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Abstract
We consider an online interval scheduling problem on two related machines. If one
machine is at least as twice as fast as the other machine, we say the machines are
distinct; otherwise the machines are said to be similar. Each job j ∈ J is characterized
by a length p j , and an arrival time t j ; the question is to determine whether there exists
a feasible schedule such that each job starts processing at its arrival time. For the
case of unit-length jobs, we prove that when the two machines are distinct, there is
an amount of lookahead allowing an online algorithm to solve the problem. When the
two machines are similar, we show that no finite amount of lookahead is sufficient to
solve the problem in an online fashion.We extend these results to jobs having arbitrary
lengths, and consider an extension focused on minimizing total waiting time.

Keywords Online algorithms · Interval scheduling · Lookahead · Competitive ratio

1 Introduction

Consider the following problem. We are given a finite set of jobs J = {1, 2, . . . , n},
and two related machines called M1 and M2. Each job j ∈ J must start at a given
arrival time t j , where 0 ≡ t1 ≤ t2 ≤ · · · ≤ tn , and each job j ∈ J has length p j .
The two machines have respective speeds s1 and s2, with the convention that the first
machine is faster than the second one (i.e., s1 > s2). Since, in our context, it is more
intuitive to consider times rather than inverses of speeds, we use so-called standard
processing times Ti = 1

si
for i = 1, 2. Thus, it requires p j × Ti time-units to process
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job j ∈ J on machine i (i = 1, 2). Each job j ∈ J must be assigned to either machine
M1 or M2; the resulting schedule is feasible if and only if there is no overlap between
any pair of jobs assigned to the same machine; in other words, for each pair of distinct
jobs j1, j2 ∈ J , with j1 ≤ j2, assigned to a same machine i , t j2 ≥ t j1 + p j1Ti
(i = 1, 2). An instance of this problem is called feasible if a feasible schedule exists,
otherwise the instance is called infeasible.

Our focus is on the existence of online algorithms that decide whether a given
instance is feasible. In a classical online algorithm, the jobs and their lengths are not
known in advance, and the existence of job j and its length p j is only revealed at time
t j . At that moment, the online algorithm has to assign the job to either machine M1,
or machine M2, or report failure. Here, we want to understand to what extent partial
knowledge of the future can help an online algorithm in order to decide feasibility.
Thus, we employ a parameter τ , called the look-ahead, so that at time t all arrival
times of jobs arriving in [t, t + τ ], and their corresponding lengths, are known to the
algorithm. More formally, for any duration τ ≥ 0, the phrase an online algorithm with
lookahead time τ refers to an algorithm that has to decide at the arrival time of job j ,
i.e., at time t j , to which machine job j should be assigned, while knowing only what
happened before t j , as well as the arrival times and the lengths of the jobs arriving in
the interval [t j , t j +τ ]. We say that an online algorithm with look-ahead τ exists if the
algorithm constructs, in an online fashion, a feasible schedule whenever one exists.
The interval [t j , t j + τ ] is called the lookahead interval with respect to t j .

This section is structured as follows. We give a concise overview of the litera-
ture on online interval scheduling in Sect. 1.1. Subsection 1.2 describes the practical
application motivating this work, and Sect. 1.3 summarizes our results.

1.1 Literature

A defining characteristic of interval scheduling problems is that the starting times
of the jobs are given, see Kolen et al. (2007) for a general survey. Thus, jobs can
be represented by intervals and they require uninterrupted processing, so that two
intervals that overlap cannot be assigned to a same machine. An interval is said to be
accepted if it is entirely processed by a machine, while an interval that is not entirely
processed, is lost. It is usually allowed to interrupt the processing of an interval to
process another one. In that case, the interrupted interval is lost: its processing can not
be resumed later on. One often wants to maximize the number of intervals accepted, or
if jobs have weights, one wants to maximize the sum of the weights of accepted jobs.
Online algorithms for interval scheduling problems have been studied since Lipton
and Tomkins (1994); as described above the jobs and their lengths are not known in
advance, and a decision about a job needs to be made at the instant it arrives. We refer
to Sgall (1998) for a survey on online algorithms for scheduling problems, and for
definitions of relevant terminology.

For a single machine, Woeginger (1994) presents an online algorithm that outputs a
solution with a value at least 14 of the optimal weight under various conditions (includ-
ing the case of unit-length jobs with arbitrary weights), i.e., he gives an algorithm
achieving a competitive ratio of 4. Fung et al. (2014) achieve a competitive ratio
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of 2 using randomization, see also earlier work of Fung et al. (2008), Fung et al.
(2012) and Epstein and Levin (2010). Recent work on online interval scheduling on
two and three machines can be found in Yu and Jacobson (2018). In the context of a
single machine, jobs of unit length and arbitrary weights, Zheng et al. (2013) inves-
tigate the impact of lookahead. They find that a lookahead of one time-unit serves as
a threshold: a lookahead of less than one time-unit does not lead to the existence of
algorithms with a better competitive ratio, while a lookahead of at least one time-unit
does.

For a fixed number k of identical independent machines, Faigle and Nawijn (1995)
and Carlisle and Lloyd (1995) present an online algorithm that maximizes the number
of jobs accepted (even if jobs have arbitrary length). Krumke et al. (2011) allow the
machines to be distinct and show that the decision problem derived from maximiz-
ing the number of jobs accepted (with machines having arbitrary speeds) is strongly
NP-complete. Dosa et al. (1994) consider an online scheduling problem with two
related machines where the goal is to minimize makespan allowing rearrangement of
jobs.

In a recent paper, Epstein et al. (2016) study online interval scheduling with related
machines, where the jobs (or intervals) have a length, and a weight, and they present
lower and upper bounds on competitive ratios of algorithms that aim at maximizing
total weight of accepted intervals. In particular, for the case of two related machines,
where jobs have unit length, as well as unit weight, they give an online algorithm
achieving a competitive ratio of 4

3 , which they show to be best-possible. Other results
in Epstein et al. (2016) include a matching lower and upper bound of k (where k is the
number of machines) for the case of arbitrary lengths, and unit weights [correcting a
claim in Krumke et al. (2011)].

Notice that, in contrast to the objective functions considered in those papers, we
focus on a more modest question, namely the decision problem. Indeed, instead of
maximizing total weight, we are only interested in the question whether there exists an
online algorithm (with a certain amount of lookahead) that is able to accept all inter-
vals if the instance allows so. The results of Epstein et al. (2016) imply that, without
any additional ‘power’ for the online algorithm (such as lookahead), the answer to
this question is no. To the best of our knowledge, the setting with lookahead, i.e.,
the setting where at a decision moment, some future jobs are known, has not been
studied in the context of more than one machine in the field of interval schedul-
ing.

However, when considering scheduling problems where jobs do not have fixed
starting times, a sizable literature on the impact of lookahead exists. For instance,
Schwarz (2008) considers a setting where advance warnings considering the (non-
)availability of amachine are given. Further, in Li et al. (2009) lookahead is considered
for a problem involving a (parallel) batching machine. We also mention Erlebach and
Spieksma (2003) and Miyazawa and Erlebach (2004) who consider an online interval
scheduling problemwhere the intervals are revealed in the order of their right endpoints
(which can be interpreted as a particular form of lookahead).

The off-line version of a special case of our problem (namely, the setting with
unit-length jobs) is studied in Passchyn et al. (2016). They provide necessary and
sufficient conditions for the feasibility of a given instance. Based on this characteriza-
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tion (which we describe in Sect. 2.2), an O(n) algorithm is given to solve the problem
with unit-length jobs. In addition, they describe an O(n2) algorithm to solve the so-
called bidirectional case with two machines, and also provide an O(mnm) dynamic
programming algorithm to solve the bidirectional problem withm machines; all these
results pertain to the off-line problem.

1.2 Motivation

Our problem is relevant in the context of handling ship traffic in inland waterways.
In such waterways, locks are very often used to allow ships to overcome changes
in the water level; more often than not, locks have multiple chambers that operate
independently, and each chamber is able to transfer ships to the other side. Lock
scheduling is receiving an increasing amount of attention, especially due to the growing
relevance of inland waterway transport as a sustainable, cheap, emission-friendly, and
safe alternative to transport over land.We refer to Hermans (2014), Smith et al. (2011)
and Passchyn et al. (2016) who study single-chamber locks, and to Prandtstetter et al.
(2015), Disser et al. (2015) and Passchyn et al. (2016), where series of locks are
studied.

