
REVIEW

Polymeric approach to combat drug-resistant

methicillin-resistant Staphylococcus aureus

Shreya Kanth1, Akshatha Nagaraja1, and Yashoda Malgar Puttaiahgowda1,*

1Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Received: 14 September 2020

Accepted: 3 January 2021

Published online:

25 January 2021

� The Author(s) 2021. This

article is an open access

publication

ABSTRACT

The current global death rate has threatened humans due to increase in deadly

unknown infections caused by pathogenic microorganisms. On the contrary, the

emergence of multidrug-resistant bacteria is also increasing which is leading to

elevated lethality rate worldwide. Development of drug-resistant bacteria has

become one of the daunting global challenges due to failure in approaching to

combat against them. Methicillin-resistant Staphylococcus aureus (MRSA) is one

of those drug-resistant bacteria which has led to increase in global mortality rate

causing various lethal infections. Polymer synthesis can be one of the significant

approaches to combat MRSA by fabricating polymeric coatings to prevent the

spread of infections. This review provides last decade information in the

development of various polymers against MRSA.
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GRAPHICAL ABSTRACT

Introduction

Throughout recent years, biofilm formation and the

advent of drug resistance microbes to modern

antibiotics have been a significant problem in the area

of biomedical science [1–6]. One-quarter of deaths

occur worldwide due to microbial infections, partic-

ularly in developing countries [7–10]. As per the data

reported by US Centers for Disease Control and

Prevention, millions of people are infected with

antibiotic-resistant bacteria [11, 12]. Since 1980, the

number of hospital-acquired infections (HAIs) has

increased steadily worldwide, due to rise and spread

of multidrug-resistant (MDR) bacteria [13]. MDR is

defined as the resistance or insensitivity of microor-

ganisms to the antimicrobial drugs enforced [14].

MDR is recognized as the major cause for the emer-

gence of public health problems [15]. The microor-

ganisms which are resistant to drugs are termed as

ESKAPE pathogens [16]. These ESKAPE pathogens

comprise both gram-positive and gram-negative

species (Enterococcus faecium, Staphylococcus aureus,

Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa and Enterobacter species), and

these species are responsible for the spread of noso-

comial infections and HAIs worldwide [17, 18]. Few

most important pathogens which cause HAIs are

vancomycin-resistant Enterococcus spp. (VRE),

Clostridium difficile, A. baumannii, methicillin-resistant

S. aureus (MRSA), P. aeruginosa and Enterobacteri-

aceae strains [13, 19–22]. Pathogens such as Candida

species, viruses [influenza, hepatitis B viruses, aden-

oviruses, parainfluenza, noroviruses, rotaviruses and

severe acute respiratory syndrome (SARS)-associated

coronaviruses] also survive on medical equipments

and surfaces, to a lesser extent [23, 24].

Many studies have found that[ 60% of HAI’s

around the world is due to the attachment of differ-

ent pathogens on fracture fixation devices, medical

devices and implants and urinary catheters

[13, 25–30]. Therefore, there is a necessity to fight

against the spreading of MDR.

Among these pathogens, numerous infectious dis-

eases, namely purulent meningitis, pleuritis, pneu-

monia, tympanitis and bloodstream infections, are

caused by gram-positive methicillin-resistant S. aur-

eus (MRSA) [31, 32]. Methicillin-resistant S. aureus
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(MRSA) pathogen is a major cause for nosocomial

and community infections throughout the world [33].

It causes severe infections which exhibit notable an-

tibiotic resistance [34, 35]. Infections of the skin

caused by invasive pathogens begin when the outer

skin is affected due to skin diseases, like atopic der-

matitis and injury, such as a burn, and these invasive

skin infections are majorly caused by S. aureus which

includes MRSA [36–39]. Overall mortality rate is

leading to 10–30% due to the treatment failure of

MRSA-induced bacteraemia [31, 40]. Due to the

increased virulence of epidemic strains the restraint

of S. aureus, particularly MRSA is very difficult [36].

