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Abstract We consider a first-order periodic system involving a time-dependent maximal
monotone map, a subdifferential term, and a multivalued perturbation F(t, x). We prove
existence theorems for the “convex” problem (that is, F is convex valued and for the “non-
convex” problem (that is, F is nonconvex valued). Also, we establish the existence of
extremal trajectories (that is, solutions when the multivalued perturbation F(t, x) is replaced
by ext F(t, x), the extreme points of F(t, x)). Also, we show that every solution of the
convex problem can be approximated uniformly by certain extremal trajectories (“strong
relaxation” theorem). Finally, we illustrate our result by examining a nonlinear periodic
feedback control system.
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220 L. Gasiński and N. S. Papageorgiou

1 Introduction

In the present work, we study the following nonlinear multivalued periodic system:{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + F(t, u(t)) for a.a. t ∈ T = [0, b]
u(0) = u(b).

(1.1)

In this problem, A : T × R
N −→ 2R

N \ ∅ is a multivalued map which is maximal
monotone in x ∈ R

N , ϕ ∈ �0(R
N) (the cone of lower semicontinuous, convex, proper

functions; see Section 2) with ∂ϕ being the subdifferential in the sense of convex analysis
and F : T × R

N −→ 2R
N \ ∅ is a multivalued perturbation. We prove existence theorems

for problem (1.1) when F is convex valued (“convex problem”) and when F is nonconvex
valued (“nonconvex problem”). We also show the existence of extremal trajectories, that is,
solutions of Eq. 1.1 when F(t, x) is replaced by ext F(t, x) (the set of extreme points of
F(t, x)). Moreover, we show that every solution of the convex problem can be approximated
in the C(T ;RN)-norm by certain extremal trajectories (“strong relaxation” theorem). An
example of a feedback periodic control system illustrate our results.

Our work here is related to those of Frigon [5] and Qin and Xue [14]. In Frigon [5],
ϕ ≡ 0 and A is time-independent with D(A) �= R

N . The author proves existence theorems
for both the convex and nonconvex problems using the notion of Lp-solution tube. Qin and
Xue [14] assume that that A is time-independent and is a positive definite N × N -matrix.
Also, they assume that ϕ : RN −→ R is continuous convex. They deal with the convex
and nonconvex problems and also address the question of existence of extremal trajectories.
Finally, we mention the work of Bader and Papageorgiou [1], where A ≡ 0, but the inclusion
takes place in the context of a general separable Hilbert space.

2 Mathematical Background—Hypotheses

Our approach is based on tools from multivalued analysis (see Hu-Papageorgiou [11]) and
from the theory of nonlinear operators of monotone type (see Gasiński-Papageorgiou [7]
and Zeidler [15]).

Let (�,�) be a measurable space and X a separable Banach space. We use the following
notation:

Pf (c)(X) = {A ⊆ X : A is nonempty, closed (and convex)}
P(w)k(c)(X) = {A ⊆ X : A is nonempty, (w-)compact (and convex)}.

A multifunction (set-valued function), F : � −→ 2X \ ∅ is said to be “graph measurable,”
if Gr F ∈ � ⊗ B(X), where

Gr F = {(ω, x) ∈ � × X : x ∈ F(ω)} ∈ � ⊗ B(X),

with B(X) being the Borel σ -field of X. If � = �̂, the universal σ -field (this is the
case if there is a σ -finite measure μ on � and � is μ-complete), then the Yankov-von
Neumann-Aumann selection theorem (see Hu and Papageorgiou [11, p.158] or Gasiński and
Papageorgiou [7, p. 906]) says that every graph measurable multifunction F : � −→ 2X \∅
admits a measurable selection, that is, there exists a �-measurable function f : � −→ X

such that f (ω) ∈ F(ω) for all ω ∈ �. In fact, there is a whole sequence {fn : � −→ X}n�1
of measurable selections such that

F(ω) ⊆ {fn(ω)}n�1 ∀ω ∈ �.
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The result is true if the separable Banach space X is replaced by a Souslin space. Recall
that a Souslin space is always separable but need not be metrizable. For example, if X∗ is
the dual of a separable Banach space and it is equipped with the w∗-topology, then it is a
nonmetrizable Souslin space.

A multifunction F : � −→ Pf (X) is said to be “measurable”, if for all x ∈ X, the
function

ω �−→ d(x, F (ω)) = inf
u∈F(ω)

‖x − u‖
is �-measurable. This is equivalent to saying that for every open set U ⊆ X, the set

F−(U) = {ω ∈ � : F(ω) ∩ U �= ∅} ∈ �.

A measurable multifunction F : � −→ Pf (X) is graph measurable. The converse is true if
there is a σ -finite, complete measure defined on �.

Now, let (�,�, μ) be a σ -finite measure space and X a separable Banach space. Given
1 � p � +∞ and a graph measurable multifunction F : � −→ 2X \ ∅, we define

S
p
F = {f ∈ Lp(�;X) : f (ω) ∈ F(ω) μ − a.e.}.

A straightforward application of the Yankov-von Neumann-Aumann selection theorem,
reveals that “Sp

F �= ∅ if and only if ω �−→ inf{‖u‖ : u ∈ F(ω)} belongs in Lp(�).” This
set is “decomposable,” that is, if (A, f1, f2) ∈ � × S

p
F × S

p
F , then

χAf1 + χ�\Af2 ∈ S
p
F .

Here, for C ∈ �, χC denotes the characteristic function of C, hence

χC(ω) =
{

1 if ω ∈ C,

0 if ω ∈ � \ C.

Since χω\C = 1 − χC , we see that the notion of decomposability formally looks very
similar to that of convexity, only now the coefficients in the linear combination are func-
tions. In fact, decomposable sets exhibit properties which are similar the those of convex
sets (see Hu and Papageorgiou [11, Section 2.3]).

Suppose that Y and Z are Hausdorff topological spaces and let G : Y −→ 2Z \ ∅ be a
multifunction. We say that G is “upper semicontinuous” if for every open set U ⊆ Z, the
set G+(U) = {y ∈ Y : G(y) ⊆ U} is open. We say that G is “lower semicontinuous” if
for every open set U ⊆ Z, the set G−(U) = {y ∈ Y : G(y) ∩ U �= ∅} is open.

An upper semicontinuous multifunction with closed values has closed graph. The con-
verse is true, if G is locally compact (that is, for every x ∈ X, there exists a neighborhood
U of x such that G(U) ∈ Pk(Z)). If Z is a metric space, then G is lower semicontinuous if
and only if for all z ∈ Z, y �−→ dZ(z,G(y)) = inf

v∈G(y)
dZ(z, v) is an upper semicontinuous

R+-valued function (here, dZ denotes the metric of Z).
For a metric space Z (with metric dZ) on Pf (Z), we can define a generalized metric,

known as the “Hausdorff metric”, by setting

h(C,E) = sup
u∈Z

|dZ(u, C| − dZ(u,E)| ∀C, E ∈ Pf (Z).

If Z is complete, then so is (Pf (Z), h). A multifunction G : Y −→ Pf (Z) is said to be
“h-continuous”, if it is continuous from the Hausdorff topological space Y into the metric
space (Pf (Z), h).

Suppose that V is a Banach space and C ⊆ V is nonempty. We set

|C| = sup
u∈C

‖u‖V .
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Also, if {Cn}n�1 ⊆ 2V \ ∅, we define

lim inf
n→+∞ Cn = {u ∈ V : u = lim

n→+∞ un, un ∈ Cn for all n ∈ N}
= {u ∈ V : lim

n→+∞ d(u, Cn) = 0}
and

w- lim sup
n→+∞

Cn = {u ∈ V : u = w lim
k→+∞ unk

, unk
∈ Cnk

, n1 < n2 < . . .}.

Next, let X be a reflexive Banach space and X∗ its topological dual. By 〈·, ·〉, we denote
the duality brackets for the pair (X∗, X). A multivalued map A : X ⊇ D −→ 2X∗

is said
to be “monotone”, if

〈x∗ − u∗, x − u〉 � 0 ∀(x, x∗), (u, u∗) ∈ Gr A.

Here, D = {x ∈ X : A(x) �= ∅}, the “domain” of A.
We say that a monotone map is “strictly monotone,” if

〈x∗ − u∗, x − y〉 = 0 =⇒ x = y.

The monotone map A : X ⊇ D −→ 2X∗
is “maximal monotone,” if

〈x∗ − u∗, x − u〉 � 0 for all (u, u∗) ∈ Gr A =⇒ (x, x∗) ∈ Gr A.

