RNA phosphodiester backbone dynamics of a perdeuterated cUUCGg tetraloop RNA from phosphorus-31 NMR relaxation analysis

Jörg Rinnenthal · Christian Richter · Senada Nozinovic · Boris Fürtig · Jakob J. Lopez · Clemens Glaubitz · Harald Schwalbe

Received: 28 May 2009 / Accepted: 19 June 2009 / Published online: 28 July 2009 © Springer Science+Business Media B.V. 2009

Abstract We have analyzed the relaxation properties of all 31P nuclei in an RNA cUUCGg tetraloop model hairpin at proton magnetic field strengths of 300, 600 and 900 MHz in solution. Significant H, P dipolar contributions to $R_1$ and $R_2$ relaxation are observed in a protonated RNA sample at 600 MHz. These contributions can be suppressed using a perdeuterated RNA sample. In order to interpret the 31P relaxation data ($R_1$, $R_2$), we measured the 31P chemical shift anisotropy (CSA) by solid-state NMR spectroscopy under various salt and hydration conditions. A value of 178.5 ppm for the 31P CSA in the static state ($\delta^2 = 1$) could be determined. In order to obtain information about fast time scale dynamics we performed a modelfree analysis on the basis of our relaxation data. The results show that subnanosecond dynamics detected around the phosphodiester backbone are more pronounced than the dynamics detected for the ribofuranosyl and nucleobase moieties of the individual nucleotides (Duchardt and Schwalbe, J Biomol NMR 32:295–308, 2005; Ferner et al., Nucleic Acids Res 36:1928–1940, 2008). Furthermore, the dynamics of the individual phosphate groups seem to be correlated to the 5’ neighbouring nucleobases.

Keywords NMR spectroscopy · Isotope labeled RNA · 31P relaxation · Modelfree order parameter

Introduction

Many of ribonucleic acids (RNA) functions are related to a multitude of RNA’s functional dynamics (Hashim 2007; Al-Hashimi and Walter 2008). Bistable RNA for instance can adopt different conformations of almost equal stabilities (Hobartner and Micura 2003; Hobartner et al. 2004; Wenter et al. 2005, 2006a, b; Fürtig et al. 2007a, b) whereas riboswitch-RNA involved in transcriptional and translational regulation undergo local as well as long-range conformational dynamics upon metabolite binding (Tucker and Breaker 2005; Winkler 2005; Lang et al. 2007; Rieder et al. 2007; Schwalbe et al. 2007). RNA thermometers melt local structure at ambient temperature and thereby regulate translation (Chowdhury et al. 2006; Narberhaus et al. 2006; Waldminghaus et al. 2007). Upon binding to different ligands, TAR–RNA, a potential pharmacological target RNA, can adopt different conformations, many if not all of which are sampled in the free state of the RNA (Zhang et al. 2006, 2007; Ferner et al. 2009).

RNA dynamics span a broad range of time scales from picoseconds where vibrations and angular fluctuations occur up to seconds where catalytic function and global refolding take place (Fürtig et al. 2007a, b). Molecular dynamics (MD) simulations provide a microscopic description of the dynamic trajectories (Miller and Kollman 1997; Williams and Hall 1999, 2000; Nina and Simonson 2002; Showalter et al. 2005; Villa and Stock 2006).
NMR spectroscopy can characterize dynamics faster than the overall rotational correlation in the low nanosecond regime from heteronuclear relaxation measurements ($R_1$, $R_2$, $R_{1\rho}$, and steady-state heteronuclear NOE) while supra-τc motions can be detected from RDC measurements. Subnanosecond dynamics detected in NMR experiments and interpreted in the context of the so-called model-free formalism can be compared to order parameters predicted from long MD simulations (Koplin et al. 2005; Duchardt et al. 2008; Ferner et al. 2008). If these Lipari-Szabo order parameters from long MD simulations (Koplin et al. 2005; Duchardt and Schwalbe 2005; Shajani and Varani 2005, 2007; Shajani et al. 2007; Ferner et al. 2008) and in large specifically 13C-labeled RNAs (Johnson et al. 2006; Johnson and Hoogstraten 2008) as well as 13C relaxation dispersion methods are currently available (Hoogstraten et al. 2000; Blad et al. 2005; Shajani and Varani 2005; Oberstrass et al. 2008; Hansen et al. 2009). Measurement of relaxation properties on samples with selective labeling of specific 13C sites (Olsen et al. 1982; Schmidt et al. 1983, 1987; Williamson and Boxer 1989a, b; Gaudin et al. 1995), uniform partial 13C enrichment (Kojima et al. 1998; Boisbouvier et al. 1999) or at 13C natural abundance (Lane et al. 1991; Borer et al. 1994; Spielmann 1998) have been performed in order to investigate RNA dynamics of the nucleobase and the ribose moieties. 15N relaxation in uniformly 15N-labeled RNA has been measured using methods previously applied in the protein NMR spectroscopy (Akke et al. 1997). Measurements of 15N relaxation properties, however, are restricted to studies of imino resonances involved in hydrogen bonding, since exchange with solvent water is too rapid for conformationally non-stable parts of the RNA.

Measurement of 31P relaxation rates in RNA provides a direct reporter of conformational dynamics of the phosphodiester backbone. Such studies have been performed previously for the sum of all 31P nuclei within RNA constituted in whole virus particles (Kan et al. 1987; Magusin and Hemminga 1994) or ribosomes (Odahara et al. 1994). In this contribution, we provide for the first time a site-resolved investigation of the phosphodiester backbone 31P relaxation properties of a 14mer hairpin RNA. We investigated the cUUCGg tetraloop RNA which constitutes a highly abundant structural RNA motif of extraordinary stability ($T_m \sim 70^\circ C$, (Allain and Varani 1995)). The cUUCGg motif has been extensively studied and characterized structurally both by NMR spectroscopy (Varani and Tinoco 1991; Allain and Varani 1995; Lynch and Puglisi 2001) and X-ray crystallography (Ennifar et al. 2000).