Transmission control is concentrated on the preven-

tion of spread of these pathogens by environment

(contaminated equipments and surfaces) and health-

care workers (contaminated hands) [41]. A relevant

amount of microbes is disrupted by disinfection

process, using chemical agents like aldehydes, qua-

ternary ammonium compounds, halogens and alco-

hols, or heat and radiation [13, 22, 42–46].

Sterilization and disinfection processes and at times

aerosols need to be used to clean air to constraint

hospital infections [22, 42]. Developing novel

antibacterial methods to counter MRSA infections is

an urgent need.

In recent years, several polymer-coated antimicro-

bial surfaces, antimicrobial surfaces and polymer-

based antimicrobial hydrogels with several proper-

ties are developed to deal with clinical threats

[1, 47–52]. Antimicrobial polymers are strong candi-

dates among such antimicrobial materials, because

they can successfully kill microbes and help to

eliminate such pathogens [31, 53]. Such antimicrobial

polymers target primarily the microbial membrane

and show less tendency to cause the development of

resistance [1]. They are used in environments at high

risk of contamination, with uses such as self-steriliz-

ing catheter tubes, medical drug coatings, surgical

devices and wound dressings [54, 55]. Thus, synthetic

polymers are commonly used as a new molecular

framework for the development of antimicrobials

that are active against drug-resistant bacteria [56–60].

This article focuses on various synthesized polymers

and polymeric coatings used against methicillin-re-

sistant S. aureus (MRSA) and their study on mecha-

nism, minimum inhibitory concentration (MIC) or

zone of inhibition (ZOI).

Polymers containing quaternary
ammonium compounds

Hydroxypropyltrimethyl ammonium chloride chi-

tosan (HACC) with various degree of substitution

(6%, 18% and 44%) of quaternary ammonium was

prepared by the reaction of chitosan with glycidyl

trimethylammonium chloride by Peng et al. in 2010.

Three bacteria responsible for orthopedic implant-

related infections, Staphylococcus epidermidis, methi-

cillin-resistant S. aureus and S. aureus, were used to

evaluate the antibacterial activity of these synthe-

sized polymers. The cationic group of the synthesized

polymers targets the bacterial cell surface which is

negatively charged. HACC (18% substitution)

showed excellent potential to inhibit bacterial growth

and biocompatibility with osteogenic cells. Biocom-

patibility and cytotoxicity were also tested for these

polymers [61–63].

A series of amphiphilic and biodegradable, broad-

spectrum antimicrobial polycarbonates were synthe-

sized by Chin et al. in 2013 by metal-free organocat-

alytic ring-opening polymerization using (MTC-

OCH2 BnCl) as monomer. The synthesized polycar-

bonates were further quaternized by post-polymer-

ization quaternization reaction with quaternary

ammonium groups of various pendant structure to

obtain cationic polymers. The antimicrobial activity

of synthesized polycarbonates was tested against P.

aeruginosa, Escherichia coli and S. aureus and clinically

isolated nosocomial microbes such as VRE, C. neo-

formans, A. baumannii and MRSA. Among the syn-

thesized polycarbonates, polymer pbutyl_20 showed

excellent antimicrobial activity and selectivity against

clinically isolated drug-resistant microbes (VRE,

MRSA and carbapenem resistant A. baumannii).

Increase in alkyl chain length and hydrophobicity of

the polymer raises its tendency to attach to the lipid

membrane which leads to membrane disruption and

results in cell death. The mechanism of action was

studied by field emission scanning electron micro-

scopy [64–67].