This means that Gr A is maximal with respect to inclusion among the graphs of monotone
maps. It is easy to see that, if A : X ⊇ D −→ 2X∗

is maximal monotone, then Gr A is
sequentially closed in Xw ×X∗ and in X ×X∗

w (here, by Xw and X∗
w , we denote the spaces

X and X∗, respectively, furnished with the weak topology). If A is maximal monotone, then
for every x ∈ D, A(x) ∈ Pf c(X

∗).
For a maximal monotone map A : X −→ 2X∗

, we define

A0(x) = {x∗ ∈ A(x) : ‖x∗‖∗ = inf
u∗∈A(x)

‖u∗‖∗} ∀x ∈ D.

Since for every x ∈ D, A(x) ∈ Pf c(X
∗) and X is reflexive, then A0(x) �= ∅. Moreover, if

X∗ is strictly convex, then A0 is single-valued. The map A0 is called the “minimal section”
of A.

The “duality map” F : X −→ 2X∗
is defined by

F(u) = {u∗ ∈ X∗ : 〈u∗, u〉 = ‖u‖2 = ‖u∗‖2∗} ∀u ∈ X.

The Hahn-Banach theorem implies that F has nonempty values. In fact, the duality map is
defined for any Banach space. However, its properties strongly depend on the geometry of
the Banach space X. In particular, if X and X∗ are both locally uniformly convex, then F
is single-valued and a homeomorphism.

By �0(X), we denote the cone of all functions ϕ : X −→ R = R ∪ {+∞} which are
lower semicontinuous, convex, and proper (that is, dom ϕ = {x ∈ X : ϕ(x) < ∞} (the
effective domain of ϕ) is nonempty). By ∂ϕ : X −→ 2X∗

, we denote the subdifferential of
ϕ in the sense of convex analysis, that is

∂ϕ(u) = {u∗ ∈ X∗ : 〈u∗, h〉 � ϕ(u + h) − ϕ(u) for all h ∈ X}.
If ϕ is continuous at u, then ∂ϕ(u) �= ∅. If ϕ is Gâteaux differentiable at u, then ∂ϕ(u) =
{ϕ′

G(u)} (ϕ′
G(u) denotes the Gâteaux derivative of ϕ at u). The map ∂ϕ : X −→ 2x∗

is
maximal monotone.
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By L1
w(T ;RN), we denote the Lebesgue space L1(T ;RN) equipped with the weak norm

‖u‖w = sup
0�s�t�b

∣∣∣∣
∫ t

s

u(τ ) dτ

∣∣∣∣ ∀u ∈ L1(T ;RN)

or equivalently by

‖u‖w = sup
0�t�b

∣∣∣∣
∫ t

0
u(τ) dτ

∣∣∣∣ .
This norm is equivalent to the Pettis norm (see Egghe [4]).

The hypotheses on the map A and on the function ϕ are the following:

H(A): A : T × R
N −→ 2R

N \ ∅ is a multifunction such that 0 ∈ A(t, 0) for all t ∈ T and

(i) (t, x) −→ A(t, x) is graph measurable and for all t ∈ T , x �−→ A(t, x) is maximal
monotone.

(ii) There exist two continuous functions η : T −→ R
N and l : R+ −→ R+ such that

(h1 − h2, u1 − u2)RN � −|η(t) − η(s)||u1 − u2|l(max{|u1|, |u2|})
for all 0 � s � t � b and all (u1, h1) ∈ Gr A(t, ·), (u2, h2) ∈ Gr A(s, ·).

(iii) For every r > 0, there exists ar ∈ L2(T ) such that

|A(t, x)| � ar(t) for a.a. t ∈ T , all |x| � r

and for all u ∈ L2(T ;RN), t �−→ A0(t, u(t)) belongs in L2(T ;RN).

Remark 2.1 Hypothesis H(A)(i) implies that

A(t, x) ∈ Pkc(R
N) ∀(t, x) ∈ T × R

N .

Hypothesis H(A)(ii) imposes restrictions on the t-dependence of A and permits the use of
the theory of evolution equations involving time-dependent operators (see Pavel [13]).

H(ϕ): ϕ ∈ �0(R
N) with 0 ∈ D(∂ϕ) and

D(∂ϕ) = intdom ϕ or ϕ is bounded above on bounded sets.

Remark 2.2 Both conditions in the above hypothesis imply that u �−→ ∂ϕ(u) is bounded
(that is, maps bounded sets to bounded sets). The following function ϕ satisfies the first
condition, namely that D(∂ϕ) = intdom ϕ

ϕ(u) =
{

−(1 − |u|2) 1
2 if |u| � 1,

+∞ otherwise

for all u ∈ R
N .

Next, we prove a result which we will need in the sequel and which is of independent
interest. For this reason, it is formulated in a more general setting than the one in which it
will be used in this paper. We mention that the result is known for Hilbert spaces (see Brézis
[3, p. 25]).

So, as before, let X be a reflexive Banach space and X∗ its topological dual. By | · | and
| · |∗, we denote the norm on X and X∗ respectively and by 〈·, ·〉 the duality brackets for the
pair (X∗, X). Let A : X −→ 2X∗

be a maximal monotone map with 0 ∈ A(0). On account
of the Troyanski renorming theorem (see, e.g., Gasiński-Papageorgiou [7, p. 911]), without
any loss of generality, we may assume that both X and X∗ are locally uniformly convex.
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We know that the duality map F : X −→ X∗ is single-valued and a homeomorphism. We
introduce the lifting (realization) of A on the dual pair (Lp′

(T ; X∗), Lp(T ;X)), 1 � p <

+∞, 1 < p′ � +∞, 1
p

+ 1
p′ = 1 (recall that Lp(T ; X)∗ = Lp′

(T ; X∗); see Gasiński and

Papageorgiou [7, p. 129]), A : Lp(T ; X) −→ Lp′
(T ; X∗) defined by

A(u) = {u∗ ∈ Lp′
(T ; X∗) : u∗(t) ∈ A(u(t)) for a.a. t ∈ T }

for all u ∈ D(A) = {u ∈ Lp(T ; X) : S
p′
A(u(·)) �= ∅}.

In what follows by ((·, ·)), we denote the duality brackets for the pair of spaces
(Lp′

(T ;X∗), Lp(T ; X)). So, we have

((h, u)) =
∫ b

0
〈h(t), u(t)〉 dt ∀h ∈ Lp′

(T ;X∗), u ∈ Lp(T ;X).

Lemma 2.3 If A : X −→ 2X∗
is a maximal monotone map with 0 ∈ A(0), then

A : Lp(T ; X) −→ 2Lp′
(T ;X∗) is maximal monotone.

Proof Let ϑ : Lp(T ; X) −→ Lp′
(T ; X∗) be the map defined by

ϑ(u)(·) = |u(·)|p−2F(u(·)) ∀u ∈ Lp(T ; X).

Evidently, ϑ is continuous and strictly monotone, thus, maximal monotone too (see Gasiński
and Papageorgiou [7, p. 310]).

Claim R(A + ϑ) = Lp′
(T ; X∗) (that is, A + ϑ is surjective).

Let h ∈ Lp′
(T ; X∗) and consider the multifunction K : T −→ 2X defined by

K(t) = {x ∈ X : h(t) ∈ A(x) + |x|p−2F(x)}.
The map x �−→ A(x)+|x|p−2F is maximal monotone and coercive. Hence, it is surjective
(see Gasiński and Papageorgiou [7, p. 336]). Therefore, K(t) �= ∅ for all t ∈ T \N , with N

being Lebesgue-null. On this exceptional null set, we set K(t) = {0}. Note that

Gr K = {(t, x) ∈ T × X : (x, h(t) − |x|p−2F(x)) ∈ Gr A}.
We know that the maximal monotonicity of A implies that Gr A ⊆ X × X∗ is closed.
Moreover, the map ξ : T × X −→ X × X∗ defined by

ξ(t, x) = (x, h(t) − |x|p−2F(x))

is a Carathéodory mao, that is, for all x ∈ X, t �−→ ξ(t, x) is measurable, while for almost
all t ∈ T , x �−→ ξ(t, x) is continuous. We know that ξ is jointly measurable (see Hu and
Papageorgiou [11, p. 142]). Hence

ξ−1(Gr A) = Gr K ∈ LT ⊗ B(X),

with LT being the Lebesgue σ -field on T and B(X) the Borel σ -field of X. Invoking the
Yankov-von Neumann-Aumann selection theorem, we can find a measurable map u : T −→
X such that

u(t) ∈ K(t) ∀t ∈ T ,

so
h(t) ∈ A(u(t)) + |u(t)|p−2F(u(t)) for a.a. t ∈ T .

