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Abstract A product variant table is a table that lists legal combinations of product features.
Variant tables can be used to constrain the variability offered for a personalized product. The
concept of such a table is easy to understand. Hence, variant tables are natural to use when
ensuring the completeness and correctness of a quote/order for a customizable product.
They are also used to filter out inadmissible choices for features in an interactive specifica-
tion (configuration) process. Variant tables can be maintained as relational (database) tables,
using spreadsheets, or in proprietary ways offered by the product modeling environment.
Variant tables can become quite large. A way of compressing them is then sought that sup-
ports a space-efficient representation and a time-efficient evaluation. The motivation of this
work is to develop a simple approach to compress/compile a variant table into an easy to
read, but possibly hard to write form that can be deployed in a business setting at acceptable
cost and risk in a similar manner as a database. The main result is a simple compression and
evaluation scheme for an individual variant table called a Variant Decomposition Diagram
(VDD). A VDD supports efficient consistency checks, the filtering of inadmissible features,
and iteration over the table. A simple static heuristic for decomposition order is proposed
that suggests itself from a “column oriented viewpoint”. This heuristic is not always opti-
mal, but it has the advantage of allowing fast compilation of a variant table into a VDD.
Compression results for a publicly available model of a Renault Megane are given. With
the proposed heuristic the VDD is a specialization of a Zero-suppressed (binary) Decision
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Diagram (ZDD) (Knuth 2011) and also maps to a Multi-valued Decision Diagram (MDD)
(Andersen et al. 2007; Berndt et al. 2012).

Keywords Variant tables · Arc consistency · Decision diagrams · Table compression ·
Column-oriented decomposition · VDD · ZDD · BDD · MDD

1 Introduction and motivation

Mass customization is about producing personalized variants of a product. These variants
share a common basic structure, but with individually differing features. The individual-
ized features are described by assigning a value (typically a string or number) to a product
property. In natural language, the terms feature and product property are more or less syn-
onymous and can refer either to a named observable such as Color, or to the individually
instantiated manifestation “Color = ‘Red’”. To distinguish this, the following terminol-
ogy is used in the sequel: A product property name (an observable property) is referred to
as a characteristic.1 The term feature is used to designate an individual manifestation: the
assignment of a value to a characteristic.

With this terminology, all variants of a product share the same characteristics but may
differ in their individual features (the values assigned to the characteristics). It is natural
to represent the set of variants in tabular form: Each column of the table corresponds to
a characteristic. A row in the table represents a combination of features, i.e., it is a tuple
of value assignments to the given characteristics. A table that lists legal combinations of
product features will be called a (product) variant table.2 The concept of a variant table is
easy to understand. Hence, variant tables constitute a basic element in product modeling.

From a business perspective, variant tables are used as constraints to verify the validity
of the chosen set of features in a quote/order for a personalized product. This also includes
filtering out features that can no longer be consistently added to an emerging interactive
specification, which will here be referred to as a configuration. Variant tables listing the
variants actually sold are an important source for business analytics, which may require
scanning the entire table.

In practice, common ways of maintaining a variant table are: in a database, in the form
of a spreadsheet, or in proprietary ways offered by the business software. However, when
variant tables become large, a way of compressing them is sought that supports a space-
efficient representation and a time-efficient evaluation.

When using a database, one approach at this is normalization: A table is split into smaller
chunks that capture independent relations between characteristics. Another approach is to
switch to a column-oriented database (Stonebraker et al. 2005), which may offer a more
compact representation and faster evaluation than relational databases.

When using a spreadsheet, the most obvious approach at space-efficiency is to identify
Cartesian subsets D1 × . . . × Dk of the table that can each be represented by one tuple of
cells, here called a c-tuple as in Katsirelos and Walsh (2007). All values of each component
set Dj would be listed in a single spreadsheet cell.

1This terminology is that used in SAP ERP (Enterprise Resource Planning) logistics.
2This terminology is that used in SAP Variant Configurator (SAP VC ((Blumöhr et al. 2012))). Variant tables
are important elements of SAP VC product models.
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Also, techniques to compile logical formulae into either an (ordered) Binary Decision
Diagram (BDD) (Knuth 2011; Hadzic 2004) or an (ordered) Multi-valued Decision Dia-
gram (MDD) (Andersen et al. 2007; Andersen et al. 2010; Berndt et al. 2012) can be applied
to variant tables (seen as expressing a logical relation). These techniques can result in a
compact representation that is very efficient to evaluate.

The motivation for this work was to look for a practical alternative to using a database or
a spreadsheet for maintaining and evaluating large variant tables. The author’s belief is that
a solution that addresses variant tables directly and individually can be integrated and used
in legacy environments (such as the SAP VC configurator) more easily and with less risk
than shifting the entire implementation to a new technology.

The main result is a simple compression and evaluation scheme for an individual vari-
ant table. The underlying data structure is called a Variant Decomposition Diagram (VDD),
because it represents a decomposition of the table into subtables. A VDD also yields a nat-
ural compression of a variant table into c-tuples allowing a compact representation in a
spreadsheet. Besides the fact that the decomposition is based on identifying common occur-
rences of the same feature within a column of the table, there is no technical connection to
column-oriented databases.

Structurally, a VDD is a form of binary decision diagram (Knuth 2011). The size of a
VDD constructed for a given variant table will depend on the order of the decomposition
decisions (this corresponds to an ordering of the product features). Another result of this
work is a simple static heuristic for making decomposition decisions when constructing a
VDD. This heuristic suggested itself from a “column oriented point of view” and is called
the (preferred) column heuristic accordingly (see Section 5).

The column heuristic has so far yielded very acceptable compression and has the advan-
tage of allowing fast compilation of variant tables (see Section 7). This makes it more
attractive from a practical perspective than a slower approach with more optimal compres-
sion. Fast compilation is important when considering a VDD as an alternative to a database
or a spreadsheet. It means that a VDD can be quickly regenerated from an underlying
transparent representation after a change to the table content.

When using the column heuristic, the resulting VDD turns out as a specialization of a
Zero-suppressed (binary) Decision Diagram (ZDD) (Knuth 2011) and also maps to an MDD
(see Sections 4.4 and 6.4).3

Finding a good ordering of decision variables can be exponentially complex for deci-
sion diagrams, and heuristics that work are often application domain dependent (Andersen
et al. 2010; Berndt 2016; Matthes et al. 2012; Hadzic et al. 2008). In some cases, no single
standard agnostic search method for a good variable ordering is satisfactory (Matthes et al.
2012). This was also the author’s experience with an initial attempt to compile a variant
table into a BDD. Hence, the proposed simple static heuristic for constructing a VDD for a
variant table is noteworthy in itself.

The VDD approach was developed in parallel with a Java implementation. This VDD
implementation was applied to tables that resemble real customer data (SAP VC variant
tables) in Haag (2015b). This both verified the functionality and substantiated the claim
for space and time efficiency of the approach. The further results given here in Section 7
confirm this claim. The implementation has not yet been productively deployed.

3The structure of a VDD as a binary decision diagram and the relation to a ZDD and MDD motivates an
alternate interpretation of the acronym VDD as Variant binary Decision Diagram.
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Whereas the VDD approach would apply to tabular data in general, the restriction here
to variant tables (and hence also the use of the more specific terminology) seems justi-
fied by the conjecture that variant tables may be particularly amenable to the compression
techniques presented here, because their content will usually encode some regularity in the
product variants they describe. Accordingly, the functionality currently implemented for a
VDD is tailored to the mass customization/product configuration setting. A VDD supports
efficient database-like queries for the filtering of inadmissible features (see Section 3) and
consistency checks. It allows iteration over the table and over the result sets of queries.