We claim that operating a single lock with two distinct chambers and identical
ships can be modeled as a scheduling problem by seeing ships as jobs and chambers
as machines. In that case, we set p j = 1 for every job (ship) j ∈ J , and T1 and T2
represent the so-called lockage times of the chambers (the lockage time is the time
needed by a chamber to let a ship enter, change the water level, and let the ship exit).
We are interested in the question whether a schedule exists in which no job (ship) has
to wait.

Online algorithms with lookahead are especially relevant in this setting, since the
person responsible for operating a lock (the lockmaster) may, on the one hand, know
some time in advance that a ship is going to arrive, but, on the other hand, does not
know all arrival times that will realize during a day of operation. In particular, we are
aware of a situation (along the river Main, Würzburg, Germany) where the lockmaster
has access to cameras that describe the situation one lock upstream, as well as one
lock downstream. Clearly, such a situation can bemodelled by choosing an appropriate
value for the look-ahead τ .

1.3 Our results

We focus on the power of lookahead for this interval scheduling problem.

(i) For the case of unit-length jobs, we show that there exists an online algorithm
with lookahead 2T1 if and only if the ratio between the two standard processing
times is at least 2 (Sect. 3); in addition, we show that there cannot exist an online
algorithm with lookahead less than 2T1.

(ii) We generalize these results to the casewhere jobs have arbitrary lengths (Sect. 4).
(iii) Then, in Sect. 5, we investigate whether our results extend to a situation where

the objective is to minimize total waiting time.
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2 Preliminaries

2.1 A graph reformulation

A key tool in our analysis is the following undirected graph that we build from a given
instance I defined by arrival times (t j )1≤ j≤n , T1, and T2 as follows. Let G(I) =
(V , E) where there is a node in V for each job j ∈ J , i.e., V = J . Observe that
the sequence of the jobs implied by sorting their arrival times in nondecreasing order,
and breaking ties arbitrarily, gives an order of the nodes of V . The edgeset E is
the disjoint union of two sets E1 and E2 as follows. Let j1, j2 ∈ V with j1 < j2:
( j1, j2) ∈ E1 ⇔ t j2 − t j1 < p j1 × T1 and ( j1, j2) ∈ E2 ⇔ t j2 − t j1 < p j1 × T2.
We call an edge in E1 (E2) a 1-edge (2-edge). Hence, a 1-edge implies that the two
corresponding jobs cannot both be assigned to machine M1, while a 2-edge means
that the two corresponding jobs cannot both be assigned to machine M2. Moreover, a
1-triangle will stand for a triangle of 1-edges in G(I). In terms of graphs, deciding
whether an instance I is feasible is equivalent to deciding whether the corresponding
graph G(I) = (V , E) allows a partition of V into two sets V1 and V2 such that V1 is
an independent set in (V , E1) and V2 is an independent set in (V , E2).

The previous definitions have several consequences for the structure of the graph.
A first one is that E1 ⊆ E2. A second one is that the existence of an edge between j1
and j2 (with j1 < j2) crucially depends on the length p j1 . Indeed, if there are three
nodes j1, j2, j3 such that j1 < j2 < j3, the existence of ( j1, j3) ∈ E1 (E2), implies
that ( j1, j2) ∈ E1 (E2). Notice however, that it does not imply that ( j2, j3) ∈ E1 (E2).

For the sake of readability of our figures, we will not represent all the edges of
the graph but only the maximal edges, i.e., those which are not implied by another
represented edge. For example, keep in mind that if two nodes are connected by a
1-edge, they are also connected by a 2-edge. In the sequel, we will represent 2-edges
by segments in the form of arcs above the line of the nodes (�) whereas we will
represent 1-edges either by straight line segments (—), or by segments in the form of
arcs below the line of the nodes (�).

2.2 Characterizing the off-line case for unit-length jobs

In this subsection, we recall the off-line characterization of Passchyn et al. (2016)
for the case of unit-length jobs, i.e., for the case where p j = 1 for all j ∈ J . This
assumption imposes additional structure on the graph G(I): if two nodes j1 and j2 are
connected by an edge of any kind, then any node whose arrival times lies in [t j1, t j2 ]
is connected to j1 as well as j2 by an edge of the same kind. Now, let us recall the
characterization of feasible instances in this setting.

Definition 1 Given is an instance I and its graph G(I) = (V , E). A bad path is any
sequence of distinct nodes ( j1, j2, . . . , jk) with k ≥ 4 and k even, satisfying:

1. The nodes in the sequence appear in the order defined on V , with exception of
j1 and jk , which satisfy j2 < j1 < j3 and jk−2 < jk < jk−1. More formally:
jx < jx+1 for all x ∈ {2, . . . , k − 2}, j2 < j1 < j3 and jk−2 < jk < jk−1.
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Fig. 1 A bad path with k = 6

Fig. 2 The pattern described in
Observation 2

2. The pairs of consecutive nodes in the sequence are alternately connected by a 1-
edge and a 2-edge, with the first and last edges in the sequence being both 1-edges.
More formally: ( jx , jx+1) ∈ E1 for all odd x ∈ {1, . . . , k − 1}, ( jx , jx+1) ∈ E2
for all even x ∈ {1, . . . , k − 1}.
A bad path with k = 6 can be seen in Fig. 1.

Observation 1 Given is an instance I and its graph G(I) = (V , E). If there exists
a node j ∈ V such that ( j, j + 2) ∈ E1, i.e., if there exists a 1-triangle, then the
instance is not feasible.

Observation 2 Given is an instance I and its graph G(I) = (V , E). If there exists a
node j ∈ V such that ( j, j + 1), ( j + 1, j + 2) and ( j + 2, j + 3) are 1-edges and
( j, j + 2) and ( j + 1, j + 3) are 2-edges, then the instance is not feasible.

See Fig. 2 for the structure described in Observation 2.

Theorem 1 (Passchyn et al. (2016)) An instance I is feasible if and only if its corre-
sponding graph G(I) does not contain a bad path, nor any of the patterns described
in Observations 1 and 2.

2.3 A lemma to prove the non-existence of online algorithms with lookahead

We use the following lemma to prove the non-existence of online algorithms with
lookahead for our problem. The phrase “the first job” used below refers to the job with
minimum arrival time, i.e, the job arriving at t1.

Lemma 1 Consider an interval scheduling problem with two machines where the goal
is to decide feasibility. For any τ ≥ 0, if there exists two feasible instances I1 and I2
such that:

• the arrival times, as well as the corresponding lengths of jobs arriving in the
interval [0, τ ] are the same in both instances,
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• in every feasible schedule for I1, the first job is assigned to M1, whereas in every
feasible schedule for I2, the first job is assigned to M2,

then there does not exist a deterministic online algorithm with lookahead time τ for
this problem.

Proof We use contradiction. Suppose that there exists a deterministic online algorithm
A with lookahead time τ for our problem. As the arrival times in the two instances
restricted to the interval [0, τ ] are the same, algorithm A cannot distinguish the two
instances because its only knowledge of the input is the sequence of arrival times in the
interval [0, τ ]. Since A is deterministic, it has to assign the first job of both instances
to the same machine. But if A assigns the first job to M1, then it does not output a
feasible schedule for I2 (whereas there is one), and ifA does not assign the first job to
M1, then it does not output a no-wait schedule for I1 (whereas there is one). Hence,
we have arrived at a contradiction, and conclude that there does not exist an online
algorithm with lookahead τ for our problem. �	

3 Online algorithms with lookahead for unit-length jobs

In this section we deal with jobs of unit length, i.e., we assume p j = 1 for all j ∈ J .
We distinguish two situations: one where the speed of machine M1 is at least as fast as
twice the speed of machine M2 (distinct machines), and one where this is not the case
(similar machines). Thus, since s1 < 2s2 implies T2 < 2T1, we consider the case of
distinct machines (where T2 ≥ 2T1) in Sect. 3.1, and we consider the case of similar
machines (where T2 < 2T1) in Sect. 3.2. The results in these subsections jointly imply
the following statement:

Theorem 2 (i) If T2 ≥ 2T1, then there exists an online algorithm with lookahead time
τ if and only if τ ≥ 2T1.

(ii) If T2 < 2T1, then, for any fixed τ ≥ 0, there does not exist an online algorithm
with lookahead time τ .