We act with u(t) ∈ X and recall that by hypothesis 0 ∈ A(0), we obtain

|u(t)|p−1 � |h(t)| for a.a. t ∈ T ,
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thus, u ∈ Lp(T ; X) (recall that p − 1 = p
p′ , h ∈ Lp′

(T ; X∗)) and h ∈ A(u) + ϑ(u).

Since h ∈ Lp′
(T ; X∗) is arbitrary, we conclude that

R(A + ϑ) = Lp′
(T ; X∗).

This proves the Claim.
Evidently the map A is monotone. We will show that in fact it is maximal monotone. To

this end, suppose that (v, g) ∈ Lp(T ; X) × Lp′
(T ; X∗) and assume that

((h − g, u − v)) =
∫ b

0
〈h(t) − g(t), u(t) − v(t)〉 dt � 0 ∀(u, h) ∈ Gr A. (2.1)

On account of the Claim, we can find (u1, h1) ∈ Gr A such that

h1 + ϑ(u1) = g + ϑ(v). (2.2)

We return to Eq. 2.1 and choose (u, h) = (u1, h1). Then, using Eq. 2.2, we have

0�
∫ b

0
〈g + ϑ(v) − ϑ(u1) − g, u1 − v〉 dt =

∫ b

0
〈ϑ(v) − ϑ(u1), u1 − v〉 dt,

so u1 = v (since ϑ is strictly monotone), thus, (v, g) ∈ Gr A and hence A is maximal
monotone.

3 The Convex Problem

In this section, we prove an existence theorem for problem (1.1) when the multivalued
perturbation F is convex valued.

The precise hypotheses on F are the following:

H(F)1: F : T × R
N −→ Pkc(R

N) is a multifunction such that

(i) For all x ∈ R
N , t −→ F(t, x) is graph measurable.

(ii) For almost all t ∈ T , Gr F(t, ·) ∈ R
N × R

N is closed.
(iii) There exist M > 0 and âM ∈ L2(T ) such that

0 � (h, x)RN for a.a. t ∈ T , all |x| = M, h ∈ F(t, x),

|F(t, x)| � âM(t) for a.a. t ∈ T , |x| � M.

Remark 3.1 Hypotheses H(F)1(i) and (ii) do not imply joint measurability of F (see Hu
and Papageorgiou [11, p. 226]). So, for u : T −→ R

N measurable, |u(t)| � M almost
everywhere on T , it is not a priori clear that S2

F(·,u(·)) �= ∅. To show the nonemptiness
of this set, we argue as follows. Let {sn}n�1 be a sequence of step functions such that
sn(t) −→ u(t) for almost all t ∈ T and |sn(t)| � |u(t)| for almost all t ∈ T , all n ∈ N.
Then, hypothesis H(F)1 implies that for every n ∈ N, t �−→ F(t, sn(t)) is measurable and
so by the Yankov-von Neumann-Aumann selection theorem, we can find hn : T −→ R

N

measurable such that

hn(t) ∈ F(t, sn(t)) for a.a. t ∈ T , all n � N,

so the sequence {hn}n�1 ⊆ L2(T ;RN) is bounded.
Therefore, by passing to a subsequence if necessary, we may assume that

hn
w−→ h in L2(T ;RN),
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with h ∈ L2(T ;RN). Invoking Proposition 3.9 of Hu and Papageorgiou [11, p. 694], we
have

h(t) ∈ conv w- lim sup
n→+∞

{hn(t)} ⊆ F(t, u(t)) for a.a. t ∈ T

(see hypothesis H(F)1(ii)), so h ∈ S2
F(·,u(·)). Hypothesis H(F)1(ii) is a multivalued

variant of a condition first used by Hartman [10].

Together with H(F)1, we will need the following extra condition on ∂ϕ:

H0: For all x ∈ D(∂ϕ) and g ∈ ∂ϕ(x), we have (g, x)RN � 0.

Alternatively, instead of H(F)1, H0, we can use the following conditions on F :

H(F)′1: F : T × R
N −→ Pkc(R

N) is a multifunction such that hypotheses H(F)′1(i) and
(ii) are the same as the corresponding hypotheses H(F)1(i) and (ii) and

(iii) |F(t, x)| � k(t)(1 + |x|)| for almost all t ∈ T , all x ∈ R
N , with k ∈ L2(T ).

We know that
D(∂ϕ) = dom ϕ

(see Hu and Papageorgiou [11, p.346]). Let x0 ∈ dom ϕ, h ∈ L2(T ;RN) and ε > 0. We
consider the following auxiliary Cauchy problem:{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + h(t) for a.a. t ∈ T

u(0) = x0.
(3.1)

We have the following existence and uniqueness theorem for this problem.

Proposition 3.2 If hypotheses H(A) and H(ϕ) hold, then problem (3.1) admits a unique
solution u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN).

Proof Let
V (t, x) = A(t, x) + ∂ϕ(x) + εx.

For all t ∈ T , V (t, ·) is maximal monotone. Moreover, because of the monotonicity of
x �−→ ∂ϕ(x) and of x �−→ εx, V (t, x) satisfies hypothesis H(A)(ii). Therefore, we can
apply Theorem 1.2 of Pavel [13] and have a solution u0 ∈ C(T ;RN) of problem (3.1). We
have u0(t) ∈ D(∂ϕ) for all t ∈ T and recall that on account of hypothesis H(ϕ), ∂ϕ maps
bounded sets to bounded sets. Therefore,

|∂ϕ(u0(t))| � M ∀t ∈ T ,

for some M > 0. This fact together with hypothesis H(A)(iii) implies that u′
0 ∈

L2(T ;RN), so u0 ∈ W 1,2((0, b);RN).
Next, we show that this solution is unique. So, suppose that u0, v0 ∈ W 1,2((0, b);RN)

are two such solutions. We have

− u′
0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + εu0(t) + h(t) for a.a. t ∈ T , (3.2)

−v′
0(t) ∈ A(t, v0(t)) + ∂ϕ(v0(t)) + εv0(t) + h(t) for a.a. t ∈ T , (3.3)

with u0(0) = v0(0) = x0.
Subtracting (3.3) from Eq. 3.2, we obtain

0 ∈ u′
0(t) − v′

0(t) + A(t, u0(t)) − A(t, v0(t)) + ∂ϕ(u0(t)) − ∂ϕ(v0(t))

+ε(u0(t) − v0(t)) for a.a. t ∈ T . (3.4)
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We take inner product with u0(t) − v0(t). The monotonicity of A(t, ·) and ∂ϕ implies that

1

2

d

dt
|u0(t) − v0(t)|2 � −ε|u0(t) − v0(t)|2 for a.a. t ∈ T ,

so

|u0(t) − v0(t)|2 � 0

(since u0(0) = v0(0) = x0), hence u0 = v0. This proves the uniqueness of the solution of
problem (3.1).

We consider the Poincaré map P : dom ϕ −→ dom ϕ defined by

P(x0) = u0(b),

with u0 ∈ W 1,2((0, b);RN) being the unique solution of Eq. 3.1 (see Proposition 3.2).

Proposition 3.3 If hypotheses H(A) and H(ϕ) hold, then the Poincaré map P is a
contraction.

Proof Let x0, x̂ ∈ dom ϕ be two distinct initial conditions for problem (3.1) and let u0, û ∈
W 1,p((0, b);RN) be the corresponding unique solutions of the Cauchy problem. We have

− u′
0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + εu0(t) + h(t) for a.a. t ∈ T , u0(0) = x0 (3.5)

−û′(t) ∈ A(t, û(t)) + ∂ϕ(̂u(t)) + εû(t) + h(t) for a.a. t ∈ T , û(0) = x̂. (3.6)

As in the proof of Proposition 3.2, we subtract (3.6) from (3.5) and then take inner product
with u0(t) − û(t) to obtain

1

2

d

dt
|u0(t) − û(t)|2 + ε|u0(t) − û(t)| � 0 for a.a. t ∈ T ,

so
d

dt
(e2εt |u0(t) − û(t)|2) � 0 for a.a. t ∈ T ,

thus

|u0(t) − û(t)|2 � e−2εt |x0 − x̂| for a.a. t ∈ T .

Let t = b. Then,

|P(x0) − P (̂x| � e−2εb|x0 − x̂|,
so P is a contraction.

Now, for h ∈ L2(T ;RN), we consider the following auxiliary periodic system:{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + h(t) for a.a. t ∈ T = [0, b]
u(0) = u(b).

