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Abstract
Truth diagrams (TDs) are introduced as a novel graphical representation for prop-
ositional logic (PL). To demonstrate their epistemic efficacy a set of 28 concepts 
are proposed that any comprehensive representation for PL should encompass. TDs 
address all the criteria whereas seven other existing representations for PL only pro-
vide partial coverage. These existing representations are: the linear formula notation, 
truth tables, a PL specific interpretation of Venn Diagrams, Frege’s conceptual nota-
tion, diagrams from Wittgenstein’s Tractatus, Pierce’s alpha graphs and Gardner’s 
shuttle diagrams. The comparison of the representations succeeds in distinguishing 
ideas that are fundamental to PL from features of common PL representations that 
are somewhat arbitrary.

Keywords  Diagrams · Notations · Propositional logic · Sentential calculus · 
Truth diagrams · Formula notation · Truth-tables · Frege conceptual notation · 
Wittgenstein Tractatus · Venn diagrams · Gardner shuttle networks · Pierce 
existential graphs

1  Introduction

Truth Diagrams have been designed as a new representational system for proposi-
tional logic (PL) (sentential calculus). Representations for PL already exist, includ-
ing the linear formula notation and truth tables, which are commonly used for rea-
soning and taught to most students of logic. Historically, several visual notations 
for propositional logic have also been proposed (some are examined below), so why 
develop a new representation?

The study of the nature of representational systems has advanced substantially 
over the last three decades (e.g., Glasgow et  al. 1995; Hegarty 2011; Shimojima 
2015). Alternative representations for a domain can substantially determine what 
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information is accessible, how easily inferences can be made and even what things 
can be discovered (Zhang 1997). Poor representations dramatically increase the 
effort to solve problems (e.g., Cheng 2004), potentially by more than an order of 
magnitude (Kotovsky et  al. 1985). The representation used by a learner not only 
affects how learning happens and how easily it occurs, but the representation can 
substantially determine what concepts are acquired and the problem solving meth-
ods that are mastered (Cheng 2002, 2011). Recommendations and guidelines for the 
design of effective representations abound (e.g., Hegarty 2011). Thus, a more prin-
cipled and systematic approach to the design of a representation for PL is now more 
feasible than it was in the past. TDs are the outcome of such an effort.

In the field of logic, the potential value of diagrammatic representations is well 
recognised. For set theory and syllogisms, Euler and Venn diagrams are well-known 
spatial representations (Euler 1768; Venn 1880/1971). New graphical notations have 
even recently been invented for syllogisms, such as Englebretsen’s (1992) linear 
diagrams and Cheng’s (2014) Category Pattern Diagrams, and for sets, such as Set 
Space Diagrams (Gottfried 2014), which were derived from Cheng’s (2011) Prob-
ability Space Diagrams. Historically, diagrammatic representations were considered 
only to be of heuristic value, but the landmark work of Shin (1995) showed that 
inference with diagrams can be as rigorous as with sentential notations. Since her 
work other formal diagrammatic logic representations have been developed (e.g., 
Howse et al. 2005), but opportunities remain for an improved representation for PL.

As the formula notation currently dominates reasoning and learning about PL, 
attempts have been made to supplement this sentential notation with alternative rep-
resentations. For example, Hodges (2001) introduced a tableau method to promote 
the use of proof trees and Tarski’s World by Barker-Plummer et al. (2008) is a com-
puter simulated blocks world that concretely instantiates formulas.

So TDs aim to provide a more effective representation for PL. The effectiveness 
of a representation may, in general, be evaluated in at least three ways. The first 
is epistemic: how completely does a representation encode the full range of con-
cepts associated with the target domain? The second is cognitive and psychological: 
how well does the representation support the mental access to and the processing 
of information about the domain? The third is pedagogic: to what extend does a 
representation support learning? We focus on the first, because it is foundational: 
representations that do not allow one to express the full range of concepts that are 
important to a domain will obviously hinder our thinking and learning about the 
whole domain. The knowledge that a representation should be able to express, in 
itself, without recourse to other representations, should extend from the primitive 
elementary concepts to overarching explanations about the fundamental nature of 
the domain, and all the levels between, such as the laws and principles, key catego-
ries of objects, examples of typical and extreme cases, and accounts of how they 
interrelate.

So, the next (second) section lists the full range of ideas that comprises a 
good knowledge of PL, conceptual scope criteria, against which the coverage 
of PL representations may be judged. The third section examines seven exist-
ing representations for PL and shows that their coverage is limited in terms of 
the conceptual scope criteria. Truth Diagrams are introduced in section four and 
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descriptions of the components of the system shows that it satisfies the full range 
of conceptual scope criteria. The final discussion section considers implications 
for our general understanding of the nature of PL made possible through the com-
parison of the representations.

2 � Conceptual Scope Criteria

What range of ideas should one possess in order to have a good knowledge of PL? 
Twenty eight concepts are identified, which are loosely organized into nine the-
matic groups, and presented in order of increasing sophistication (with examples 
using the conventional formula notation).

CS1. Basic elements of PL:

CS1.1. Truth values: true, T, and false, F.
CS1.2. Variables that stand for propositions; typically represented by letters 
(e.g., P, Q).
CS1.3. Assignment of truth values to propositional variables (e.g., P = T, 
Q = F).

CS2. Relations among variables:

CS2.1. Expressions of relations among variables (e.g., (P & Q, Q ⇒ R)).
CS2.2. Syntactic rules for generating well-formed expressions, which may 
include legal but odd examples (e.g., ¬(¬(¬(P))), (P & P) & (P & P)).
CS2.3. Expressions of relations between relations, such as their equivalence 
or not (e.g., P ⇒ Q = ¬P v Q).

CS3. Operators:

CS3.1. Operators as procedures to construct relations among variables (con-
nectives; e.g., ¬, &, v, ⇒).
CS3.2. Arity of operators (e.g., unary, binary, ternary).
CS3.3. Nature of operators (e.g., commutative, associative).
CS3.4. The set of operators chosen for a PL system (e.g., (¬, ⇒) versus (¬, 
&, v, ⇒ ⇔)).

CS4. Cases:

CS4.1. A case (interpretation, model) — a particular combination of truth 
values assigned to each variable in an expression (e.g., given P & Q; P = T, 
Q = F; or one truth table row).
CS4.2. Assignment of a truth value to a case or relation (e.g., P & Q = T).
CS4.3. Contrasting cases (e.g., given P & Q, compare (P = T, Q = F) versus 
(P = F, Q = T); two columns in a truth table).



124	 P. C.-H. Cheng 

1 3

CS5. Inference:

CS5.1. Inference rules (e.g., natural deduction, Peirce’s rules of Alpha 
graphs—see below).
CS5.2. Proof of the validity of an inference, including the processes to man-
age inferences and proofs (e.g., recording the discharge of assumptions).
CS5.3. Determining the validity of an inference independently of executing 
a proof (e.g., truth table test).
CS5.4. Overall status of a relation or an inference in terms of its cases (e.g., 
tautology—all cases are T; satisfiable—at least one case is T; contradiction, 
all cases are F).

CS6. Acceptability of the inference system:

CS6.1. Meta-variables, so we can conveniently consider whole formulas 
(e.g., A = P & Q, B = P v Q, A ⇒ B).
CS6.2. Soundness (i.e., all inferences from core rules are valid).
CS6.3. Completeness (i.e., all tautological formulas can be proved).

CS7. Justification of the inference rules:

CS7.1. Explanation of why the structure of core inference rules yield valid 
results (e.g., why is v-elimination more complex than &-elimination?).
CS7.2. Explanation of why other seemingly plausible rules are not valid 
(e.g., PvQ ⊢ P is not valid).
CS7.3. Explanation of why certain counter-intuitive inferences are valid 
(e.g., P, ¬P ⊢P; why can anything be inferred from a contradiction?).

CS8. Overarching concepts: this group includes general notions that underpin 
the nature of PL, some of which are often not addressed explicitly.

CS8.1. The implication operator (⇒), the conditional proof rule and valid 
inferences (⊢), are closely related. What is the nature of this relation?
CS8.2. Unary and binary operators dominate PL; why are ternary and 
greater arity operators hardly considered in typical texts (see below)?
CS8.3. At an elementary level, truth and falsehood are essentially symmet-
ric in PL, but is the emphasis of truth in treatments of PL essentially arbi-
trary or is it fundamental?
CS8.4. Valid inference is prized in logical thinking, but what is the nature of 
invalid inference and how are the two related?

CS9. Alternative representations:

CS9. How well does a representation aid the comprehension of other repre-
sentations? For example, does it provide insight into why inference rules are 
valid in other representations?

The 28 concepts show the richness of ideas that PL encompasses. The reader 
may wish to add further concepts or treat some as less important, but, as we will 
see, this list is sufficient to show the widely varying epistemic efficacies of our 
target representations.
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3 � Conceptual Scope of Existing PL Representations

Seven representations are presented in three groups: (1) the main notations for PL; 
(2) early visualizations of PL, without accompanying inference rules; (3) diagram-
matic reasoning systems for PL. The grouping, and order of representations within 
groups, is primarily for the sake of exposition. (The analysis of the systems does not 
depend on this informal classification nor are any claims made about historical prec-
edence in relation to their coverage of the conceptual scope criteria.)

3.1 � Current Notations

The linear formula notation and truth tables are the chief representations for work-
ing with and teaching PL. Here, these texts have been selected as a representative 
sample of the use of these representations: Suppes (1957), Carnap (1958) Lemmon 
(1965), Brody (1973), Hodges (2001), Barker-Plummer et al. (2008), Barwise et al. 
(2011). Claims below about the general way in which the formula notation and truth 
tables are used is in relation to this set of texts.

3.1.1 � Formula Notation

The formula notation satisfies many of the conceptual scope criteria but fairs poorly 
on the later categories. The formula notation represents truth values by capital let-
ters (conceptual criteria CS1.1), propositions are represented by italic letters (CS1.2) 
and “equations” can be used to assign truth values to variables (e.g., Lemmon 
1965). (See previous section for examples in the formula notation.) Operators are 
represented by symbols whose form are established by convention, and the shapes 
of (non)commutative operators are often (a)symmetrical, but otherwise are largely 
arbitrary (CS3.1). The operators are binary connectives (CS2.1) and are applied to 
formulas to express complex relations including odd examples (see CS2.2, above). 
Equations can be used to assign a truth values to a formula (CS4.3). Similarly, a 
truth value may be assigned to a case represented by a collection of equations in 
parentheses that assigns truth values to variables (CS6.1), so relations among cases 
can be considered by comparing such collections (CS4.3). Well-formed formulas are 
constructed by the recursive application of syntactic concatenation rules (CS2.2). 
Relations among relations may be expressed by equating formulas (CS6.3). Com-
mutativity (or its absence) can be registered by writing formulas, but the expression 
of other aspects of the nature of operators is more complex (CS3.3).