A number of relaxation studies have been reported for the UUCG tetraloop motif so far. Akke et al. (1997) analyzed the fast time scale motion on the imino resonances of the cUUCGg tetraloop 14mer RNA at 273 K. An $S^2$ order parameter of 0.75–0.8 was extracted from the 15N relaxation data for all of the $^1H$–$^{15}N$ bond vectors in stable hydrogen bonds. A model free analysis was also performed on the basis of 13C relaxation data for the aromatic C6H6/C8H8 bond vectors as probes for the nucleobases and the C1’H1’ bond vectors as probes for the ribose moieties (Duchardt and Schwalbe 2005; Ferner et al. 2009). $S^2$ order parameters between 0.87 and 0.99 were extracted for the nucleobases in the A-form helical part of the RNA at a temperature of 298 K. C1’H1’ bond vectors are well defined with $S^2$ order parameters between 0.90 and 0.94 in the stem while the loop moieties as well as the ribose moieties of G1 and C14 are slightly more flexible with $S^2$ values between 0.84 and 0.89. In the UUCG tetraloop, U7 ($S^2 = 0.68$) is more flexible than the rest of the nucleobases. These findings could be reproduced by MD simulations of the cUUCGg tetraloop RNA (Ferner et al. 2008; Villa et al. 2008). Shajani et al. performed 13C relaxation studies for the C5/C6/C8 and the C1’ nucleo on a different RNA bearing a cUUCGg tetraloop (Shajani and Varani 2005). Using an isotropic model for the overall tumbling, $S^2$ order parameters around 0.9 were obtained for the ribose moieties at a temperature of 298 K. The nucleobases in A-form helical parts of the RNA show $S^2$ order parameters of around 0.9. For the loop nucleobases varying flexibilities with $S^2$ values of 0.66–1.0 were reported. In a second study, $S^2$ order parameters were extracted using different 13C CSA values extracted from liquid crystal measurements (Shajani and Varani 2007). These $S^2$ order parameters lie between 0.94 (first loop uracil nucleobase) and 0.73 (second loop uracil nucleobase) and are very similar to the $S^2$ order parameters reported by Ferner et al. (2008). Hall and coworkers analyzed the effects of 2’ ribose substitutions on the thermodynamic stability of UUCG tetraloops by experimental (UV melting curves) and computational methods (Williams and Hall 1999, 2000; Williams et al. 2001) showing the important role of the 2’ hydroxyl group of the first loop uridine on the thermodynamic stability of the UUCG tetraloop.

One obstacle for the interpretation of 31P $R_1$ and $R_2$ relaxation rates is the fact that in protonated RNA samples, every phosphorous atom experiences a dipolar field of protons three or four freely rotatable bonds apart, which makes the dipolar contribution to the relaxation dependent on the phosphodiester backbone conformation. We circumvented the problem of quantifying the dipolar relaxation contributions by the use of a perdeuterated RNA...
sample for our measurements. Furthermore, the size and orientation of the $^{31}$P CSA tensor without dynamic contributions is still not absolutely known. Therefore, we performed solid-state NMR measurements under various salt and hydration conditions to derive the three principal axis components of the CSA tensor in the static state. Using the valid CSA value, we performed a modelfree analysis of our $^{31}$P relaxation data in order to obtain site specific information about fast time scale dynamics of the phosphodiester backbone of the 14mer hairpin RNA.

Methods

Sample preparation

Liquid-state NMR measurements were performed using a uniformly $^2$H-labeled 14mer cUUCGg tetraloop RNA sample with the sequence 5'-PO$_4$$^2$-PO$_3^-$-PO$_3^-$GGC AC(UUCG)GUGCC-OH-3'. The sample was purchased from Silantes GmbH (Munich, Germany). The secondary structure of the molecule is shown in Fig. 1a. The RNA was desalted using Vivaspin 20 concentrators with a molecular weight cutoff (MWCO) of 3,000 Da from Sartorius stedim biotech (Aubagne Cedex, France). Refolding of the RNA was achieved by denaturing for 10 min at a concentration of 0.25 mM and a temperature of 95°C followed by 20-fold dilution with ice cold water and subsequent incubation at 0°C for another 30 min. The RNA was concentrated and exchanged to NMR buffer using Vivaspin 20 concentrators (MWCO = 3,000 Da). The correct folding of the RNA was verified by native polyacrylamide gel electrophoresis. The final NMR sample contained 0.8 mM RNA, 20 mM K$_2$HPO$_4$ (pH 6.4 in H$_2$O), 50 mM KCl, 0.4 mM EDTA and 99.99% D$_2$O. A $^{13}$C, $^{15}$N-labeled 14mer cUUCGg RNA tetraloop sample was used for the resonance assignments of the $^{31}$P nuclei at 37°C. The sample was prepared in the same way as the $^2$H-labeled sample.

Solid-state NMR measurements were performed using an unlabeled chemically synthesized 20mer RNA with the sequence 5'-OH-GCGCGCGCGCGCGCGCGCG-3'. The RNA was purchased from Dharmaco (Boulder, CO). The RNA was deprotected and freeze-dried following the protocol provided by the manufacturers. Subsequently, the RNA was dissolved in water and precipitated at −20°C overnight using 5 volumes of 2% LiClO$_4$ in acetone. The precipitate was dissolved in water. Refolding of the RNA into the duplex conformation was achieved by denaturing for 20 min at a concentration of 1 mM at 95°C followed by slow cooling to room temperature within 30 min. Buffer exchange was achieved using Vivaspin 20 concentrators (MWCO = 3,000 Da). The correct folding of the RNA was verified by native polyacrylamide gel electrophoresis. RNA samples measured in frozen buffer were frozen directly in the NMR spectrometer, while RNA samples measured as a freeze-dried powder were exchanged to the appropriate buffer solution, frozen with liquid nitrogen and freeze-dried. One of the freeze-dried samples was equilibrated to 84% air humidity in an exsiccator within 4 days using a buffer reservoir filled with a saturated KCl/H$_2$O solution. All NMR sample buffers contained 10 mM MES, pH 6.5 but different KCl concentrations between 0 and 1,000 mM, respectively.

Native gel electrophoresis

$5\times$ loading buffer was composed of 87% glycerol, 0.1% (w/v) xylene cyanole FF and 0.1% (w/v) bromophenol blue. The loading buffer was added to RNA samples in a final concentration of 20% (v/v) and mixed with a 4 × loading buffer. For separating RNA samples, a native gel electrophoresis was performed as described in Ref. 3.
blue. 1× running buffer contained 50 mM Tris-acetate and 50 mM sodium phosphate (pH 8.3). The gel was cast using 15% acrylamide with an acrylamide:bisacrylamide ratio of 37.5:1. Running conditions were set as follows: \( U = 70 \text{ V}, P < 0.5 \text{ W for 4 h, water cooling to prevent heating. The gel was stained with ethidium bromide.} \)