Two examples are used for illustrative purposes. One is a T-shirt that is to be offered in a
web shop on the internet. This is presented in Section 2 and illustrates the role that variant
tables can play in a mass customization business. The other is used in Section 7 to evaluate
VDD compression of variant tables. It is for a “real” product model of the Renault Megane
that was made publicly available for performance testing in a constraint programming con-
text. It is cited in Amilhastre et al. (2002) and is available at http://www.itu.dk/research/cla/
externals/clib/.

Section 3 looks at the the central filtering function and (arc) consistency. The approach
at VDD construction (table decomposition) and evaluation is treated in Section 4. The pro-
posed simple static heuristic is discussed in Section 5. Section 6 handles a further reduction
of a VDD using set-labeled nodes. This is used in constructing an external representation
of variant table as Cartesian tuples (c-tuples), and a mapping to an MDD. Finally, Section 8
concludes with a summary, an outlook of future work, and open issues.

2 T-shirt example

The T-shirt example is not based on any actual web-shop. This allows both simplification
and the exploration of ideas beyond what may actually be available today at a particular
company’s web site. However, the observations, particularly about the use of variant tables,
are meant to be “real”, and apply to mass customized products in general, as evidenced by
the Renault Megane model for a car.

We take a T-shirt to be fully described by the product characteristics:4

Style Fabric Size Color Imprint ImprintColor P rice (1)

2.1 Very simple T-shirt customization

We assume that the business starts simple by selling a set of pre-defined T-shirt variants
from stock. Only one style (Standard) and one fabric (Cotton) are offered for a standard
price (9.99 USD).

The other characteristics have the following value domains:

– {Large, Medium, Small} for Size,
– {Black, Blue, Red,White} for Color,
– {MIB(Men in Black), ST W(Save the Whales)} for Imprint, and
– {White, Green} for ImprintColor.5

4Characteristics that are freely specifiable, such as personal names, are outside the scope of variant tables
and are omitted from the discussion here for the most part.
5We take ImprintColor to be White for MIB, and Green for STW.

http://www.itu.dk/research/cla/ externals/clib/
http://www.itu.dk/research/cla/externals/clib/
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Table 1 Variant table VT SIMPLE T SHIRT for the simple T-shirt

Style Fabric Size Color Imprint ImprintColor Price(USD)

Standard Cotton Small Black MIB White 9.99

Standard Cotton Medium Black MIB White 9.99

Standard Cotton Large Black MIB White 9.99

Standard Cotton Medium Black STW Green 9.99

Standard Cotton Large Black STW Green 9.99

Standard Cotton Medium White STW Green 9.99

Standard Cotton Large White STW Green 9.99

Standard Cotton Medium Red STW Green 9.99

Standard Cotton Large Red STW Green 9.99

Standard Cotton Medium Blue STW Green 9.99

Standard Cotton Large Blue STW Green 9.99

Not all combinations of Size, Color, and Imprint are possible due to constraints that state
that for imprints MIB is only available for the color Black and ST W does not fit on small

shirts.The valid variants of this simple T-shirt are listed in Table 1.6

2.2 Extended T-shirt customization

We now imagine the following scenario for growing the business:

– The stock expands to three fabrics (Cotton/Synthetic/Mixed) and three styles (No sleeve/
Half sleeve/Full sleeve). Cotton shirts are only available in Half sleeve and Full sleeve.

– The sizes XS, XL, and XXL are added. For toddlers, sizes 3T and 4T are added as well.
Toddler shirts are only available in fabric Cotton.

– The business offers T-shirts in different colors. The colors Black, Blue, Red, and White
are stocked. These shirts cost the standard price. T-shirts can be dyed in four other
colors Pink, Purple, Green, and Yellow. These colors cost extra. Also, the dye used to
obtain the colors depends on the fabric. For simplicity, let us assume that the price will
only depend on the fabric of the T-shirt and the dye used. Dye is added to the list of
characteristics (1), but is not shown in user interaction specifying a T-shirt.

– The possible predefined imprints are expanded and listed in a catalog. The association
of Imprint and ImprintColor is encoded in the colored image of each catalog entry. Let
us assume that there are 100 black imprints, 90 blue ones, 90 red ones, and 50 green
ones. Generally, the color of an imprint must differ from the color of the T-shirt.

– The imprints MIB and STW from the previous section are discontinued.7

Tables 2, 3, 4, and 5 are examples of how variant tables relating to the above three items
might be formulated in compressed form in a spreadsheet using multi-valued cells. The
wildcard symbol ’*’ is used as an abbreviation to stand for “all possible values”, which
demonstrates an expressiveness desired in practice.

6The boxed subtable of Table 1 is structurally identical to the example used in Haag (2015a, b), which is an
adaptation of an example from Andersen et al. (2010).
7This is for simplicity of exposition. so as not to clutter up the variant tables (Tables 2, 3, 4, and 5).
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Table 2 Compressed relation of Style, Fabric, and Size

Style Fabric Size

{HalfSleeve, FullSleeve} Cotton *

* { mixed, synthetic} { XS, S, M, L, XL, XXL}

“*” is a wild card expressions that stands for the entire domain

A table explicitly listing all possible variants would be obtained by an equi-join operation
(��) on the four tables (if they were expanded to relational form) using all matching column
names (2).

Overall Variant Table = Table 2 �� Table 3 �� Table 4 �� Table 5 (2)

We assume that the business operates with a stock of “basic” T-shirts. The description of
the stocked items may not require all the characteristics. For example, the basic shirts will
not need the characteristics Imprint, ImprintColor, Dye, and Price. This might be a business
argument for having several variant tables. Nevertheless, the distinction between stocked
variants and products made-to-order is fluid, as any produced variant could be placed in
stock when an order is returned. The business may be easier to operate with a single table
(the left-hand side of (2)) where this is possible. However, it must also be able to deal with
the case of multiple variant tables (the right-hand side of (2)). The 113 tables in the Renault
Megane model (Section 7) are an example of such a model.

2.3 Scalability - configuring T-shirts

Our web shop must scale with demand. This entails automation as far as possible.
Quotes/orders must be verified as being complete and correct. Complete means that all

Table 3 Compressed relation of Fabric, Color, and Dye

Fabric Color Dye

* {Black, Blue, Red, White } none

Cotton Green GRCD#1

{ Mixed, Synthetic} Green GRSD#2

Cotton Purple PUCD#3

{ Mixed, Synthetic} Purple PUSD#4

Cotton Pink PICD#5

{ Mixed, Synthetic} Pink PISD#6

Cotton Yellow YCD#7

{ Mixed, Synthetic} Yellow YSD#8

“*” is a wild card expressions that stands for the entire domain
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Table 4 Compressed relation of
Color, Imprint, and Dye Color Imprint Dye

Black 230 non-black imprints none

Blue 240 non-blue imprints none

Red 240 non-red imprints none

White All 330 imprints none

Green 280 non-green imprints { GRCD#1, GRSD#2 }
Pink All 330 imprints { PICD#3, PISD#4 }
Purple All 330 imprints { PUCD#5, PUSD#6 }
Yellow All 330 imprints { YCD#7, YSD#8 }

characteristics of a T-Shirt are specified.8 A check whether a complete given T-shirt
configuration (specification) is consistent with (2) is easy, whether the product model in (2)
is given by the joined left-hand side, or by the group of four tables involved in the join.

There are two approaches to restricting users to consistent choices during an interactive
specification of their desired T-shirt.