3.1 Distinct machines: the case where T2 ≥ 2T1

Here we show that for the case T2 ≥ 2T1, there exists an online algorithm solving our
problem if and only if the lookahead equals at least 2T1.

First, we prove that a lookahead time of 2T1 is sufficient for an online algorithm to
exist. Let us first outline the algorithm, called Algorithm 1. We assume that we have
access at any time t to a dynamic queue called times which contains all the arrival
times in the lookahead interval [t, t + τ ] sorted in nondecreasing order. Given an
arrival time t = times[0], we call, for convenience, the first job to arrive at this time,
job 0; we will call the next job arriving after job 0, job 1, and so on, until no more
jobs exist in [t, t + τ ]. At any time, the algorithm knows whether the machines are
available, thanks to the boolean variables av1 and av2.
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times: queue containing the arrival times in the lookahead interval in increasing order
clock: time running 
 times and clock are updated apart from this algorithm
av1: boolean variable indicating whether M1 is currently available, initialized with true
av2: boolean variable indicating whether M2 is currently available, initialized with true
end1: time at which M1 will be available if it currently is not, initialized with clock−1
end2: time at which M2 will be available it it currently is not, initialized with clock−1
assignments: list of assignments, initialized with ∅

In the description of Algorithm 1, we model the difference between arrival times
by the presence or the absence of an edge in E1 or E2 (recall from Sect. 2.1 that
( j1, j2) ∈ E1 (E2) ⇔ t j2 − t j1 < T1 (T2)). Notice that, even when two jobs
have the same arrival time, the algorithm handles them sequentially. Clearly, when
a new job arrives, and only one machine is available, the algorithm has no other
choice than assigning the arriving job to this machine. If both machines are avail-
able, the algorithm chooses the machine. The following three cases explain how
our algorithm makes this choice; in each of these cases we assume that the looka-
head interval is nonempty, i.e., we assume that the next job after job 0 arrives
after at most τ time-units. (Indeed, if the lookahead interval is empty, we simply
assign the job to M1, and we know that both machines are available for the next
job).

Case 1: (0, 1) /∈ E1. The algorithm assigns job 0 to M1.

This ensures that job 0 is processed while guaranteeing that both machines
are available for the next job.

Case 2: (0, 1) ∈ E1 and (1, 2) /∈ E1. The algorithm assigns job 0 to M2.

Observe that, in any feasible schedule, jobs 0 and 1 must be assigned to
different machines. No matter which of these jobs goes where, we know that
at time t2, machine M1 is available (since (1, 2) /∈ E1). Knowing this, it can
only be beneficial to have machine M2 available as soon as possible, i.e., to
assign job 0 to M2.

Case 3: (0, 1) ∈ E1 and (1, 2) ∈ E1 (which implies, since T2 ≥ 2T1, (0, 2) ∈ E2).
The algorithm assigns job 0 to M1.

Indeed, there is really no choice: job 0 needs to be assigned to M1, job 1 to
M2 and job 2 to M1; otherwise, there is no feasible assignment.

The pseudo-code of the algorithm we described above is given in Algorithm 1. The
choice of a machine when both machines are available is implemented in the function
choice1. Notice that the length of the lookahead interval satisfies the condition τ ≥
2T1, which allows us to check whether (0, 1) ∈ E1 and (1, 2) ∈ E1 at line 4. In this
algorithm, we assume the existence of a function pop that, given a queue, removes the
head of the queue, and a function push that, given an element and a list, pushes the
element to the end of the list.
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Algorithm 1 An online algorithm with lookahead time τ ≥ 2T1
1: function choice1(times)
2: if #times = 1 or times[1] ≥ times[0] + T1 then 
 Case 1
3: return M1
4: else if #times = 2 or times[2] ≥ times[1] + T1 then 
 Case 2
5: return M2
6: else 
 Case 3
7: return M1

8:
9: repeat
10: if clock = end1 then
11: av1 ← true
12: if clock = end2 then
13: av2 ← true
14: if times 
= ∅ and clock = times[0] then
15: if not av1 and not av2 then
16: return ‘Infeasible’
17: else if av1 and not av2 then
18: machine ← M1
19: else if av2 and not av1 then
20: machine ← M2
21: else
22: machine ← choice1(times)
23: push(machine, assignments)
24: if machine = M1 then
25: av1 ← false
26: end1 ← times[0] + T1
27: else
28: av2 ← false
29: end2 ← times[0] + T2
30: pop(times)
31: until the end
32: return assignments

We are now in a position to state and prove that Algorithm 1 is correct, i.e., that
Algorithm 1 is indeed an online algorithm for our problem.

Lemma 2 If T2 ≥ 2T1, then, for any fixed τ ≥ 2T1, Algorithm 1 is an online algorithm
with lookahead time τ .

Proof We prove that Algorithm 1 is an online algorithm for our problem. First of
all, observe that if the algorithm outputs an assignment of all jobs, it is necessarily
a feasible schedule because each job is assigned to a machine that is available with
respect to previous assignments. Thus, on infeasible instances, the algorithm returns
‘Infeasible’, which is correct. It remains to show that the algorithm returns a feasible
assignment if the instance is feasible. We do so by assuming that the algorithm outputs
‘Infeasible’, and next show that the corresponding instance is indeed infeasible.

Thus, suppose that Algorithm 1 tries to assign job j1 at time t j1 , and finds that both
machines are unavailable. Then there must be two previous jobs, say j2 and j3 such
that ( j3, j1) ∈ E2 and ( j2, j1) ∈ E1, and the algorithm has previously assigned job
j3 to M2 and j2 to M1. We know that j3 < j2 (since otherwise, if j3 > j2, then
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Fig. 3 The jobs j2 and j3 that
need to exist given the
impossibility to assign job j1

Fig. 4 A bad path

Fig. 5 The job j4

( j2, j3, j1) is a 1-triangle which makes the instance infeasible by Observation 1), as
illustrated by Fig. 3.

Let us now focus on the assignment of job j3. We know that

(1) Algorithm 1 assigned job j3 to M2, and
(2) job j3 has a successor j1 such that ( j3, j1) ∈ E2.

We will refer to (1) and (2) as the properties of job j3, and we will use these
properties to argue the existence of a previous job with the same properties.

If both M1 and M2 were available at time t j3 , then we were in Case 2 at time t j3
because j3 has been assigned to M2. But then there must exist another job, say j4, such
that j3 < j4 < j2, with ( j3, j4) ∈ E1 and ( j4, j2) /∈ E1, giving rise to the structure
depicted in Fig. 4, which is a bad path with 4 nodes.

It follows that at time t j3 not both machines were available, and hence, job j3 was
assigned to M2 only because M1 was not available. Thus, there exists a job, say job
j4, such that ( j4, j3) ∈ E1 and job j4 was assigned to M1 (see Fig. 5).
We now focus on the assignment of job j4. Again, suppose that both machines

were available at time t j4 . First, observe that Algorithm 1 was not in Case 1 at time
t j4 because ( j4, j3) ∈ E1. The algorithm was not in Case 2 either (since job j4 was
assigned to M1). Thus, Algorithm 1 was in Case 3, which means that either (i) there is
another job, say job j5, such that j3 < j5 < j2 and ( j3, j5) ∈ E1, or (ii) ( j3, j2) ∈ E1.
However, both cases are impossible since in case of (i) the instance is infeasible because
of the bad path (see Fig. 4), and in case of (ii), ( j4, j3) ∈ E1 and ( j3, j2) ∈ E1 imply
that ( j4, j2) ∈ E2 (because 2T1 ≤ T2) and the instance is infeasible because of the
structure in Observation 2 (Fig. 2).

It follows that not both machines were available at time t j4 . Thus, the only reason
why job j4 was assigned to M1 is the existence of a job, say job j5, with j5 < j4 such
that job j5 was assigned to M2, and such that ( j5, j4) ∈ E2 (see Fig. 6).
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Fig. 6 The necessary existence of job j5

Fig. 7 The graph G(I1)

Now, if there was a job j6 arriving between j5 and j4 such that ( j5, j6) ∈ E1,
then there would be a bad path and the instance would not be feasible. Thus, we have
identified a job j5 for which we know that

(1) Algorithm 1 assigned job j5 to M2, and
(2) job j5 has a successor j4 such that ( j5, j4) ∈ E2.