Biodegradable antimicrobial polycarbonates, pBu-

tyl-20 and pButyl0.5Benzyl0.5–20, containing cationic

groups were synthesized by Cheng et al. in 2015. The

polycarbonates were synthesized via organocatalytic

ring-opening polymerization of benzyl chloride-

functionalized cyclic carbonate monomer. The poly-

mers were further quaternized by N,N-dimethyl-

butylamine and N,N-dimethylbutylamine/N,N-
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dimethylbenzylamine (1:1 molar ratio) as the cationic

groups. These polymers form pores on the plasma

membrane which eventually destroys the bacterial

cell which was studied by transmission electron

microscopy. The authors concluded that the synthe-

sized polymers had a wide range of antimicrobial

activity and were used for treating multidrug resis-

tance MRSA infection [40, 64, 68, 69].

Uppu et al. in 2016 synthesized cationic amphi-

philic polymers by polymerization of poly-(iso-

butylene-alt-maleic anhydride) with

3-aminopropyldimethylamine followed by quater-

nization of the tertiary nitrogen of polymerization

product, poly(isobutylene-alt-N-(N0,N0-dimethy-

laminopropylmaleimide). The cyclized hydrophobic

side chains attached to the cationic part far from the

macromolecule are responsible for the death of bac-

teria. The obtained polymers showed good antimi-

crobial activity against S. aureus, MRSA, E. coli and

vancomycin resistant E. faecium [70–73].

Li et al. in 2016 synthesized a novel antimicrobial

polymer, poly(N,N-dimethylaminoethylmethacry-

late)-block-poly(L-lacticacid)-block-poly(N,N-

dimethylaminoethylmethacrylate) conjugated with

poly(ethylene glycol) (D-PLLA-D@PEG) triblock

copolymers by the combination of atom transfer

radical polymerization. These polymers were further

quaternized with two different chemical composi-

tions (D-PLLA-D@Q 1: 12.3%; D-PLLA-D@Q 2:

26.2%). The amphiphilic and cationic groups are

present in the polymer targets and rupture the bac-

terial membrane through electrostatic interaction and

infuse into the membrane lipid domains and decrease

the resistance of bacteria. All these polymers exhib-

ited good antimicrobial activity against methicillin-

resistant S. aureus. The authors concluded this could

be used for coating hospital surfaces, gowns and

prevents MDR bacteria [74–77].

Based on cationic polyaspartamide derivatives,

four kinds of novel biodegradable antibacterial

polymer with various lengths of side chains were

synthesized by using b-benzyl-L-aspartate N-carboxy

anhydride through ring-opening polymerization by

Yan et al. in 2019. The synthesized Q-PAsp (BDA)

catiomers showed a wide range of antibacterial

activity against gram-negative and gram-positive

bacteria. To enhance the biocompatibility of polyca-

tions, carboxylatopillar[5]arene (CP[5]A) was intro-

duced to polymeric catiomers. The synthesized

polymers attach to the surface of bacteria through

electrostatic interaction (between polymer and nega-

tively charged cell membrane) and disturb the nor-

mal functioning of bacteria leading to structural

destabilization resulting in bacterial cell death. The

mechanism was studied by scanning electron micro-

scopy and confocal laser scanning microscopy. The

authors concluded Q@CP[5]A exhibited excellent

activity against in vivo MRSA and hence could be

used for wound healing and inhibit antibiotic-resis-

tant pathogenic bacterium [78–81] (Table 1).

Surface-coated polymers containing
quaternary ammonium compounds

The importance of coating organo-Si quaternary

ammonium chloride (QAC) polymer, a JUC spray on

surfaces of medical devices to reduce MRSA con-

tamination in hospital environments, was studied by

Yuen et al. in 2015. The bactericidal property is

exhibited due to the electrostatic force between the

positively charged coated surface and negatively

charged cell membrane. The authors demonstrate the

antimicrobial coating of QAC polymer in addition to

hypochlorite wiping on bed units and high-touch

surfaces could significantly reduce the contamination

rate in hospital wards [82–85] (Table 2).

Polymers without quaternary ammonium
compounds

For hospital infection control, permanent sterile-sur-

face materials were developed by Zhou et al. in 2011.