In the first approach the user is guided in making choices in a way that ensures a complete
and consistent result. For example, a catalog of stocked basic T-shirts is presented first. The
choice of a basic T-shirt will already define many of the features (such as Style, Size, and
Fabric). The user is then allowed to choose a color for the T-shirt. If the choice of a color
depends on the already chosen base T-shirt, the application will only offer colors compatible
with the chosen base shirt. If the choice of a color has other effects on other features, e.g.,
Price, then these effects are displayed in advance alongside the color. Finally, the user may
choose the imprint from a catalog and is shown the resulting price for the personalized
T-shirt.

In the alternate approach, the user is presented with the relevant characteristics listed
above, perhaps filled with defaults matching their personal profile. For each characteristic
the possible values are visible to the customer. The user can make choices or exclusions
for any characteristic in any order. At any stage in this configuration process, the currently
valid domains are always updated and displayed accordingly. In an advanced setting, the
user could actually choose an inadmissible, grayed-out value. In this case, the user interface
needs to be able to guide the user as to what choices need to be modified to enable this
selection.9

Programming is needed in the first approach to implement the guiding procedure. In the
second scenario, techniques are needed to establish the admissible choices in each state. A
central mechanism for this (see Section 3) is the filtering function associated with a variant
table.

This second approach is a form of product configuration, which has been a research
and development topic of its own for quite a while (Felfernig et al. 2014). For the T-shirt
example given here, the VDD approach and propagation to establish arc consistency suffice
as a simple configurator (see Section 3.4).

8In the example there are no “optional” characteristics. A value must be specified for each one.
9This is one topic of Haag and Riemann (2011), albeit in the context of a software configuration.
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Table 5 Compressed relation of
Fabric, Dye, and Price Fabric Dye Price

Cotton none 10.99

{ Mixed, Synthetic } none 9.99

Cotton GRCD#1 17.99

{ Mixed, Synthetic } GRSD#2 16.99

Cotton PICD#3 19.99

{ Mixed, Synthetic } PISD#4 18.99

Cotton PUCD#5 17.99

{ Mixed, Synthetic } PUSD#6 16.99

Cotton YCD#7 15.99

{ Mixed, Synthetic } YSD#8 14.99

3 Filtering function of a variant table

If the user has chosen the color Red for their T-shirt in the example in Section 2.1, then there
are only two rows in Table 1 left to be considered. All other choices must be compatible
with these two variants. The admissible choices can be filtered accordingly: Size is restricted
(filtered) to the set {Medium, Large}, and Imprint is restricted to the singleton set {ST W }.

3.1 Basic definition of a filtering function

The number of columns of the variant table, k, is referred to as its arity. Let v1 . . . vk denote
the column characteristics of a variant table. Let a finite domain Dj be given for each vj .
Then D = D1 × . . .×Dk is the solution space, the set of all conceivable variants. Cartesian
sets like D are here referred to as cuboids and denoted by boldface capital letters.

An arbitrary subset X ⊆ D consists of a set of tuples (x1 . . . xk) that can be interpreted
as the rows of a table. Thus the overall set of valid variants can always be seen as a table,
although it may not be feasible or useful to explicitly represent it as such if it is very large.
The term variant table will be taken to refer to subsets of the solution space that are intended
to be explicitly formulated and maintained as a table. A variant table will be denoted by T.
In general, sets X ⊆ D that are not Cartesian will be denoted by fraktur capital letters.

X ⊆ D can also be represented as an r×k matrix/array
(
xij

)
, where r denotes the number

of tuples (relational table rows), i is the index of the tuple (row), and j is the index of the
column. I.e., the value xij is for the characteristic vj .

With these definitions, the projection of X onto each vj is defined by (3):

πj (X) :=
r⋃

i=1

{xij ∈ X} (3)

The smallest encompassing cuboid of X is made up of all its column projections

π(X) := π1(X) × . . . × πk(X) (4)

If only one variant table T is being considered, we can take Dj = πj (T), i.e., the global
domains are just made up of the values that occur in T, because any feature not referenced
in T cannot occur in a product variant.
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Let a domain restriction Rj ⊆ Dj be given for each vj . Then

R = R1 × . . . × Rk (5)

is called the resulting overall domain restriction.
Given X ⊆ D and R, only the tuples in X ∩ R are still valid combinations. Accordingly,

for each column vj only the values in πj (X ∩ R) are still admissible (part of any valid
solution). The filtering function (6) of X, denoted by fX, is defined as

fX : 2D → 2D

R �→ π(X ∩ R) (6)

fX restricts (filters) Rj to πj (X ∩ R) =: R̂j .

3.2 Filtering using a database

As pointed out, if the user has chosen the color Red for their T-shirt in the example in
Section 2.1, then the there are only two rows in Table 1 left to be considered. These two
rows can be determined with the database SQL query

SELECT * FROM VT SIMPLE T SHIRT WHERE Color = ’Red’;

The required projections can also be obtained directly with SQL means:
SELECT DISTINCT Size FROM VT SIMPLE T SHIRT WHERE Color = ’Red’;

SELECT DISTINCT Imprint FROM VT SIMPLE T SHIRT WHERE Color = ’Red’;

Somewhat abusing formal notation, the filtering function fT of a variant table T could
be formulated as k SQL queries as in (7).

SELECT DISTINCT 〈vj 〉 FROM 〈T〉 WHERE 〈v1〉 IN 〈R1〉 AND . . . 〈vk〉 IN 〈Rk〉;
(7)

The queries (7) are “idealized”, because, whereas database systems do well with very
large tables, it may not be practical to formulate an actual SQL query as in (7) due to
its potential complexity. For this reason, dedicated algorithms operating on an in memory
representations of a table are mostly used for implementing the filtering function of a variant
table. The STR algorithm (Lecoutre 2011) is an example of such a special algorithm.

3.3 Filtering using binary decision diagrams

From a logical perspective, each possible feature (assignment of a value x to a characteristic
vj ) can be seen as a logical proposition, denoted by p(vj , x). p(vj , x) is considered as false
if the feature is not present in the variant being considered and true otherwise. Thus, each
proposition p(vj , x) is naturally associated with a Boolean variable, which, for simplicity,
we may also denote by p(vj , x).

There are s := ∑k
j=1 |Dj | distinct features referenced in the product model. Hence,

given any truth assignment to these s features, a variant table T, seen as a logical expression,
will evaluate to 1 (	/true) if a row exists with all its propositions being true. Otherwise, it
evaluates to 0 (⊥/false). In this sense, T defines a Boolean function:

FT : 2s → {0, 1} (8)

FT can be represented as a binary decision diagram in various ways (Knuth 2011), which
promise a compact representation. When such a representation is found, it offers a means
for fast evaluation of the filtering function.
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The size of such a diagram depends on the order in which the Boolean variables are
considered. The complexity of finding a good variable ordering is high, and heuristics are
employed in practice. Thus construction of a compact decision diagram is time consuming
and must be performed in advance of any evaluation. Accordingly, such an approach is
referred to as a compilation approach. The form of a binary decisions diagram considered
here is a VDD, see Section 4.

3.4 Arc consistency

If there is more than one variant table in the product model (as in the Renault model in
Section 7), these tables could be joined as in (2). This joined table would explicitly list all
valid variants. If it is not opportune to calculate this join, then an approximation of the fil-
tering function of the overall joined table can be obtained via constraint propagation among
the individual variant tables. Any reduction of a column domain achieved in filtering with
respect to a given variant table must be applied to all other tables that reference the same
characteristic to see if further filtering can occur. When constraint propagation has reached
a state where no further filtering can occur, this is called arc consistency. A treatment of arc
consistency is given in Bessiere (2006).