Treatments of PL typically include negation, conjunction, disjunction, implica-
tion, and bi-implication operators (CS3.4). Natural deduction inference rules are 
normally explained verbally (CS5.1). Derivations in the notation normally requires 
supplementary notations to manage the process, as in Fig.  1. The centre column 
contains numbered assumptions and derived formulas; the right column records the 
inferences applied; the left column notes the assumptions upon which each inference 
depends (CS5.2). There is no means to verify the validity of a derivation apart from 
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making a proof (CS5.3) (see below for truth tables). To establish the status of a rela-
tion (CS5.4), for instance whether it is a theorem, the truth value formulas for each 
and every case must be laboriously elaborated (CS4.3). These claims about the need 
for some supplementary representations applies to other approaches to PL, beyond 
natural deduction, that are centred on a linear formula based notation.

At a systemic level, formulas can be treated as objects and represented by meta-
variables that in turn can be subjected to operations (CS6.1). These meta-level vari-
ables are used for proofs of soundness (CS6.2) and completeness (CS6.3).

The formula notation is not normally used, in itself, to explain the underpinning 
concepts in the categories CS7 (justifications of inference rules) and CS8 (founda-
tional concepts). Finally, the formula notation is often recruited as a base representa-
tion up which to introduce other representations by stating relations but it is more 
rarely used to explain why other systems work (CS9) (at least in descriptions of the 
alternative representations sampled and cited below).

3.1.2 � Truth Tables

Figure 2 shows examples of truth tables. The values are represented by capital 
letters (CS1.1). Some columns in the table stand for variables (CS1.2) and others 
stand for relations (CS3.1). Primitive relations span adjacent columns (CS2.1) 
and the overall configuration of the columns, with duplication, preserves the 
structure of more complex relations (CS2.2). Each row is a case (CS4.1) with 
its specific assignment of truth values given on the left and all possible cases 

Fig. 1   A sentential proof of 
Q ⇒ R ⊢ (P&Q) ⇒ (P & R)

Fig. 2   Truth-tables: (1–4) relations: ¬, &, v, ⇒; (5) An inference over formulas: Q ⇒ R ⊢ 
(P & Q) ⇒ (P & R)
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included in the rows. Entries in the table assign values to variables (CS1.3) or to 
relations (CS4.2), so connections among cases is achieved by pairwise compari-
sons between cell entries (CS4.3). Judging whether relations are equivalent or 
otherwise considers all the entries between the selected columns (CS6.3).

Tables that define operators are shown in Fig. 2.1–4 (CS3.3), so to compare 
operators we contrast their patterns of Ts and Fs. Truth tables provide a ready 
means to determine the validity of inferences (CS5.3). In Fig. 2.5, columns 4–6 
stand for the premise and columns 7–13 for the result. For a valid inference no 
case with T under the primary premise operator (column 5) is permitted to have 
a F under the primary operator of the result (column 10). Truth tables also sup-
port assessment of the overall status of an inference (CS5.4).

In summary, of the two current representations, the formula notation clearly 
satisfies more of the conceptual scope criteria than truth tables. The formula 
notation does not provide a convenient means to examine cases and indepen-
dently verify inferences (CS5.3), whereas as this is a strength of truth tables, 
thus it is no surprise the two representations complement each other in many 
texts on PL. Neither system easily supports explanations about the conceptual 
foundations of PL (CS7, CS8), because they do not include notational devices 
that can be recruited to express ideas at this level (a point that is made clearer in 
the contrast with the TDs below).

3.2 � Visualizations of PL

The representations in this sub-section are called visualizations because they 
express the PL elements and relations, but do not come with representation spe-
cific inference rules. They include Frege’s conceptual notation, a PL interpreta-
tion of Venn diagrams, and the diagrams from Wittgenstein’s Tractatus.

3.2.1 � Frege’s Conceptual Notation

Frege contributed to the initial development of PL. Figure  3 gives examples in 
Frege’s Conceptual Notation (Frege 1879/1972). His intention was to minimise 
the number of elementary operators needed to encode relations (CS3.4), by using 
components just for negation and implication as primitive operators. Letters are 
variables (CS1.2). The system does not include letter symbols for truth values 
(CS1.1) but a plain horizontal line to the right of a variable (Fig. 3.1) asserts that 
the variable is true and the addition of a vertical descending tick asserts it is false 
(Fig. 3.2), and acts as a negation operator (CS3.1). An implication relation is rep-
resented by the diagram in Fig. 3.3 (CS3.1). Combining ‘L’ shaped lines and ticks 
(CS2.2) permits the construction of other relations, Fig.  3.4–3.6 (CS2.1). The 
diagrams may be interpreted in terms of relations other than negation and impli-
cation (e.g., shown by the titles of Fig. 3.3–3.6), so the diagrams enable compari-
son among those relations (CS2.3), but they rather mask the generic character of 
the relations (CS3.3). The notation does not deal directly with cases (CS4.1-3).
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3.2.2 � Venn Diagrams

Gardner (1983) describes how Venn diagrams can be adapted for PL; Fig. 4 shows 
examples. He appears to be motivated by the potential of re-using a well-known rep-
resentation to aid the comprehension of a topic that is conceptually more demand-
ing. Each labelled circle represents a proposition (CS1.1), rather than a set, and 
shading assigns the truth values to the proposition (CS1.3), where empty (white) is 
T and shaded (grey) is F (CS1.2). Each pattern of shading encodes a particular rela-
tion of the propositions (CS3.1, CS2.1); examples are given in Fig. 4.1. However, 
note that an expression and its double negation are graphically identical (CS2.3). 
Each zone in the diagram represents a particular case (CS4.1), so its shading assigns 
a truth value to the cases (CS4.2), so comparing patterns of shading compares cases 
(CS4.3). Each pattern may be read as an alternative equivalent relation (CS2.3). 
Well-formed expression in this representation depends on drawing valid Venn dia-
grams, which is simple for two and three propositions, but tricky for four using 
ellipses (CS2.2). Gardner (1983) proposes a method to express relations among rela-
tions, by using Venn diagrams as operators, as shown in Fig. 4.3. The top ternary 
diagrams show two relations and each circle in the diagram below stands for one 
of the relations, as indicated by the connecting lines. This approach of using circles 
to represent relations could be generalised to define operators (CS3.1, CS2.1), but 
Gardner (1983) does not develop this idea.

Fig. 3   Examples of Frege’s conceptual notation
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3.2.3 � Wittgenstein’s Tractatus Diagrams

Wittgenstein (1961) proposed a diagrammatic representation for PL, in proposition 
6.1203 of his Tractatus Logico-Philosophicus; examples are shown in Fig. 5. Hamil-
ton (2001) argues that Wittgenstein’s picture theory of language in the Tractatus was 
influenced by his training as an engineer, so by analogy it is tempting to speculate 
that his 2D spatial notation for PL might likewise have been inspired by his experi-
ence of the panoply of charts and diagrams typical of a technological education. 
Figure  5.1 shows Wittgenstein’s representation of the implication relation. The T 
and F symbols (CS1.1) adjacent to the variables (CS1.2) assign truth values to the 
variables (CS1.3). The curly brackets identify cases (CS4.1), to which values are 

Fig. 4   Venn diagrams applied to PL: 1 relations; 2 comparing relations; 3 relations among relations

Fig. 5   Wittgenstein’s Tractatus diagrams
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assigned by connecting them to a T or F (CS4.2). The particular set of assignments 
defines the relation between variables (e.g., cf. Fig. 5.1 and 5.2), which, at a stretch, 
may be taken to be a symbol for the relations in itself (CS2.1). To represent nega-
tions of variables the initial truth value assignments are reversed by supplementary 
labelling (CS3.1 for negation), as shown in Fig. 5.3. Comparing patterns of the lines 
allows one to contrast cases (CS4.3) (e.g., one variable in Fig. 5.4 is negated), and 
rules for constructing these diagrams can be stated (CS2.2).

Frege’s notation, the Venn diagrams and Wittgenstein’s diagrams illustrate some 
of the diverse ways that the basic content of PL may be visualised. Venn diagrams 
use spatial relation among objects to encode relations, Frege’s notation employs 
shapes of graphical objects and concatenation, and Wittgenstein’s diagrams are net-
work diagrams in which the lines of arbitrary shape make associations and assign-
ments. This diversity suggests that there is ample opportunity for developing alter-
native visualizations of PL. However, none of the representations cover the later 
conceptual scope criteria.

3.3 � Diagrammatic Reasoning Systems

This subsection considers two systems that demonstrate that graphical representa-
tions can be more than mere visualizations but can fully support reasoning about 
relations and the making of inferences: Gardner’s network diagrams and Pierce’s 
alpha graphs.

3.3.1 � Gardner’s Network Diagrams

Figure  6 shows the network diagrams that Gardner (1958) deliberately designed 
for greater iconicity than the Venn diagrams and, critically, to be a visualization for 
truth-value structures with the instructive functionality of truth-tables. A pair of ver-
tical lines represents a variable, Fig. 6.1 (CS1.2). The left line is for the potential 
assignments of T to the variable, and the right for F (CS1.1). Actual assignments are 
shown by an ‘X’ on a line, as in Fig. 6.1 and 6.2 (CS1.3). Horizontal lines, shuttles, 
run between the verticals to encode cases (CS4.1); for example, Fig. 6.3 shows the 
four cases for a binary relation. Operators (CS3.1) have shuttles for T cases and omit 
F cases (CS4.2), which produces iconic patterns for relations (CS2.1), which sup-
ports comparisons of relations (CS4.3); Fig. 6.4–6.6 represent conjunction, disjunc-
tion and implication, respectively. Differences among the patterns reflects the under-
lying nature of operators (CS3.3), although Gardner claims (p. 64), surprisingly, that 
the patterns of shuttles in Fig. 6.4 and 6.5 are “symmetrical”, but Fig. 6.6 is not and 
so it reveals the directionality of implication. A given diagram may be interpreted as 
representing any of the alternative relations that are consistent with its configuration 
of cases (CS2.3).