Four guanidine hydrochloride polymers (polyoc-

tamethylene guanidine hydrochloride (POMG)

(polymer C8), polyhexamethylene guanidine

hydrochloride (PHMG) (polymer C6), polybu-

tamethylene guanidine hydrochloride (polymer C4)

and poly(m-xylylene methylene guanidine

hydrochloride) (polymer C8(benzene))) were synthe-

sized, and their antimicrobial activity was evaluated

against meticillin-resistant S. aureus, multidrug-re-

sistant P. aeruginosa, coagulase-negative staphylo-

cocci, ceftazidime-resistant Citrobacter spp. and

Enterobacter spp., vancomycin-resistant E. faecium.

PHMG and POMG showed immense and tremen-

dous antimicrobial activity against antibiotic-resis-

tant bacteria which causes nosocomial infections. The

probable mechanism is that the antimicrobial activity
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Table 1 List of polymers containing quaternary ammonium compounds synthesized by various authors against MRSA and other

pathogenic microorganisms

Year Author Polymer Antimicrobial

activity

MIC or ZOI References

2010 Peng

et al.

MRSA

S. aureus

S. epidermidis

2.5 mg/mL [61]

2013 Chin

et al.

MRSA

A. baumannii

C. neoformans

VRE

P. aeruginosa

E. coli

S. aureus

0.0039–0.0625 mg/

mL

[64]

2015 Cheng

et al.

MRSA 4–16 mg/L

2–8 mg/L

[40]
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is due to the physicochemical interaction between the

bacterial envelop and polymer molecule. The posi-

tively charged hydrophobic polymer interacts with

the negatively charged phospholipids which dam-

ages the cytoplasmic membrane resulting in cell lysis

[86–88].

Thoma et al. in 2014 synthesized ammonium ethyl

methacrylate homopolymers (AEMPs) with primary

ammonium groups in the side chain with various

molecular weights (P7.7, P10, P12) by RAFT polymer-

ization. E. coli, P. aeruginosa, S. saprohyticus, A. bau-

mannii, S. aureus, Bacillus subtilis, Enterococcus faecalis

Table 1 continued

Year Author Polymer Antimicrobial

activity

MIC or ZOI References

2016 Uppu

et al.

MRSA

S. aureus

E. coli

VREF

0.008–0.25 mg/mL [70]

2016 Li et al. MRSA 0.014–0.52 mg/mL [74]

2019 Yan

et al.

MRSA 0.002–0.007 mg/

mL

[78]

Table 2 List of polymers containing quaternary ammonium compounds for coating against MRSA

Year Author Polymer Antimicrobial activity MIC or ZOI References

2015 Yuen et al. Organo-Si quaternary ammonium chloride (QAC) polymer MRSA Not available [82]
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and MRSA were used to study the antimicrobial

activity of the synthesized polymers. These polymers

showed a wide range of activity against gram-posi-

tive bacteria including MRSA, than gram-negative

bacteria. Probably, the primary ammonium groups

present in the side chains of the polymer were the

cause for disruption of bacterial cell membrane. This

article demonstrates that the synthesized polymers

could be used for treatment of topical S. aureus

infections [56, 89, 90].

For the control of hospital-acquired infections,

surface-active, photodynamic antimicrobial polymers

incorporated with photosensitizers were prepared by

McCoy et al. in 2014 and their antimicrobial activity

was tested against MRSA and E. coli. High-density

poly(ethylene) (HDPE) were incorporated with vari-

ous photosensitizers (TMPyP, TPP, TBO and MB)

using hot-melt extrusion process, which exhibits

antimicrobial activity in the presence of light. HDPE

films and HDPE films incorporated with sentisizers

were placed on one another and made into a twin

layer by platen press. The reactive oxygen species

(ROS) generated due to the irradiation of photosen-

sitizers incorporated in the polymer films reacts with

the bacterial cell components (lipids, proteins and

nucleic acids) and causes cell death. HDPE films

incorporated with TMPyP exhibited excellent

antimicrobial activity against MRSA in the presence

of light [91–93].