Arc consistency is a weaker concept than explicitly calculating all valid variants. How-
ever, practical experience with product configurators has established that it is fully adequate
in practical applications in the overwhelming majority of cases.10

4 Variant table decomposition

Let T be a variant table of arity k with column characteristics v1 . . . vk . Let Dj := πj (T) be
a finite domain for vj (the set of values occurring in the j -th column of T).

4.1 Column oriented decomposition

The basic idea to decompose T is very simple. Choose a column characteristic vj and a
value x ∈ Dj . Then T can be decomposed into three parts:

– B(T, vj , x): the collection of cells in the column for vj that contain the value x,
– L(T, vj , x): the rows in T that don’t have value x in column j , and
– R(T, vj , x): what remains after removing B(T, vj , x) and L(T, vj , x) from T.

Table 6 is a copy of Table 1 with the three parts identified as follows:

– The cells in B(VT SIMPLE T SHIRT,v5, MIB) are boxed.
– The cells in L(VT SIMPLE T SHIRT, v5,MIB) are displayed slanted.
– The cells in R(VT SIMPLE T SHIRT, v5,MIB) are in boldface.

Table 6 is sorted in a way that the cells in B(VT SIMPLE T SHIRT,v5,MIB) form a
contiguous block of values (boxed). Regardless of the sorting of a variant table, B(T, vj , x)

10Of course, it is possible to construct counter examples.
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Table 6 Decomposition of VT SIMPLE T SHIRT for MIB

Style Fabric Size Color Imprint ImprintColor Price(USD)

Standard Cotton Small Black MIB White 9.99

Standard Cotton

Standard Cotton

Medium Black

Black

MIB White 9.99

Large MIB White 9.99

Standard Cotton Medium Black STW Green 9.99

Standard Cotton Large Black STW Green 9.99

Standard Cotton Medium White STW Green 9.99

Standard Cotton Large White STW Green 9.99

Standard Cotton Medium Red STW Green 9.99

Standard Cotton Large Red STW Green 9.99

Standard Cotton Medium Blue STW Green 9.99

Standard Cotton Large Blue STW Green 9.99

will be referred to as the value block for vj and x. L(T, vj , x) is called the left subtable of
T for vj and x, and R(T, vj , x) is called the right subtable of T for vj and x.11

L(T, vj , x) and R(T, vj , x) can be decomposed in turn. The decomposition process can
be continued until only empty subtables remain. The question, which feature (column and
value) to decompose on at each non-empty subtable, will depend on a suitable heuristic (see
Section 5).

Each value block B(T, vj , x) represents all occurrences of the feature (vj = x) in T

and, as already noted, corresponds to a logical proposition p(vj , x) (see Section 3.3). If
p(vj , x) is true, then the evaluation of the Boolean function for T (8) depends only on the
further evaluation of a sub-function for R(T, vj , x). If it is false, then it depends only on
the further evaluation of L(T, vj , x).

In the sequel p(vj , x) will be referred to as a feature, even where it functions as a
proposition or Boolean variable.

4.2 Variant (Binary) Decision Diagram - VDD

The recursive decomposition of T leads to a decomposition tree. The tree’s root represents
the entire table. It is labeled by the value block B(T, vj1,x1) for the feature used to start
the decomposition. There are two branches from this root. One, termed the left child, repre-
sents the left subtable L(T, vj1 , x1). The other, termed the right child, represents the right
subtable R(T, vj1 , x1).

Each of these children can in turn have children if it can be decomposed further. An
empty left child is labeled by a special symbol ⊥ (false). An empty right child is labeled
by a special symbol 	 (true). This can be reasoned as follows. If a (sub)table has only one
column, then its right subtable is always empty, regardless of which feature is chosen for
further decomposition. The empty right subtable must evaluate to true (denoted by the spe-
cial symbol 	), since the (sub)table must evaluate to true when the chosen feature holds. If
a (sub)table consists of only one value block then its right and left subtables are empty. The

11Observe that R(T, vj , x) is a sub-space − not a subset − of the overall solution space D, i.e.,

R(T, vj , x) ⊆ D1 × . . . Dj−1 × Dj+1 × . . . × Dk �⊂ D1 × . . . × Dk
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Fig. 1 Basic scheme of a
decomposition

left subtable must evaluate to false (denoted by the special symbol ⊥), since the (sub)table
must evaluate to false when the (only) feature in the (sub)table does not hold.

Figure 1 is a depiction of this. The further decomposition of R(T, vj , x) is shown as two
empty children. This means that it represents a table that consists of only one value block
as discussed above.

Identical subtables may arise at different points in the decomposition tree. A goal of
minimal representation is to represent these multiple occurrences only once by transforming
the decomposition tree into a binary rooted directed acyclic graph, which is called a VDD.
VDD stands for Variant Decomposition Diagram. It might also stand for Variant Decision
Diagram.12 All leaves can be identified with one of two predefined nodes also labeled ⊥
and 	. Subsequently, all nodes labeled by the same feature p(vj , x) that have identical
children are represented by re-using one shared node.13

By conventions following (Knuth 2011), a link to the left child is called a LO-link, drawn
with a dotted line, preferably to the left, and a link to the right child is called a HI-link,
drawn with a filled line, preferably to the right. A LO-link is followed when the feature
in the node label is disbelieved/false. A HI-link is followed when it is believed/true. The
terminal nodes ⊥ and 	 are called sinks.

Figure 2 shows the VDD obtained for Table 1 using the preferred column heuristic
proposed in Section 5. There are two nodes with multiple parents. Both of these refer to
Color = ‘Black’ (v4). These are the nodes with re-use.

A VDD node labeled p(vj , x) will itself be denoted as

ν(vj , x) (9)

4.3 Evaluation of a VDD

Given a VDD V, a node ν(vj , x) in V as defined in (9), and an overall domain restriction R
as defined in (5), ν(vj , x) can be marked as out if x /∈ Rj . This requires the implementation
of an efficient membership test in the implementation.

A path in V from the root node νA to the sink 	 is admissible if it does not contain a
node marked out. V 
 R denotes the set of paths in V that are admissible under a given
restriction R. If there are no such paths, then R is inconsistent given V.

12The term Variant Decomposition Diagram stresses the central column oriented decomposition. The term
Variant Decision Diagram stresses the fact that it is a form of binary decision diagram (although not a BDD
(Knuth 2011)).
13The VDD implementation identifies re-use of nodes on the fly during VDD construction. Algorithm R in
(Knuth 2011) gives an explicit specification in the context of a BDD.



J Intell Inf Syst (2017) 49:59–86 71

F T

1:(1, Standard)|18

2:(2, Cotton)|17

3:(7, 9.99)|16

4:(5, MIB)|15

5:(5, STW)|14

7:(6, White)|6

6:(6, Green)|13

8:(3, Large)|5

8:(3, Large)|12

9:(3, Medium)|11

11:(4, Black)|10

12:(4, Blue)|9

13:(4, Red)|8

14:(4, White)|7

9:(3, Medium)|4

11:(4, Black)|2

10:(3, Small)|3

Fig. 2 VDD of table VT SIMPLE T SHIRT using the preferred column heuristic (see Section 5)

The complexity of the evaluation can be bounded by the following two observations:

– Let nj be the number of distinct nodes in V that pertain to the j -th column of T. Then
nj membership tests in Rj must be performed during the evaluation of V for the j -
th column to determine nodes that can be marked as out. This must be done for any
column that is properly restricted, i.e., where πj (T) �⊂ Rj .
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– An admissible node is a node that lies on an admissible path. Let n be the overall
number of nodes in V. The question of which nodes are admissible is related to the
problem of counting the admissible paths.14 After determining which nodes are out,
this has the remaining complexity of O(n) (c.f., Algorithm C in Knuth (2011)).