As announced above, observe that the properties of job j3 allowed us to prove the
existence of job j5 that has the same properties as job j3. Thus, applying recursively
the reasoning to job j5 that we applied to job j3 leads to an arbitrarily long path in the
graph. As the number of jobs in any instance of our problem is finite, the instance is
necessarily infeasible.

As a result, Algorithm 1 outputs a feasible schedule whenever the instance is fea-
sible, and we conclude that Algorithm 1 is correct. �	

Finally, we formulate in a lemma that a lookahead time of at least 2T1 is necessary
for an online algorithm to exist.

Lemma 3 If T2 ≥ 2T1, then, for any fixed τ < 2T1, there is no online algorithm with
lookahead time τ .

Proof Let τ < 2T1, and pick some ε such that 0 < ε < min(2T1 − τ, T1). Consider
the arrival times in the two instances I1 and I2 in the table below.

t1 t2 t3 t4

I1 0 2T1−ε
2 2T1 − ε

I2 0 2T1−ε
2

2T1−ε
2 + T2 − ε

2T1−ε
2 + T2 − ε

2

The graphs corresponding to these two instances are represented in Figs. 7 and 8.
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Fig. 8 The graph G(I2)

Fig. 9 The graph G(I1)

Notice that for both instances, the two first arrivals are identical and τ < t3. More-
over, there is only one feasible assignment for I1, where job 1 is assigned to M1,
whereas every feasible assignment for I2 assigns job 1 to M2. Thus Lemma 1 applies
to I1 and I2, which proves the result. �	

3.2 Similar machines: the case where T2 < 2T1

We repeat part (ii) of Theorem 2.

Lemma 4 If T2 < 2T1, then, for any fixed τ ≥ 0, there does not exist an online
algorithm with lookahead time τ .

Proof We construct two instances I1 and I2 as follows. Let T := T1 + T2
2

2
(this means

T2
2 ≤ T < T1) and N :=

⌈ τ

T

⌉
. We have N + 3 jobs in I1, N + 4 jobs in I2, and we

choose the following arrival times for these jobs.

t1 t2 t3 ... tN+1 tN+2 tN+3 tN+4

I1 0 T 2T ... NT NT + T1 NT + T1 + T2
2

I2 0 T 2T ... NT (N + 1)T (N + 1)T + T1 (N + 1)T + T1 + T2
2

Notice that tN ≤ τ ≤ tN+1. The corresponding graphs are given in Fig. 9 and 10
respectively.

Consider job N + 1 in I1. In any feasible schedule for I1 job N + 1 is assigned
to M1. Indeed, if job N + 1 would be assigned to M2, then neither job N + 2 nor job
N+3 can be assigned toM2 (since (N+1, N+3) ∈ E2), and they also cannot both be
assigned to M1 either (since (N +2, N +3) ∈ E1). Similarly, in any feasible schedule
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Fig. 10 The graph G(I2)

for I2 job N + 2 is assigned to M1. Notice that if there is a chain of consecutive
1-edges, such as the N + 1 earliest jobs of I1, or the N + 2 earliest jobs of I2,
the assignment of one job of the chain implies those of all the other jobs, because
there must be an alternation of M1 and M2. Thus, if N is even (odd), then I1 has
two feasible schedules that both assign the first job to M1 (M2), whereas I2 has two
feasible schedules that both assign the first job to M2 (M1). Notice also that the arrival
times in the interval [0, τ ] are the same for I1 and I2 because NT ≥ τ . Thus, we
can apply Lemma 1, and conclude that there does not exist an online algorithm with
lookahead time τ . �	

Notice that the proof of Lemma4 does not applywhen T2 ≥ 2T1 because in that case
the existence of two consecutive 1-edges implies the existence of a 2-edge. Indeed,
if t j+1 − t j < T1 and t j+2 − t j+1 < T1, then t j+2 − t j < 2T1 ≤ T2. Therefore, if
T2 ≥ 2T1, the graphs drawn above do not correspond to any sequence of arrival times.

Clearly, Lemmata 4, 3 and 2 imply Theorem 2.

4 Online algorithms with lookahead: jobs with arbitrary length

In this section, we consider jobs of arbitrary length. Now, it becomes relevant whether
we are given an upperbound, called P , on the length of the longest job in the instance.
In case such a bound is given, and if the two machines are distinct, there exists an
online algorithm with lookahead (see Sect. 4.1); and otherwise, there does not exist an
online algorithm with any amount of lookahead (Sect. 4.2). More formally, we prove
in these sections the following.

Theorem 3 (i) If T2 > 2T1 and p j ≤ P for j ∈ J , then for any fixed τ ≥
(T2 − T1)2

T2 − 2T1
P, there exists a no-wait online algorithm with lookahead time τ .

(ii) If T2 ≤ 2T1 or if job lengths can be arbitrarily large, then for any fixed τ ≥ 0,
there does not exist a no-wait online algorithm with lookahead time τ .

4.1 Distinct machines and upperbounded job lengths

In this section, we first prove a lemma bounding the maximum difference in arrival
times of consecutive jobs connected by 1-edges (Sect. 4.1.1), state the online algorithm
(Sect. 4.1.2), and finally prove its correctness (Sect. 4.1.3).
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4.1.1 Bounding arrival times of consecutive jobs

Thus, suppose that T2 > 2T1 and that all lengths are known to be smaller than P . We
prove the following lemma that bounds the maximum difference in arrival times of
consecutive jobs that are connected by 1-edges.

Lemma 5 If ( j1, j2, . . . , jm) is a sequence of consecutive nodes such that

(i) ( jx , jx+1) ∈ E1 for each x ∈ {1, . . . ,m − 1}, and
(ii) ( jx , jx+2) /∈ E2 for each x ∈ {1, . . . ,m − 2},
then t jm − t j1 <

PT 2
1

T2 − 2T1
.

Proof Let us consider three consecutive nodes of the sequence: jx < jx+1 < jx+2
for some x ∈ {1, . . . ,m − 2}. Clearly, since ( jx , jx+1) ∈ E1 and ( jx , jx+2) /∈ E2
(x ∈ {1, . . . ,m − 2}), we have

t jx+1 − t jx < p jx T1, (1)

t jx+2 − t jx+1 < p jx+1T1, (2)

t jx+2 − t jx ≥ p jx T2. (3)

By adding (1) and (2), and using (3), we deduce:

p jx+1T1 + p jx T1 > t jx+2 − t jx ≥ p jx T2,which implies:

p jx <
p jx+1

T2
T1

− 1
. (4)

Using (1) and (4), we derive:

t jm − t j1 =
m−1∑
x=1

(t jx+1 − t jx ) <

m−1∑
x=1

p jx T1

< T1 ×
m−1∑
x=1

P(
T2
T1

− 1
)m−x

= P × T1 ×
m−1∑
y=1

(
1

T2
T1

− 1

)y

< P × T1 ×
⎛
⎝

∞∑
y=0

(
1

T2
T1

− 1

)y

− 1

⎞
⎠

< P × T1 ×
⎛
⎜⎝ 1

1 − 1
T2
T1

−1

− 1

⎞
⎟⎠ = P × T1 × T1

T2 − 2T1
.

�	
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4.1.2 The online algorithm

Let us now explain our algorithm. To simulate an online behavior, we assume that
we are given two dynamic queues t and p such that at every moment, t contains all
the arrival times in the lookahead interval in increasing order and p the corresponding
lengths, i.e. p[ j] is the length of the job arriving at time t[ j]. In the pseudo-code, t[ j :]
(resp. p[ j :]) refers to the queue obtained by removing the j first elements of t (resp.
p). We also define the same variables clock, av1, av2, end1 and end2 as in Algorithm
1. In the following, the current job to be assigned is always called 0 because its arrival
time is t[0]. Then the next job is 1, etc. When a machine is chosen for 0, it is added
at the end of the list called assignments thanks to a function push and 0 is removed
from t and p by a function pop. Both functions are assumed to be already existent.

t: queue containing the arrival times of jobs in the lookahead interval in increasing order
p: queue containing the lengths of jobs in the lookahead interval
clock: time running 
 t, p and clock are updated apart from this algorithm
av1: boolean variable indicating whether M1 is currently available, initialized with true
av2: boolean variable indicating whether M2 is currently available, initialized with true
end1: time at which M1 will be available if it is not, initialized with clock−1
end2: time at which M2 will be available if it is not, initialized with clock−1
assignments: list of assignments, initialized with ∅