Labena et al. in 2016 synthesized hyperbranched

poly(amidoamine) (h-PAMAM) with various termi-

nal groups (h-PAMAM-ester, h-PAMAM-amine,

h-PAMAM-amine plus) by repeated Michael addi-

tion and amidation to enhance reliability of the syn-

thesis. The antimicrobial activity was tested against

B. subtilis, Candia albicans, S. aureus, Aspergillus niger,

P. aeruginosa, E. coli and MRSA. The electrostatic

interactions between the cell membrane and

h-PAMAM molecules cause denaturation of mem-

brane’s protein and enter into phospholipid layer,

which with raise in permeability causes membrane

destabilization followed by intracellular structure

leakage which leads to bacterial cell death. The

authors demonstrated that h-PAMAM with amine

terminations (amine and amine plus) showed broad-

spectrum antimicrobial activity against MRSA

[94–97].

A series of amphiphilic, cationic polycarbonate

polymers containing primary amino groups (single,

diblock and random) was synthesized by

Nimmagadda et al. in 2016, and their antimicrobial

activity was tested against three gram-positive bac-

terial strains vancomycin-resistant E. faecalis (VREF),

methicillin-resistant S. aureus (MRSA) and methi-

cillin-resistant S. epidermidis (MRSE). The random

polymers exhibited a wide range of antimicrobial

activity than single or diblock polymers. The random

polymer with 20 hydrophobic and 20 hydrophilic

units showed excellent activity against multidrug-

resistant bacteria (MRSA). The polymer micelle on

contact with bacterial surface breaks into small enti-

ties due to change in electrostatic interactions. Due to

the amphipathic nature of the free polymer chain, it

enters through the surface of bacteria which disrupts

the bacterial membrane and leads to cell death; the

mechanism was studied by TEM [65, 66, 98, 99].

A series of six cationic chitosan derivatives, N-(2-

hydroxypropyl)-3-trimethylammonium chitosan

chlorides (HTCC), by changing the mole ratio of

glycidyltrimethylammonium chloride (GTMAC)

were synthesized by Hoque et al. in 2016. The syn-

thesized cationic polymers on interaction with anio-

nic bacterial membrane disrupt the cell membrane

leading to cell death. The mechanism of action was

confirmed by several microscopic and spectroscopic

methods. The antifungal and antibacterial property of

the prepared HTCC polymers was evaluated against

drug-sensitive bacteria (A. baumannii, S. aureus and

E. coli) and MDR bacteria (VRE, MRSA and b-lactam-

resistant K. pneumonia). Among the synthesized series

of derivatives, two active polymers (HTCC3 and

HTCC6) showed significant activity against MRSA in

a murine model of superficial skin infection

[100–103].

In another study, Kamaruzzaman et al. in 2016

found that a cationic polymer, polyhexamethylene

biguanide (PHMB), had excellent antimicrobial

properties and could be treated against intracellular

MRSA (EMRSA-15 and USA 300). PHMB co-localizes

with intracellular MRSA in keratinocytes, indicating

that killing occurs by direct interactions inside host

cells. The authors conclude that PHMB has potential

to treat skin infections caused by intracellular MRSA

and other intracellular bacteria [36, 104–106].

Hong et al. in 2017 synthesized cationic amphi-

philic random methacrylate copolymer (PE31) with

pH-responsive activity by RAFT polymerization. The

mechanism explained is electrostatic interaction

occurs between the positively charged polymer and

negatively charged cell wall. On interaction, the
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hydrophobic side chains of a polymer enter into

hydrophobic portion of bacterial lipid membrane,

which causes disruption of membrane leading to

bacterial cell death. The authors concluded that the

polymer showed high antimicrobial activity against

vancomycin-intermediate S. aureus and methicillin-

resistant S. aureus at neutral pH [107–110].