Liquid-state NMR spectroscopy

NMR measurements were performed on three different Bruker NMR spectrometers, a 300 MHz spectrometer equipped with a 5 mm BBO z-gradient probe, a 600 MHz spectrometer equipped with a 5 mm cryogenic HCP z-gradient probe, and a 900 MHz spectrometer equipped with a 5 mm HCP xyz-gradient probe. Transversal and longitudinal relaxation data were obtained using modified Bruker standard pulse sequences for \( R_1 \) (t1ir) and \( R_2 \) (cpmg) relaxation rate determination. The carrier frequency was set to 0.61 ppm on the phosphate buffer signal. To suppress the buffer signal, moderate presaturation with \( \gamma B_1/2\pi = 2.5 \text{ Hz} \) was applied during the magnetization recovery delay of the cpmg and the t1ir pulse sequences and during the variable \( R_1 \) relaxation delay of the t1ir pulse sequence.\( R_1 \) relaxation data were acquired with a recycling delay of 10 s. At 900 MHz (364.4 MHz; \( ^{31}\text{P} \)), 16 increments with 480 scans each, at 600 MHz (242.8 MHz; \( ^{31}\text{P} \)), 16 increments with 224 scans each and at 300 MHz (121.4 MHz; \( ^{31}\text{P} \)), 18 increments with 512 scans each were used to determine \( R_1 \), \( R_2 \) relaxation data were acquired with 12 relaxation delay increments with 640 scans (600 MHz) and 1,696 scans (300 MHz) each. A constant CPMG field of 50 Hz was applied during the \( R_2 \) relaxation period. The recycling delay was set to 3 s. The resonance assignments of the \( ^{31}\text{P} \) nuclei at 25°C were taken from Fürtit et al. (Fürtig et al. 2004). The resonance assignments at 37°C were obtained by recording an HCP experiment with a uniformly \( ^{13}\text{C} \), \( ^{15}\text{N} \)-labeled cUUCGg tetraloop 14mer RNA sample and transferring this assignment to the assignment at 25°C.

Solid-state NMR spectroscopy

Measurements were performed on a Bruker 400 MHz spectrometer equipped with a Bruker 4 mm DVT HXY probe head. \( ^{31}\text{P} \)-CP MAS spectra were acquired using a \( ^{1}\text{H} \) 90° excitation pulse of 2.5 \( \mu \text{s} \). The CP contact time was optimized to 1,500 \( \mu\text{s} \) (RNA as freeze-dried powder) and 2,500 \( \mu\text{s} \) (RNA in frozen buffer), respectively. \( ^{1}\text{H} \) decoupling (Spinal64) (Fung et al. 2000) was applied during acquisition with a field strength of 70 kHz. The recycling delay was set to 2 s. All spectra were recorded with an MAS spinning rate of 2,000 or 3,000 Hz, respectively.

Data analysis

Solid-state NMR spectra

The size of the \( ^{31}\text{P} \) CSA tensor was determined by analyzing the MAS spinning sideband intensities using the lineshape analysis algorithms integrated in Topspin 2.1 (Bruker, Germany). The line width of the \( ^{31}\text{P} \) spectra was determined within the \( ^{31}\text{P} \) tensor fitting procedure. It represents the average line width of the isotropic peak and all sidebands.

From the \( ^{31}\text{P} \) tensor, the magnitude of the CSA was calculated using (Hansen and Al-Hashimi 2006)

$$\text{CSA} = \sqrt{1.5 \left[ (\delta_{11} - \delta_{\text{iso}})^2 + (\delta_{22} - \delta_{\text{iso}})^2 + (\delta_{33} - \delta_{\text{iso}})^2 \right]}$$

(1)

Liquid-state NMR spectra

Spectra were processed and analyzed using Topspin 2.1 (Bruker, Germany). \( R_1 \) and \( R_2 \) relaxation rates were fit from peak heights to two-parameter monoexponential functions with the Software Sigma Plot 10.0 (Systat Software GmbH, Germany).

The obtained relaxation parameters were further analyzed using the program modelfree 4.20 (Mandel et al. 1995). This program uses the modelfree formalism introduced by Lipari and Szabo (1982a, b) and modified by Clore et al. (1990). The dipolar relaxation term was set to zero during the analysis. Model selection was achieved according to d’Auvergne and Gooley (2003) using Akaike’s information criterion (AIC). The AIC is given by

$$AIC = \chi^2 + 2k$$

(2)

\( k \) is the number of modelfree parameters in the model.

The overall rotational correlation time \( \tau_c \) was optimized during the modelfree fitting procedure and finally compared to the outcome of a hydrodynamic calculation using the program hydromr 5a (Garcia de la Torre et al. 2000). Rotational diffusion was assumed to be either isotropic or axially symmetric. In case of axially symmetric diffusion, the CSA tensor was oriented along the P-O3 bond. This assumption differs by only 7° from the orientation of the CSA tensor of barium diethylphosphate (Herzfeld et al. 1978). The initial diffusion tensor used for the modelfree fitting was calculated on the basis of our NMR structure of the cUUCGg tetraloop 14mer RNA (Nozinovic et al. unpublished results) using the program hydromr 5a (Garcia de la Torre et al. 2000). During the modelfree calculations, the diffusion tensor was allowed to adjust in size and orientation. \( R_1 \) relaxation rates recorded at magnetic fields of 300 MHz (121.4 MHz; \( ^{31}\text{P} \)), 600 MHz (242.8 MHz; \( ^{31}\text{P} \)) and 900 MHz (364.4 MHz; \( ^{31}\text{P} \)) and the...
$R_2$ relaxation rates recorded at 600 MHz (242.8 MHz, $^{31}$P) were used as input data for the model-free calculation.

**Results and discussion**

$R_1$ and $R_2$ relaxation in solution are caused by fluctuations in the local magnetic field surrounding the NMR-active nuclei. For RNA, these fluctuations are mainly caused by CSA and dipolar contributions. Dipolar contributions to the relaxation of $^{15}$N- or $^{13}$C-nuclei are dominated by covalently bound proton nuclei. In the case of $^{31}$P in the phosphodiester backbone of oligonucleotides, no directly bound proton is present but the $^{31}$P nucleus experiences the influence of various hydrogens that are three or four bonds apart (H3', H4', H5', H5'', H2'). Therefore, separation of these two contributions is a prerequisite for the analysis of the autocorrelated relaxation rates of the $^{31}$P nuclei of the phosphodiester backbone of RNA. Magusin et al. (Magusin and Hemminga 1994) calculated the contribution of dipolar relaxation in $R_2$ to be 37% at a proton magnetic field strength of 300 MHz and 18% at a proton magnetic field strength of 500 MHz. Consequently, the dipolar relaxation mechanisms in protonated RNA molecules cannot be neglected.

**Dipolar relaxation terms**

The dipolar interaction shows an $r^{-6}$-dependence on the distance between the two interacting nuclei. Therefore, it is crucial to know the exact distance between the nuclei. The fact that the protons causing dipolar relaxation are at least 3 bonds with flexible torsions ($\alpha$, $\beta$, $\gamma$; pseudo-rotation phase $P$) apart from $^{31}$P nuclei in the phosphodiester backbone of an RNA makes it difficult to determine exact $^{1}$H–$^{31}$P distances. Therefore, the magnitude of the dipolar relaxation contributions in protonated RNA samples to the $^{31}$P $R_1$ and $R_2$ relaxation rates are difficult to define.