Gardner gives rules for the construction of the diagrams (CS2.2), although not 
a formal specification it its syntax and semantics. Such a set of formal syntac-
tic rules will be complex because Gardner embellishes the system with further 
notational devices. First, to efficiently represent cases involving more than three 
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variables, Gardner introduces a circle to indicate when a shuttle is not merely 
crossing a vertical but is actually assigning a truth value to a variable, Fig. 6.8. 
(Although not mentioned by Gardner, this raises possibility of defining ternary 
and higher order operators, CS3.2). Second, Gardner uses two techniques to 
record when the truth value of a variable is yet to be determined: (a) a slash, /, 
on a variable’s vertical line that is considered to be half a cross (cf., Fig. 6.7 and 
6.2); (b) a shuttle drawn with a dashed line (e.g., Fig. 6.9). Third, to apply opera-
tions to relations, Gardner extends the basic network diagrams to include rotated 
diagrams (quarter turn anti-clockwise); such as Fig. 6.9, which applies an impli-
cation to a conjunction and a disjunction. These vertical shuttles assign values to 
each set of cases in the argument relations.

The second of the above notational devices are required for Gardner’s method of 
determining when a given set of relations is valid (CS5.3). The relations are valid, 
in the sense that a true case exists, when we can find a continuous sequence of shut-
tles between all the variables. Figure 6.10 is a network diagram for three variables 
and three binary relations, as labelled. One continuous path exists, so the ends of 
its shuttles are marked with Xs to show that it is T. Finding a continuous paths is 
a matter of systematically searching the diagram, but is laborious and challenging 
for complex diagrams, such as Fig. 6.9 (the value of the dashed shuttles are to be 
determined), especially when one wishes establish the full status of all the cases in 
relation (CS5.4).

Fig. 6   Gardner’s network diagrams
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3.3.2 � Pierce’s Alpha Graphs

Pierce develop a diagrammatic notation for PL (see Roberts 1992; Sowa 2011 for 
tutorials), and also other logics, because he believed in the power of visual repre-
sentation. The basic elements of his Alpha graph representation are: (a) the plane, 
or sheet of assertion, which is shown as rectangle in Fig. 7.1 for the sake of depic-
tion (CS1.1); (b) variables for propositions, Fig. 7.2 (CS1.2); (c) closed curves, 
cuts, Fig.  7.3 (CS1.1). Placing something on the sheet asserts that it is true, 
Fig. 7.2, and drawing a cut around something makes it false, Fig. 7.4 (CS3.1); in 
general, a subgraph at an even number of cuts is true and at an odd number of cuts 
is false. The graphs may be interpreted as standard relations (CS2.1). Construct-
ing graphs implements operators (CS3.1): making a cut is a negation (Fig. 7.4) 
and drawing particular configurations of cuts over pairs of subgraphs creates 
binary relations of those subgraphs (Fig. 7.5–7). The general form these configu-
rations may be taken as icons standing for relations (CS2.1) and more complex 
configurations with multiple variables may be interpreted as higher order rela-
tions (e.g., 3 letters at the same level is a ternary conjunction). Pierce’s graphs 
do not provide a means to assign a truth value to a relation (CS4.2) but the level 
of nesting of cuts for a variable gives its truth value (even=T, odd=F), so each 
configuration is one case (CS4.1), and so comparison of configurations are con-
trasts of alternative cases (CS4.3). The system has syntactic rules for well-formed 
graphs (e.g., cuts do not overlap) (CS2.2). As the system is essentially based on 
negations and conjunctions (CS3.4), each graph configuration represents all pos-
sible interpretations of the relations among the variables (CS2.3) (e.g., Fig. 7.7 
can be read as ¬(P & ¬Q)).

Pierce provides inference rules in the form of graphical transformations 
(CS5.1), which are on first sight surprisingly different to the rules of natural 
deduction. The insertion rule permits the introduction of sub-graph at any odd 
level of cuts (e.g., Fig. 7.9). Erasure allows the deletion of any sub-graph at an 
even level of cuts (e.g., Fig. 7.10). Iteration permits the introduction of a subgraph 
identical to an existing subgraph at lower nested level than the original graph, 
and deiteration does the reverse (e.g. Figure 7.11). Double cut is basically dou-
ble negation and permits two cuts, with no subgraphs between, to be introduced 
or deleted. Proofs in the system are conducted by successive transformations of 

Fig. 7   Pierce’s alpha graphs: 1–7 expressions; 9–12 inference rules



133

1 3

Truth Diagrams Versus Extant Notations for Propositional…

graphs (CS5.2), which Sowa (2011) notes may yield shorter proofs than the for-
mula notation. He also provides soundness and completeness proofs for the sys-
tem (Sowa 2011) (CS6.2 and 6.3).

Pierce’s alpha system is appealing because of its relative simplicity, but it does 
not provide an independent means of testing an inference (CS5.3), nor a way to 
examine the status of relations in terms of cases (CS5.4). Further, it is not obvious 
how the later conceptual scope criteria can be readily addressed using the system.

These two representations show that graphical systems can, in themselves, sup-
port reasoning. Gardner’s network diagrams enable truth-table like assessments of 
the value of cases and hence assessment of the validity of sets of expressions, but 
Gardner does not consider how the diagrams might be represented abstractly, so that 
we can perform proofs using inference rules (CS5.1, CS5.2) and address issues of 
soundness and completeness (CS6.2, CS6.3). This means that explorations about 
the basic character of PL could be difficult (CS7-CS9). Pierce’s graphs implement 
rule based proofs using transformations of the structure of diagrams rather than re-
write rules like the formula notation. Pierce considers evaluations of PL expressions 
in terms of cases using truth-table-like representations (Anellis 2012), and some 
authors have considered how Alpha graphs might theoretically support the evalu-
ation of cases (White 1984), but it appears that a well-articulated method is yet to 
be provided. A potential explanation of why neither representation appears able to 
satisfy the later conceptual scope criteria is that they do not provide methods simul-
taneously to construct proofs and to examine the status of cases: each representation 
does one but not the other, rather like the formula notation and truth-tables. How 
might a representation be designed to encompass proof making and truth-value anal-
ysis, in additional to all the lower lever conceptual scope criteria? Truth Diagrams 
are an attempt to create just such a representational system.

4 � Truth Diagrams

Many approaches to the design and assessment of graphical representation have 
been proposed. Here, Cheng’s (2002, 2011) cognitively motivated Representational 
Epistemic approach to knowledge visualisation was used to design Truth Diagrams 
(TDs). The central idea of the approach is to encode the target topic in a represen-
tational scheme that makes the fundamental conceptual structure of the target topic 
transparent. Such conceptual transparency is achieved by first analysing the ideas 
that permeate the target topic—here, the conceptual scope criteria—in order to iden-
tify its core classes of concepts. Then design principles are applied to those classes 
of concepts in order to create representational schemes that coherently reveal intra-
class similarities and differences, and to coherently reveal inter-class similarities 
and differences; both in a manner that is consistent with the forms of information 
processing available to humans and the limits of their cognitive capabilities. Previ-
ously, the approach has been used to successfully design novel representations for 
conceptually challenging educational topics (e.g., Cheng 2002, 2011, 2014; Cheng 
and Shipstone 2003) and to design computer interfaces for complex information 
intensive problem solving (e.g., Barone and Cheng 2004).
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This section introduces the syntax, semantics, expressions and operators of TDs, 
and the next section considers tests of inferences, proofs and the overall properties 
of the system.

4.1 � Syntax of Elementary TDs

Figure 8 shows examples of basic TDs and to explain the syntax of TDs their graph-
ical components are named in Fig. 9. These are rules of TD structure (CS2.2):

•	 A TD is composed of letters, nodes and connectors.
•	 The italicised letters are arranged horizontally (with regular spacing for readabil-

ity).
•	 Nodes are small areas, one above and one below the letters. They are normally 

imagined, as in Fig. 8, but for the sake of explication are shown as red ellipses in 
Fig. 9.

Fig. 8   Unary, binary, ternary and quaternary Truth diagrams

Fig. 9   Syntax of basic TDs (names of graphic components in green)
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•	 Connectors are lines linking nodes. Each connector intersects just one node at 
each letter and has straight segments that span pairs of immediately adjacent let-
ters.

•	 One connector for each possible combination of high or low nodes of each (type 
of) letter is permitted: the shape of each connector in a TD is unique. Thus, there 
are 2, 4, 8 and 16 (21, 22, 23, 24) connectors in unary, binary, ternary and quater-
nary TDs, respectively.

•	 The style of the connectors is solid and either black or grey.
•	 A TD can contain more than one instance of a letter; e.g., Fig. 10.1.
•	 A connector intersects the nodes at the same level for each instance of the same 

letter; e.g., in Fig. 10.1 and 10.2 diagonals would be illegal between the Ps.
•	 The horizontal order of the letters is arbitrary. (Implications of this are elabo-

rated below.)
•	 Letters in separate TDs are not linked by connectors; e.g., Fig. 10.3.

For ease of interpretation, quaternary and higher arity TDs may be drawn as two 
(or more) sub-diagrams, with identical orders of letters, but with each sub-diagrams 
possessing a unique set of connectors that are chosen for convenience. For example, 
in Fig. 8.4 the right sub-diagram includes connectors that have just one horizontal 
line running between two neighbouring pairs of variables, and the left sub-diagram 
has zero, two or three such lines. (Examples below show sub-diagrams with selected 
sets of connectors actually support interpretation.)

The underlined formula above each TD is a title, and is not strictly a part of the 
TD.

4.2 � Semantics

To explain the semantics of TDs, the graphic elements in Fig. 9 are copied in Fig. 11 
and labelled for what they denote:

•	 Letters are propositional variables (CS1.1).
•	 Each node represents a truth-value for the variable (CS1.2): high-node T, low-

node F (CS1.3).
•	 The number of the distinct types of variables is the arity of the TD (CS3.2).
•	 A connector is a case: it constitutes a unique set of truth-value assignments to 

the variables (CS4.1).