Each admissible path in V corresponds to an admissible value tuple in T. Hence, V 
 R
directly corresponds to T ∩ R.

Having found all admissible nodes, it remains to actually construct the resulting domain
restrictions R̂j . This entails forming the union of all node labels of admissible nodes for the
j -th column. From a database perspective, we can interpret R̂j as the result set of the con-
ceptual SQL query (7). An iterator over the admissible paths can be implemented by starting
from a first admissible path and then finding further admissible paths via backtracking over
the admissible nodes.

4.4 Zero-suppressed (binary) Decision Diagram - ZDD

A ZDD is a cousin of a BDD (Knuth 2011). Both have the same data structure. The inter-
pretation of a ZDD node is different from that of a BDD node, but both depend on a total
ordering of the decision variables. In a BDD, if a node for the p-th Boolean variable in
this ordering is directly linked to another node for the q-th variable, any variable that falls
between these two is treated as being indifferent (true or false) in that path. In a ZDD any
such variable is treated as being false.

A VDD also shares the same basic data structure as a BDD and ZDD. But, as the column
oriented decomposition process described in Section 4.1 allows complete freedom of choos-
ing the next feature to further decompose on at any given point, a VDD does not depend on
an underlying ordering of the features. In a VDD, any feature not in the subtable represented
by a node is treated as false in the subgraph below it.

If we totally order the set of features in some fashion and require that the decomposition
respects this ordering, i.e., we always choose the first feature in this order that is applicable
in a given subtable, then the resulting VDD is also a ZDD. To see this: Given two linked
nodes ν(vj1 , x1) and ν(vj2 , x2) (i.e., the HI-link of ν(vj1 , x1) points to ν(vj2 , x2)), let vj3 be
any variable that falls between vj1 and vj2 in the given variable ordering. Then ∀x ∈ Dj3 :
p(vj3 , x) = f alse on any path starting at ν(vj1 , x1), because if a node ν(vj3 , x

∗) occurs on
a path after ν(vj1 , x1) it would have to have been placed before ν(vj2 , x2).

Heuristics that do not follow an overall ordering of the features have been successfully
tried in the VDD implementation, which does not assume that a VDD is a ZDD. However,
the conceptual advantage of dealing with a ZDD is that all results and algorithms known for
ZDDs apply (Knuth 2011; Mishchenko 2001).

The currently favored preferred column heuristic in Section 5 is based an an ordering of
the features. Figure 2 depicts a VDD for the simple T-shirt (Table 1) that is also a ZDD.15

14Counting will determine whether a node has paths without nodes marked out to 	. Such a node is
admissible if at least one of its parents is admissible.
15Each node in Fig. 2 is labeled in the form 〈n : (j, val)〉|m. The labels are artifacts of the current VDD
implementation. (j, val) designates the feature p(vj , x), n is the ordinal giving the position of this feature
in the overall total ordering of the features, and m is the node number assigned during construction (a unique
identifier − not necessarily in the natural order).
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There are 13 features in Table 1. Their order is

p(v1, Standard), p(v2, Cotton), p(v7, 9.99), p(v5, MIB),

p(v5, ST W), p(v6,Green), p(v6,White), p(v3, Large), p(v3,Medium)

p(v3, Small), p(v4, Black), p(v4, Blue), p(v4, Red), p(v4,White)

5 Heuristics

The size of a VDD obtained for a table T depends on which feature is chosen for decom-
position at each step. Let S be the set of features occurring in T. If |S| = s, then there are
s! (s factorial) ways of ordering S. If we base the decomposition decisions on this ordering,
each different ordering may lead to a differently sized VDD. There are even more ways of
constructing a VDD if we do not follow such a global ordering (and are outside the realm
of a ZDD).

The usual way of finding a good ordering is to start from a good guess and then improve
on this by exploring local perturbations of the ordering. If the initial guess is not already
good, this exploration can be expensive in terms of computational resources (both time
and space). The heuristic proposed in Algorithm 1 is the “good guess”. So far it seems
surprisingly satisfactory without further tweaking.

Algorithm 1 (Preferred Column Heuristic)

1. Sort the k columns of T by |Dj | ascending (largest number of values last)
2. Make the root node of the VDD choosing the first value in the first column for

decomposition
3. While nodes with a non-terminal subtable remain: Always choose the first value in their

first column for decomposition

A column heuristic is a generalization of the preferred column heuristic that substitutes
any given sorting of the columns in the first step. In particular, the natural order of the
columns implicit in the definition of T may be used. Note that the size of a VDD constructed
using a column heuristic does not depend on the ordering of the features in Dj . To see this,
note that the value block used in decomposition slices T horizontally.16 The slices obtained
overall with respect to all values in the first column are the same, regardless of the order of
the values in a column. In Table 6 there are two “slices” for column four (values MIB and
STW). Transposing them does not affect their children (the respective subtables).

6 Compression, merged VDD nodes, and MDDs

6.1 Set-labeled VDD nodes

Given a solution space D and a variant table T ⊆ D, a Cartesian subset (cuboid) C ⊆ D
will be more specially referred to as a c-tuple if C ⊆ T. T can be maintained in a com-
pressed form in a spreadsheet using disjoint c-tuples. Conversely, possibilities of finding a

16The terminology of horizontal slicing suggests itself, but is also inspired by Gharbi et al. (2014).
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compression of T into disjoint c-tuples is sought, i.e., for exporting the table externally to a
spreadsheet. A heuristic approach to this is presented in Katsirelos and Walsh (2007).

The VDD implementation optionally allows compressing a VDD that was constructed
using a column heuristic (see Section 5) by merging several nodes into one set-labeled node.
Let V be a VDD constructed with a column heuristic. Let ν∗(vj ,X) be a node labeled with
the set X := {x1 . . . xh} ⊆ Dj . Then ν∗(vj ,X) represents the disjunction p(vj , x1) ∨ . . . ∨
p(vj , xh). A tuple of nodes in a path from the root node of a VDD to the sink 	 represents
a c-tuple (not a value tuple) if it contains set-labeled nodes.

Note that a VDD constructed with a column heuristic has the following properties not
necessarily applicable to a VDD in general:

– All nodes linked via LO-links will always pertain to the same characteristic vj . This
follows from the fact that the columns of any non-empty left subtable of a table T are
the same as the columns of T. The heuristic says to always choose from the first column.

– A node ν(vj , x) is always (j − 1) HI-links distant from the root node. This follows by
iterating the argument that if a table T is decomposed by a feature p(v1, x) referencing
its first column, then its right child will be from the right subtable R(T, v1, x), which
has the second column of T as its first column by construction.

The subgraph composed of a node and all its direct descendants that can be reached from
the node following only LO-links is defined as the l-chain of the node. All nodes in an l-
chain will pertain to the same vj . A set of nodes in an l-chain that all have the same right
child (HI-link) represents the disjunction of the tuples for the admissible paths though the
nodes in the set.

Figure 3 is a graph of the T-shirt using set-labeled nodes (the top three nodes for Standard
(Style), Cotton (Fabric), and 9.99 (Price) have been omitted for space reasons).17 It shows
a reduction by merging nodes of the VDD in Fig. 2. Each of the three nodes that are sets
correspond to an l-chain in Fig. 2:

– The nodes numbered 11 and 12 (Medium and Large) in Fig. 2 − with the common right
child node number 10 (Black) − can be merged into one node (with node number 16 in
Fig. 3).