In order to determine the dipolar contributions to $R_1$ relaxation rates, we compared data from $R_1$ relaxation measurements for a protonated and a perdeuterated cUUCGg tetraloop 14mer RNA (Fig. 1a). In this tetraloop, the $^{31}$P signals are resolved in the $^{31}$P-1D spectrum (see 1D spectrum recorded at a proton $B_0$ field strength of 300 MHz in Fig. 1b), making it possible to determine the $^{31}$P relaxation rates directly on the $^{31}$P spins without magnetisation transfer from other nuclei using e.g. HCP (Marino et al. 1994) (Heus et al. 1994), HCP-CCH-TOCSY (Marino et al. 1995) or HP-TOCSY (Kellogg 1992) experiments. The comparison of the $R_1$ relaxation rates determined at a temperature of 37°C is shown in Fig. 1c. $R_1$ relaxation rates of the protonated RNA are 0.4 Hz higher on average than for the perdeuterated RNA. Hence, this difference is caused by the sum of all $^{1}$H–$^{31}$P dipolar relaxation contributions because $^{2}$H–$^{31}$P dipolar relaxation in the perdeuterated sample should be scaled down by a factor of 16, taking into account the lower gyromagnetic constants and the difference in spin quantum number of $^{2}$H ($\gamma_D = 4.11*10^7 T^{-1}s^{-1}$, $I_D = 1$) compared with $^{1}$H ($\gamma_H = 26.75*10^7 T^{-1}s^{-1}$, $I_H = 1/2$). We calculate a maximum $^{2}$H–$^{31}$P relaxation rate of 0.02 Hz, an effect we are not able to detect given the experimental error of our measurements.

**CSA relaxation terms**

In a perdeuterated RNA, the $^{31}$P nuclei of the phosphodiester backbone can be treated as isolated spins and, when care has been taken to exclude paramagnetic impurities, only the CSA of the $^{31}$P nucleus causes its $R_1$ relaxation. $R_2$ relaxation rates are caused by CSA relaxation and chemical exchange contributions. Hence, by analyzing both $R_1$ and $R_2$, CSA relaxation terms can be separated from chemical exchange terms.

If the rotational diffusion of the RNA is isotropic, then the CSA contribution to $R_1$ and $R_2$ relaxation is only dependent on the size but not on the orientation of the CSA. However, if one assumes an axially symmetric diffusion tensor, the relaxation depends on the orientation of the CSA tensor with respect to the diffusion tensor of the RNA molecule. This orientation can only be determined, if the orientation of the CSA tensor within the molecular frame of the phosphodiester backbone as well as the conformation of the phosphodiester backbone with respect to the overall shape of the molecule is known.

The $^{31}$P CSA tensor: size and orientation

The orientation of the $^{31}$P CSA tensor within the molecular frame was determined for barium diethyl phosphate as a model compound mimicking the phosphodiester backbone (Herzfeld et al. 1978). However, the size of the principal axis values of the CSA tensor can be dependent on the conformation of the phosphodiester backbone. For example, such CSA tensor dependence has been reported for $^{15}$N nuclei in the backbone of proteins (Fushman et al. 1998; Kroenke et al. 1999; Loth et al. 2005; Hall and Fushman 2006).

In the seventies, the size of the principal axis values of the $^{31}$P CSA tensor for RNA molecules were determined by solid-state NMR measurements for polyU, polyG, polyC, polyA and tRNA (Terao et al. 1977). From these values, the CSA magnitude according to Eq. 1 calculates to 172.0 ppm (tRNA), 174.7 ppm (polyU), 182.0 ppm (polyC), 173.2 ppm (polyG), 175.8 ppm (polyA). For double stranded DNA, a phosphate CSA magnitude of 157.8 ppm could be
derived from solid state NMR measurements (Heisaburo 1980). This CSA value is significantly smaller than the CSA values reported for RNA. Since tRNA adopts predominantly A-form helical conformation for most of the nucleotides, an averaged value of 172 ppm was proposed to represent the valid CSA value for RNA molecules. However, there seems to be quite some difference in the size of the CSA between these different molecules. Since polyN RNAs are supposed to assume ensembles of random structures, these differences are most intuitively explained by a pronounced dependence of the CSA on the average conformation of the phosphodiester backbone that then has to be different for different homopolymeric oligonucleotides. Recently performed DFT studies of the conformational dependence of the $^{31}$P CSA tensor in the phosphodiester backbone of DNA and RNA molecules further support this interpretation. Taking the principal axis values from the DFT study, the CSA magnitude calculates to 176.5 ppm for RNA (Prec-echtelova et al. 2008). On the other hand, the dispersion of isotropic chemical shift of $^{31}$P in the phosphodiester backbone is very small ($\sigma_{CS} = \pm 1.5$–2 ppm) (BMRB database), which indicates a small conformational dependence of the $^{31}$P CSA.

We conducted $^{31}$P solid-state NMR measurements on a GC 20mer duplex RNA in order to determine the $^{31}$P CSA magnitude for the relaxation analysis in solution. We controlled by polyacrylamide gels that the duplex was exclusively formed. Therefore, all nucleotides in this duplex are supposed to adopt similar A-form helical conformations and induce a very similar electronic environment for each $^{31}$P nucleus. $^{31}$P-1D CP MAS spectra were recorded under a variety of different conditions changing salt concentration, humidity and temperature. The spectra were fit and principal axis values of the $^{31}$P CSA tensor were determined. Figure 2 shows exemplarily a $^{31}$P-1D CP MAS solid-state NMR spectrum of the freeze-dried GC-20mer duplex RNA in the absence potassium chloride (KCl) measured at a proton $B_0$ field of 400 MHz and a temperature of 250 K (black line). Acquisition parameters were set as follows: MAS rotation frequency 3 kHz, CP contact time 1.5 ms, $^{1}$H decoupling field strength 70 kHz, recycling delay 2 s, scans 6,400. The chemical shift of the isotropic signal is $-1.5$ ppm. The green line represents the simulated spectrum. The principal axis values of the $^{31}$P CSA tensor derived from the simulation are given in Table 2.

Fig. 2 $^{31}$P-1D CP MAS solid-state NMR spectrum of the freeze-dried GC-20mer duplex RNA without KCl measured at a proton $B_0$ field of 400 MHz and a temperature of 250 K (black line). Acquisition parameters were set as follows: MAS rotation frequency 3 kHz, CP contact time 1.5 ms, $^{1}$H decoupling field strength 70 kHz, recycling delay 2 s, scans 6,400. The chemical shift of the isotropic signal is $-1.5$ ppm. The green line represents the simulated spectrum. The principal axis values of the $^{31}$P CSA tensor derived from the simulation are given in Table 2.

In ice, the $^{31}$P CSA is 160.5 ppm and is not dependent on varying KCl concentrations. In contrast, the $^{31}$P CSA is much larger for freeze-dried RNA samples and shows a dependence on the KCl concentration, albeit not in the physiological concentration range. The CSA value increases with the salt concentration from 178.5 ppm in the absence of KCl to 188.9 ppm for 1 M KCl. If the freeze-dried sample is equilibrated to 84% air humidity, the CSA reduces to 157.4 ppm.

