(an)) =
M∑

m=1

hm(y) (um(an+2) − um(an+1)) (1 ≤ n ≤ L − 1).

This means that
∑M

m=1 hm(y)DLum ∈ Re, which contradicts the property (3) of um . So we
must have ε + � ⊂ A.

The equation g(x)(t + ε) = g(y)(t) (0 ≤ t ≤ a − ε) implies

M∑

m=1

hm(x)um |ε+� =
M∑

m=1

hm(y)um |�.

It follows from the property (4) of um that ε = 0 and hm(x) = hm(y) for all 1 ≤ m ≤ M .
Then x, y ∈ Um for some m and hence d(x, y) ≤ diamUm < δ. �
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3 Proof of Theorem 1.3

Let (X, T ) be a flow. Set F = Fix(X, T ). We define FL = Fix (L(R)). Namely FL is the
space of constant maps ϕ : R → [0, 1], which is homeomorphic to [0, 1]. Suppose there
exists a topological embedding h : F → FL . We would like to show that there exists an
equivariant embedding f : X → L(R)with f |F = h.We defineCT,h (X, L(R)) as the space
of equivariant continuous maps f : X → L(R) satisfying f |F = h, which is endowed with
the compact-open topology. For f ∈ CT,h (X, L(R)) we define Lip( f ) as the supremum of

| f (x)(t) − f (x)(s)|
|s − t |

over all x ∈ X and s, t ∈ R with s �= t .

Lemma 3.1 The space CT,h (X, L(R)) is not empty. Moreover for any δ > 0 there exists
f ∈ CT,h (X, L(R)) satisfying Lip( f ) ≤ δ.

Proof Consider the map

F � x → h(x)(0) ∈ [0, 1].
By the Tietze extension theorem, we can extend this function to a continuous map h0 : X →
[0, 1]. Let ϕ : R → [0, 1] be a smooth function satisfying

∫ ∞

−∞
ϕ(t) dt = 1,

∫ ∞

−∞
ϕ′(t) dt ≤ min (1, δ) .

For x ∈ X we define f (x) : R → [0, 1] by

f (x)(t) =
∫ ∞

−∞
ϕ(t − s)h0(Tsx) ds.

Then | f (x)′(t)| ≤ min(1, δ) and f = h on F . Hence f ∈ CT,h (X, L(R)) and Lip( f ) ≤ δ.
�

We borrow the next lemma from Auslander [1, p. 186, Corollary 6].

Lemma 3.2 Let p ∈ X\F. There exist a > 0 and a closed set S ⊂ X containing p such
that the map

[ − a, a] × S → X, (t, x) �→ Tt x (3.1)

is a continuous injection whose image contains an open neighborhood of p in X. We call
(a, S) a local section around p and denote the image of (3.1) by [−a, a] · S.
Proof We explain the proof for the convenience of readers. We can find c < 0 and a contin-
uous function h : X → [0, 1] satisfying Tc p /∈ supp h and h = 1 on a neighborhood of p.
We define f : X → R by

f (x) =
∫ 0

c
h(Tt x)dt.

We choose 0 < a < |c| and a closed neighborhood A of p satisfying
⋃

|t |≤a

Tt (A) ⊂ {h = 1},
⋃

|t |≤a

Tt+c(A) ∩ supp h = ∅.
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It follows that f (Tt x) = f (x)+t for any x ∈ A and |t | ≤ a. Set S = {x ∈ A| f (x) = f (p)}.
Then (a, S) becomes a local section. Indeed if x, y ∈ S and s, t ∈ [−a, a] satisfy Tsx = Tt y,
then s + f (p) = f (Tsx) = f (Tt y) = t + f (p) and hence s = t and x = y. Thus the
map (3.1) is injective. We take 0 < b < a and an open neighborhood U of p satisfying⋃

|t |<b Tt (U ) ⊂ A. Then the set [−a, a] · S contains

{x ∈ U | − b < f (x) − f (p) < b} (3.2)

because if x ∈ U satisfies t
def= f (x) − f (p) ∈ (−b, b) then f (T−t x) = f (x) − t = f (p)

(i.e. T−t x ∈ S) and x = Tt (T−t x) ∈ [−a, a] · S. The set (3.2) is an open neighborhood
of p. �

Lemma 3.3 For any point p ∈ X\F there exists a closed neighborhood A of p in X such
that the set

G(A) = {
f ∈ CT,h (X, L(R)) | f (A) ∩ FL = ∅}

(3.3)

is open and dense in the space CT,h (X, L(R)).