– The nodes numbered 3, 4 and 5 (Small, Medium, and Large) in Fig. 2 − with the com-
mon right child node 2 (Black) − can be merged into one node (with node number 3 in
Fig. 3).

– The nodes numbered 7, 8, 9 and 10 (White, Red, Blue and Black) in Fig. 2 − with the
common right child 	 − can be merged into one node (with node number 5 in Fig. 3).

After merging nodes, a VDD constructed with the preferred column heuristic yields
comparable compression to c-tuples for the simple examples given in Katsirelos and Walsh
(2007). It would be interesting to see if this generalizes to more complex tables. However,
there is a key difference in the measurement of compression in the two approaches. In
Katsirelos and Walsh (2007) the goal is to find a minimal number of c-tuples. In constructing
a VDD, the goal is always to minimize the number of nodes. This is not the same objec-
tive, as VDD paths may share nodes (which would correspond to c-tuples sharing common

17A merged set-labeled node is assigned an ordinal number (“variable number”) n in the depicted label
(〈n : (j, val)〉|m) outside the range used for numbering the features.
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F T

4:(5, MIB)|9

5:(5, STW)|8

7:(6, White)|46:(6, Green)|7

15:(3, [Large, Medium, Small])|317:(3, [Large, Medium])|6

16:(4, [Black, Blue, Red, White])|5 11:(4, Black)|2

Fig. 3 VDD of simple T-shirt from Fig. 2 with set-labeled nodes

tails). For example, the compression of a variant table containing a column with a unique
variant identification number to c-tuples will have a c-tuple for every variant, but it can be
compressed using a VDD when there are shared tails.

The VDD implementation provides iteration in two stages for VDDs with set-valued
nodes: an iteration over the admissible c-tuples and then an iteration over the c-tuple. Iter-
ation over the c-tuples allows generating an external representation of T in the form of
c-tuples.

6.2 Evaluation of a VDD with set-Labeled nodes

As in Section 4.3, let V be a VDD and R be an overall domain restriction as defined in (5).
If V has set-labeled nodes, this requires a different evaluation in the following two respects.

– For a set-labeled node ν∗(vj , X) in V. ν∗(vj , X) is marked as out if X ∩ Rj = ∅. This
requires the implementation of an intersects test in the implementation (instead of the
membership test x ∈ Rj ). The intersects test can be implemented efficiently if Dj is
sorted, but it is more costly than the membership test.

– In a VDD V with set-labeled nodes an admissible path corresponds to an admissible
c-tuple, not an admissible value tuple. But, not all value tuples in an admissible c-tuple
need to be in R. To see this, suppose that the variant table T ⊂ D compresses to a single
c-tuple C = T. If R ∩ T �= ∅, then C is an admissible c-tuple. But, if R �⊂ T, there are
value tuples in the admissible c-tuple C that are not in R. In this case the result set (7)
is obtained by additionally intersecting each admissible c-tuple C with R.

The number of nodes may be significantly reduced by merging to set-labeled nodes.
However, whether this will yield a performance gain in evaluation over the unmerged VDD
is an open question (see Sections 7.3 and 7.4).
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6.3 Continuous intervals and unbounded domains in VDD node labels

In business practice, it may be required to allow continuous real-valued intervals to occur in
both the restrictions Rj and (non-relational) variant table cells.18 The VDD implementation
allows and handles this by providing for VDD nodes ν∗(vj , I ) labeled with continuous intervals.

During the variant table decomposition, when constructing a VDD, an interval is treated
as an atomic unit like a value, and the interval is used to label the node. Merging of nodes
extends naturally to interval nodes. The label of a merged node is the set union of the node
labels of the nodes that were merged. A union of two intervals may result in a set represented
by two intervals, or it may be that the intervals can be merged into one. So the labels of
nodes must allow a general form expressing a union of several intervals.

During evaluation of a VDD, a node that references one or more intervals in its label is
treated like other set-valued nodes by applying an intersects test. Iteration over the VDD
again yields c-tuples, but these may now contain components containing continuous inter-
vals. It is not meaningful to further iterate over a continuous interval itself, or over an infinite
set in general.

A “wild card” (“*”) expression referring to a non-numeric domain is another useful
construct. Table 2 is an example how a wild card expression could be used externally as
a syntactic short-cut to listing the entire global domain. However, a wild card expression
could also be used for an unbounded domain, denoted here by �. Any intersection Rj ∩ �

yields Rj . An example of a characteristic with an unbounded domain for a T-shirt would
be ImprintText, which would allow specifying “free text”. Numeric intervals may also be
unbounded or partially unbounded, i.e., −∞ and +∞ are legal interval bounds.

6.4 Multi-valued Decision Diagrams (MDDs)

One currently favored way of compiling the constraints in a product model is to an (ordered)
Multi-valued Decision Diagram (MDD) (Andersen et al. 2007; Hadzic et al. 2008; Berndt
2016; Berndt et al. 2012). An MDD is a non-binary rooted directed acyclic graph. Each
MDD node is labeled by a non-Boolean variable mvj from an ordered set {mv1 . . . mvp}.
An MDD node can have several outgoing links. A link from a node for variable mvj always
leads to a node for mvj+1, or to the sink 	 (see Andersen et al. (2007)).

If a variant table T can be compiled in several different ways, it is obvious that these
underlying representations for T can be mapped to one another. For a VDD compiled with
a column heuristic and merging to set-labeled nodes, there is a direct mapping to an MDD:
Let the MDD variables mvj correspond to the k characteristics vj . Map each VDD node
ν∗(vj ,X) to an MDD node for mvj with an outgoing link for each element xi ∈ X to a
node for mvj+1. Figure 4 is an MDD obtained from the VDD depicted in Fig. 3 with set-
labeled nodes. Conversely, it is also possible to map an MDD representing a table to a VDD
by inverting the above mapping.19

Different approaches suggest different heuristics and different evaluations. The simple
column oriented heuristic may not suggest itself when thinking in terms of MDDs. Indeed,

18A continuous interval states that any feature with a value from the interval is considered as feasible (an
infinite disjunction).
19In Section 3.1 it was observed that any subset X of the solution set D can be seen as a “table”, so this
correspondence generalizes to MDDs representing arbitrary sets of constraints.
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Fig. 4 MDD corresponding to VDD in Fig. 3 with set-labeled nodes

in Andersen et al. (2010) BDD packages are suggested for finding a good variable ordering.
The MDD is then extracted from the BDD. The evaluation for set-labeled nodes using an
intersects test given in Section 6.1 may not suggest itself in the MDD paradigm either.

Thus, the question of which representation (VDD or MDD) is more adequate for com-
piling and evaluating a variant table has not yet been determined. VDDs bring together
concepts from databases, c-tuple compression, and decision diagrams for a restricted appli-
cation domain. This appears to be very fruitful. Applications using MDDs have been
focussed on compiling all constraints in a product model at once, which may be a harder
problem (Andersen et al. 2010; Berndt 2016).

Implementational complexity is also a concern for business software that is to be
deployed in practice. The VDD implementation (see Section 7.1) is based on a binary data
structure, which was straightforward to implement without additional machinery. A com-
parison of this with the implementational complexity of existing MDD packages has not yet
been done.
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7 Empirical results

7.1 The java VDD implementation

The functionality, performance, and simplicity of the approach presented here is validated
by a VDD implementation in Java. This was designed to be able to replace variant table
handling in a legacy configuration environment such as the SAP VC or the SAP IPC.