Fig. 10   More TD examples
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•	 Connector style represents the overall truth-value assigned to its case (CS4.2). 
A black connector assigns T: such connectors are “Truth lINES” so are named 
tines. A grey connector assigns F: being faint they are called faints.

Consider the interpretation of some example connectors in binary and ternary 
TDs (CS4.3). The top horizontal connector (‘–––’) in Fig. 11.2 is the case P=T, Q=T, 
which is assigned T. The descending diagonal (‘\’) is case P=T and Q=F, and it is F. 
In Fig. 11.3, connectors ‘––––––’, ‘–––’\’, ‘\/’ and ‘_ _’ are symbols for TTT, TTF, TFT 
and FFF, respectively. The top straight tine is T, as is the ‘/\’ tine.

The title of the TD is a suggested interpretation.

4.3 � Expressions

TDs are expressively adequate for PL, in the sense that TDs can be generated for 
any number of variables, and they can encode all possible cases for those vari-
ables. Truth values can be assigned to variables in two ways, so a TD for n vari-
ables must capture 2n distinct cases. Each case can be T or F, so 22n possible com-
binations of cases exist for n variables. We show by induction that TDs can encode 
all possible cases (CS4.1) and all possible combinations of cases (CS4.2) for any 
number of variables. Imagine a TD for n variables, for example Fig. 12.4 (n=2). To 
increase the size of the TD by one variable, n+1, we add the variable with its two 
nodes, Fig. 12.5. Each existing connector must run separately to each new node so 
we duplicate the original connectors, Fig.  12.6, which doubles their number, and 
then we complete drawing the new connectors, Fig. 12.7. For our starting case, we 
can pick Fig. 10.1, a unary TD with one variable, n=1, so there are 21=2 cases as 
required. Thus, by induction, flowing through Fig.  12.2–12.7, a TD of any n will 

Fig. 11   Semantics of basic TDs

Fig. 12   Expressive adequacy of TDs
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have 2n cases. Now as a connector may be a just a tine or a faint, the number of com-
binations of cases is 2 to the power of the number of cases, 22n , as required.

A TD’s pattern of tines and faints expresses a logical relation (CS2.1). Figure 13 
shows all four, 221 , possible unary TDs. (The lines between the TDs and labelled 
arrows below are explained below.)

Figure  14 shows the sixteen, 222 , possible binary TDs (CS2.1). The title of 
each is one formula that it represents. The pattern of each TD is a unique iconic 
symbol for its relation (CS2.1). In particular, TDs of important binary relations 

Fig. 13   All unary TDs

Fig. 14   All binary TDs
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are striking patterns: conjunction—top tine only (Fig.  14.1); disjunction—a 
“stool” (14); implication—‘Z’ (12 or 13); bi-conditional—‘=’ (9); exclusive-
or—‘X’ (6); tautology—all tines (15); contradiction—all faints (0). The TDs are 
arranged in Fig. 14 to reveal various relations among them (CS2.3), and in some 
ways is a complex analogue to the square of opposition for categorical proposi-
tions. The number of tines increases with each successive column of TDs. The 
TDs on opposites sides of the vertical midline are negations of each other; tines 
(faints) on one side are faints (tines) on the other (e.g., Fig. 14.0 and 14.15). The 
TDs along the horizontal midline (14.0, 14.6, 14.9, and 14.15) and at the corners 
(Fig. 14.1, 14.4, 14.11, and 14.14) are symmetric about their vertical axis, which 
reflects the commutativity of the represented relations (CS3.3). TDs on opposite 
sides of the horizontal midline of Fig. 14 are mirror images of each other about 
their own horizontal midlines (e.g., Fig.  14.11 and 14.14). The lines between 
pairs of TDs identify inferences, and the classifications at the bottom of the dia-
gram, will be explained below.

Ternary TDs have 256, 223 = 28, possible permutations of the eight cases. Fig-
ure 15 shows four examples. The first two are a ternary conjunction and a ternary 
disjunction, which distinctively just have a single top tine or just a single bot-
tom faint, respectively; they resemble the equivalent binary TDs (Fig.  14.1 and 
14.14). Their symmetry means they also represent (P & Q) & R and (P v Q) v R, 
respectively, which reflects the associativity of their component binary relations 
(CS3.3). In contrast, Fig. 15.3 and 15.4 show that the different nesting of the non-
associative binary implication operator are dissimilar ternary TDs (CS3.3).

Figure 8.4 shows one of the 65,536, 224 = 216, possible quaternary TDs. The 
pattern of a single top tine or a single bottom faint in binary and ternary TDs 
holds also for the conjunctive and the disjunctive quaternary TDs, respectively.

4.4 � Operators

TD are transformed in various ways, some of which simply change the form of 
the diagram without affecting the represented relation, whereas others change the 
form of the TD, the relation among variables and the assignment of truth values 
to cases.

Fig. 15   Some ternary TDs
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4.4.1 � Letter Operators

The letter relocation operator and the duplicate letter operator work at the level 
of letters within a TD.

The letter relocation operator exploits the arbitrariness of the relative horizon-
tal location of letters in a TD to sanction the swapping of the position of letters 
without affecting the interpretation of the TD, provided that the association of 
connecters with the nodes of each letter remains intact. Figure 16.2 swaps the two 
variables in Fig. 16.1. Figure 16.3 and 16.4 show relocations of letters in a three 
letter binary relation.

The letter duplication operator introduces an additional copy (or copies) of an 
existing letter, exploiting the idea that a variable may be represented by one or 
more letters in a single TD. This is permissible provided that the connectors asso-
ciated with the original letter are also duplicated. For example, we duplicate P in 
Fig. 16.1 to get Fig. 16.3 (or Fig. 16.4). Complementarily, this operator permits 
the erasure of duplicate letters.

These purely syntactic operators usefully transform the surface form of TDs 
into alternative patterns that may be easier to interpret visually, in order to sup-
port the making of inferences (see below).

4.4.2 � Heuristic Negation Rules

Two heuristic negation operators are defined. A formal negation rule follows 
below. The TD negation rule switches the tines of a single TD to faints, and faints 
to tines, to negate the TD. For example, compare the TDs on opposite sides of 
Fig. 14. The variable negation rule, works at the level of individual variables. In 
order to formally construct a TD containing a negated variable, one would first 
draw the TD for that variable, apply the negation operator to it (see below), and 
then compose the desired TD. Alternatively, we make take a TD that contains the 
variable in un-negated form and (for all occurrences of the target letter) simply 
swap the vertical position of its nodes with their connectors attached. For exam-
ple, this rule transforms Fig. 14.12–14.14, with the negation of P.

Fig. 16   Relocation operations
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4.4.3 � Composition Operators

TD-operators compose given argument TDs to generate result a TD (CS3.1). Fig-
ure 17 shows examples of unary, binary and ternary TD-operators (CS3.2). We 
first consider the structure of TD-operators; Fig. 18 names their components.

•	 TD-operators are drawn within a dotted-line rectangle.

Fig. 17   TD-operators for composition: 1–4 unary; 5–8 binary; 9–11 ternary

Fig. 18   Components of 1 unary and 2 binary TD-operators
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•	 TD-operators have one or more inputs, which each consist of two lines, one tine 
above and one faint below a lower-case letter ‘a’. The number of inputs is the 
arity of the TD-operator, and numbered subscripts distinguish the two or more 
inputs.

•	 A TD-operator has one output consisting of a pattern of tines and faints. For a 
given arity, the pattern is the same as the configuration of connectors in a basic 
TD. The ends (and intermediate points) of each output line is associated with a 
unique combination of tines and faints of the input lines.

•	 The specific pattern of output line styles defines the nature of the operator, as in 
the examples in Fig. 17.

•	 The application of a TD-operator matches the styles of connectors for a given 
case in the argument TDs to its inputs and uses its output line styles to determine 
the style of the result connectors for that case.

Applying a TD-operator involves four steps, which are illustrated in Figs. 19 and 
20.

	(S1)	 The arity of the result TD equals the number of distinct variables in the argu-
ments. For example, applying a binary operator to a TD in P and Q and a TD 
in Q and R would generate a ternary TD in P, Q and R.

	(S2)	 Pick one case, select connectors in the argument(s) for that case and identify 
the connector in the result that matches the case (connectors run to equivalent 
nodes for each variable in the argument and result).

	(S3)	 For the case in S2, use the styles of the argument connectors as inputs to look 
up the output style, as described above.

	(S4)	 Apply the style found in step S3 to the result connector identified in step S2.

Steps (2) to (4) are repeated for every case.
Figure 19 shows the application of the negation TD-operator to the high node of 

TD ¬P. (S1) As the argument is unary, the arity of the result will be one. (S2) Take 

Fig. 19   Unary TD-operator in 
action
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P’s high node case, for example. (S3) Its connector is a faint, so this is the input to 
the TD-operator. (S4) The corresponding output style is a tine, so the connector in 
the result TD becomes a tine. Repeating steps S2 to S4 produces a faint for the other 
(low-node) case (not shown in Fig. 19). The pattern of connectors in the result is the 
TD for P.

Figure 20 applies the disjunction binary operator to unary TDs ¬P and Q. (S1) 
The two variables in the arguments make TD binary result (Fig. 20.1). (S2) Pick, 
for example, the low-node connectors in both arguments, which matches the bottom 
connector in the result TD (Fig. 20.2). (S3) The P connector is a tine and the Q con-
nector is a faint, so these are the inputs (Fig. 20.3). (S4) The corresponding result 
is a tine, so the bottom connector of the result TD is drawn as a tine (Fig. 20.3). 
Figure 20.4 shows steps S3 to S4 for the high-node P and the low-node Q, which 
yields the \ faint in the result. The other two cases follow in a similar manner (e.g., 
Fig. 20.4).

The patterns of lines in the disjunction, conjunction and bi-conditional TD-opera-
tors are symmetric (Fig. 17.5, 17.6 and 17.8), so the connector patterns they produce 
is independent of the order of the arguments, whereas the implication operator is 
asymmetric so is not commutative (Fig. 17.7). The design of the binary TD-oper-
ators deliberately reflects the structure of the binary relations (cf. Figure 17.5–17.8 
and Fig. 14.9, 14.11, 14.12, and 14.14). This suggests that other operators could be 
defined using any of the TD patterns in Fig. 14 (CS3.4); an idea taken up below.