It was reported previously for collagen fibrils (Reichert et al. 2004) that fast to intermediate time scale dynamics affect the apparent CSA value determined by solid-state NMR measurements. These dynamics can be expressed by an order parameter S which scales the unperturbed CSA value. For collagen fibrils, S depends on the hydration level. Odahara et al. (1994) reported the dependence of the $^{31}$P CSA tensor on temperature in pelleted ribosome samples as well as the dependence of the $^{31}$P CSA tensor of calf thymus DNA on relative air humidity and temperature. The homogenous line width of the side bands of tobacco mosaic virus (TMV) samples was determined to be 90 Hz, while the inhomogeneous line width greatly differs with a pronounced dependence on the water content of the sample (Hemminga et al. 1987). This inhomogeneous line broadening was interpreted as conformational heterogeneity that is averaged out in samples with higher water content. Finally, Magusin and Hemminga (1993, 1994) performed a detailed relaxation and CSA tensor analysis on M13 virus as well as on TMV samples. In this study, the change in line width was interpreted as arising from fast restricted fluctuations of the dihedral angles in the phosphodiester backbone. Taken together, due to dynamics on the $\mu$s time scale, the size of the principal axis values of the observed $^{31}$P CSA tensor as well as the line width of the sidebands depend strongly on sample preparation.
Data were obtained on GC-20mer duplex RNA samples under different salt concentrations and at different temperatures for the relaxation analysis in solution. KCl concentrations in the freeze-dried state would be valid in this case, a CSA value of 188.9 ppm determined at high ions fill up gaps between phosphodiester backbone sides in the RNA and thereby stiffen the phosphodiester backbone.

In the case of the GC 20mer duplex RNA, 84% air humidity seems to introduce dynamics of the phosphodiester backbone, thereby reducing the order parameter and the apparent CSA from 174.4 ppm to 157.4 ppm. In line with this observation, the line width diminishes from 723 to 403 Hz. If one compares these values to the CSA tensor values obtained for RNA samples measured in ice, the reduction in both CSA and line width indicates that the phosphodiester backbone of RNA samples in ice experiences significant dynamics. The effects on CSA and line width are consistent: the smaller the magnitude of the CSA, the smaller the line width. Consequently, we can conclude that the CSA value representing a static case has to be larger or equal to 178.5 ppm.

There are two possible explanations for the observed dependence of the CSA on the KCl concentrations of freeze-dried RNA samples. It might be possible that K\textsuperscript+ cations influence the electron density around the 31P nucleus. This effect would only be present if cations come very close to the 31P nucleus, like in the freeze-dried state of the RNA. In this case, 178.5 ppm is the correct CSA magnitude because in solution at 50 mM KCl the mean distance between K\textsuperscript+ ion and phosphate group is too large to cause such an effect. Alternatively, the KCl dependence could arise from a dynamic effect where small K\textsuperscript+ and Cl\textsuperscript− ions fill up gaps between phosphodiester backbone sides in the RNA and thereby stiffen the phosphodiester backbone. In this case, a CSA value of 188.9 ppm determined at high KCl concentrations in the freeze-dried state would be valid for the relaxation analysis in solution.

We consider the K\textsuperscript+ ions influence on the electron density of the phosphate group to be the more likely explanation, since there is no further increase in line width upon an increase of KCl in the freeze-dried state. Therefore, we performed the analysis of the liquid-state NMR data with a CSA magnitude of 178.5 ppm. However, we also examined the effect of different 31P CSAs on the outcome of the model-free analysis.

Our data show that the CSA magnitudes determined on freeze-dried RNA samples depend strongly on sample preparation. This dependence on sample preparation might explain the large differences in CSA magnitudes for the phosphodiester backbone determined by solid-state NMR previously. In our opinion, the conformational dependence of the CSA is small judged by the small chemical shift dispersion observed in solution, at least for the allowed backbone angle combinations. Therefore, we assumed a constant CSA value of 178.5 ppm for all phosphodiester 31P nuclei within the cUUCGg 14mer RNA, which is very close to the CSA value determined by DFT calculations for A-form RNA (Precechtelova et al. 2008). In proteins, the isotropic chemical shift dispersion for the backbone 15N nuclei is 25–30 ppm. However, the conformational dependence of the 15N CSA was found to be only 5–10% (Kroenke et al. 1999; Loth et al. 2005). Therefore, relaxation analysis in proteins is usually performed with the assumption of a constant 15N CSA value. In RNA the chemical shift dispersion of the phosphodiester is only ±1.5-2 ppm (BMRB database). Although the conformational dependence of the 31P CSA has not yet been determined experimentally, it is presumably much smaller than the conformational dependence of the backbone 15N CSA in proteins. Hence, the assumption of a constant CSA value for all phosphodiester nuclei is likely to lead to reasonable results.

Relaxation analysis of the perdeuterated RNA

Table 1  Experimental 31P chemical shift tensor principal values, the corresponding isotropic chemical shift values, the CSA values calculated according to Eq. 1 and the line widths extracted from the CSA fits

<table>
<thead>
<tr>
<th>Sample</th>
<th>KCl (mM)</th>
<th>T (K)</th>
<th>δ_{11} (ppm)</th>
<th>δ_{22} (ppm)</th>
<th>δ_{33} (ppm)</th>
<th>δ_{12} (ppm)</th>
<th>δ_{13} (ppm)</th>
<th>δ_{23} (ppm)</th>
<th>CSA (ppm)</th>
<th>Line width (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice\textsuperscript{a}</td>
<td>0</td>
<td>250</td>
<td>79.8</td>
<td>17.8</td>
<td>−102.7</td>
<td>−1.68</td>
<td>160.7</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice\textsuperscript{a}</td>
<td>50</td>
<td>250</td>
<td>79.2</td>
<td>17.6</td>
<td>−101.9</td>
<td>−1.68</td>
<td>159.5</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice\textsuperscript{a}</td>
<td>100</td>
<td>250</td>
<td>80.4</td>
<td>17.6</td>
<td>−103.1</td>
<td>−1.73</td>
<td>161.5</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice\textsuperscript{a}</td>
<td>1,000</td>
<td>250</td>
<td>79.4</td>
<td>18.1</td>
<td>−102.4</td>
<td>−1.60</td>
<td>160.2</td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-dried\textsuperscript{b}</td>
<td>0</td>
<td>250</td>
<td>86.4</td>
<td>23.8</td>
<td>−115.0</td>
<td>−1.61</td>
<td>178.4</td>
<td>979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-dried\textsuperscript{b}</td>
<td>500</td>
<td>250</td>
<td>88.6</td>
<td>25.6</td>
<td>−119.4</td>
<td>−1.73</td>
<td>184.8</td>
<td>989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-dried\textsuperscript{b}</td>
<td>1,000</td>
<td>250</td>
<td>89.9</td>
<td>27.5</td>
<td>−122.3</td>
<td>−1.63</td>
<td>188.9</td>
<td>987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-dried\textsuperscript{b}</td>
<td>100</td>
<td>310</td>
<td>85.8</td>
<td>22.2</td>
<td>−111.5</td>
<td>−1.18</td>
<td>174.4</td>
<td>723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84% humid\textsuperscript{c}</td>
<td>100</td>
<td>310</td>
<td>79.1</td>
<td>17.0</td>
<td>−99.8</td>
<td>−1.24</td>
<td>157.4</td>
<td>403</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data were obtained on GC-20mer duplex RNA samples under different salt concentrations and at different temperatures