(3.7)

Proposition 3.4 If hypotheses H(A) and H(ϕ) hold, then problem (3.7) admits a unique
solution u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN) and we have

|u0(t)| � c0 +
∫ t

0
|h(s)| ds ∀t ∈ T , (3.8)

for some c0 > 0.
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Proof From Proposition 3.3, we know that the Poincaré map P : dom ϕ −→ dom ϕ is a
contraction. So, by the Banach fixed point theorem, there is a unique u0 ∈ dom ϕ such that

P(x0) = x0.

The corresponding solution u0 ∈ W 1,2((0, b);RN) of Eq. 3.1 is the unique solution of the
periodic system (3.7).

Then on account of hypothesis H(A)(iii), we can find g0 ∈ S2
∂ϕ(u0(·)) such that{ −u′

0(t) ∈ A(t, u0(t)) + g0(t) + εu0(t) + h(t) for a.a. t ∈ T

u0(0) = u0(b).

We act with u0(t) and recall that 0 ∈ A(t, 0) for all t ∈ T , we obtain

1

2

d

dt
|u0(t)|2 � −ε|u0(t)|2 − (g0(t) − v0, u0(t))RN − (v0, u0(t))RN − (h(t), u0(t))RN ,

for almost all t ∈ T , all v0 ∈ ∂ϕ(0), so

1

2

d

dt
|u0(t)|2 � −ε|u0(t)|2 + (|∂ϕ(0)| + |h(t)|)|u0(t)| for a.a. t ∈ T ,

thus,

|u0(t)| d

dt
|u0(t)| � −ε|u0(t)|2 + (|∂ϕ(0)| + |h(t)|)|u0(t)| for a.a. t ∈ T .

It follows that
d

dt
|u0(t)| � −ε|u0(t)| + |∂ϕ(0)| + |h(t)|)| for a.a. t ∈ T .

Note that
d

dt
(eεt |u0(t)|) = εeεt |u0(t)| + eεt d

dt
|u0(t)| = eεt

(
ε|u0(t)| + d

dt
|u0(t)|

)

= eεt (ε|u0(t)| − ε|u0(t)| + |∂ϕ(0)| + |h(t)|)
= eεt (|∂ϕ(0)| + |h(t)|) ,

thus,

|u0(t)| � e−εt |u0(0)| + e−εt

∫ t

0
eεs(|∂ϕ(0)| + |h(s)|) ds

� e−εt |u0(0)| + |∂ϕ(0)|b +
∫ t

0
|h(s)| ds ∀t ∈ T . (3.9)

In Eq. 3.9, we choose t = b. Using the periodic boundary condition, we have

(1 − e−εb)|u0(0)| � |∂ϕ(0)|b + ‖h‖1,

so

|u0(0)| � 1

1 − e−εb
(|∂ϕ(0)|b + ‖h‖1). (3.10)

We return to Eq. 3.9 and use Eq. 3.10. Then,

|u0(t)| � 1

1 − e−εb
(|∂ϕ(0)|b + ‖h‖1) + |∂ϕ(0)|b +

∫ t

0
|h(s)| ds ∀t ∈ T ,

so

|u0(t)| � c0 +
∫ t

0
|h(s)| ds ∀t ∈ T ,

for some c0 > 0.
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Let M > 0 be as postulated by hypothesis H(F)1(iii) and let pM : RN −→ R
N be the

M-radial retraction defined by

pM(x) =
{

x if |x| � M,
Mx
|x| if M < |x|.

We know that pM is nonexpansive (that is, |pM(x) − pM(u)| � |x − u| for all x, u ∈ R
N ).

We set
F̂ (t, x) = F(t, pM(x)) ∀(t, x) ∈ T × R

N .

Evidently, F̂ (t, x) satisfies hypotheses H(F)1(i) and (ii) and in addition, we have

|F̂ (t, x)| � âM(t) for a.a. t ∈ T , all x ∈ R
N .

In the sequel by Ŝε, we denote the solution set of the following periodic system{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + F̂ (t, u(t)) for a.a. t ∈ T = [0, b]
u(0) = u(b).

By Sε , we denote the solution set of{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + F(t, u(t)) for a.a. t ∈ T = [0, b]
u(0) = u(b).

In the next proposition, we derive uniform a priori bounds for the elements of these two
solution sets.

Proposition 3.5 (a) If hypotheses H(A), H(ϕ), H(F)1, and H0 hold, then |u(t)| � M

for all t ∈ T , all u ∈ Ŝε (here, M > 0 is as postulated in hypothesis H(F)1(iii)).
(b) If hypotheses H(A), H(ϕ), and H(F)′1 hold, then there exists M > 0 such that

|u(t)| � M for all t ∈ T , all u ∈ Sε .

Proof (a) Let u ∈ Ŝε ⊆ W 1,2((0, b);RN). We have{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + h(t) for a.a. t ∈ T

u(0) = u(b),
(3.11)

with h ∈ S2
F̂ (·,u(·)). Suppose that the result is not true. Then, two situations can occur:

(I) |u(t)| > M for all t ∈ T .
(II) There exist 0 � η � τ � b such that

|u(η)| = M and |u(t)| > M ∀t ∈ [η, τ ].
Suppose that (I) holds. From Eq. 3.11 for some a ∈ S2

A(·,u(·)) and some g ∈ S2
∂ϕ(u(·)), we

have
−u′(t) = a(t) + g(t) + εu(t) + h(t) for a.a. t ∈ T .

We take inner product with u(t). Then,

(u′(t), u(t))RN + (a(t), u(t))RN + (g(t), u(t))RN + ε|u(t)|2 + (h(t), u(t))RN = 0

for a.a. t ∈ T . Note that

(u′(t), u(t))RN = 1

2

d

dt
|u(t)|2.

Since a ∈ S2
A(·,u(·)) and 0 ∈ A(t, 0) for all t ∈ T , we have

(a(t), u(t))RN � 0 for a.a. t ∈ T .
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Hypothesis H0 implies that

(g(t), u(t))RN � 0 for a.a. t ∈ T .

Therefore, finally, we have

1

2

d

dt
|u(t)|2 + ε|u(t)|2 + (h(t), u(t))RN � 0 for a.a. t ∈ T ,

thus,

|u(b)|2 + 2
∫ b

0
(h(t), u(t))RN dt < |u(0)|2 (3.12)

(see (I)). Note that

(h(t), u(t))RN = |u(t)|
M

(h(t), pM(u(t)))RN � 0 for a.a. t ∈ T

(see hypothesis H(F)1(iii)). Using this in Eq. 3.12, we obtain

|u(b)|2 < |u(0)|2,
a contradiction.

Next, suppose that (II) holds. Then, repeating the above argument on the interval [η, τ ],
we obtain

M2 < |u(τ)|2 < |u(η)|2 = M2,

a contradiction.
So, we conclude that

|u(t)| � M ∀t ∈ T , u ∈ Ŝε.

(b) Let u ∈ Sε ⊆ W 1,2((o, b);RN). We have{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + h(t) for a.a. t ∈ T

u(0) = u(b),

with h ∈ S2
F(·,u(·)). Using Eq. 3.8 from Proposition 3.4, we have

|u(t)| � c0 +
∫ t

0
|h(s)| ds � c0 +

∫ t

0
k(s)(1 + |u(s)|) ds ∀t ∈ T

(see hypothesis H(F)′1(iii)), so

|u(t)| � M ∀t ∈ T , u ∈ Sε,

for some M > 0 (using Gronwall’s inequality).

On account of Proposition 3.5, we can always replace F(t, x) by F̂ (t, x) = F(t, pM(x)).
Therefore, without any loss of generality, we may assume that

|F(t, x)| � ϑ(t) for a.a. t ∈ T , all x ∈ R
N, (3.13)

with ϑ ∈ L2(T ).
Proposition 3.4 implies that we can define the solution map γε : L2(T ;RN) −→

C(T ;RN) which to every h ∈ L2(T ;RN) assigns the unique solution γε(h) ∈
W 1,2((0, b);RN) ⊆ C(T ;RN).