Figure 21 shows the application of disjunction, implication and conjunction oper-
ators to various TDs. Here, the arguments and operators are at the top and the results 
are below, but graphical devices other than spatial layout may be used to show such 
constructions. The TD-operators are elevated above the mid line of the arguments 

Fig. 20   Binary TD-operator in 
action
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TDs to reinforce the idea that step S3 applies the operator patterns to the styles of 
the connectors (and not to their shapes). Users familiar with TD-operators may sim-
ply draw the pattern of lines in the dotted rectangle and omit all the other symbols 
(e.g., Fig. 21.3). In Fig. 21.1 two binary argument TDs share variables, so the result 
TD contains the same variables and the configuration of connectors is identical to 
the arguments. Combining of a unary and binary TDs with different variables result 
in a ternary TD, Fig. 21.2, and the eight connectors of the result TD are generated 
by combining the high and low connectors of P separately with all four connectors 
in the binary TD. Exceptionally the lines have been coloured to show their origin; 
grey for P and green for Q & R. Figure  21.3 provides a contrast with two binary 
argument TDs sharing one variable, P. As step S2 deals with cases, connectors are 
only combined when they are at the same node in P, so the resulting ternary has just 
eight connectors, and not sixteen, even though each argument has four connectors. 
Again colour shows the origin of the parts of the result connectors.

4.4.4 � Heuristic Composition Rules

The formal application of TD-operators is rather laborious, so quick and simple heu-
ristic rules have been devised. For each binary operator two complementary heuris-
tics are feasible, each succinctly specifying the input conditions for which the output 
is a tine or a faint. Consider the conjunction operator, Fig. 17.5: a result connector is 
a tine just when both argument connectors are tines, and a result connector is a faint 
whenever one or both argument connectors is a faint. For example, in Fig. 21.3, five 
tines and three faints are given by the two rules, respectively.

Similar rules for disjunction, implication and bi-implication follow by inspection 
of Fig. 17.6, 17.7 and 17.8.

4.4.5 � Decomposition Operators

Decomposition operators work like composition operators with a focus on the 
connector styles associated with cases, but they split apart one of the argu-
ment TDs. Figure 22 shows two examples. The first operator takes an argument 
TD, a1 (e.g., a P, Q and R ternary), which could have been assembled from two 

Fig. 21   TD compositions: 1 (P v Q) v (P & Q), 2 P ⇒ (Q & R); 3 (P ⇒ Q) & (P ⇒ R)
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parts, a1A (P and Q binary) and a1B (unary R), whose joint pattern of connectors 
matches the input pattern to the left of the operator (in the dotted rectangle). The 
result, r, is one of those potential components, r=a1A (which happens to be the 
bi-implication in P and Q). Figure 22.2 is an example with an operator that we 
will call v-decom, which takes two argument TDs, one of which can be imagined 
as two parts, a1A–a1B (P, and QvR), whose assembly conforms to the pattern to 
the left of the operator. The other TD, ¬a1A right (¬P), is the negation of the 
first of the two parts. From this, the second of the two parts can be obtained, a1B 
(QvR). Given an applicable operator for the selected TDs, the application of the 
decomposition operators follows steps similar to S1-S4, but a preliminary step is 
needed to find a matching operator for the given TDs.

Composition and decomposition operators generate new TDs, but they are not 
necessarily valid inferences. The revealing connections between these operators, 
validity and the rules of natural deduction are considered below.

4.4.6 � Connector‑Style Operator

This final class of operators is special, because it contains a single deceptively 
powerful operation. The connector-style operator relies on the TDs defining a 
relation among variables as a particular pattern of connectors. Changing the 
style of one connector, or more, changes the encoded relation; therefore, a new 
relation can be obtained from any other merely by changing connector styles (for 
example, jumping around Fig. 14). Of course, the question is to specify condi-
tions under which this operator can be meaningfully and validly applied. Such 
conditions are examined below.

Fig. 22   Decomposition operators
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4.5 � Meta Truth Diagrams

TDs have so far been presented at a concrete level with expressions including all 
the cases in relations. However, this amount of detail can be cumbersome and mask 
higher level relations and ideas. So, this sub-section introduces Meta-Truth Dia-
grams (CS6.1); see Fig. 23.

•	 Meta-TDs have bold capital letters as meta variables for propositional relations.
•	 A meta-TD is drawn with such letters above a pattern of connectors.
•	 A meta-TD represents a TD, which may have any arity.
•	 Tines and faints in a meta-TD represent sets of tines or sets of faints in the 

denoted TD: e.g., the faint of B in Fig.  23.2a represents the three faints in 
Fig. 23.2b.

•	 The configuration of lines in a meta-TD is the same as the configuration of con-
nectors of a basic TD with that same number of variables.

•	 High nodes record the occurrence of tines, and low nodes faints, in the repre-
sented TD (rather than assigning truth values to propositional variables).

•	 A unary meta-TD can represent a given higher arity meta-TD, where its tine 
(faint) incorporates all the tines (faints) in the sets of TDs of the given meta-TD; 
for example, Fig. 23.3a.

•	 Binary (and higher arity) meta-TDs represent the outcome of composing two (or 
more) argument TDs into a new TD, where each meta-variable is an argument 
TD and the pattern of connectors reflects how combinations of the styles of (sets 
of) argument connectors produce the specific styles of (sets of) result connectors. 
For example, Fig. 23.3c is the result of the application of the implication opera-
tor to two TDs, see Fig. 21.2, so the Z pattern of tines in the meta-TD shows they 
were produced by that operator (e.g., in Fig.  21.2, when P’s tine is combined 
with the faints in Q & R by the implication operator (Fig.  17.7) a faint is pro-
duced, hence the descending connector Fig. 23.3b). In general, patterns of con-
nectors of a higher level meta-TD will be the same as the pattern of lines in the 
operator.

That completes the introduction of TDs, their operators and how to express TD 
relations in general through meta-TDs. Together the TDs, so far, satisfy the first 17 
conceptual scope criteria.

Fig. 23   Meta-TDs
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5 � Validity, Inference and Proofs

Many operators for generating TDs were described above. This section considers: 
the nature of valid inferences and proofs using TD; how TDs may support the dem-
onstration that particular systems of PL are sound and complete; and, general expla-
nations about the nature of PL. All of this is underpinned by the test of validity that 
TDs provide.

5.1 � Validity Test

In PL a premise validly implies a conclusion when a case of a premise is true and 
for that case the conclusion is also true. Equivalently, for an inference to be valid, no 
false case in a conclusion may be associated with a true case in the premise. Witt-
genstein (1961) and others (Post 1921) devised truth tables as a tool to operational-
ise this definition.

The TDs provide a diagrammatic method to evaluate inferences by comparing the 
style of connectors in the premise TD(s) with those in the conclusion TD (CS5.3). 
The method uses to two additional types of TDs — the TD-test and the validity-TD, 
Fig. 24.

•	 The TD-test and validity-TD are drawn with a rectangle with a solid perimeter. 
Just one or both may be included.

•	 The TD-test is applied to a premise(s) and a conclusion in a similar fashion to 
the application of a TD-operator to arguments. The output of the TD-test is a 
validity-TD, which is akin to the result of a TD-operator.

•	 In the TD-test, ‘p1,n’ stands for all (1 to n) premise TDs (or meta-TDs) in the 
inference and ‘c’ stands for the conclusion TD (or meta-TD).

•	 The high nodes (‘All —’) of p1,n refers to cases in which the connectors of all the 
premises are tines.

Fig. 24   The components of the TD-test and validity-TD
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•	 The bottom nodes (‘≥1 —’) refers to all other cases in which at least one faint is 
present among the premises.

•	 The high and low nodes of ‘c’ refer to cases in which the conclusion is a tine or a 
faint, respectively.

•	 The pattern of lines in the middle determines the validity status of matching 
cases in the premise(s) and conclusion, by comparing their styles. Solid lines are 
validity lines and dashed lines are invalidity lines (they are not tines and faints, 
because they do not encode the assignment of truth-values). V1, V2, V3 and Vx 
identify three valid conditions and one invalid condition, respectively (Fig. 24).

•	 V1 (–––): all the premise connectors are true and the conclusion is true.
•	 V2, (–––): at least one premise is false and the conclusion is true.
•	 V3, (/): at least one premise is false and the conclusion is false
•	 Vx, (\): all the premise connectors are true and the conclusion is false.

•	 The validity-TD includes all the variables (meta-variables) in the premise and 
conclusion (CS5.4).

•	 A validity-TD’s configuration of connectors is that of a basic TD with the same 
arity.

•	 The style of its connectors are given by the outcomes of the validity test.
•	 An inference is valid when the status of all the cases is valid; i.e., all the validity-

TD lines are solid.

Figure 25 shows tests of two example inferences. The dotted vertical line sepa-
rates the premise and conclusion TDs. Figure 25.1 shows that a proposition val-
idly implies itself: the TD-test condition V1 matches the premise tine to the con-
clusion tine (high-nodes); similarly, V2 matches the faint in the premise to the 
conclusion faint (low-nodes). In Fig. 25.2 we cannot infer an implication from a 
reverse implication of the same variables. The tine / connector in the premise and 
the faint / connector in the conclusion is a Vx. The TD-test works on inferences 
with different numbers of variables in the premises and the conclusion.

Fig. 25   Examples of TD-tests 
and validity-TDs for two infer-
ences
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The application of the TD-test to every one of the cases in an inference is 
potentially laborious, especially for ternary and higher arity TDs. Fortunately, a 
heuristic rule simplifies the application of the TD-test:

•	 Validity-rule. An inference is invalid if there is any faint in the conclusion whose 
case just possesses tines in the premises (Vx); otherwise the inference is valid.

The validity-rule can (often) be applied by inspection (CS5.3, CS5.4). And, the 
symmetry of some TDs and the flexibility of their layout can sometimes expedite 
the application of the validity-rule. Further, when one applies the validity-rule, or 
is familiar with the TD-test, the TD-test diagram may be omitted from the rectan-
gle and just the validity-TD drawn.