The VDD implementation has not yet been deployed in practice, but it was tested for
functional correctness against 238 variant tables as described in Haag (2015b). Functional
correctness means, that the results of performing the same configuration with and without
VDDs yielded identical results. The performance results obtained there show the promise
of the VDD approach.

The compression and evaluation results in the following subsections are obtained using
this implementation. Time measurements used the maximal accuracy available in Java,
System.nanoTime(), on an Apple Mac mini with 2.5 GHz Intel Core i5 and 8GB
memory.20 However, all results are given rounded to milliseconds (milli).

The VDD implementation currently supports the following data types for characteristics:
string, integer, float (Java double), and numeric interval. The data type decimal can be
substituted either using strings, integers, or doubles, but this data type should receive more
support in the future. As the examples show, string is a very natural data type for business
applications.

7.2 Compression results for the T-shirt

The simple T-shirt is easily represented as in Table 1. Maintenance of the T-shirt variants
in the extended T-shirt example of Section 2.2 is more tedious. A business may choose to
maintain the four separate tables (Tables 2, 3, 4, and 5) in compressed form as c-tuples.
However, it is also possible to maintain the equi-join of these four tables (the lefthand side
of (2)) as a database table with more than 100000 rows.

Table 7 gives the compression results for each of these T-shirt tables. In each case, the
compilation into a VDD using the preferred column heuristic (see Section 5) was from a
relational representation of the table.21

The higher the compression ratio, the more advantageous the VDD is compared to a
relational table. For the joined T-shirt table the compression ration is 99.95 %. Here, the
VDD promises huge performance benefits (see Section 7.4). The ratio of the number of
features s to the number of table cells N = kr is also important. In the extreme case that
s = N no compression is possible. However, a VDD is then not worse off than a column
oriented database.

7.3 Compression of the Renault Megane (RM) variant tables

The Renault Megane (RM) model can be represented as 113 variant tables. Table 8 gives
summary information about the distribution of the sizes of the parameters k (arity), s (num-
ber of distinct features), and N = kr (overall size) of each table. Overall, the sizes of the

20Memory is not an issue so far. The same tests with similar results were performed on a MacBook Pro with
2.5 GHz Intel Core i5 and 4GB memory.
21The fact that the number of c-tuples differs from that evident in Tables 2, 3, 4, and 5 is due to the effect of
the heuristic employed in the table compilation.
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Table 7 Compression of T-shirt tables

Table k r s n compr% t (milli) n∗ c

Simple T-shirt (Table 1) 7 11 13 16 79.22% 0 10 2

Styles (Table 2) 3 52 14 14 91.03% 1 6 3

Dyes (Table 3) 3 24 21 37 48.61% 1 28 15

Imprints (Table 4) 3 2007 333 441 92.68% 31 14 5

Prices (Table 5) 3 15 20 20 55.56% 0 17 8

Extended T-shirt (join) 8 120120 373 528 99.95% 2233 134 57

Legend: k is the arity, r the number of rows, s the number of distinct features, n the number of unmerged
VDD nodes, compr% := (N − n)/N (with N := kr , the number of table cells) the compression ratio, and
t the compilation time. Also given are n∗ the number of nodes of the merged VDD and c the number of
c-tuples that result from this

RM variant tables are less diverse than those of the 238 variant tables described in Haag
(2015b).

Table 9 gives the average compression results for all 113 tables in the same format as
Table 7 for T-shirts. Compression results are given for five individual tables: the table with
the the largest arity (k), largest number of rows (r), smallest, median, and largest number
of features (s). The other 108 RM tables are sorted by s and divided into four equal blocks.
The average compression is given for each block.

Again, the compression ratio of the largest table is 99.95 %. Small tables are less com-
pressible than big ones, but the overall average is close to 80 %. This means that preferred
column heuristic is doing extremely well with the RM variant tables.

In order to have a simple test for the quality of the preferred column ordering when
constructing a VDD, the results it produces were compared with those produced by using the
natural column heuristic (that uses the order of columns externally given in the definition
of the variant table). The two column heuristics will not differ, if the table is already in
the preferred column order. However, if a significant proportion of tables compiles better
in natural order than for the preferred “best guess”, then this is a signal that it would be
worthwhile to pursue a further search for a better column order.

It turns out that for the RM variant tables the preferred column heuristic is strictly domi-
nated by the natural column heuristic for 58 variant tables. Thus, for the RM variant tables
the natural column order in which the tables are presented is better in about half of the tables.
This was not the case for the 238 variant tables evaluated in Haag (2015b). On average,
the preferred column heuristic does outperform the natural column heuristic by 40 nodes.

Table 8 Size statistics on 113 Renault Megane (RM) variant tables

Range k r s N

Average 5 1724 35 11400

Minimum 2 3 4 6

Median 6 79 27 364

Maximum 10 48721 99 292326

Legend: column definitions k, r , and s as for Table 7. N = kr is the number of table cells
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Table 9 Compression of RM variant tables with preferred column heuristic

Table k r s n compr% t (milli) n∗ c

Average 5 1724 35 92 77.83 % 31 48 24

Min s 2 3 4 5 16.67 % 0 4 2

Median s 6 79 24 68 85.65 % 1 49 22

Max s 9 164 99 288 80.49 % 4 229 56

Max k 10 342 57 343 89.97 % 4 295 119

Max kr 6 48721 87 142 99.95 % 1007 52 45

Avg tables 1 − 27 4 41 14 32 60.90 % 0 21 11

Avg tables 28 − 54 6 68 25 69 81.73 % 3 51 21

Avg tables 55 − 81 4 213 36 67 73.95 % 1 28 15

Avg tables 82 − 109 6 6617 63 178 95.35 % 120 73 45

Legend: column definitions as for Table 7

Table 10 shows the compression results using the natural column heuristic. It shows the
overall average and results for the five individual tables given in Table 9 (the first six lines).
The preferred column heuristic loses in two of the five individual cases shown (Median s
and Max k), as can be seen when comparing with Table 9.

Finally, it remains to evaluate the effect of merging nodes. For the largest table (Max
N) with 292326 table cells, the heuristics performed as follows: The natural column heuris-
tic produced 310 unmerged and 44 merged; The preferred column heuristic produced 142
unmerged and 58 merged. Although the preferred column heuristic is better than the natu-
ral column heuristic without merging, merging is better using the VDD produced with the
natural column heuristic than using the smaller one produced with the preferred column
heuristic. The best merged VDD with only 44 set-valued nodes has about a factor of three
less nodes than the best non-merged VDD. But, as noted, there is some additional effort in
run-time evaluation. The net effect of this trade-off is still under evaluation (see Section 7.4).
The best merged VDD with 44 nodes is small enough to be meaningfully visualized graph-
ically. Figure 5 gives a flavor of this. Due to limitations on the size of figures here the graph
is reproduced too small to easily decipher the node labels, but gives an impression of its
structure.

For completeness, a non column oriented heuristic called h1 was also applied to the RM
variant tables.22 There were four tables for which h1 outperformed the preferred column
heuristic and 15 for which h1 outperformed the natural column heuristic. However, in no
case was h1 better than the best choice of the preferred or natural column heuristic.

So, in summary, the preferred column heuristic wins overall, but other heuristics (both
column oriented and non-column oriented) cannot be precluded from consideration. A
search for a better column order should be provided in the VDD implementation in the future
(where constraints on compilation time allow this).23 The search for general (non-column)
heuristics would be a more advanced topic.