Proof Take a local section (a, S) around p. For x ∈ X we define H(x) ⊂ R (the set of
hitting times) as the set of t ∈ R satisfying Tt x ∈ S. Any two distinct s, t ∈ H(x) satisfy
|s−t | > a. Notice that if x ∈ F then H(x) = ∅.We denote by Int ([−a, a] · S) the interior of
[−a, a] · S. We choose a closed neighborhood A0 of p in S satisfying A0 ⊂ Int ([−a, a] · S).
We define a closed neighborhood A of p in X by

A =
⋃

|t |≤a

Tt (A0).

We choose a continuous function q : S → [0, 1] satisfying q = 1 on A0 and supp q ⊂
Int ([−a, a] · S).

The set G(A) defined in (3.3) is obviously open. So it is enough to prove that it is dense.
Take f ∈ CT,h (X, L(R)) and 0 < δ < 1. By Lemma 3.1 we can find f0 ∈ CT,h (X, L(R))

satisfying Lip( f0) ≤ 1/2. We define f1 ∈ CT,h (X, L(R)) by

f1(x)(t) = (1 − δ) f (x)(t) + δ f0(x)(t).

It follows Lip( f1) ≤ 1 − δ/2 < 1. We apply Lemma 2.1 to the map

X � x �→ f1(x)|[0,a] ∈ L[0, a].
Then we find g ∈ C (X, L[0, a]) satisfying
(1) |g(x)(t) − f1(x)(t)| < δ for all x ∈ X and 0 ≤ t ≤ a.
(2) g(x)(0) = f1(x)(0) and g(x)(a) = f1(x)(a) for all x ∈ X .
(3) g(X) ∩ FL [0, a] = ∅.
We set u(x)(t) = g(x)(t) − f1(x)(t) for x ∈ X and 0 ≤ t ≤ a. We define g1 ∈
CT,h (X, L(R)) as follows: Let x ∈ X .

• For each s ∈ H(x), we set

g1(x)(t) = f1(x)(t) + q(Tsx) · u(Tsx)(t − s) for t ∈ [s, s + a].
• For t ∈ R\ ⋃

s∈H(x)[s, s + a], we set g1(x)(t) = f1(x)(t).

123
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This satisfies

|g1(x)(t) − f (x)(t)| ≤ |g1(x)(t) − f1(x)(t)| + | f1(x)(t) − f (x)(t)| ≤ 3δ

for all x ∈ X and t ∈ R. If x ∈ A then there exists s ∈ [−a, a] with Tsx ∈ A0 and hence

g1(x)(s + t) = g(Tsx)(t) for t ∈ [0, a].
It follows from the property (3) of g that the function g1(x) is not constant. Thus g1 ∈ G(A).
Since f and δ are arbitrary, this proves that G(A) is dense in CT,h (X, L(R)). �
Lemma 3.4 For any two distinct points p and q in X\F there exist closed neighborhoods
B and C of p and q in X respectively such that the set

G(B,C) = {
f ∈ CT,h (X, L(R)) | f (B) ∩ f (C) = ∅}

(3.4)

is open and dense in CT,h (X, L(R)).

Proof Take local sections (a, S1) and (a, S2) around p and q respectively. We can assume
that [−a, a] · S1 and [−a, a] · S2 are disjoint with each other. For x ∈ X we define H(x) as
the set of t ∈ R satisfying Tt x ∈ S1 ∪ S2. We choose closed neighborhoods B0 of p in S1
andC0 of q in S2 respectively satisfying B0 ⊂ Int ([−a, a] · S1) andC0 ⊂ Int ([−a, a] · S2).
We take a continuous function q̃ : X → [0, 1] satisfying q̃ = 1 on B0 ∪ C0 and supp q̃ ⊂
Int ([−a, a] · S1) ∪ Int ([−a, a] · S2). We define closed neighborhoods B and C of p and q
respectively by

B =
⋃

|t |≤a/4

Tt (B0), C =
⋃

|t |≤a/4

Tt (C0).