The TD-test refers to multiple premises, although the common definition of 
validity, as stated above, applies to a single premise. So, we must show that the 
TD-test is valid for any number of premises, that is prove its monotonicity: in effect 
we prove the rule of assumption is valid. This we do by using the meta-TDs and 
induction. Figure 26.1 depicts a valid inference from premise B to A, which may be 
any arbitrarily complex relations. As the inference is valid, no tine in the premise 
results in a conclusion faint, by the validity-rule, so the validity-TD excludes con-
dition Vx, shown by a dotted line. Now we add another premise C, Fig. 26.2, and 
consider all cases involving all combination of tines and faints across the three TDs 
in the ternary validity-TD. However, we know that no cases that include B and ¬A 
exist (dotted B\A connector), so two ternary connectors are prohibited, as shown by 
the dotted lines. Considering all the other cases, one of the valid conditions always 
applies, so the inference is valid. If we add a further TD, D, again the inference 
cannot be invalid, because cases for C, B and ¬A are excluded so no D–––C–––B\A 
cases can be generated. Further, TDs can be added ad infinitum, so the TD-test is 
generally valid for any number of premises.

5.2 � Valid Inferences

We will now use the TD-test to examine the validity of operators and inferences.

Fig. 26   Validity of the TD-
validity test
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5.2.1 � Equivalence

The TD-test tells us that if a premise TD and a conclusion TD for the same vari-
ables are generated by different compositions that yield identical TDs (same pattern 
of connectors), then the conclusion is valid to infer from the premise, and also vice 
versa, because validity conditions V1 and V2 apply exclusively for all cases between 
the premise and conclusion. As heuristic negation rules can be used to interpret dif-
ferent relations form the same TD, we may infer the equivalence of certain rela-
tions. For example, the stool pattern in Fig. 14.14 may be transformed in to a Z pat-
tern by applying the variable-negation rule to P, and as the Z pattern is implication, 
Fig. 14.12, we have shown that P⇒Q is equivalent to ¬PvQ. Similarly, using both 
heuristic negation rules, we can show that ¬(P & ¬Q) is also equivalent to P ⇒ Q, 
because they have similar patterns of connectors.

5.2.2 � Valid Operators and Natural Inference Rules

The TD-test determines which of the TD-composition and decomposition rules are 
actually valid, by checking that each case with a faint in the conclusion does not 
exclusively possess tines in the arguments. This provides a framework for examining 
the rules of natural deduction, as all but one can be interpreted as TD compositions 
or decompositions that happen to be valid. Conjunction introduction (e.g. Fig. 21.3), 
disjunction introduction (Fig. 21.1) and assumption are TD compositions, and dou-
ble negation is two compositions. Modus ponens, modus tollens, conjunction elimi-
nation, disjunction elimination and reductio ad absurdum are decompositions (when 
sub-proofs in the latter two are treated as implications). For example, Fig. 27 shows 
an example of how the application of the Modus ponens splits an implication rela-
tion expressed in meta-TDs. Applying the validity-rule (or TD-test in full) to these 
operations shows that they are valid. For example, Modus Ponens, Fig. 27, expresses 
the rule A ⇒ B, A ⊢ B. B is rightly concluded, because the faint in B is never associ-
ated just with premise tines (i.e., B’s ‘_’ faint is either associated with the ‘\’ faint of 
A ⇒ B, or with the ‘_’ faint of A).

The conditional proof is special because it includes sub-proof, from which an 
implication relation is inferred. (Obviously, the sub-proof cannot be replaced by 

Fig. 27   Modus ponens
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an implication relation, unlike the other rules with sub-proofs.) To demonstrate the 
validity of this rule requires two applications of the validity-rule, see Fig. 28. First, 
assume that n+1 assumptions validly implies C (Fig. 28.1). For this to be true, those 
(sets of) cases which are all tines in the premises must not match a faint in the con-
clusion, as shown by the thick grey line, and the dotted line in the validity-TD. Now, 
we form a new inference with a conclusion where one of the assumptions (An+1) 
implies C, with a Z pattern of connectors (Fig.  28.2). Applying the validity-rule 
we see that the only cases where a faint in the new conclusion could match just 
tines among the assumptions has been excluded by the first step. Note the similar-
ity in structure to Fig. 26, which demonstrated validity of the validity-test for mul-
tiple TDs. This approach can also be used to show the validity disjunction elimi-
nation and reductio ad absurdum when they are expressed with sub-proofs rather 
than implications. In general, we may interpret the role of the sub-proofs in rules as 
establishing pre-conditions that exclude certain cases that would otherwise cause the 
rule to fail.

Basic TDs and valid TD-operators may of course be used in place of the formulas 
in proofs such as Fig. 1. Alternatively, the TDs can be organised as nodes in a lat-
tice to usefully visualize the structure of proofs. The top nodes of the lattice are the 
premise TDs and valid TD-operators are applied by pattern matching on those and 
later nodes. A proof is successful when the lattice is brought together in a single 
conclusion node, with no loose branches, which shows that the assumptions are dis-
charged. Such lattices neatly depict the overall structure of natural deduction proofs 
and allows different strategies to be formulated and compared.

5.2.3 � Applying Connector‑Style Inferences

Connector-style operators, as described above, change the style of connectors to 
express alternative relations. Returning to the four unary TDs in Fig.  13, each of 
the lines between pairs of TDs represents a single application of a connector-style 

Fig. 28   Validity test of conditional proof rule
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operator to one connector. From the validity rule, each line going rightward rep-
resents a valid inference, because no case has a tine implying a faint. Similarly, in 
Fig. 14, as the number of tines increases monotonically along rightward paths across 
the diagram, each line is a valid inference. The premise at the beginning of a line has 
no cases with faint connectors that match to tines in the conclusion at the line’s end. 
Further, any continuous multistep rightward path also represents a valid inference 
from the TD at its start to the TD at its end. The longest path captures the idea a 
contradiction implies a tautology. Figures 13 and 14 embodies an important general 
interpretive scheme provided by TDs, whereby related TDs may be organised from 
a contradiction on the left to a tautology on the right with all valid inferences rep-
resented by rightward pointing edges (or invalid inferences by leftward edges). We 
will use this interpretive scheme in the proof of the completeness of the TD system 
below.

Combining connector-style operators with equivalences (Sect. 5.2.1) provides a 
powerful TD inferential system. For example, consider Leibnitz’s ‘splendid’ theo-
rem: ((P ⇒ R) & (Q ⇒ S)) ⇒ ((P & Q) ⇒ (R & S)). Sowa (2008) reports Whitehead and 
Russell required 43 steps to prove this theorem in Principia Mathematica, but Sowa 
(2008) gives a proof in just seven steps using Alpha Graphs. Let us consider the 
harder task of not just showing the validity of the theorem but discovering another 
conclusion that can be derived from the same premise. Discovery is more challeng-
ing than proof because we are not given a target conclusion that provides clues for 
selecting a proof strategy.

Figure 29.1 is a quaternary TD for the conjunction of the two implications on the 
left of the theorem, which is drawn with Q and S reversed in order to exploit sym-
metry to aid the process of drawing. The conjunction operator and the two implica-
tion relations are shown in the middle of Fig. 29.1, and all the resulting tines for the 
quaternary are gathered on the left and all the faints on the right. Connectors with 
similar configurations are coloured merely to aid reading. To find valid conclusions 

Fig. 29   What can we conclude from (P ⇒ R) & (Q ⇒ S)?
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we seek meaningful patterns of connectors that do not increase the numbers of faints 
(cf. Figure 14). Our approach is to selected some subset of premise faints to keep 
as faints in the conclusion and to make all other conclusion connectors tines: so we 
focus on the right of Fig. 29.1. Inspecting the faints, it is clear that P and Q have 
similar patterns to each other, and similarly for R and S, which suggest that some 
symmetric relation governs each pair. So, the pattern of faints is redrawn using a 
letter relocation operator to give Fig. 29.2. A pattern of three P–––Q faints connected 
to an inverted stool of R and S is now one apparent pattern, extracted in Fig. 29.4, 
which suggest that some combination of conjunction or disjunction of binaries that 
are negated or inverted may be the constituents of a conclusion TD. Remember, 
these connectors are to be faints in the conclusion and that the implication opera-
tor (Fig. 17.7) produces a faint when combining a tine and a faint, so the pattern 
of faints in Fig.  29.4 can be produced by an implication over two conjunctions: 
the ––– tine of P and Q combines with the /, ––– and \ faints of R and S to give the 
three required faints, Fig. 29.3. Thus, we have shown that (P ⇒ R) & (Q ⇒ S) implies 
(P & Q) ⇒ (R & S). Further, there is a complementary pattern of three faints in the 
premise, Fig. 29.6, so by similar reasoning we have discovered another conclusion 
but with an implication of two disjunctions, Fig. 29.5, that is (PvQ) ⇒ (RvS).

The example shows how TDs can be used for proofs but also to discover theorems 
in the first place. Finding valid inferences can also proceed in the opposite direction 
by looking for patterns that increase the number of faints in the premise (cf. mov-
ing right to left, in Fig. 14). Satisfying the validity-test guarantees that an inference 
will be valid, but will we always be able to find some meaningful relation for every 
pattern of connectors (e.g., set of binary formulas)? Yes. A relation can always be 
formulated, because a TD can be composed from a disjunction of conjunctions for 
each tine in a TD (e.g., Fig. 14.11 from Fig. 14.2, 14.3 and 14.4). In other words, 
any TD may be read as a disjunctive normal form expression (or focussing on faints, 
as a conjunctive normal form expression).

5.3 � Soundness and Completeness

Is the TD approach logically sound and complete (CS6.2)? This question may be 
framed in two ways. First, we might use the TD system to represent selected logical 
relations and inferences that are used by some other notation and then ask whether 
that specific particular formulation of PL is sound and complete (adequate). Alter-
natively, we may ask whether TDs are in themselves adequate just on the basis of 
selected diagrammatic TD rules. Each is considered in turn.