Biocompatible, inexpensive, water-soluble macro-

molecular antimicrobial polyionenes were developed

by Liu et al. in 2017 for the treatment of hospital-

acquired and MDR infections. Catalytic-free,

polyaddition polymerization process was used for

the synthesis of series of antimicrobial polyionenes.

Hydrophilic and hydrophobic groups were dis-

tributed alternatively in the polymer chain, among

which hydrophobic components were in contact with

negatively charged cell wall. The hydrophobic com-

ponents target the lipid bilayer causing cytoplasmic

membrane disruption and resulting in cell lysis. The

antimicrobial activity of synthesized polymers was

examined against MRSA, S. aureus, K. pneumonia, A.

bacumanii, C. neoformans, E. coli and C. albicans

[59, 111, 112].

An antimicrobial polymer which showed activity

against S. aureus, MRSA, MSSA and other HAIs was

synthesized by Mercer et al. in 2017. The authors

prepared NP 108, a cationic, poly-lysine polymer

made up of amino acid building blocks which was

water-soluble and had a wide range of antimicrobial

activity. The macromolecule shows membrane-acting

bactericidal activity due to net positive charge pre-

sent on the polylysine, which causes disruption of

cell membrane resulting in cell death. These poly-

mers were used for nasal delcolonization of S. aureus

and prevention of HAI [53, 113, 114].

To eradicate multidrug-resistant (MDR) bacterial

infections, Chin et al. in 2018 synthesized a

biodegradable macromolecule, guanidinium-func-

tionalized polycarbonates. The synthesized polymers

(pEt_10 and pEt_20) showed broad-spectrum

antimicrobial activity against MDR P. aeruginosa,

E. coli, A. baumannii, MRSA and K. pneumonia. This

polymer also exhibits electrostatic interaction

between the polymer and cell wall, and targets

cytoplasmic membrane resulting in releasing of cell

constituents which leads to cell death. These poly-

mers were less toxic and had great potential for the

treatment and prevention of MDR systemic infections

[115–118].

Poly(para-phenylene ethynylene) (PPE)-and poly(-

para-phenylene vinylene) (PPV)-poly[(2-(methacry-

loyloxy)ethyl)trimethylammonium chloride]

(PMETAC) graft copolymers of low and high

molecular weights were synthesized by Damavandi

et al. in 2018. The cationic side chains present in the

conjugated polymers interact with the negatively

charged surface of bacterial cell and exhibit antimi-

crobial activity. The antimicrobial activities of syn-

thesized polymers were tested against MRSA, E. coli,

E. faecium and A. baumannii. The authors found that

the low molecular weight PPE-g-PMETAC copoly-

mer showed significant antimicrobial activity

[119–121].

In 2019, Hong et al., studied about novel antimi-

crobial polyionene, poly(N,N0-(ethane-1,2-diyl)bis(4-

(chloromethyl)benzamide)-co-tetramethyl-1,3-di-

aminopropane), synthesized by Lou et al. in 2018 for

the treatment of MRSA-induced bloodstream infec-

tion. Antimicrobial polymers form pores on plasma

which leads to leakage of cytoplasmic components

resulting in cell death. The authors demonstrated that

the polymer possessed strong antimicrobial activity

against MRSA. Due to negligible toxicity and poten-

tial therapeutic effect, the polymer could be used to

treat MRSA caused, especially blood stream infec-

tions [31, 122, 123].

Electrospun fiber mats were synthesized by Boncu

et al. in 2019 for the treatment methicillin-resistant S.

aureus (MRSA) associated with bone infections and

soft tissues. Biodegradable polymers, poly(lactic-co-

glycolic) acid (PLGA) and polycaprolactone (PCL)

loaded with linezolid, were used for preparing elec-

trospun fiber mats. The antibacterial activity of syn-

thesized fiber mats was examined against isolated

bacteria (MRSA) which causes prosthetic infections.