Proposition 3.6 If hypotheses H(A) and H(ϕ) hold, then the solution map
γε : L2(T ;RN) −→ C(T ;RN) is completely continuous (that is, if hn

w−→ h in
L2(T ;RN), then γε(hn) −→ γε(h) in C(T ;RN)).
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Proof Let hn
w−→ h in L2(T ;RN) and set un = γε(un) ∈ W 1,2((0, b);RN) ⊆ C(T ;RN)

for all n ∈ N and u = γε(h) ∈ W 1,2((0, b);RN) ⊆ C(T ;RN). We have{
0 ∈ u′

n(t) + A(t, un(t)) + ∂ϕ(un(t)) + εun(t) + hn(t) for a.a. t ∈ T

un(0) = un(b), n ∈ N.
(3.14)

and {
0 ∈ u′(t) + A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + h(t) for a.a. t ∈ T

u(0) = u(b).
(3.15)

As before (see the proof of Proposition 3.2), subtracting (3.15) from Eq. 3.14 and taking
inner product with un(t) − u(t), we obtain

|un(t) − u(t)|2 � |un(0) − u(0)|2 +
∫ t

0
(hn(s) − h(s), u(s) − un(s))RN dz

−ε

∫ t

0
|un(s) − u(s)|2 ds ∀t ∈ T , n ∈ N. (3.16)

From Eq. 3.8, we know that

|un(t)| � c0 +
∫ t

0
|hn(s)| ds ∀t ∈ T , n ∈ N,

so
|un(t)| � c1 ∀t ∈ T , n ∈ N, (3.17)

with c1 > 0. Both conditions in hypothesis H(ϕ) imply that ∂ϕ maps bounded sets to
bounded sets (see Gasiński-Papageorgiou [9, Problem 3.59]). Therefore,

|∂ϕ(un(t))| � c2 ∀t ∈ T , n ∈ N, (3.18)

for some c2 > 0 (see Eq. 3.17). Also, from hypothesis H(A)(iii), we have

|A(t, un(t))| � k0(t) for a.a. t ∈ T , all n ∈ N, (3.19)

with k0 ∈ L2(T ). Returning to Eq. 3.14 and using Eqs. 3.17, 3.18, and 3.19, we infer that the
sequence {u′

n}m�1 ⊆ L2(T ;RN) is bounded, so the sequence {un}n�1 ⊆ W 1,2((0, b);RN)

is bounded (see Eq. 3.17).
Thus, by passing to a suitable subsequence if necessary, we may assume that

un
w−→ û in W 1,2((0, b);RN) and un −→ û in C(T ;RN). (3.20)

In Eq. 3.16, we pass to the limit as n → +∞ and use Eq. 3.20. Then,

|̂u(t) − u(t)|2 � |̂u(0) − u(0)|2 − ε

∫ t

0
|̂u(s) − u(s)|2 ds ∀t ∈ T .

Let t = b and recall that û(0) = û(b), u(0) = u(b). We obtain

0 � −ε‖û − u‖2,

so û = u. Therefore, for the original sequence, we have un −→ u in C(T ;RN); thus, γε is
completely continuous.

On account of Eq. 3.13, we introduce the following set:

W = {g ∈ L2(T ;RN) : |g(t)| � ϑ(t) for a.a. t ∈ T }.
Evidently, W ⊆ L2(T ;RN) is sequentially weakly compact (Eberlein-Smulian theorem;
see Gasiński and Papageorgiou [7, p. 909]). Using Proposition 3.6, we have

Kε = γε(W) ∈ Pk(C(T ;RN)),
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so
Kε

c = conv Kε ∈ Pkc(C(T ;RN))

(see Gasiński and Papageorgiou [8, p. 852, Theorem 5.86]).
Now, we can have our existence theorem for the “convex problem.”

Theorem 3.7 If hypotheses H(A), H(ϕ) and H(F)1, H0 or H(F)′1 hold, then problem
(1.1) admits a solution u0 ∈ W 1,2((0, b);RN).

Proof Let ε > 0 and consider the following periodic system{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + F(t, u(t)) for a.a. t ∈ T

u(0) = u(b).
(3.21)

Recall that F(t, x) satisfies (3.13). We consider the set W ⊆ L2(T ;RN) furnished with the
relative weak topology and introduce the multifunction Hε : W −→ Pkc(W) defined by

Hε(g) = S2
F(·,γε(g)(·)) ∀g ∈ W.

Let {(gn, hn)}n�1 ⊆ Gr Hε and assume that

gn
w−→ g and hn

w−→ h in L2(T ;RN). (3.22)

Then Proposition 3.6 and Eq. 3.22 imply that

γε(gn) −→ γε(g) in C(T ;RN). (3.23)

Using Proposition 3.9 of Hu and Papageorgiou [11, p. 694], we have

h(t) ∈ conv w- lim sup
n→+∞

F(t, γε(gn)(t))

⊆ F(t, γε(g)(t)) for a.a. t ∈ T

(see Eq. 3.23 and hypothesis H(F)1(ii)), so (g, h) ∈ Gr Hε and thus Hε has closed graph
in W × W .

The set W furnished with the relative weak topology is compact. Also, it is convex. Then,
invoking the Kakutani-Ky Fan fixed point theorem (see Papageorgiou and Kyritsi [12, p.
114, Theorem 2.6.7] or Gasiński and Papageorgiou [7, p. 887]), we can find gε

0 ∈ W such
that gε

0 ∈ Hε(g
ε
0), so gε

0 ∈ S2
F(·,γε(g

ε
0)(·)).

Now, let εn −→ 0+ and let

un
0 = γεn(g

εn

0 ) ∈ W 1,2((0, b);RN) ⊆ C(T ;RN) ∀n ∈ N.

As before (see the proof of Proposition 3.6), using Eq. 3.8, we have that the sequence
{un

0}n�1 ⊆ C(T ;RN) is relatively compact.
Therefore, passing to a subsequence if necessary, we may assume that

un
0 −→ u0 in C(T ;RN). (3.24)

From Eqs. 3.21 and 3.24 as before (see the proof of Proposition 3.6), we have that the
sequence {(un

0)′}n�1 ⊆ L2(T ;RN) is bounded. Passing to a next subsequence if necessary,
we may assume

(un
0)′ w−→ h in L2(T ;RN). (3.25)

For every n ∈ N and every t, s ∈ T , s < t , we have

un
0(t) − un

0(s) =
∫ t

s

(un
0)′(τ ) dτ,
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so

u0(t) − u0(s) =
∫ t

s

h(τ ) dτ

(see Eqs. 3.24 and 3.25), thus h = u′
0.

Let � : L2(T ;RN) −→ R = R ∪ {+∞} be the integral functional defined by

�(u) =
{ ∫ b

0 ϕ(u(t)) dt if ϕ(u(·)) ∈ L1(T ),

+∞ otherwise.

We know that

� ∈ �0(L
2(T ;RN)) andpartial�(u) = S2

∂ϕ(u(·)) ∀u ∈ L2(T ;RN)

(see Hu and Papageorgiou [11, p. 349]). From Eq. 3.21, we have

− (un
0)′ − εnu

n
0 − gn

0 ∈ Gr (A + ∂�)(un
0) ∀n ∈ N, (3.26)

where A(u) ∈ S2
A(·,u(·)) for all u ∈ L2(T ;RN). From Lemma 2.3, we have that A is maxi-

mal monotone. In addition, hypothesis H(A)(iii) implies that D(A) = L2(T ;RN). There-
fore, Theorem 3.2.41 of Gasiński and Papageorgiou [7] implies that u �−→ (A+ ∂�)(u) is
maximal monotone. Hence, its graph is sequentially closed in L2(T ;RN) × L2(T ;RN)w .
Note that {gn

0 }n�1 ⊆ W . So, we can say that

gn
0

w−→ g in L2(T ;RN)

and g0 ∈ S2
F(·,u0(·)) (see Eq. 3.24 and hypothesis H(F)1(ii)).

Therefore, if in Eq. 3.26 we pass to the limit as n → +∞, then

(−u′
0 − g0) ∈ (A + ∂�)(u0)

(see Eq. 3.25), so{ −u′
0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + F(t, u0(t)) for a.a. t ∈ T

u0(0) = u0(b).

An interesting byproduct of the above proof is the following result concerning the
solution set Sc ⊆ C(T ;RN) of the “convex problem.”

Proposition 3.8 If hypotheses H(A), H(ϕ) and H(F)1, H0, or H(F)′1 hold, then Sc ∈
Pk(C(T ;RN)).

4 The Nonconvex Problem

In this section, we prove an existence theorem for the “nonconvex problem” (that is, the
multivalued perturbation has nonconvex values).

In this case, the hypotheses on the multivalued perturbation F are the following:

H(F)2: F : T × R
N −→ Pf (RN) \ ∅ is a multifunction such that

(i) (t, x) −→ F(t, x) is graph measurable.
(ii) For almost all t ∈ T , x �−→ F(t, x) is lower semicontinuous.
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(iii) There exist M > 0 and âM ∈ L2(T ) such that

0 � (h, x)RN for a.a. t ∈ T , all |x| = M, h ∈ F(t, x),

|F(t, x)| � âM(t) for a.a. t ∈ T , |x| � M.