\textsuperscript{a} RNA sample measured in frozen buffer

\textsuperscript{b} Freeze-dried sample (corresponds to 0% air humidity)

\textsuperscript{c} Freeze-dried sample equilibrated to 84% air humidity
monoeXponentially, indicating that the RNA sample preparation is homogenous and monomeric. \( R_1 \) relaxation rates were determined for a perdeuterated cUUCGg tetraloop 14mer RNA solubilized in a 100% D\textsubscript{2}O buffer at different proton \( B_0 \) magnetic field strengths of 300, 600 and 900 MHz (Fig. 3c) at a temperature of 37°C. As expected for molecules with an overall tumbling rate \( \tau_c \) around 2 ns, \( R_1 \) relaxation rates increase with \( B_0 \) magnetic field strength. However, this field dependence seems to be different for some of the \( ^{31}P \) nuclei. For instance, the \( R_1 \) relaxation rates of the phosphates p2, p10 and p14 show a higher \( B_0 \) field dependence than the other \( ^{31}P \) nuclei. Apparently, the loop phosphates p7 and p9 show small \( R_1 \) relaxation rates while p8 shows a high \( R_1 \) relaxation rate when compared at the same \( B_0 \) field strength. This characteristic trend is prominent at 300, 600 and 900 MHz (Table S3, Supplementary Material).

\( R_2 \) relaxation rates were determined at proton \( B_0 \) magnetic field strengths of 300 MHz (Table S3, Fig. S2, Supplementary Material) and 600 MHz at a temperature of 37°C (Fig. 3d; Table S3, Supplementary Material). The \( R_2 \) relaxation rates recorded at 600 MHz lie between 9.6 and 11.8 Hz, while the phosphates of the hairpin loop p7, p8, p9, p10 show slightly lower \( R_2 \) rates than the other phosphates. The only exception is p2 which has a significantly higher \( R_2 \) relaxation rate (14.75 Hz). Furthermore, this p2 signal appears to be weaker and broader than all other phosphate signals in the \(^{31}P\)1D (Fig. 1b) spectrum. This observation suggests a significant chemical exchange contribution to the \( R_2 \) relaxation rate of phosphate p2.

Modelfree analysis

As input data for the modelfree analysis, \( R_1 \) relaxation rates recorded at proton \( B_0 \) magnetic field strengths of 300, 600 and 900 MHz and \( R_2 \) relaxation rates recorded at a proton \( B_0 \) magnetic field strength of 600 MHz at 37°C were used. The \( R_2 \) relaxation rates recorded at a proton \( B_0 \) magnetic field strength of 300 MHz were not used as input, but as cross validation data of the selected motional model (Fig. S2, Supplementary Material). The results of the model-free analysis assuming a \( ^{31}P \) CSA magnitude of 178.5 ppm are summarized in Table 2. Modelfree parameters \( S^2, S_1^2, S_2^2, \tau_c, R_{ex} \) and the selected model are given for an isotropic as well as for an axially symmetric rotational diffusion tensor.

In addition, the modelfree analysis was performed assuming \( ^{31}P \) CSA magnitudes of 168 and 188.9 ppm, respectively. The modelfree parameters are given in Table S1 (CSA = 168 ppm), and Table S2 (CSA = 188.9 ppm) of the Supplementary Material. Figure 4 shows the \( S^2 \) order parameters extracted from the modelfree analysis for different CSA values of 168, 178.5 and 188.9 ppm assuming isotropic rotational diffusion. In addition, the \( S^2 \) values for

![Fig. 3](image-url)

**Fig. 3** a \( R_1 \) relaxation decay curves for the \(^{31}P \) nuclei p6 and p7 at a proton \( B_0 \) field strength of 600 MHz and a temperature of 37°C. Peak intensities are plotted against the relaxation delay. b \( R_2 \) relaxation decay curves for the \(^{31}P \) nuclei p6 and p7 at a proton \( B_0 \) field strength of 600 MHz and a temperature of 37°C. Peak intensities are plotted against the relaxation delay c \( R_1 \) relaxation rates of the \(^{31}P \) nuclei of the cUUCGg 14mer RNA measured at different proton \( B_0 \) field strengths of 300 MHz (filled triangles), 600 MHz (filled squares) and 900 MHz (open circles) at a temperature of 37°C. d \( R_2 \) relaxation rates of the \(^{31}P \) nuclei of the cUUCGg 14mer RNA measured at a \( B_0 \) field strength of 600 MHz at a temperature of 37°C.
A CSA value of 178.5 ppm assuming axially symmetric rotational diffusion are illustrated.

A comparison of the $S^2$ parameters for the different CSA values (Fig. 4) shows that for fitting the relaxation data to the Lipari Szabo model the $S^2$ parameters and the CSA values are inversely correlated. However, a comparison of the individual $^31$P nuclei reveals that the relative trend for the $S^2$ values remains unchanged. The CSA simply scales the $S^2$ order parameters even without changing model selection, $\tau_c$, $R_{ex}$ or $S^2$. However, $^31$P nuclei described by model 2 experience minor shifts of $\tau_c$ towards longer timescales in case of smaller CSA values. It is not possible to discriminate between different CSA magnitudes by statistical methods since the final residual errors are comparable in size ($\chi^2 = 11.89$ (CSA = 188.9 ppm), $\chi^2 = 11.98$ (CSA = 178.5 ppm) and $\chi^2 = 12.42$ (CSA = 168 ppm)). However, as discussed above, our solid-state NMR data indicate that assuming a CSA value of 178.5 ppm is reasonable.

A global rotational correlation time $\tau_c$ of 1.926 ns derived from the modelfree analysis is in good agreement with hydrodynamic calculations performed with the program hydronmr 5a ($\tau_c = 1.94$ ns) using the NMR solution structure of the cUUCGg tetraloop 14mer RNA (Nozinovic et al. unpublished results).