The fibers were non-toxic, biocompatible,

biodegradable and had long-term activity [124–126].

Kuroki et al. in 2019 synthesized series of ammo-

nium and guanidinium polymers of various sequen-

ces (statistical, diblock and tetrablock) by RAFT

polymerization. The synthesized polymers were tes-

ted for antimicrobial activity against MDR methi-

cillin-sensitive strains (MSSA) and methicillin-

resistant S. aureus (MRSA). The authors concluded

that diblock guanidinium (GD30) polymer had major

impact for the treatment of intracellular, MDR bac-

teria (MSSA and MRSA). Here bacterial DNA bind-

ing and pore formation both would have occurred,

leading to death of bacteria [127–130].
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For the treatment of MRSA a new method,

Antibacterial Photodynamic Therapy (APDT) was

used by Guo et al. in 2020, to deliver photosensitizers.

In this article self-assembled, lipase sensitive micelle

was developed to deliver hydrophobic hypocrellin A

(HA). Polymeric micelle made up of methoxy poly(-

ethylene glycol)-block-poly(e-caprolactone) (mPEG-

PCL/HA), an amphiphilic copolymer, was used to

encapsulate HA. The polymeric micelles could

release HA in the presence of lipase, on irradiation of

light or in appropriate wavelength range and this

improved the APDT activity. These mPEG-PCL/HA

micelles showed high activity against MRSA and

could be used to combat MRSA infections [131–134].

Christofferson et al. in 2020 synthesized diblock

and triblock oligomers by photo-induced atom

transfer radical polymerization and studied their

antimicrobial activity against gram-positive bacteria

namely S. aureus and MRSA. In this article, it has

been reported that the triblock oligomers showed

excellent antibacterial activity * 99% and 98%

against S. aureus and MRSA compared to the diblock

oligomers, because the oligomer systems had con-

formational differences. The interaction between

peptidoglycan functional group leads to the disrup-

tion of peptidoglycan layers [135, 136] (Table 3).

Surface-coated polymers
without quaternary ammonium
compounds

Antifouling surface coatings were developed with

antimicrobial properties on silicon rubber to fight

against intravascular catheter-associated infections

(CAIs) using diblock copolymers which was synthe-

sized by Ding et al. in 2012. (PEG-b-cationic poly-

carbonates) were synthesized by metal-free

organocatalytic ring-opening copolymerization of

poly(ethylene glycol) (PEG) and cationic polycar-

bonate. Polymers coatings were developed using

reactive polydopamine (PDA) to increase antimicro-

bial properties of substrate surface. These properties

of the polymeric coatings were systematically inves-

tigated against methicillin-resistant S. aureus and

methicillin-susceptible S. aureus, which are the major

causes of intravascular catheter-associated infections.

The tests were carried out for various polymers

compositions. The hydrophobic monomer unit pre-

sent in the polymer may interact with the bacterial

cell membrane by incorporating into the lipid domain

and resulting in cell death [137–140].

The efficacy of biodegradable poly-D,L-(lactide)

(PDLLA) polymer solution loaded with linezolid

antibiotic and coated on orthopedic Kirschner wires

(K-wires) by dip coating technique to prevent the

adhesion of MRSA was studied by Kaur et al. in 2014.

The adherence of MRSA was evaluated on naked

wires, PDLLA wires, K1, K2 and K3 wires (PDLLA

impregnated with three different concentrations of

linezolid (2.5%, 5% and 10%)). The authors concluded

that K2 and K3 wires decreased bacterial adhesion by

60% when compared to K1 (which decreased by

40%), PDLLA and naked wires. The reduction in the

bacterial attachment on wires was correlated with the

amount of drug released from the wires [141–144].