Moreover, when we write ( j1, j2) ∈ E1 (resp. ( j1, j2) ∈ E2) in the pseudo-code, it
can be replaced by t[ j2]−t[ j1] < p[ j1]T1 (resp. t[ j2]−t[ j1] < p[ j1]T2). When a new
job arrives, the algorithm looks at the machines available to process this job. If there
is no machine available, as it is supposed to output a feasible assignment whenever
such an assignment exists, the algorithm claims that the instance is infeasible. If only
one machine is available, the algorithm has no other choice than assigning the job to
this machine. Finally, the most decisive part of the algorithm is when both machines
are available. Then, using the lookahead, we have to decide which is the best choice.
We will say that a node j is dependent if ( j, j + 1) ∈ E1, ( j + 1, j + 2) ∈ E1 and
( j, j+2) /∈ E2, and independent otherwise.Wewill see that if a node 0 is independent,
then a lookahead of P × T2 suffices to take a good decision on the assignment of 0.
Otherwise, if 0 is dependent, we identify the first node j which is independent. This is
done by the function nextIndependent in the pseudo-code.We take a decision on the
assignment of j and we deduce the assignment of 0 by looking back and alternating
M1 and M2 from j to 0, i.e. if j is even, we keep the assignment of j for 0, whereas
if j is odd, we take the other machine. This is the reason why we need a lookahead

of
T1

T2 − 2T1
PT1 + PT2 (which can also be written as

(T2 − T1)2

T2 − 2T1
P):

T1
T2 − 2T1

PT1

is an upper bound for t j − t0, by Lemma 5, and PT2 is the remaining lookahead
needed to assign correctly j . The assignment of such a node j is decided according to
5 cases. Note that a case is checked only if the conditions of the previous cases were
not satisfied.

Case 1: (0, 1) /∈ E1. The algorithm assigns job 0 to M1.
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The Case 1 is the same as in Algorithm 1: if the next job 1 arrives after the
completion of job 0 in case this job is performed by M1, i.e. if (0, 1) /∈ E1,
then it is always better to assign job 0 to M1 so that both machines available
for job 1.

Case 2: ∃ j ≥ 1, (0, j + 1) ∈ E1 and ( j, j + 1) ∈ E2. The algorithm assigns job 0 to
M2.
This condition is checked in the function case2. If we are in this case and if
job 0 is assigned to M1, it is clear that the algorithm will fail to assign each
job because jobs j and j + 1 cannot use M1 which is used by job 0 and they
cannot use both M2 because they are connected by a 2-edge. Thus, job 0 is
forced to be assigned to M2.

Case 3: ∃ j ≥ 1, (0, j + 1) ∈ E2 and ( j, j + 1) ∈ E1. The algorithm assigns job 0 to
M1.
This condition is checked in the function case3. It is the same as the condition
of Case 2 after exchanging M1 and M2. Hence, if this condition is satisfied,
job 0 is forced to be assigned to M1. It is because of this case that a lookahead
time PT2 is needed to assign job j .

Case 4: The job j∗ defined by j∗ = max{ j |(0, j) ∈ E1} satisfies t j∗ + p j∗T2 ≤
t0 + p0T2. The algorithm assigns job 0 to M1
This condition is checked in the function case4, where j∗ is computed. Note
that the set { j |(0, j) ∈ E1} is not empty ifwe are not inCase 1. In this case, job
0 is assigned to M1 for the following reason. If job 0 is assigned to M2, then
all jobs arriving in [t0, t0 + p0T2] must be assigned to M1. On the contrary, if
job 0 is assigned toM1, then all jobs between 1 and j∗ must be assigned toM2
(which is not a problem because we are not in the Case 2). In particular, when
job j∗ is assigned to M2, then all jobs arriving in [t j∗ , t j∗ + p j∗T2] must be
assigned toM1. But the assignment of jobs arriving in [t j∗ + p j∗T2, t0+ p0T2]
is not restricted a priori, whereas it is forced to be M1 if job 0 is assigned
to M2. Said differently, assigning job 0 to M2 is more restrictive for further
assignments than assigning it to M1. Then M1 is a better option.

Case 5: t j∗ + p j∗T2 > t0 + p0T2 (negation of Case 4). The algorithm assigns job 0
to M2.
In this case, job 0 is assigned to M2 for the following reason. If job 0 is
assigned to M1, then all jobs between 1 and j∗ must be assigned to M2 and
then all jobs arriving in [t j∗, t j∗ + p j∗T2] must be assigned to M1. However,
we have t j∗ + p j∗T2 > t0 + p0T2, and thus, if job 0 is assigned to M2, only
jobs in [t0, t0+ p0T2] are forced to be assigned to M1 (which is not a problem
because we are not in Case 3). Again, assigning job 0 toM1 is more restrictive
for further assignments than assigning it to M2. Then M2 is a better option.

Finding in which case we are is done in the function choice in the pseudo-code.
We are now in a position to state and prove that Algorithm 2 is correct, i.e., that
Algorithm 2 is indeed an online algorithm for our problem.

4.1.3 Correctness

We rephrase part (i) of Theorem 3 as a lemma.

123



240 Journal of Combinatorial Optimization (2019) 38:224–253

Algorithm 2 An online algorithm with lookahead τ ≥ T1
T2 − 2T1

PT1 + PT2

1: function nextIndependent(t, p)
2: m ← #t j ← 0
3: while j + 2 ≤ m − 1 and ( j, j + 1) ∈ E1 and ( j + 1, j + 2) ∈ E1 and ( j, j + 2) /∈ E2 do
4: j ← j + 1
5: return j

6:
7: function case2(t, p)
8: m ← #t j ← 1 found ← false
9: while not found and j + 1 ≤ m − 1 and (0, j + 1) ∈ E1 do
10: if ( j, j + 1) ∈ E2 then
11: found ← true
12: j ← j + 1
13: return found
14:
15: function case3(t, p)
16: m ← #t j ← 0 found ← false
17: while not found and j + 1 ≤ m − 1 and (0, j + 1) ∈ E2 do
18: if ( j, j + 1) ∈ E1 then
19: found ← true
20: j ← j + 1
21: return found
22:
23: function case4(t, p)
24: m ← #t j ← 0
25: while j + 1 ≤ m − 1 and (0, j + 1) ∈ E1 do
26: j ← j + 1
27: if t[ j]+p[ j]T2 ≤ t[0]+ p[0]T2 then
28: return true
29: else
30: return false

Lemma 6 If T2 > 2T1 and if p j ≤ P for all j ∈ J , then, for any fixed τ ≥
(T2 − T1)2

T2 − 2T1
P, Algorithm 2 is an online algorithm with lookahead time τ .

Proof We prove that Algorithm 2 is indeed an online algorithm for our problem.
Because each assignment of a job is compatible with the previous ones, every assign-
ment returned by the algorithm is a feasible assignment. Then, on infeasible instances,
the algorithm returns ‘Infeasible’ because there is no feasible schedule. Thus, the algo-
rithm is correct on infeasible instances. Let us show that it returns a feasible schedule
on feasible instances. To do so, we prove that if the algorithm returns ‘Infeasible’,
the instance is really infeasible. The proof works by contradiction. Suppose I is a
feasible instance on which ‘Infeasible’ is returned at a time t j1 when the algorithm
tries to assign job j1. Then, at time t j1 , both machines are unavailable because of two
jobs j2 and j3, with j3 < j2 < j1. There are two possible situations according to the
assignments of these jobs, as shown in Fig. 11.