As before (see Section 3), these hypotheses will be combined with H0. Alternatively,
instead of the pair H(F)2, H0, we can use the following hypotheses on F :

H(F)′2: F : T × R
N −→ Pf (RN) is a multifunction such that hypotheses H(F)′2(i) and

(ii) are the same as the corresponding hypotheses H(F)2(i) and (ii) and

(iii) |F(t, x)| � k(t)(1 + |x|)| for almost all t ∈ T , all x ∈ R
N , with k ∈ L2(T ).

Theorem 4.1 If hypotheses H(A), H(ϕ) and H(F)2, H0, or H(F)′2 hold, then problem
(1.1) admits a solution u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN).

Proof The a priori bounds in Proposition 3.5 remain valid and so without any loss of
generality, we may assume that

|F(t, x)| � ϑ(t) for a.a. t ∈ T , all x ∈ R
N, (4.1)

with ϑ ∈ L2(T ) (just replace F(t, x) with F̂ (t, x) = F(t, pM(x))).
Again, we introduce the sets

W = {g ∈ L2(T ;RN) : |g(t)| � ϑ(t) for a.a. t ∈ T }
Kε

c = conv γε(W) ∈ Pkc(C(T ; H)).

We introduce the multifunction V : C(T ;RN) −→ Pwk(L
2(T ;RN)) defined by

V (u) = S2
F(·,u(·)) ∀u ∈ C(T ;RN).

We show that V is a lower semicontinuous multifunction. According to Proposition 2.6 of
Hu and Papageorgiou [11, p. 37], to show the lower semicontinuity of V , it suffices to show
that, if un −→ u in C(T ; H), then

V (u) ⊆ lim inf
n→+∞ V (un).

So, suppose that
un −→ u in C(T ; H) and h ∈ V (u). (4.2)

For n ∈ N, we consider the multifunction Gn : T −→ Pk(R
N) defined by

Gn(t) = {v ∈ F(t, un(t)) : |h(t) − v| � d(h(t), F (t, un(t))) + 1

n
}.

Hypothesis H(F)2(i) implies that the map t �−→ d(h(t), F (t, un(t))) is measurable.
Therefore,

T × R
N � (t, v) �−→ en(t, v) = |h(t) − v| − d(h(t), F (t, un(t)))

is a Carathéodory function. We know that Carathéodory functions are jointly measurable
(see Hu and Papageorgiou [11, p. 142]). Therefore,

Gr Gn = {(t, v) ∈ T × R
N : en(t, v) � 1

n
} ∈ LT ⊗ B(RN).

Invoking the Yankov-von Neumann-Aumann selection theorem, we can find a measurable
function hn : T −→ R

N such that

hn(t) ∈ Gn(t) for a.a. t ∈ T , all n ∈ N.



Nonlinear Multivalued Periodic Systems 235

We have

|h(t) − hn(t)| � d(h(t), F (t, un(t))) + 1

n
for a.a. t ∈ T , all n ∈ N,

so

lim sup
n→+∞

|h(t) − hn(t)| � lim sup
n→+∞

d(h(t), F (t, un(t)))

� d(h(t), lim inf
n→+∞ F(t, un(t)))

� d(h(t), F (t, u(t))) = 0 for a.a. t ∈ T

(see Hu and Papageorgiou [11, p. 672, Proposition 1.47], Eq. 4.2, hypothesis H(F)2(ii)

and recall that h ∈ V (u)), thus,

hn(t) −→ h(t) for a.a. t ∈ T . (4.3)

Also, we have
|h(t) − hn(t)|2 � 2ϑ(t)2 for a.a. t ∈ T , all n ∈ N

(see Eq. 4.1), so

{|(h − hn)(·)|2}n�1 ⊆ L1(T ) is uniformly integrable. (4.4)

Then, from Eqs. 4.3 and 4.4 and Vitali’s theorem (see, e.g., Gasiński and Papageorgiou [7, p.
901]), we have

hn −→ h in L2(T ;RN),

with hn ∈ V (un) for all n ∈ N, thus, V is lower semicontinuous.
Clearly, V has decomposable values. Applying the Bressan-Colombo-Fryszkowski

selection theorem (see Bressan and Colombo [2], Fryszkowski [6], and Hu and Papa-
georgiou [11, p. 245, Theorem 8.7]), we can find a continuous map v : C(T ;RN) −→
L2(T ;RN) such that

v(u) ∈ V (u) ∀u ∈ C(T ;RN).

We set τε = γε ◦ v : Kε
c −→ Kε

c . Evidently, τε is continuous (see Proposition 3.6). Since
Kε

c ∈ Pkc(C(T ;RN)), we can apply the Schauder fixed point theorem and produce uε
0 ∈ Kε

c

such that
uε

0 = τε(u
ε
0),

so uε
0 ∈ W 1,2((0, b);RN)) is a solution of problem (3.21).

Now, consider a sequence εn → 0+ and let un = u
εn

0 for n ∈ N. From Eqs. 3.8 and 4.1,
we see that there exists cε > 0 such that

|un(t)| � c3 ∀t ∈ T , n ∈ N.

This implies that Eqs. 3.18 and 3.19 are valid and hence the sequence {u′
n}n�1 ⊆

L2(T ;RN) is bounded.
For all t, s ∈ T , s � t , by the Cauchy-Schwarz inequality, we have

|un(t) − un(s)|�
∫ t

s

|u′
n(t)| dτ � (t − s)

1
2 ‖u′

n‖2 � c4(t − s)
1
2 ∀n � 1,

for some c4 > 0, so, the sequence {un}n�1 is equicontinuous.
The Arzela-Ascoli theorem implies that the sequence {uεn

0 }n�1 ⊆ C(T ;RN) is relatively
compact.

So, passing to a subsequence if necessary, we may assume that

u
εn

0 −→ u0 in C(T ;RN).



236 L. Gasiński and N. S. Papageorgiou

Exploiting the continuity of V and reasoning as in the last part of the proof of Theorem 3.7,
in the limit as n → +∞, we obtain{ −u′

0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + F(t, u0(t)) for a.a. t ∈ T

u0(0) = u0(b),

so u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN) is a solution of Eq. 1.1.

5 Extremal Trajectories

In this section, we deal with the following version of problem (1.1):{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + ext F(t, u(t)) for a.a. t ∈ T

u(0) = u(b).
(5.1)

Here, by ext F(t, x), we denote the set of extreme points of F(t, x). We know that even if
F(t, ·) has strong continuity properties, the multifunction x �−→ ext F(t, x) need not have
any (see Hu and Papageorgiou [11, Section 2.4]). So, the existence of solutions for problem
(5.1) cannot be deduced from Theorems 3.7 and 4.1 and a different approach is needed.

We need to strengthen the conditions on the multivalued perturbation F(t, x). The new
hypotheses are the following:

H(F)3: F : T × R
N −→ Pkc(R

N) is a multifunction such that

(i) For all x ∈ R
N , t −→ F(t, x) is graph measurable.

(ii) For almost all t ∈ T , x �−→ F(t, x) is h-continuous.
(iii) There exist M > 0 and âM ∈ L2(T ) such that

0 � (h, x)RN for a.a. t ∈ T , all |x| = M, h ∈ F(t, x),

|F(t, x)| � âM(t) for a.a. t ∈ T , |x| � M.

As before, H(F)3 will be combined with H0. Alternatively, we can replace the pair
H(F)3, H0 with the following hypotheses:

H(F)′3: F : T × R
N −→ Pkc(R

N) \ ∅ is a multifunction such that hypotheses H(F)′3(i)
and (ii) are the same as the corresponding hypotheses H(F)3(i) and (ii) and

(iii) |F(t, x)| � k(t)(1 + |x|)| for almost all t ∈ T , all x ∈ R
N , with k ∈ L2(T ).

Theorem 5.1 If hypotheses H(A), H(ϕ) and H(F)3, H0, or H(F)′3 hold, then problem
(5.1) admits a solution u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN).

Proof Given ε ∈ (0, 1], first we consider the following regularization of Eq. 5.1:{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + εu(t) + ext F(t, u(t)) for a.a. t ∈ T

u(0) = u(b).
(5.2)

The a priori bound from Proposition 3.5 remains valid. So, without any loss of generality
we assume that

|F(t, x)| � ϑ(t) for a.a. t ∈ T , all x ∈ R
N, (5.3)

with ϑ ∈ L2(T ). As before

W = {g ∈ L2(T ;RN) : |g(t)| � ϑ(t) for a.a. t ∈ T },
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while from the proof of Proposition 3.4 (see Eq. 3.10), we see that we can find K̂c ∈
Pkc(C(T ;RN)) such that conv γε(W) ⊆ K̂c for all ε ∈ (0, 1].