If a TD system for PL is restricted to unary and binary relations and adopts the 
laws of natural deduction, the system is equivalent to that version of the formula 
notation, so would inherit soundness and completeness merely by translating to the 
formula notation at the start of its proofs and translating back to TDs at the end. But 
such a proof of adequacy is a representational sleight of hand. The adequacy of a TD 
formulation of PL can be performed wholly using TDs. Consider, for instance, natu-
ral deduction. The soundness of the laws is established by showing that each rule 
is valid for any suitable premises. Meta-TDs are used for this purpose. In Sect. 4.5 
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we saw that a meta-TD can represent any basic TD, because its connectors stand 
for sets of tines or faints in basic TDs (see Fig. 23). Thus, a demonstration that an 
inference expressed using meta-TDs, using the validity-rule, shows, in effect, that all 
inferences in basic TDs, which are expressible by the meta-TDs, are also valid. For 
example, the Modus Ponens inference in Fig. 27 is stated using meta-TDs and was 
shown to be valid. The meta-TDs may be replaced with the specific TDs shown in 
Fig. 23.1b, 23.2b and 23.3c, which preserve the implication relation. But as the tine 
and faint connectors in the meta-TDs stand for any set of tines or faints, then any 
other set of TDs that preserve the implication may be substituted, and will also be 
valid. Hence, Modus Ponens is generally valid. The same reasoning can be applied 
to the soundness of all natural deduction rules.

Turning to completeness, a fully diagrammatic proof in TDs can be made by 
using TDs in place of formulas in all the steps of a formula based proof. All sen-
tential meta-variables are replaced by meta-TDs, conventional operators by TD-
operators, and the inference rules by TD versions of those rules. Further, a proof 
in the sentential notation may be recast as a lattice, with TDs at the nodes, and 
edges standing for inferences. Combining the visual form of TDs with the 2D spa-
tial layouts of proof structures may aid our comprehension of the trickier steps of a 
completeness proof by exposing the underpinning function of complex sequences 
of inferences. For instance, a TD reproduction of Lemmon’s (1965) proof of com-
pleteness reveals how nested applications of disjunction eliminations are used, in a 
specific nested pairwise combinatorial fashion, to reduce to a single thread the mul-
tiple parallel lines of inference, which were each initiated by the proof’s many initial 
assumptions. In summary, the adequacy of a system of PL may be established using 
TDs to replicate a proof taken from a conventional notation.

Our second question about adequacy is whether a purely TD approach can estab-
lish the soundness and completeness of TDs in general. In other words, is it possi-
ble to generate all possible ordered sequences of TDs, of any arbitrary complexity, 
where the last member of the sequence is validly implied by all the previous mem-
bers? In particular, is this feasible just using connector style operators (Sect. 4.4.6) 
and the rule of assumption?

For these proofs a final type of TD is introduced to encode inferences. An infer-
ence-TD consists of (a) bold capital letters P and C to denote the premise(s) and the 
conclusion (C), respectively, and (b) pairs of lines above the letters. All fifteen pos-
sible inferences-TDs are shown in Fig. 30 (labelled A–O). A line in a pair is either 
black or grey (in the text shown as ‘—’ or ‘–’). Each line represents a set of connec-
tors, like meta-TDs, the but with special restrictions. First, the lines are considered 
in pairs (e.g., ‘–:–’ and ‘—:–’ in Fig.  30C). Second, each pair represents a set of 
cases which have certain assignments of tines or faints to the premise and conclu-
sion connectors, specifically:

1.	 ‘—:—’ = cases with tine premise connectors and tine conclusion connectors 
(valid).

2.	 ‘–:—’ = cases with faint premise connectors and tine conclusion connectors 
(valid).
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3.	 ‘—:–’ = cases with tine premise connectors and faint conclusion connectors 
(invalid).

4.	 ‘–:–’ = cases with faint premise connectors and faint conclusion connectors 
(valid).

An inference-TD may include between one to four pairs. All possible combina-
tions of pairs are shown in Fig. 30A–O, but the five central inference-TDs are not 
applicable to unary TDs because they only have two connectors. (Purely to ease 
comparisons between inference-TDs, each type of pair has a given specific loca-
tion above the letters; e.g., –:– at the bottom.)

Consider some examples with reference to Figs. 13 and 14. An inference-TD 
with just one pair (A, E, K, N) represents an inference in which all the cases pos-
sess the same pattern of assignment of connector styles, for instance Fig.  30A 
represents a contradiction implying a contradiction (e.g., Fig.  13.0 ⇒ 13.0; 
Fig. 14.0 ⇒ 14.0). Figure 30.B represents Fig. 13.0 implying 13.1, or 13.0 ⇒ 13.2: 
as noted by the ‘B’ arrow in Fig. 13. And similarly with Fig. 14.0 implying 14.1 
to 14.4. Figure 30.M represents inferences to the tautology Fig. 13.3 from either 
13.1 or 13.2—L arrow. And similarly Fig. 14.15 from 14.11 to 14.14. Figure 30O 

Fig. 30   Relations between inference-TDs
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represents a tautology implying itself. Inference-TD Fig.  30G with three pairs 
represents any of the rightward inferences between TDs in the middle four col-
umns in Fig. 14 (e.g., 14.1 ⇒ 14.6, or 14.5 ⇒ 14.13)–G arrows.

In general, Fig. 30 applies to inferences in which at least one TD is not a unary. 
For exclusively unary TDs, the middle five inferences with three or four pairs are 
omitted.

Let us now define valid inferences with connector-style operators. From the valid-
ity-rule any inference that includes any combination of pairs (1), (2) or (4) is valid, 
but any that includes pair (3) must be invalid, because it would violate the TD-test. 
The valid inference-TDs have solid perimeters (none of them include a —:– pair) 
and invalid inferences have grey backgrounds (all include a —:– pair). Hence, the 
soundness of TDs follows automatically, because all inferences using valid connec-
tor-style changes are valid by definition. The greater challenge is completeness.

For completeness it must be shown that all valid inferences can be derived using 
the valid connector-style rules and the rule of assumption. The proof has two stages.

The overall strategy of the first stage involves starting with an inference that is 
known to be valid and showing that any other valid inference, whatsoever, can be 
obtained just by applying valid connector-style operators. We start with the infer-
ence that a contradiction validly implies itself, Fig. 30A. So, we must show that all 
valid patterns of inference can be generated stepwise from inference-TD 30A, until 
we reach the inference that tautology validly implies itself, Fig.  30O. To support 
this, Fig.  30 has been arranged consistently with our overarching TD interpretive 
scheme (cf. Figures 13 and 14). More specifically, we must show (step 1) that each 
inference-TD in Fig.  30 represents all possible valid premise-conclusion associa-
tions of that type, and (step 2) that all inference-TD can be found from a previously 
established inference-TD, using just connector-style operators. The two steps are 
considered in turn.

Step 1 (of stage 1)—intra inference-TD transformations. For unary TDs step 1 can be 
achieved by simply enumerating all nine valid inferences implicit in Fig. 13 and match-
ing them to Fig.  30’s inference-TDs (i.e., 30A—13.0 ⇒ 13.0; 30B—13.0 ⇒ 13.1 or 
13.0 ⇒ 13.2; 30E—13.0 ⇒ 13.3; 30F—13.1 ⇒ 13.1 or 13.2 ⇒ 13.2; 30M—13.1 ⇒ 13.3, 
13.2 ⇒ 13.3; 30O—13.3 ⇒ 13.3). For other arities we note that Fig. 30 includes all pos-
sible inference-TDs, and the subset of valid inferences are unambiguous, so we have 
an exclusive set of valid patterns of inferences. Now, does each valid inference-TD 
represent all possible inferences within its set of connector patterns? Remember, that 
a line in an inference-TD represents a set of cases with connectors of the same style. 
Thus, each pair can represent between (i) one case and (ii) the total number of cases 
minus the number of other pairs (i.e., (i) for other pairs). For example, as noted above, 
Fig. 30G represents all of the rightward inferences among the inference-TDs of the four 
middle columns of Fig. 14; every pair has between 1 and 2 cases (i.e., 4 cases minus 
1 case for each of the two other pairs). Applying the connector style-operator to the 
premise or conclusion side of a case swaps the style of the connector, and provided 
that the operation matches one of the pairs in the chosen inference TD and is within the 
give numerical limits, any connector whatsoever may be changed (e.g., the transforma-
tion of inference Fig. 14.1 ⇒ 14.9 to inference 14.9 ⇒ 14.13 involves swaps of faints 
to tines in different cases). This process may be repeated for any other connector as 
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desired, therefore all possible combinations of connectors permitted by the set of pairs 
in a given inference-TD can be generated incrementally.

Step 2—inter inference-TD transformations. In this step it must be shown that 
all the valid types of inference-TDs can be obtained by connector style changes to 
either a premise or a conclusion connector. The permitted transitions are shown by 
the (thick) lines between pairs of valid inference-TDs in Fig. 30, which are of three 
types: (a) the introduction of new pair (e.g., from Fig. 30B–G); (b) elimination of 
an existing pair (e.g., 30G–30M); (c) the simultaneous occurrence of both (e.g., 
30B–30F). All the possible transitions have been enumerated in Fig. 30. All the tran-
sitions (green and red lines) are applicable to binary and higher arity TDs, but only 
the transition involving one or two pairs are applicable to unary TDs (red lines). By 
inspection of Fig. 30, it is clear all valid inference-TDs can be reached from the ini-
tial contradiction inference-TD by following exclusively valid transitions, and simi-
larly the tautology inference can be reached from all valid inferences. This is true for 
unary and higher arity TDs. Thus, summarising both steps of stage 1, all possible 
valid inferences between a single premise and conclusion can be found by applying 
connector-style operators.

The second stage of the proof generalises the result just obtained to inferences 
with any number of premises. The strategy here resembles the strategy used to show 
that the validity-TD can be extended from a single premise to multi-premise infer-
ences (end of Sect. 5.1). Inference-TDs are extended by further refining the permit-
ted interpretation of the premise lines in the pairs so that the validity rule holds for 
multi-premise inferences: if a conclusion connector is a faint, the case is valid so 
long as at least one of its premise connectors is also a faint. Thus, the left lines in the 
four definitions of pairs, above, are taken to represent all the connectors across the 
multiple premises of each case, with a grey line then denoting cases in which at least 
one connector is a faint, and a black line denoting cases in which all the connec-
tors are tines. With these changes, the style-operators can be applied in isolation to 
any one of the component premises within a multi premise inference, which means 
Fig. 30 is still applicable. For example, imagine that the –:— pair in Fig. 30M rep-
resents just one case in which some premises have faint connecters. Now if each of 
those faints is changed to a tine, one by one, using the style operator we would have 
new inferences but not change the type of inference (still Fig. 30M). However, when 
the last faint in the premises is changed to a tine, we no longer have a –:— pair, so 
the new inference Fig.  30O is then produced. Thus, all valid multi-premise infer-
ences can be found.