1. If j2 has been assigned to M1 and j3 to M2, as in Fig. 11a, j3 is independent
because j1 ≥ j3 + 2 and ( j3, j1) ∈ E2, and then ( j3, j3 + 2) ∈ E2. Suppose that
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1: function choice(t, p)
2: if #t = 1 or (0, 1) /∈ E1 then 
 Case 1
3: return M1
4: else if case2(t, p) then 
 Case 2
5: return M2
6: else if case3(t, p) then 
 Case 3
7: return M1
8: else if case4(t, p) then 
 Case 4
9: return M1
10: else 
 Case 5
11: return M2

12:
13: function schedule( )
14: repeat
15: if clock = end1 then av1 ← true
16: if clock = end2 then av2 ← true
17: if t 
= ∅ and clock = t[0] then
18: if not av1 and not av2 then
19: return "Infeasible"
20: else if av1 and not av2 then
21: machine ← M1
22: else if av2 and not av1 then
23: machine ← M2
24: else
25: i ← nextIndependent(t, p)
26: C ← choice(t[ j :], p[ j :])
27: if i mod 2 = 0 then
28: machine ← C
29: else
30: if C = M1 then
31: machine ← M2
32: else
33: machine ← M1

34: push(machine, assignments)
35: if machine = M1 then
36: av1 ← false
37: end1 ← t[0]+ p[0]T1
38: else
39: av2 ← false
40: end2 ← t[0]+ p[0]T2
41: pop(t)
42: pop(p)

43: until the end
44: return assignments

both machines were available at time t j3 . At that time, the algorithm was not in
Case 1 because job j3 has been assigned to M2. If j3 was in Case 2, we have seen
that there is no feasible assignment where it is assigned to M1. But there is no
feasible assignment where it is assigned to M2 either because of j2 and j1, then
if j3 was in Case 2, I would be infeasible. Therefore, j3 was in Case 3 because
( j3, j2 + 1) ∈ E2 and ( j2, j2 + 1) ∈ E1, but then, j3 would have been assigned
to M1. Actually, j3 was assigned to M2 because M1 was not available. Therefore,
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(a) (b)

Fig. 11 The nodes j2 and j3 when a j2 is assigned to M1 and j3 to M2 b j2 is assigned to M2 and j3 to
M1

Fig. 12 The node j4

there exists a previous job j4 such that ( j4, j3) ∈ E1 and j4 had been assigned to
M1, as shown in Fig. 12.

Hence j2, j3 and j4 satisfy the following properties:

(P1) ( j3, j2) ∈ E2 and ( j4, j3) ∈ E1,
(P2) j2, j3 and j4 were assigned to M1, M2 and M1 respectively,
(P3) There is no feasible assignment where j2 is assigned to M1,
(P4) There is no feasible assignment where j3 is assigned to M2,
(P5) j3 is independent,
(P6) A call of choice with j3 as first node would not have returned M2.

Let us prove the existence of some previous nodes j5 and j6. First, observe that there is
no feasible assignment where j4 is assigned to M1 because there is no feasible assign-
ment where j3 is assigned to M2 (P4) and ( j4, j3) ∈ E1 (P1). If j4 was dependent,
then j3 = j4 + 1 would hold but (P5) and (P6) imply that the next independent node
after j4 is j3, and if one could have chosen the assignment of j3 between M1 and M2,
choice would have returned M1 and then j4 would have been assigned to M2. Then
j4 is independent. Now suppose that both machines were available at time t j4 . Let us
show that j4 was neither in Case 1, nor in Case 3, nor in Case 4. j4 was not in Case 1
because ( j4, j3) ∈ E1. If j4 was in Case 3, then we have seen in the description of this
case that, on the one hand, there would be no feasible assignment where j4 is assigned
to M2. On the other hand, if j4 is assigned to M1, then j3 is forced to be assigned to
M2. However, there is no feasible assignment where j3 is assigned to M2 (P4). Thus
I can not be feasible if j4 was in Case 3. If j4 was in Case 4, then the condition of
Case 4 implies that ( j4, j2) ∈ E2, because j3 ≤ j∗4 and ( j3, j2) ∈ E2. The pattern of
Fig. 13 is present. Then, whatever the assignment of j4, j2 is forced to be assigned to
M2. This contradicts (P3) because I is supposed to be feasible.
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Fig. 13 j2 is forced to be
assigned to M1

Fig. 14 The node j∗5

Then we have proved that, if choice had been called with j4 as first node, it could
not have returned M1, then j4 was assigned to M1 because M2 was not available.
Therefore, there exists a previous node j5 assigned to M2 such that ( j5, j4) ∈ E2.
Now, we prove the existence of another previous node j6. First, observe that there
is no feasible assignment where j5 is assigned to M2 because there is no feasible
assignment where j4 is assigned to M1 and ( j5, j4) ∈ E2 (P1). If j5 was dependent,
then j4 = j5 + 1 would hold, but we have just proved that j4 is independent and that
if one could have chosen its assignment between M1 and M2, choice would have
returned M2 and then j5 would have been assigned to M1. Then j5 is independent.
Suppose that both machines were available at time t j5 . Let us show that j5 was neither
in Case 2, nor in Case 5. If j5 was in Case 2, then we have seen in the description
of this case that, on the one hand, there would be no feasible assignment where j5 is
assigned to M1. On the other hand, if j5 is assigned to M2, then j4 is forced to be
assigned to M1. However, there is no feasible assignment where j4 is assigned to M1,
thus I can not be feasible if j5 was in Case 2. If j5 was in Case 5, let us assume towards
contradiction that j∗5 ≥ j4. Then ( j5, j4) ∈ E1, by definition of j∗5 , and the condition
of Case 5 entails that ( j5, j3) ∈ E2 because ( j4, j3) ∈ E1. But, if ( j5, j3) ∈ E2 and
( j4, j3) ∈ E1, we were not in Case 5 but in Case 3. Then j∗5 < j4, and the condition of
Case 5 implies ( j∗5 , j4) ∈ E2 (see Fig. 14) because ( j5, j4) ∈ E2. Hence, whatever the
assignment of j5, j4 is forced to be assigned to M1, which contradicts the feasibility
of I.
Therefore, if choice had been called with j5 as first node, it could not have returned
M2, then j5 was assigned to M2 because M1 was not available. Then there exists a
previous node j6 such that ( j6, j5) ∈ E1 and j6 had been assigned to M1. Then j4, j5
and j6 satisfy the same properties as j2, j3 and j4, namely:

(P1) ( j5, j4) ∈ E2 and ( j6, j5) ∈ E1,
(P2) j4, j5 and j6 were assigned to M1, M2 and M1 respectively,
(P3) There is no feasible assignment where j4 is assigned to M1,
(P4) There is no feasible assignment where j5 is assigned to M2,
(P5) j5 is independent,
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Fig. 15 The node j4

(P6) A call of choice with j5 as first node would not have returned M2.

Observe that the properties of jobs j2, j3 and j4 are sufficient to prove the existence
of jobs j5 and j6 such that jobs j4, j5 and j6 have the same properties. Thus, applying
recursively the reasoning to jobs j4, j5 and j6 that was applied to j2, j3 and j4 leads
to an arbitrary long path in the graph. As the number of jobs is finite, the instance I
is necessarily infeasible.

2. We deal here with the second configuration where j2 was assigned to M2
and j3 to M1, as in Fig. 11b. Then there is also a 1-edge ( j2, j3) implied by
the 1-edge ( j2, j1). j3 is independent because it is involved in two 1-edges.
Suppose that both machines were available at time t j3 . j3 was not in Case 1
because ( j3, j2) ∈ E1. Then j3 was in Case 2 because ( j3, j2 + 1) ∈ E1 and
( j2, j2 + 1) ∈ E2. Thus, if choice had been called with j3 as first job, j3
would have been assigned to M2. Hence, j3 was assigned to M1 because M2
was not available. Therefore, there exists a previous job j4 assigned to M2
such that ( j4, j3) ∈ E2 (see Fig. 15).

Hence j2, j3 and j4 satisfy the following properties:

(P1) ( j3, j2) ∈ E1 and ( j4, j3) ∈ E2,
(P2) j2, j3 and j4 were assigned to M2, M1 and M2 respectively,
(P3) There is no feasible assignment where j2 is assigned to M2,
(P4) There is no feasible assignment where j3 is assigned to M1,
(P5) j3 is independent,
(P6) A call of choice with j3 as first node would not have returned M1.