Applying Theorem 8.31 of Hu and Papageorgiou [11, p. 260], we can find a continuous
map τ : K̂c −→ L1

w(T ;RN) such that

τ(u) ∈ ext S2
F(·,u(·)) = S2

ext F(·,u(·)) ∀u ∈ K̂c (5.4)

(see Hu and Papageorgiou [11, p. 191, Theorem 4.5]). Then, we consider the map σε =
γε ◦ τ : K̂c −→ K̂c. We claim that σε is continuous. So, let {un}n�1 ⊆ K̂c and assume that

un −→ u ∈ K̂c in C(T ;RN),

so

τ(un) −→ τ(u) in L1
w(T ;RN).

Because of Eq. 5.3, we can apply Lemma 2.8 of Hu and Papageorgiou [11, p. 24] and have

τ(un)
w−→ τ(u) in L2(T ;RN),

thus,

γε(τ (un)) −→ γε(τ (u)) in C(T ;RN),

thus, σε is continuous.
Since σε : K̂c −→ K̂c and K̂c ∈ Pkc(C(T ;RN)), the Schauder fixed point theorem gives

uε
0 ∈ K̂c such that uε

0 = σε(u
ε
0).

Let εn ∈ (0, 1] for n ∈ N and assume that εn → 0+. We set un
0 = u

εn

0 for n ∈ N. From
the proof of Theorem 4.1, we have that the sequence {un

0}n�1 ⊆ C(T ;RN) is relatively
compact. So, passing to a subsequence if necessary, we may assume that

un
0 −→ u0 in C(T ;RN).

For every n ∈ N, we have{ −(un
0)′(t) ∈ A(t, un

0(t)) + ∂ϕ(un
0(t)) + εnu

n
0(t) + τ(un

0)(t) for a.a. t ∈ T

un
0(0) = un

0(b).

Since τ(un
0)

w−→ τ(u0) in L2(T ;RN) (see Lemma 2.8 of Hu and Papageorgiou [11, p. 24])
as in the proof of Theorem 3.7, in the limit as n → +∞, we obtain{ −u′

0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + ext F(t, u0(t)) for a.a. t ∈ T

u0(0) = u0(b)

(see Eq. 5.4). Therefore, u0 ∈ W 1,2((0, b);RN) ⊆ C(T ;RN) is a solution of Eq. 5.1.

6 Strong Relaxation

In this section, we show that every solution of the convex problem can be obtained as
the limit in the C(T ;RN)-norm of certain extremal trajectories. Such a result is known as
“strong relaxation.” The result is important in many applications. In the context of control
systems, it says that we can approximate any state of the system by states which are gener-
ated using “bang-bang controls.” This way, we can economize in the use of controls. In the
context of game theory, the selection of ext F(·, u(·)) are known as “pure strategies” and
the strong relaxation theorem implies that any state can be approximated by ones generated
using only pure strategies.
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To prove such a result, we need to strengthen further the conditions on F . The new
hypotheses are the following:

H(F)4: F : T × R
N −→ Pkc(R

N) is a multifunction such that

(i) For all x ∈ R
N , t −→ F(t, x) is graph measurable.

(ii) For every r > 0, there exists ηr ∈ L1(T ) such that

h(F (t, x), F (t, y)) � ηr(t)|x − y|
for almost all t ∈ T , all x, y ∈ R

N with |x|, |y| � r .
(iii) Tthere exist M > 0 and âM ∈ L2(T ) such that

0 � (h, x)RN for a.a. t ∈ T , all |x| = M, h ∈ F(t, x),

|F(t, x)| � âM(t) for a.a. t ∈ T , |x| � M.

These hypotheses go together with H0. Alternatively, the pair H(F)4, H0 can be
replaced by the following hypotheses:

H(F)′4: F : T × R
N −→ Pkc(R

N) \ ∅ is a multifunction such that hypotheses H(F)′4(i)
and (ii) are the same as the corresponding hypotheses H(F)4(i) and (ii) and

(iii) |F(t, x)| � k(t)(1 + |x|)| for almost all t ∈ T , all x ∈ R
N , with k ∈ L2(T ).

In what follows by Sc, we denote the solution set of the convex problem (that is,
in Eq. 1.1, F(·, ·) has values in Pkc(R

N)). From Proposition 3.8, we know that Sc ∈
Pk(C(T ;RN)).

Let x0 ∈ R
N and consider the following Cauchy problem:{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + ext F(t, u(t)) for a.a. t ∈ T

u(0) = x0.
(6.1)

Let Se(x0) ⊆ W 1,p((0, b);RN) be the solution set of Eq. 6.1. A simplified version of
the proof of Theorem 5.1 shows that Se(x0) �= ∅. Then, our strong relaxation result reads as
follows.

Theorem 6.1 If hypotheses H(A), H(ϕ) and H(F)4, H0, or H(F)′4 hold and u ∈ Sc, then
there exists a sequence {un}n�1 ⊆ Se(u(0)) such that un −→ u in C(T ;RN).

Proof From the previous work, we know that without any loss of generality, we may assume
that

|F(t, x)| � ϑ(t) for a.a. t ∈ T , all x ∈ R
N, (6.2)

with ϑ ∈ L2(T ).

We know that Sc ∈ Pk(C(T ;RN)). Similarly, Se(u(0))
C(T ;H) ∈ Pk(C(T ;RN)). We set

K∗ = conv (Sc ∪ Se(u(0))) ∈ Pkc(C(T ;RN)).

Since u ∈ Sc, we can find h ∈ S2
F(·,u(·)) such that{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for a.a. t ∈ T

u(0) = u(b).
(6.3)

Given v ∈ K∗ and ε > 0, we introduce the multifunction Lv,ε : T −→ 2R
N \ ∅ defined by

Lv,ε(t) = {y ∈ F(t, v(t)) : |h(t) − y| <
1

2M0b
+ d(h(t), F (t, v(t)))},
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with h ∈ L2(T ;RN) as in Eq. 6.3 and M0 = |K∗|. Hypotheses H(F)4(i) and (ii) imply
that (t, x) �−→ F(t, x) is graph measurable. So, t �−→ F(t, v(t)) is measurable. Therefore,
(t, y) �−→ ξ(t, y) = |h(t) − y| − d(h(t), F (t, v(v))) is a Carathéodory function. We have

Gr Lv,ε = {(t, y) ∈ T × R
N : ξ(t, y) <

ε

2M0b
} ∩ Gr F(·, v(·)),

so Gr Lv,ε ∈ LT ⊗B(RN). Invoking the Yankov-von Neumann-Aumann selection theorem,
we can find a measurable function lv,ε : T −→ R

N such that

lv,ε(t) ∈ Lv,ε(t) for a.a. t ∈ T ,

hence,

lv,ε ∈ L2(T ;RN) (6.4)

(see Eq. 6.2). Then, we introduce the multifunction Hε : K∗ −→ 2L2(T ;RN ) defined by

Hε(v) = S2
Lv,ε

.

From Eq. 6.4, we see that

Hε(v) �= ∅ ∀v ∈ K∗.

Also Lemma 8.3 of Hu and Papageorgiou [11, p. 239] implies that v �−→ Hε(v) is lower
semicontinuous and so v �−→ Hε(v) is lower semicontinuous (see Hu and Papageor-
giou [11, p. 50]). Clearly, Hε(·) has decomposable values. Hence, the selection theorem of
Bressan-Colombo-Fryszkowski (see Bressan and Colombo [2] and Fryszkowski [6]) gives
a continuous map τε : K∗ −→ L2(T ;RN) satisfying

τε(v) ∈ Hε(v) ∀v ∈ K∗. (6.5)

Moreover, invoking Theorem 8.31 of Hu and Papageorgiou [11, p. 260], we can find a
continuous map rε : K∗ −→ L1

w(T ;RN) such that

rε(v) ∈ ext S2
F(·,v(·)) = S2

ext F(·,v(·)) and ‖rε(v) − τε(v)‖w � ε ∀v ∈ K∗. (6.6)

Now, let εn = 1
n

, τn = τεn , and rn = rεn for all n ∈ N and x0 = u(0) = u(b). We consider
the following Cauchy problem:

{ −u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + rn(u)(t) for a.a. t ∈ T

u(0) = x0.
(6.7)