The set G(B,C) defined in (3.4) is open. We show that it is dense. Take f ∈
CT,h (X, L(R)) and 0 < δ < 1. We can assume that

δ < d(B0,C0)
def= min

x∈B0,y∈C0
d(x, y). (3.5)

We define f1 ∈ CT,h (X, L(R)) exactly in the same way as in the proof of Lemma 3.3. It
satisfies Lip( f1) ≤ 1 − δ/2 and | f (x)(t) − f1(x)(t)| ≤ 2δ for all x ∈ X and t ∈ R.

We apply Lemma 2.5 to the map

X � x �→ f1(x)|[0,a] ∈ L[0, a].
Then we find g ∈ C (X, L[0, a]) satisfying
(1) |g(x)(t) − f1(x)(t)| < δ for all x ∈ X and 0 ≤ t ≤ a.
(2) g(x)(0) = f1(x)(0) and g(x)(a) = f1(x)(a) for all x ∈ X .
(3) If x, y ∈ X and 0 ≤ ε ≤ a/2 satisfy

∀t ∈ [0, a − ε] : g(x)(t + ε) = g(y)(t)

then d(x, y) < δ.

We set u(x)(t) = g(x)(t) − f1(x)(t) for x ∈ X and 0 ≤ t ≤ a. We define g1 ∈
CT,h (X, L(R)) as before. Namely, for x ∈ X ,

• For each s ∈ H(x), we set

g1(x)(t) = f1(x)(t) + q̃(Tsx) · u(Tsx)(t − s) for t ∈ [s, s + a].
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• For t ∈ R\ ⋃
s∈H(x)[s, s + a], we set g1(x)(t) = f1(x)(t).

This satisfies |g1(x)(t) − f (x)(t)| ≤ |g1(x)(t) − f1(x)(t)| + | f1(x)(t) − f (x)(t)| ≤ 3δ.
We would like to show g1(B) ∩ g1(C) = ∅. Suppose x ∈ B and y ∈ C satisfy g1(x) =

g1(y). There exist |s1| ≤ a/4 and |s2| ≤ a/4 satisfying Ts1x ∈ B0 and Ts2 y ∈ C0. We can
assume s1 ≤ s2 without loss of generality. Set ε = s2 − s1 ∈ [0, a/2]. We have

g1(x)(s1 + t) = g(Ts1x)(t) and g1(y)(s2 + t) = g(Ts2 y)(t) for t ∈ [0, a].
g1(x) = g1(y) implies that

g(Ts1x)(t + ε) = g(Ts2 y)(t) for t ∈ [0, a − ε].
It follows from the property (3) of g that d(Ts1x, Ts2 y) < δ. Since δ < d(B0,C0) ≤
d(Ts1x, Ts2 y), this is a contradiction. Therefore g1(B) ∩ g1(C) = ∅. This proves the
lemma. �

Now we can prove Theorem 1.3. Note that X and X × X are hereditarily Lindelöf (that
means that every open cover of a subspace has a countable subcover). Using these facts and
applying Lemma 3.3 to each point in X\F and Lemma 3.4 to every pair of distinct points in
X\F , there exist countable families of closed sets {An}∞n=1, {Bn}∞n=1 and {Cn}∞n=1 of X\F
such that

• X\F = ⋃∞
n=1 An and (X\F) × (X\F)\{(x, x) : x ∈ X} = ⋃∞

n=1 Bn × Cn .
• G(An) are open and dense in the space CT,h (X, L(R)) for all n ≥ 1.
• G(Bn,Cn) are open and dense in the space CT,h (X, L(R)) for all n ≥ 1.

By the Baire category theorem, the set

∞⋂

n=1

G(An) ∩
∞⋂

n=1

G(Bn,Cn)

is dense and Gδ in CT,h (X, L(R)). In particular it is not empty. Any element f in this set
gives an embedding of the flow (X, T ) in L(R).

Remark 3.5 The proof of the Bebutov–Kakutani theorem in [1,4] used the idea of “construct-
ing large derivative”. It is possible to prove Theorem 1.3 by adapting this idea to the setting
of one-Lipschitz functions. But this approach seems a bit tricky and less flexible than the
proof given above. The above proof possibly has a wider applicability to different situations
(e.g. other function spaces).
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