Let us prove the existence of some previous nodes j5 and j6. First, observe that there is
no feasible assignment where j4 is assigned to M2 because there is no feasible assign-
ment where j3 is assigned to M1 (P4) and ( j4, j3) ∈ E2 (P1). If j4 was dependent,
then j3 = j4 + 1 would hold but (P5) and (P6) imply that the next independent node
after j4 is j3, and if j3 could have chosen between M1 and M2, it would have chosen
M2 and then j4 would have been assigned to M1. Then j4 is independent. Suppose
that both machines were available at time t j4 . Let us show that j4 was neither in Case
2, nor in Case 5. If j4 was in Case 2, then we have seen in the description of this case
that, on the one hand, there would be no feasible assignment where j4 is assigned
to M1. On the other hand, if j4 is assigned to M2, then j3 is forced to be assigned
to M1. However, there is no feasible assignment where j3 is assigned to M1, thus I
can not be feasible if j4 was in case 2. If j4 was in Case 5, let us assume towards
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Fig. 16 The node j∗4

Fig. 17 j3 is forced to be
assigned to M1

contradiction that j∗4 ≥ j3. Then ( j4, j3) ∈ E1, by definition of j∗4 , and the condition
of Case 5 entails that ( j4, j2) ∈ E2 because ( j3, j2) ∈ E1. But, if ( j4, j2) ∈ E2 and
( j3, j2) ∈ E1, we were not in Case 5 but in Case 3. Then j∗4 < j3, and the condition of
the Case 5 implies that ( j∗4 , j3) ∈ E2 (see Fig. 14). Hence, whatever the assignment
of j4, j3 is forced to be assigned to M1, and j3 is forced to be assigned to M1. This
contradicts (P3) because I is supposed to be feasible (Fig. 16).
Therefore, if choice had been called with j4 as first node, it could not have returned
M2, then j4 was assigned to M2 because M1 was not available. Then there exists a
previous node j5 such that ( j5, j4) ∈ E1 and j5 had been assigned to M1.
Now, we prove the existence of another previous node j6. First, observe that there
is no feasible assignment where j5 is assigned to M2 because there is no feasible
assignment where j4 is assigned to M1 and ( j5, j4) ∈ E2 (P1). If j5 was dependent,
then j4 = j5 + 1 would hold but we have just proved that j4 is independent and that
if one could have chosen between M1 and M2, choice would have returned M1 and
then j5 would have been assigned to M2. Then j5 is independent. Now suppose that
both machines were available at time t j5 . Let us show that j5 was neither in Case 1,
nor in Case 3, nor in Case 4. j5 was not in Case 1 because ( j5, j4) ∈ E1. If j5 was in
Case 3, then we have seen in the description of this case that, on the one hand, there
would be no feasible assignment where j5 is assigned to M2. On the other hand, if
j5 is assigned to M1, then j4 is forced to be assigned to M2. However, there is no
feasible assignment where j4 is assigned to M2, thus I can not be feasible if j5 was in
Case 3. If j5 was in Case 4, the condition of Case 4 implies that ( j5, j3) ∈ E2. Then
whatever the assignment of j5, j3 is forced to be assigned to M1 because of the pattern
in Fig. 17, which contradicts the feasibility of I.
Then we have proved that, if choice had been called with j5 as first node, it could
not have returned M1, then j5 was assigned to M1 because M2 was not available.
Therefore, there exists a previous node j6 assigned to M2 such that ( j6, j5) ∈ E2.
Then j4, j5 and j6 satisfies the same properties as j3 and j4, namely:

(P1) ( j5, j4) ∈ E1 and ( j6, j5) ∈ E2,
(P2) j4, j5 and j6 were assigned to M2, M1 and M2 respectively,
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Fig. 18 The graph G(I1)

(P3) There is no feasible assignment where j4 is assigned to M2,
(P4) There is no feasible assignment where j5 is assigned to M1,
(P5) j5 is independent,
(P6) A call of choice with j5 as first node would not have returned M1.

Observe that the properties of job j2, j3 and j4 were sufficient to prove the existence
of jobs j5 and j6 such that j4, j5 and j6 have the same properties. Thus, applying
recursively the reasoning to jobs j4, j5 and j6 that was applied to j2, j3 and j4 leads
to an arbitrary long path in the graph. As the number of jobs is finite, the instance I
is necessarily infeasible.

Thus we have proved that if the algorithm returns “Infeasible”, then the instance is
infeasible. Then, on feasible instances, a feasible assignment is returned. �	

Notice that the case where P = 1 is not identical to the special case of unit-length
jobs.

4.2 Similar machines

Let us now address the case of similar machines and/or jobs whose length is not
upperbounded. We first repeat part (ii) of Theorem 3, and formulate it as a lemma.

Lemma 7 If T2 ≤ 2T1 or if job lengths can be arbitrarily large, then for any fixed
τ ≥ 0, there does not exist a no-wait online algorithm with lookahead time τ .

Proof If T2 < 2T1, this is a consequence of the first part of Theorem 2 because the
unit length setting is a particular case of the arbitrary length setting. The rest of the
proof splits into two parts: the case of arbitrarily large job lengths and the special case
with T2 = 2T1 and bounded job lengths.

First, let us suppose that the lengths can be arbitrarily large, i.e., we do not know a
priori an upper bound on them. We build two instances I1 and I2 such that G(I1) is
the graph shown in Fig. 18 and G(I2) is the graph shown in Fig. 19.

Let N be an integer, we will see how to fix it conveniently. I1 has N + 3 jobs
numbered from 0 to N + 2, and is defined as follows:

t0 = 0, p0 = 1,

∀ j ∈ {1, . . . , N } : t j = t j−1 +
(
T2
T1

) j−1

T1 − T1
2

, p j =
(
T2
T1

) j

,
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Fig. 19 The graph G(I2)

tN+1 = tN +
(
T2
T1

)N

T2 − T1, pN+1 = 1,

tN+2 = tN +
(
T2
T1

)N

T2 − T1
2

, pN+2 = 1.

I2 has N + 4jobs numbered from 0 to N + 3, and is defined as follows:

t0 = 0, p0 = 1,

∀ j ∈ {1, . . . , N + 1} : t j = t j−1 +
(
T2
T1

) j−1

T1 − T1
2

, p j =
(
T2
T1

) j

,

tN+2 = tN+1 +
(
T2
T1

)N+1

T2 − T1, pN+2 = 1,

tN+3 = tN+1 +
(
T2
T1

)N+1

T2 − T1
2

, pN+3 = 1.

We claim that the resulting instances I1 and I2 are depicted by Figs. 18 and 19.
To argue this claim, we need to show that ( j, j + 1), ( j + 1, j + 2) ∈ E1, while
( j, j + 2) /∈ E2 for each j ∈ {0, . . . , N − 2}. Using the arrival times defined above,
we see that:

t j+1 − t j =
(
T2
T1

) j

T1 − T1
2

< p j T1, (5)

t j+2 − t j+1 =
(
T2
T1

) j+1

T1 − T1
2

< p j+1T1. (6)

This shows ( j, j + 1), ( j + 1, j + 2) ∈ E1 for each j ∈ {0, . . . , N − 2}. Summing
(5) and (6) gives

t j+2 − t j =
(
T2
T1

) j+1

T1 +
(
T2
T1

) j

T1 − 2
T1
2

=
(
T2
T1

) j

(T2 + T1) − T1 ≥ p j T2,

implying ( j, j + 2) /∈ E2 for each j ∈ {0, . . . , N − 2}.
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Consider now the value of tN : tN =
N−1∑
j=0

((
T2
T1

) j

T1 − T1
2

)
=

(
T2
T1

)N − 1

T2
T1

− 1

T1 − N
T1
2
. As this quantity becomes arbitrarily large as N grows, we define N as

the smallest integer such that tN ≥ τ . Thus, for each value of τ > 0, it is possible to
build the instances of Figs. 18 and 19. Since these instances satisfy the assumptions
of Lemma 1, it follows that there does not exist an online algorithm with lookahead
time τ if lengths can be arbitrarily large.

Second, we deal with the case where T2 = 2T1 and p j ≤ P for j ∈ J . It is clear that
as soon as we are able to build two infinite sequences of jobs such that two consecutive
jobs are linked by a 1-edge but no two jobs are linked by a 2-edge, then for any τ > 0,
it is possible to use this sequence to build two instances like those of Figs. 18 and 19
proving that there is no online algorithm with lookahead τ . Thus we have to prove that
for every P > 0 and every T1 > 0, there exists a sequence (tn)n∈N of arrival times
and a sequence (pn)n∈N of job lengths satisfying the following properties:

(a) ∀n ≥ 0, tn+1 − tn < pnT1,
(b) ∀n ≥ 0, tn+2 − tn ≥ 2pnT1 (since T2 = 2T1),
(c) ∀n ≥ 0, pn ≤ P .

Let us construct such a sequence in the following way. Let α be a positive real
number sufficiently small such that α < min( 32 ,

1
4 P) and β a positive real number

sufficiently large such that 4α + 2
β−1 ≤ P . Take as initial values t0 = 0, p0 = 3α and

t1 = 2αT1. Then, we define tn+2 and pn+1 by:

• tn+2 = tn + 2pnT1 for n = 0, 1, . . . ,
• pn = tn+1−tn

T1
+ β−n for n = 1, 2, . . ..