Let un ∈ W 1,2((0, b);RN) be a solution of Eq. 6.7. Evidently, {un}n�1 ⊆ Se(x0) (see
Eq. 6.6). Then, we have that the sequence {un}n�1 ⊆ W 1,2((0, b);RN) is bounded, so the
sequence {un}n�1 ⊆ C(T ;RN) is relatively compact. Passing to a subsequence if necessary,
we may assume that

un
w−→ û in W 1,2((0, b);RN) and un −→ û in C(T ;RN). (6.8)
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Exploiting the monotonicity of A(t, ·) and of ∂ϕ and recalling that un(0) = x0 = u(0) for
all n ∈ N (see Eq. 6.7), we obtain

|un(t) − u(t)|2 �
∫ t

0
(rn(un)(s) − h(s), u(s) − un(s))RN ds (6.9)

=
∫ t

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds (6.10)

+
∫ t

0
(τn(un)(s) − h(s), u(s) − un(s))RN ds (6.11)

�
∫ t

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds (6.12)

+
∫ t

0
|τn(un)(s) − h(s)||u(s) − un(s)| ds (6.13)

�
∫ t

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds (6.14)

+
∫ t

0

(
1

2M0bn
+ d(h(s), f (s, un(s)))|un(s) − u(s)| ds (6.15)

�
∫ t

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds (6.16)

+ 1

n
+

∫ t

0
h(F (s, u(s)), F (s, un(s)))|un(s) − u(s)| ds (6.17)

�
∫ t

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds (6.18)

+
∫ t

0
ηM0(s)|u(s) − un(s)|2ds + 1

n
(6.19)

(see Eq. 6.5, hypotheses H(F)4(ii) and H(F)′4(ii)). From Eq. 6.6, we have

rn(un) − τn(un) −→ 0 in L1
w(T ;RN).

Then, Lemma 2.8 of Hu and Papageorgiou [11, p. 24] implies that

rn(un) − τn(un)
w−→ 0 in L2(T ;RN). (6.20)

We return to Eq. 6.9, pass to the limit as n → +∞ and use Eqs. 6.8 and 6.20. Then,

|̂u(t) − u(t)|2 �
∫ t

0
ηM0(s)|̂u(s) − u(s)|2 ds ∀t ∈ T ,

so

|̂u(t) − u(t)|2 � 0 ∀t ∈ T

(by Gronwall’s inequality). It follows that û = u. Therefore, u = lim
n→+∞ un in C(T ;RN)

and un ∈ Se(u(0)) for all n ∈ N.

Let Se ⊆ W 1,2((0, b);RN) ⊆ C(T ;RN) be the solution set of problem (5.1). From
Theorem 3.7, we know that Se �= ∅. If we strengthen the conditions on A(t, ·), we can show
that the set Se is dense in Sc for the C(T ;RN)-norm topology.

The stronger conditions on A are the following:
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H(A)′: A : T × R
N −→ 2R

N \ ∅ is a multifunction such that 0 ∈ A(t, 0) for all
t ∈ T , hypotheses H(A)′(i), (ii), and(iii) are the same as the corresponding hypotheses
H(A)(i), (ii), and(iii) and

(iv) For every M > 0, there exists c > 0 such that

cM |x − y|2 � (A(t, x) − A(t, y), x − y)RN

for all t ∈ T , all x, y ∈ R
N with |x|, |y| � M .

Example 6.2 Let η ∈ C(T ;RN), η � ĉ > 0, A0 : RN −→ 2R
N \ ∅ is a maximal monotone

map with 0 ∈ A0(0) and set

A(t, x) = η(t)|x|p−2x + A0(x),

with 1 < p � 2. This map satisfies hypotheses H(A)′.

Theorem 6.3 If hypotheses H(A)′, H(ϕ) and H(F)4, H0, or H(F)′4 hold with

ηM(t) < cM for a.a. t ∈ T , all M > 0,

then, S
C(T ;RN )

e = Sc.

Proof We follow the proof of Theorem 6.1, using this time instead of problem (6.7), the
periodic problem (that is, the boundary condition in Eq. 6.7 will be u(0) = u(b)). So,
{un}n�1 ⊆ Se. Using the periodic boundary condition and hypothesis H(A)′(iv), we have
(see Eq. 6.9 with t = b)

0 � −cM0‖un − u‖2
2 +

∫ b

0
(rn(un)(s) − τn(un)(s), u(s) − un(s))RN ds

+
∫ b

0
ηM0(s)|un(s) − u(s)|2ds + 1

n
∀n ∈ N.

Passing to the limit as n → +∞, we obtain

0 �
∫ b

0
(ηM0(s) − cM0)|̂u(s) − u(s)|2ds

(see Eqs. 6.20 and 6.8), so û = u (see hypothesis H(A)′(iv)).
Therefore, u = lim

n→+∞ un in C(T ;RN) with un ∈ Se for all n ∈ N (see Eq. 6.8).

7 An Example

In this section, we illustrate our results by examining the following periodic control system
with a priori feedback:⎧⎨

⎩
−u′(t) ∈ ξ(t)|u(t)|p−2u(t) + ∂|u(t)| + f (t, u(t)) + L(v(t))

for a.a. t ∈ T = [0, b]
u(0) = u(b), v(t) ∈ C(t, u(t)) for a.a. t ∈ T .

(7.1)

In this problem,

ξ ∈ C(T ;R), ξ � 0, ξ �≡ 0, and 1 < p < +∞.
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Also, RN � x �−→ ∂|x| denotes the subdifferential in the sense of convex analysis. We
know that

∂|x| =
{ x

|x| if x �= 0,

B1 if x = 0,
(7.2)

with B1 = {x ∈ R
N : |x| � 1} (see Gasiński and Papageorgiou [7]). The function

f : T × R
N −→ R

N is measurable in t ∈ T and locally L1(T )-Lipschitz in x ∈ R, that is,
for every M ′ > 0, there exists η1

M ′ ∈ L1(T ) such that

|f (t, x) − f (t, y)| � η1
M ′(t)|x − y| for a.a. t ∈ T , all x, y ∈ R

N, |x|, |y| � M ′.
The function v : T −→ R

m is the control function and C : T × R
N −→ Pkc(R

m) is the
control constraint multifunction. The dependence of C on x ∈ R

N implies that there is a
priori feedback in the system. We assume that

• For all x ∈ R
N , t �−→ C(t, x) is graph measurable.

• For almost all t ∈ T , x �−→ C(t, x) is locally L1(T ) h-Lipschitz, that is, for every
M ′ > 0, there exists η2

M ′ ∈ L1(T ) such that

h(C(t, x), C(t, y)) � η2
M ′(t)|x − y| for a.a. t ∈ T , all |x|, |y| � M ′.

Also, L is an N × m-matrix and we assume that there exist M > 0 and âM ∈ L2(T )

such that

(f (t, x) + L(v), x)RN � 0 for a.a. t ∈ T , all |x| = M, v ∈ C(t, x),

and
|f (t, x)|, |C(t, x)| � âM(t) for a.a. t ∈ T , all |x| � M.

We set
F(t, x) = f (t, x) + L(C(t, x)) ∀(t, x) ∈ T × R

N .

This multifunction satisfies hypotheses H(F)4 while hypothesis H0 is clearly satisfied (see
Eq. 7.2). Also, we have

ext F(t, x) = f (t, x) + ext C(t, x).

Now, the control system (7.1) is equivalent to the following periodic differential inclusion:{ −u′(t) ∈ ξ(t)|u(t)|p−2u(t) + ∂|u(t)| + F(t, u(t)) for a.a. t ∈ T

u(0) = u(b).

We know that the solution set Sc of this multivalued system is nonempty (see Theorem 3.7)
and in fact, we have

Sc ∈ Pk(C(T ;RN))

(see Proposition 3.8). Furthermore, if u ∈ Sc and ε > 0, then we can find uε ∈
W 1,2((0, b);RN) such that{ −u′

ε(t) ∈ ξ(t)|uε(t)|p−2uε(t) + ∂|uε(t)| + f (t, uε(t)) + L(vε(t)) for a.a. t ∈ T

uε(0) = u(0), vε ∈ L2(T ;RN), vε(t) ∈ ext C(t, uε(t)) for a.a. t ∈ T

(7.3)
and ‖u − uε‖C(T ;RN ) � ε (see Theorem 6.1).

In fact, if ξ(t) � ĉ > 0 for all t ∈ T and 1 < p � 2, then we can find uε ∈
W 1,2((0, b);RN) satisfying (7.3) with periodic boundary condition (that is, uε(0) = uε(b))
and

‖u − uε‖C(T ;RN ) � ε

(see Theorem 6.3).
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