We analyzed the effect of anisotropic rotational diffusion on the results of the modelfree analysis. Comparison of the isotropic versus the axially symmetric diffusion model (Table 2; Fig. 4) clearly shows that there are only small differences in the final result of the modelfree analysis for the 14mer RNA with an asymmetry of the rotational diffusion tensor of $\sim 1.2$. Residual overall errors are comparable with $\chi^2 = 11.98$ (CSA = 178.5 ppm) for the isotropic and $\chi^2 = 12.54$ (CSA = 178.5 ppm) for the

<table>
<thead>
<tr>
<th>Model</th>
<th>$S^2_i$</th>
<th>$S^2_f$</th>
<th>$\tau_c$ (ps)</th>
<th>$R_{ex}(s^{-1})$</th>
<th>Rotational diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso 4</td>
<td>0.695 ± 0.022</td>
<td>0.928 ± 0.041</td>
<td>1.300 ± 1.167</td>
<td>4.95 ± 1.46</td>
<td>Aniso 4</td>
</tr>
<tr>
<td>Iso 5</td>
<td>0.778 ± 0.036</td>
<td>0.839 ± 0.011</td>
<td>26.2 ± 8.7</td>
<td>34.4 ± 12.2</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Iso 5</td>
<td>0.795 ± 0.009</td>
<td>0.807 ± 0.012</td>
<td>786 ± 553</td>
<td>25.4 ± 8.7</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Iso 5</td>
<td>0.796 ± 0.009</td>
<td>0.806 ± 0.012</td>
<td>840 ± 563</td>
<td>23.1 ± 11.1</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Iso 3</td>
<td>0.847 ± 0.011</td>
<td>0.824 ± 0.022</td>
<td>23.6 ± 11.0</td>
<td>24.2 ± 4.8</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Iso 2</td>
<td>0.691 ± 0.009</td>
<td>0.808 ± 0.011</td>
<td>22.5 ± 5.1</td>
<td>0.42 ± 0.24</td>
<td>Aniso 4</td>
</tr>
<tr>
<td>Iso 5</td>
<td>0.682 ± 0.011</td>
<td>0.780 ± 0.103</td>
<td>2,915 ± 1,522</td>
<td>2,872 ± 1,552</td>
<td>Aniso 5</td>
</tr>
<tr>
<td>Iso 3</td>
<td>0.733 ± 0.007</td>
<td>0.790 ± 0.102</td>
<td>23.1 ± 11.1</td>
<td>45.9 ± 14.6</td>
<td>Aniso 1</td>
</tr>
<tr>
<td>Iso 1</td>
<td>0.741 ± 0.006</td>
<td>0.780 ± 0.009</td>
<td>2,915 ± 1,522</td>
<td>2,872 ± 1,552</td>
<td>Aniso 5</td>
</tr>
<tr>
<td>Iso 2</td>
<td>0.663 ± 0.014</td>
<td>0.780 ± 0.009</td>
<td>29.8 ± 7.7</td>
<td>30.0 ± 15.3</td>
<td>Aniso 4</td>
</tr>
<tr>
<td>Iso 2</td>
<td>0.654 ± 0.015</td>
<td>0.792 ± 0.009</td>
<td>22.7 ± 8.0</td>
<td>45.9 ± 14.6</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Iso 1</td>
<td>0.855 ± 0.009</td>
<td>0.850 ± 0.010</td>
<td>29.8 ± 7.7</td>
<td>45.9 ± 14.6</td>
<td>Aniso 1</td>
</tr>
<tr>
<td>Iso 2</td>
<td>0.850 ± 0.009</td>
<td>0.849 ± 0.009</td>
<td>29.8 ± 7.7</td>
<td>45.9 ± 14.6</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Aniso</td>
<td>0.733 ± 0.007</td>
<td>0.790 ± 0.102</td>
<td>23.1 ± 11.1</td>
<td>45.9 ± 14.6</td>
<td>Aniso 1</td>
</tr>
<tr>
<td>Aniso</td>
<td>0.741 ± 0.006</td>
<td>0.780 ± 0.009</td>
<td>2,915 ± 1,522</td>
<td>2,872 ± 1,552</td>
<td>Aniso 5</td>
</tr>
<tr>
<td>Aniso</td>
<td>0.691 ± 0.009</td>
<td>0.790 ± 0.009</td>
<td>2,915 ± 1,522</td>
<td>2,872 ± 1,552</td>
<td>Aniso 5</td>
</tr>
<tr>
<td>Aniso</td>
<td>0.663 ± 0.014</td>
<td>0.792 ± 0.009</td>
<td>22.7 ± 8.0</td>
<td>45.9 ± 14.6</td>
<td>Aniso 2</td>
</tr>
<tr>
<td>Aniso</td>
<td>0.654 ± 0.015</td>
<td>0.808 ± 0.010</td>
<td>22.7 ± 8.0</td>
<td>45.9 ± 14.6</td>
<td>Aniso 2</td>
</tr>
</tbody>
</table>

The CSA values were set to 178.5 ppm. The analysis was performed with the assumption of either an isotropic or an axially symmetric rotational diffusion tensor, respectively.
anisotropic model. Only p3 exhibits a larger deviation which can be explained by a different model selection for the anisotropic fit.

\( S^2 \) values obtained by the model-free analysis with a CSA of 178.5 ppm lie between 0.66 and 0.86. \(^{31}\)P nuclei p2, p7, p8, p9, p10 exhibit lower \( S^2 \)-values than the average. The phosphate p2 is located next to the closing base pair of the hairpin stem while p7, p8, p9, p10 are located in the hairpin loop of the 14mer RNA presumably explaining why phosphodiester backbone flexibility seems to be more pronounced in these regions of the 14mer RNA molecule. Highest \( S^2 \) values are obtained for p6 (\( S^2 = 0.847 \)) and p11 (\( S^2 = 0.855 \)). While p11 is located within the A-helix of the RNA hairpin next to the stable GC base pair, p6 is located within the cUUCGg tetraloop. The dynamics of the phosphodiester backbone appear to be significantly influenced by the dynamics of the \( S' \) neighboring nucleotide and not by the \( 3' \) neighboring nucleotide. This observation would also explain why p2 (\( S^2 = 0.695 \)) has a significantly lower \( S^2 \) than p14 (\( S^2 = 0.779 \)). Furthermore, the flexibility of a certain base pair seems to influence the flexibility of the \( 3' \) adjacent phosphodiester groups (Fig. 4).