Dinjaski et al. in 2014 studied the antimicrobial

properties of poly-3-hydroxy-acetyllthioalkanoate-co-

3-hydroxyalkanoate (PHACOS) containing thioester

groups in the side chains by comparing it with non-

reactive poly(3-hydroxyoctanoate-co-hydroxyhex-

anoate) (PHO) and poly(ethylene terephthalate)

(PET). PET disks were coated with PHACOS and

PHO by solvent casting, and uncoated PET disks

were used as control for examining the antimicrobial

activity and bacterial adhesion of S. aureus subsp.

aureus, Streptococcus pyogenes, Mycobacterium smegma-

tis, B. subtilis subsp. subtilis, E. coli, S. epidermidis,

MRSA, P. aeruginosa and Streptococcus dysgalactiae

subsp. equisimilis. The bacterial activity of S. aureus on

PHO was more compared to that of PHACOS, which

demonstrates that PHACOS possesses anti-staphylo-

coccal activity. In addition to this, PHACOS effec-

tively inhibits the growth of MRSA. This activity is

exhibited by functionalized side chains which pos-

sess thioester groups. This article concludes that

PHACOS acts as contact active surface which

decreases the adhesion of S. aureus and MRSA, and

hence can be used in biomedical implants as an

infection-resistant material [110, 145–147].

Polyastaxanthin (p (ATX)) coatings were devel-

oped by Weintraub et al. in 2018, and their antimi-

crobial activity was examined against S. aureus

(MRSA and MSSA) and S. epedermidis by coating

them on polyurethane catheters. Since the polymeric

coating material was biodegradable and had excel-

lent antimicrobial properties, authors concluded that

the coatings could be used as antimicrobial coating

for medical devices [148–150] (Table 4).
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The antimicrobial activity exhibited by the poly-

mers depends on the molecular weight

[56, 64, 100, 119, 135], alkyl chain length

[64, 70, 86, 115] and terminal functional group [94] of

the polymers. The synthesized polymers had various

advantages such as biocompatibility and low toxicity

and thus were used for several applications such as

in biomedical implants, disinfectants for hospital

infection control, in orthopedic operations, treatment

of nasal colonization infections, skin infections and

bloodstream infections. Few polymers were used for

coating kirschner wires, polyurethane tubes, etc., to

prevent the spread of bacteria. Certain polymers had

resistant ability only toward few pathogens, and they

had MIC values slightly higher compared to their

corresponding standards due to which the applica-

tion was limited in biomedical field.

Conclusion

Drug-resistant MRSA which causes numerous deadly

infectious diseases, namely tympanitis, pneumonia,

purulent meningitis pleuritis and bloodstream infec-

tion, can be reduced by the approach toward

polymeric synthesis. This article reports the polymers

synthesized by various research groups to treat

MRSA since last decade. Polymers with various

beneficial properties like biocompatibility, stability

(thermal and mechanical) and antimicrobial activity

were synthesized, and their ability to prevent MRSA

has been described. This article also discusses the

authors who showed interest in loading antibiotics to

polymeric backbones to fight against MRSA. On the

whole, the mechanisms explained for various poly-

mers are in two ways (i) electrostatic interaction

between polymers and cell wall and (ii) polymers

targeting cytoplasmic membrane. Future research in

the field of combating MRSA can be focused on

polymer surface coatings to restrain the spread of

MRSA and other multidrug-resistant bacteria.
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Table 4 List of polymers synthesized with various functional groups for coating against MRSA and other pathogenic microorganisms

Year Author Polymer Antimicrobial activity MIC or ZOI References

2012 Ding et al. MRSA

MSSA

1.88 mm [137]

2014 Kaur et al. Poly-D,L-(lactide) (PDLLA) polymer MRSA 0.002–0.004 mg/

mL

[141]

2014 Dinjaski

et al.

MRSA

S. aureus subsp. Aureus

S. pyogenes

M. smegmatis

B. subtilis subsp. Subtilis

E. coli

S. epidermidis

P. aeruginosa

S. dysgalactiae subsp.

equisimilis

Not Available [145]

2018 Weintraub

et al.

MRSA

MSSA

S. epidermis

Not available [148]
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