That completes both stages of the proof of completeness, hence it has been shown 
that the TD system is both sound and complete. This in turn concludes our overview 
of TDs’ coverage of the PL conceptual scope criteria.

6 � Discussion

Truth Diagrams, TDs, provide a range of diagrammatic components for the repre-
sentation of PL. A particular limitation of the system is the difficulty of drawing TDs 
with more than three variables, which requires the introduction of supplementary 
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drawing techniques not specifically related to the underlying syntax and semantics 
of the system. However, reviewing the seven previous representations, cumbersome 
expressions or bulky sets of expressions appear to be unavoidable for a domain 
of the complexity of PL (cf. Figures 1, 2.5, 3.6, 4.3, 5.3, 6.10, 7.11). So, the criti-
cal epistemic question is how much content does each representation successfully 
encode given its relative complexity.

The conceptual scope criteria were formulated to systematically compare our rep-
resentations’ coverage of the key ideas of PL. TDs address the criteria more fully 
than the formula notation, truth tables, Venn diagrams, Frege’s conceptual notation, 
Wittgenstein’s diagrams, Gardner’s shuttle networks and Pierce’s Alpha graphs. In 
particular, it is superior with regard to the later criteria relating to the general nature 
of PL. This section considers the relative merit of TDs versus the other representa-
tions, and consequently reveals that some concepts which are seemingly central to 
PL are actually idiosyncratic aspects of particular representations.

TDs appear to make the underpinning coherence of PL more readily apparent 
than the other notations, because it provides related notational devices to connect 
key ideas (CS8.1). The Z shape pattern of tines and faints shows that the (binary) 
implication relation (Fig.  14.12), the implication operator (Fig.  17.7), the TD-
test and validity-TD (Fig.  24), the validity-test, modus tollens and modus ponens 
(Fig. 27), and the conditional proof inference (Fig. 28) are all linked concepts and 
closely associated with the specific definition of validity that prohibits false state-
ments being legally deduced from true statements (i.e., the \ faint in the Z pattern). 
The other representations tend to mask this unifying conceptual thread.

TDs show, at a fundamental level, that truth and falsehood are fully complemen-
tary in PL (CS8.3): the high and low nodes, and the alternative styles of connec-
tors, are complementary. One could perversely but legitimately discuss PL largely in 
terms of maintaining falsehood or deriving invalid inferences. However, this funda-
mental symmetry is not revealed by the basic form of the formula notation, Frege’s 
notation and Pierce’s graphs: it is hidden by the use of representational devices spe-
cific to negation (¬, vertical tick (Fig. 3.2), and cuts (Fig. 7), respectively). The other 
representations do treat T and F symmetrically, like TDs. Interestingly, what breaks 
the underlying symmetry is the definition of validity, which places restrictions on 
when true proposition may contribute to a valid inference—the ubiquitous Z pat-
tern is asymmetric. TDs can support the exploration of PL systems with alternative 
definitions of validity merely by swapping the Z in the validity-test for any of the 
other patterns in Fig. 14 (CS8.4). How would PL work with validity based on bi-
implication, conjunction or disjunction (Figs. 14.1, 14.9, 14.14)?

PL texts often justify rules of inference by appealing to our experience. Alter-
natively, truth tables (e.g., Fig. 2.1–4) are used to circumvent learner’s intuitive 
concerns about the nature of implication (CS7.1), although none of our sam-
ple texts use them to test the validity of the core inference rules, nor to show 
that key counter intuitive inferences are valid, or that others are invalid (CS7.2, 
CS7.3). Perhaps, little additional insight can be gained from mechanically con-
ducting such tests with truth tables. In contrast, the validity-TD does not just 
determine validity but also reveals the circumstances, cases, that contribute to 
the legitimacy of an inference (e.g., Figs. 25, 20, 28). This exemplifies how TDs 
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can be used to explain how the other representations work (CS9). Many of the TD 
examples above may be interpreted as explanations of concepts and inferences 
normally presented in the formula notation. An attractive feature of Peirce’s sys-
tem is its relatively small number of inference rules (Fig. 7), which can generate 
proofs with fewer steps than the formula notation. However, explanations of why 
the rules work are not typically provided in accounts of that system. TDs can 
explain why Peirce’s rules work (CS9). For instance, by modelling the rule of 
insertion with TDs (Fig. 7.9), we see that the process of drawing the conjunction 
of an existing TD (e.g., P, in Fig. 7.9) with a new TD (Q), and then swapping all 
the styles of all the connectors to negate the composite, necessarily produces just 
tines in the new TD to match the tines in the initial TD, so ensuring validity.

The formula notation possesses just unary and binary operators, but the 
absence of higher arity operators is not a fundamental feature of PL. Rather, it is 
a characteristic of the linear syntax of that notation (CS8.2): an operator symbol 
cannot be written between three letters without changing the basic form of the 
notation (e.g., to a prefix format). TDs and Pierce’s graphs express higher order 
operations, in interestingly different ways. Pierce’s rules apply to subgraphs in 
general, without particular reference to specific numbers of variables. TD opera-
tors have specific arities, but the arity is not limited. In the way that TDs for ter-
nary operators, such as Fig. 17.9–11, can be defined from basic TDs for ternary 
relations, Fig. 15.1–3, respectively, higher order operators can be defined using 
their respective TDs.

The importance of the connection between truth-value assignments, the truth of 
relations and the validity of inferences is acknowledged in PL texts (CS5.4). A criti-
cal distinction is the difference between the assignment of truth values to variables 
and the assignment of truth values to the specific cases of a relation. The formula 
notation, Frege’s notation, Venn diagrams and Peirce’s graphs do not in themselves 
make such assignments. Truth tables do deal with both types of value assignment, 
but tend to obscure the distinction by mixing together columns for assignments of 
values with columns for assignments to relations. Similarly, Wittgenstein’s dia-
grams use one graphical technique for both types of assignment (i.e., lines to T and 
F labels). In contrast, Gardner (1958) explicitly designed his network representa-
tion to preserve the distinction—vertical T and F lines versus horizontal shuttles. 
Likewise, TDs differentiate the types of assignment by the position of a variable’s 
nodes versus the style of connectors, respectively. The clean separation of types of 
assignments underpins the definition of meta-TDs, which in turn enables TDs sup-
port higher level reasoning about the nature of PL.

TDs are preferable to shuttle diagrams, for various reasons, even just at the 
level of expressing relations. First, the range of TD patterns are more distinctive, 
iconic, than shuttle diagrams, because TDs exploit the shapes (slopes) of lines; for 
instance, commutative relations are truly symmetric. Second, the linear positioning 
of variables in TDs is fixed, whereas Gardner’s rotation of sub-networks (Fig. 6.9) 
increases the complexity of the representation. Third, in TDs true cases are simply 
tine connectors that can be found by inspection, whereas in Gardner’s notation one 
must deliberately search through alternative paths of shuttles to find a complete loop 
(Fig. 6.10).
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The above contrasts of TDs and other representations reveals various factors 
that must be balanced in the design of a representation for PL. Here are three more. 
(1) Isolated decisions at one level may have unwelcome consequences elsewhere. 
Frege’s and Peirce’s desire to limit their systems to two basic operators yields com-
plex expressions (e.g., Fig. 3.6), which are simple in other representations that have 
multiple operators (e.g., ‘P ⇔ Q’, Fig.  17.8). (2) Each expression in the formula 
notation has a unique interpretation, which according to Shin (1995, p. 14), avoids 
the fatal flaw of ambiguity. All the other notations, including TDs, are ambiguous 
because each expression can represent multiple relations (e.g., Figs.  2.3 and 4.1 
(bottom), 3.3a and 5.3, 6.6 and 14.12, all represent P ⇒ Q and ¬(P & ¬Q)). However, 
this “flaw” beneficially encodes semantically equivalent relations, allowing them 
to be found by inspection. (3) Another contrast is between the formula notation’s 
symbolic re-write rules and the other representations use of transformation opera-
tions. One consequence is the need for additional representational machinery when 
deriving proofs in the formula notation (Fig.  1). In contrast, Gardner’s networks, 
Pierce’s graphs and TDs do not use such supports, because transformations simulta-
neously apply operators and record the changes made to the expressions. These three 
trade-offs show the challenge of designing a good representation and also the chal-
lenges of judging their relative efficacy. One of the motivations for the development 
of the conceptual scope criteria was to provide a systematic basis for comparing 
representations.

The conceptual scope criteria comprise one of three perspective from which the 
efficacy of a representation can be assessed. To conclude, it is noted that the design 
of TDs also attempted to made the representation cognitively and pedagogically 
effective. Features of TDs that may provide cognitive support include: iconicity of 
symbols and expressions, so that they are easy to remember and to recognise (e.g., 
the Z pattern); formats of symbols and expressions are readily associated with the 
concept they encode, because related ideas are represented by graphically similar 
forms, whereas differences in those forms reflect actual conceptual differences (e.g., 
patterns in Figs. 17, 11, 24); systematic methods for generating TDs, manipulation 
procedures are consistent across types of TDs (e.g., Figs.  20, 24); TD manipula-
tion procedures that are directly meaningful (transformations on TDs make changes 
to truth value assignments to cases). In terms of pedagogy, one aspect of learning 
in a mathematical domain are successive cycles of reifying procedures into objects 
that are then used as components in higher level procedures (Sfard 1991; Gray and 
Tall 2007). TD components are designed to support such cycles of conceptual and 
procedural acquisition (e.g., attaching connectors to nodes, building individual con-
nectors, constructing patterns of connectors in a TD, combining multiple TDs and 
the general interpretive scheme (Figs. 13, 14, 30), meta-TDs, inference-TDs). Thus, 
TDs may provide natural developmental sequences, because transitions to new sets 
of concepts do not require major changes to the representation, or the introduction 
of substantially new representations, but are achieved with incremental elaborations 
of previous TDs. It is currently an open question whether it is better for reasoning 
and learning to have multiple specialist tools or a single unified multi-tool (Cheng 
2018). Which is preferable, some selection of the seven previous notations or Truth 
Diagrams? Detailed comparison of the apparent cognitive benefits and larger scale 
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pedagogic potential of TDs versus the other representations will be needed to answer 
these questions.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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