Now we check that these sequences satisfy (a), (b) and (c). We can see that t1 − t0 =
2αT1 < p0T1, and moreover, ∀n ≥ 1, tn+1 − tn = pnT1 − β−nT1 < pnT1; it
follows that (a) holds. Furthermore, by construction, (b) holds and is even always
tight. Finally, we prove that all job lengths are bounded by P . By the choice of
α, p0 = 3α < P . Then, because t2 = 6αT1, p1 = 4α + 1

β
which is less than

4α + 2
β−1 , which is less than P by the choice of β. As regards the following job

lengths, for any n ≥ 1, on the one hand, tn+2 = tn + 2pnT1, and on the other hand,
tn+2 − tn = (tn+2 − tn+1)+ (tn+1 − tn) = (pn+1T1 −β−(n+1)T1)+ (pnT1 −β−nT1).
Thus pn+1 = pn + (β + 1)β−(n+1). This implies for any n ≥ 1:

pn = p1 +
n∑

i=2

(β + 1)β−i

= 4α + 1

β
+ β + 1

β2

n−2∑
i=0

β−i

≤ 4α + 1

β
+ β + 1

β2

1

1 − β−1
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= 4α + β − 1

β(β − 1)
+ β + 1

β(β − 1)

= 4α + 2

β − 1
≤ P (by choice of β)

Then (c) holds, which concludes the proof of part (i). �	

Clearly, Lemmata 6 and 7 imply Theorem 3.

5 Extension: minimizing total waiting time

In this section, we deviate from the problem stated in Sect. 1, and allow that a job
starts later than its arrival time. Hence, a job may have to wait before the machine
starts processing it, and we are interested in obtaining solutions with minimum total
waiting time. From this point of view, Theorem 2 shows that Algorithm 1 is capable
of finding a solution with total waiting time 0 if one exists (provided that T2 ≥ 2T1,
and provided that there is a certain amount of lookahead), and it is conceivable that
extensions of Algorithm 1 exist that would find solutions with minimum total waiting
time. Unfortunately, the following theorem shows that it is not the case. Let us recall
that an online algorithmwhose goal is tominimize a quantity is said to be k-competitive
if it always outputs a solution whose value is at most k times the optimal value.

Theorem 4 For any fixed τ ≥ 0, there is no online algorithm with lookahead time τ

which always outputs a schedule minimizing the total waiting time. Furthermore, for
any k ≥ 1, there is no online algorithm with lookahead time τ which is k-competitive
in terms of total waiting time.

Proof First of all, observe that if T2 < 2T1, this result is a corollary of Theorem 2.
Indeed, the first part of the theorem is true since there is even no online algorithm
that always outputs a no-wait schedule whenever such a schedule exists, then there is
no online algorithm that minimizes the waiting time. The second part of the theorem
comes from the fact that a k-approximation of a no-wait schedule is also a no-wait
schedule. Therefore, let us now restrict ourselves to the case where T2 ≥ 2T1. Let

τ ≥ 0 be an arbitrary lookahead time and let N =
⌈

τ

T2

⌉
so that NT2 ≥ τ . Let also

K > 1 be an arbitrary number (we will see later for what it is useful). We will use
an instance IN having 2N + 4 jobs. Its graph is represented in Fig. 20 and its arrival
times are the following:

t1 = 0 t2 = T1
2

t3 = T2 − T1
4NK

t4 = T2 + 3T1
4

− T1
4NK

...

t2i+1 = iT2 − T1
4NK

t2i+2 = iT2 + 3T1
4

− T1
4NK

(for 2 ≤ i ≤ N ) ...

t2N+3 = (N + 1)T2 + T1
4

− T1
4NK

t2N+4 = (N + 1)T2 + T1
2

− T1
4NK
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Fig. 20 The graph G(IN )

Schedule 1 can be helpful to visualize the instance IN (here with N = 3) and the
arguments of the proofs of the following lemmas. The arrival times are represented by
vertical blue lines.

Lemma 8 LetA be a no-wait online algorithm with lookahead time τ ≤ NT2. Taking
IN as input, A schedules job 3 at time t3 on M1.

Proof Since IN contains a bad path, there does not exist a no-wait schedule for this
instance. However, if we remove job 2N + 4, the instance becomes feasible because
it no longer contains a bad path. Therefore, as long as the algorithm A (which is a
correct algorithm for feasible instances), does not see job 2N + 4 in its lookahead
interval, it “does not know” that the instance is infeasible and is forced to do as
if it was feasible. Otherwise, it would fail on some feasible instances. Notice that
t2N+4 > t3 + NT2, because t5 − t3 = T2, t7 − t5 = T2, . . . , t2N+1 − t2N−1 = T2 and
t2N+4 − t2N+1 = T2 + T1

2 > T2. Then A schedules the three earliest jobs as soon as
they arrive to avoid any waiting time. Obviously, jobs 1 and 2 are assigned to different
machines because they are connected by a 1-edge. With respect to job 3, whatever the
assignments of jobs 1 and 2, M1 is available at time t3 whereas M2 is not. Thus, job 3
is assigned to M1 at time t3 to incur no waiting time. �	
Lemma 9 Any schedule for the instance IN where job 3 is scheduled at time t3 on M1
has a total waiting time greater than or equal to T1

4 .

Proof Consider a schedule where job 3 is scheduled at time t3 on M1. If an algorithm
waits in order to assign job 4 toM1 too, it incurs awaiting time of at least (t3+T1)−t4 =
T1
4 , which satisfies the lemma. Thus, suppose that job 4 is assigned to M2. Then, if an
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algorithm waits for M2 to be released to assign job 5 to it, it incurs a waiting time of at
least (t4 +T2)− t5 = 3T1

4 > T1
4 , which satisfies the lemma. Thus, suppose that job 5 is

assigned to M1. By repeating this reasoning for the following jobs, we prove that if not
all even jobs between 4 and 2N + 2 are assigned to M2 or if not all odd jobs between
5 and 2N + 3 are assigned to M1, then the statement of the lemma is true because
for every i ∈ {2, . . . , N }, (t2i+1 + T1) − t2i+2 = T1

4 , for every i ∈ {2, . . . , N − 1},
(t2i+2 + T2) − t2i+3 = 3T1

4 > T1
4 and (t2N+2 + T1) − t2N+3 = T1

2 > T1
4 . But if

the converse is true, then 2N + 2 is assigned to M2 and 2N + 3 is assigned to M1.
Therefore, 2N + 4 has to wait at least (t2N+2 + T2) − t2N+4 = T1

4 for M2, or at least

(t2N+3+T1)− t2N+4 = 3T1
4 > T1

4 for M1. In all cases, the total waiting time is greater

than or equal to T1
4 .

However, a waiting time of T1
4 or more is not optimal: there is a better schedule

which consists in assigning odd jobs to M2 and even jobs to M1. Its waiting time is
T1
4K because the N odd jobs 3, 5, . . . , 2N + 1 all have to wait T1

4NK before using M2.
Schedule 2 represents such a schedule with N = 3. We can now check the statements
of the theorem. On the one hand, if A always minimizes the waiting time, then in
particular, it is optimal on instances having a no-wait schedule. Then, Lemmas 8 and 9
imply thatA does not return an optimal schedule on IN , which is a contradiction. On
the other hand, ifA is only k-competitive, for some k > 1, it must also be optimal on
instances having a no-wait schedule, because a k-approximation of a no-wait schedule
is also a no-wait schedule. Then, Lemma 8 applies also to A, and Lemma 9 implies
that A returns a schedule whose waiting time is K times worse than the optimal
waiting time. By choosing K > k, it contradicts the hypothesis according to whichA
is k-competitive. �	

6 Conclusion

We have focussed on the potential that lookahead offers for online algorithms to solve
an interval scheduling problem with two related machines. We showed that, in case of
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unit-length jobs, if the ratio between the speeds of the machines is at least 2, then there
exists an online algorithm with lookahead that finds a feasible schedule whenever one
exists. If this ratio is less than 2, no online algorithm exists for the resulting instances.
This result can be extended to jobs with arbitrary lengths provided an upperbound on
the maximum job length is given. We also showed that this result cannot be extended
when the goal is to minimize total waiting time. Summarizing: there are situations
where an amount of lookahead allows to obtain results that cannot be obtained without
lookahead.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.
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