Most of the phosphodiesters exhibit a fast motional component on a timescale between \( \tau_c = 22 \) ps and \( \tau_c = 111 \) ps. Only phosphates p9 and p13 show flexibility that is faster than 20 ps. The sum of angular fluctuations of the phosphodiester angles \( \alpha, \beta, \gamma, \epsilon \) and \( \zeta \) within one conformation are thought to be the reason for this fast time scale motion. In addition, p3 and p5 show motion on a slower time scale. This motion has small amplitude and a \( \tau_c \) around 1 ns. In contrast, p8 exhibits high amplitude motion on an even slower timescale. Conformational transitions between the two most stable sugar pucker conformations \( C2'\)-endo and \( C3'\)-endo is on a time scale around 1 ns while changes in phosphodiester backbone conformation for the angles \( \alpha, \beta, \gamma, \epsilon \) and \( \zeta \) are either not observed at all or on a time scale of tens of nanoseconds as reported for MD simulations performed on ApA, ApC, CpA and CpC dinucleoside monophosphates (Vokacova et al. 2009). From this MD study, Vokacova et al. could show that transitions between different phosphodiester backbone conformations occur as concerted flips of the backbone angles. This strong mutual correlation might explain why these transitions are comparably slow. Nevertheless, angular fluctuations within one backbone conformation were observed for all backbone angles with amplitudes of 30°–40°. These fluctuations may explain the fast time scale motion obtained from the modelfree analysis of the phosphate groups in our study of the cUUCGg tetraloop 14mer RNA. The small amplitude motion reported for the nucleotides C3 and C5 might be due to conformational dynamics in the sugar pucker conformation of one of the adjacent sugars. A change in sugar conformation would only cause a small angular rearrangement of the phosphate group and such a conformational change is known to occur on the same timescale. Phosphate p8 experiences motions on a slower time scale and of larger amplitude than p3 and p5. p8 is the most exposed

![Fig. 4](#) 

\( S^2 \) order parameters for the \(^{31}\)P nuclei in the cUUCGg tetraloop 14mer RNA determined at a temperature of 37°C. \( S^2 \) parameters are depicted for different CSA values of 168 ppm (blue), 178.5 ppm (black) and 189 ppm (red). For a CSA value of 178.5 ppm, the effect of isotropic (black) versus anisotropic (green) rotational diffusion is illustrated. \( S^2 \) parameters of \(^{31}\)P nuclei located on the \( 3' \) side with respect to base pairs are connected by dotted lines.
phosphate within the cUUCGg tetraloop 14mer RNA and is supposed to be the most flexible one. It might be that this phosphodiester group is an exception to the rule and conformational backbone rearrangement for p8 is on a timescale of low ns regime.

Phosphate p2 experiences a significant chemical exchange contribution of $R_{ex} = 5.0 \pm 1.5$. This phosphate is located $3'$ of G1 which participates in the closing base pair of the 14mer hairpin RNA. Indeed, it has been reported earlier that $31^P$ nuclei experiencing chemical exchange on the millisecond timescale can be correlated to base pair lifetimes in duplex DNA (Catoire 2004). Imino-1D spectra recorded on an H2O sample of the cUUCGg tetraloop 14mer RNA at different temperatures show significant line broadening, suggesting destabilization of the G1–C14 base pair at $T = 37^{}C$ (Nozinovic et al. unpublished results).

**Conclusion**

We have measured $31^P$ relaxation rates and analyzed these rates following the Lipari-Szabo formalism for a 14mer cUUCGg tetraloop RNA. The cUUCGg tetraloop represents the most stable tetraloop motif and its dynamic properties have previously been investigated (Duchardt and Schwalbe 2005; Shajani and Varani 2005; Vallurupalli and Kay 2005; Ferner et al. 2008) for the base and the sugar moieties. This model hairpin therefore represents an ideal model system to measure $31^P$ relaxation properties for each phosphate along the phosphodiester backbone for the first time. Such site resolution could be achieved due to favorable dispersion in the $31^P$ chemical shifts of the cUUCGg tetraloop. For larger RNA molecules, measurement of $31^P$ relaxation properties with site resolution, however, becomes feasible, when selective deuteration schemes such as $H1',D2',D3',D4',D5',D5''$-labeled nucleotides are used and if $P-C-H$ coherence transfer schemes are applied to resolve individual $31^P$ resonances in the $H1'-C1'$ two-dimensional plane of such experiments.

As previously predicted (Magusin and Hemminga 1994), $31^P$ relaxation is influenced by $H-P$ dipolar contributions in protonated RNAs. In order to eliminate this distance-dependent effect, we performed our $R_1$ and $R_2$ relaxation analysis using a perdeuterated sample of the tetraloop RNA. For the interpretation of the relaxation rates in the context of the modelfree formalism, it is essential to know size and, in case of anisotropic rotational diffusion, also the orientation of the $31^P$ CSA tensor. In order to address the first part, we performed solid-state NMR experiments and showed that there is a pronounced dependence of the CSA on hydration. This effect can be explained by dynamics on the ns to $\mu$s timescale and is in agreement with previous $31^P$ solid-state NMR studies performed on TMV (tobacco mosaic virus) and M13 virus samples (Hemminga et al. 1987; Magusin and Hemminga 1993, 1994). Furthermore, we discovered changes in the CSA upon addition of 1 M KCl for RNA samples in the freeze-dried state. Based on our analysis, we propose a value of 178.5 ppm for the $31^P$ CSA in the static case.

On the basis of this CSA, we observed that, with exception of the flexible nucleobase U7, the phosphodiester backbone is more flexible than the ribose ($C1'-H1'$) and the nucleobase ($C8-H8, C6-H6$) moieties (Duchardt and Schwalbe 2005; Ferner et al. 2008). Furthermore, the dynamics of the phosphodiester backbone appear to be significantly influenced by the dynamics of the $5'$ neighboring nucleotide (Fig. 4). Order parameters derived from MD simulations have proven to be consistent with NMR derived order parameters of the CH bond vectors in the ribose and the nucleobase moieties. It will be the subject of future investigations to see whether MD simulations are also able to reproduce the results obtained by means of NMR spectroscopy concerning the dynamics of the phosphodiester backbone. Such investigation will be helpful to understand the dynamic properties of RNA molecules, especially for the dynamic hinge defined by rotation around the $\zeta, \alpha$ torsions of RNA.

**Acknowledgments** The work has been supported by the state of Hesse (Center for Biomolecular Magnetic Resonance, BMRZ) and the DFG (Sonderforschungsbereich 579: RNA-ligand-interactions). H.S. and C.G. are members of the DFG Cluster of Excellence: Macromolecular Complexes (EXC 115).

**References**


Duchardt K, Schwalbe H (2005) Relaxation analysis using a perdeuterated sample of the cUUCGg tetraloop. J Biomol NMR 31:143–155


Schwalbe H (2005) Relaxation analysis using a perdeuterated sample of the cUUCGg tetraloop. J Biomol NMR 31:143–155

Shajani H, Varani G (2005) Relaxation analysis using a perdeuterated sample of the cUUCGg tetraloop. J Biomol NMR 31:143–155


Lane AN, Jenkins TC, Brown T, Neidle S (1991) Interaction of berenil with the EcoRI dodecamer d(CGCGAATTCGCG)2 in solution studied by NMR. Biochemistry 30:1372–1385