22Heuristic h1 is the first heuristic implemented (see Haag (2015b)). It was discarded, because it has non-
linear compile times, which makes its application to large tables unattractive.
23Berndt (2016) provides some results on this for MDDs that may prove useful here as well.
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Table 10 Compression of RM variant tables with the natural column heuristic

Table k r s n compr% t (milli) n∗ c

Average 5 1724 35 132 78.37 % 29 47 22

Min s 2 3 4 5 16.67 % 0 4 2

Median s 6 79 24 62 86.92 % 0 51 20

Max s 9 164 99 356 75.88 % 2 349 113

Max k 10 342 57 337 90.15 % 3 275 155

Max kr 6 48721 87 310 99.89 % 1285 44 13

Legend: column definitions as for Table 7

7.4 Performance measurements for filtering the RM tables

The runtime performance results given here are intended as a statement of what can be
expected in practice. The focus is on the filtering function and arc consistency, because
these are at the core of what is needed to support (interactive) product configuration (see
Section 2). The VDD implementation (see Section 7.1) does not currently include a propa-
gation algorithm for arc consistency. Hence, a naive constraint propagation algorithm was
implemented outside of the actual VDD implementation. “Naive” means that no effort was
made to in any way optimize the propagation, and better performance results could be
expected after tuning this algorithm.

All VDDs for the performance tests were compiled using the preferred column heuristic
− with and without merged set-valued nodes. There are overall 99 characteristics used in
the RM model. The index p = 1 . . . 99 will be used to refer to characteristics in this total set
(vp) and their domains (Dp). The index j = 1 . . . k will be used to refer to characteristics
of a particular variant table with arity k, as hitherto.

FT

1:(1, B64)|45

2:(1, D64)|44

91:(2, [E1, E2, E3, E5])|6

3:(1, E64)|43

12:(2, E2)|19

90:(3, [M5, M6, ..., M8])|5

4:(1, F64)|42

96:(2, [E0, E1, ..., E3])|2113:(2, E3)|1825:(3, MF)|16

5:(1, J64)|41

12:(2, E2)|25

95:(3, [MB, MC, ..., MG])|20

6:(1, K25)|40

98:(2, [E2, E3])|26

97:(3, [MJ, MK, MY])|24

7:(1, L64)|39

100:(2, [E0, E1, E3])|28

8:(1, S64)|38

101:(2, [E1, E2, E3])|29

99:(3, [M6, MD, ..., MF])|27

9:(1, V25)|37

104:(2, [E1, E2])|34 12:(2, E2)|36

103:(3, [M9, MA, ..., MK])|33 28:(3, MJ)|35

89:(4, [AFSU, ALLE, ..., AUST])|23

82:(5, Autre497)|22

89:(4, [AFSU, ALLE, ..., AUST])|32

82:(5, Autre497)|31

102:(6, [EU93, EU96])|30

89:(4, [AFSU, ALLE, ..., AUST])|4

82:(5, Autre497)|3

87:(6, EU96)|10

89:(4, [AFSU, ALLE, ..., AUST])|9

82:(5, Autre497)|8

90:(3, [M5, M6, ..., M8])|1794:(3, [M5, M6, ..., M8])|1564:(4, IRLA)|14

93:(4, [AFSU, ALLE, ..., AUST])|1382:(5, Autre497)|12

83:(5, JANDIF)|11

92:(6, [EU00, EU96])|7 88:(6, [CRIT1503, EU00, EU93, EU96])|2

44 nodes represent 292326 cells (6 48721)

Fig. 5 Merged VDD of largest table in Renault Megane (RM) model
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Table 11 Performance results for domain restrictions

unmerged merged

Averages n t tN = t/n n t tN = t/n

overall 92 2 0.04 48 3 0.15

Small VDDs 30 1 0.08 8 1 0.31

Medium VDDs 67 1 0.02 41 3 0.09

Large VDDs 151 2 0.02 81 5 0.06

Legend: VDDs sorted ascending by number of VDD nodes n (separately for merged and unmerged com-
pilation), t average time for 100 filterings per table in milliseconds, tN = t/n average time per node in
milliseconds

Three different evaluations were measured for each of the RM tables Tq , q = 1 . . . 113:24

1. Simple filtering was used to determine all column domains Dj of Tq without any prior
restriction (R = �).

2. Simple filtering was applied to Tq with a restriction R1 ⊂ D1 of the first column to the
first half of its domain.

3. Constraint propagation to achieve arc consistency using all RM tables was applied after
setting the first value in D1 of Tq (p(v1, x1) = true).

For the first two evaluations, all unit tests were repeated 100 times in order to get results
meaningfully expressible in milliseconds. For the first evaluation, the total (summed) time
needed to perform this test 100 times for each table was 14 milliseconds (unmerged) and
21 milliseconds (merged). For the second evaluation, the total (summed) time needed was
231 milliseconds (unmerged) and 401 milliseconds (merged). For these two evaluations,
measurements were also performed for each VDD separately.

Table 11 gives averages (for 100 repetitions of the test), both for VDDs with and without
merged set-labeled nodes. The VDDs for the tables are sorted by number of nodes (ascend-
ing), separately for the VDDS with and without merged nodes. The VDDs are divided into
three equal groups by size. Averages are given for the overall set of VDDs, the first third
(small VDDs), the second third (medium VDDs), and the last third (large VDDs). The evalu-
ation time of a VDD is expected to mainly depend the number of its nodes (see Section 4.3).
Table 11 also shows averages for evaluation time per node. The results show that for smaller
tables some other effects are noticeable that lead to somewhat higher evaluation times.

For the third evaluation, constraint propagation was first done in an initial state with-
out external restrictions to determine the “real” domains of the 99 characteristics vp, p =
1 . . . 99, and these domains were cached. It took 42 milliseconds to achieve this initial
arc consistency both for unmerged and merged VDDs (see Table 12). The performance of
merged and unmerged VDDs did not differ much in the further tests. Table 12 gives the
overall average, the minimum, median, and the maximum times (in milliseconds) of achiev-
ing arc consistency after restricting one characteristic to its first value and setting all other
domains to the cached initial domains.

24The 113 RM tables are extracted from a model expressly published to enable performance measurements
(Andersen et al. 2010). As the focus in Andersen et al. (2010) is somewhat different, the results reported
there do not directly compare.
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Table 12 Performance results
for arc consistency unmerged merged

t (millis) t (millis)

Initial 42 42

Average 3 4

Min 0 0

Median 2 4

Max 14 15Legend: t evaluation time in
milliseconds

From a practical perspective, these results are very good. Table 12 shows that the average
times for constraint propagation are below 10 milliseconds, and the longest time is below
50 milliseconds (below 20 once the initial domains have been determined).

8 Summary and conclusions

In effect, the VDD approach presented here offers a reduced database functionality for
querying variant tables as in (7), as well as iteration over the result sets. The functionality
provided is tuned to checking the consistency of a product configuration and supporting
the filtering of inadmissible product features. This is needed for constraint propagation to
achieve arc consistency. The idea of decomposing a variant table into subtables and reducing
the ensuing decomposition tree to a binary directed acyclic graph as set forth in Section 4
has proven very fruitful. Large variant tables from actual product models have so far been
substantially compressible. In this respect the VDD compression competes both with the
compression inherent in a column-oriented database, as well as that obtainable with other
decision diagrams (Knuth 2011).25

As pointed out in Section 4.4, a VDD shares the same data structure as a ZDD, but is
not in itself necessarily a ZDD. The VDD implementation (see Section 7.1) is not based
on a VDD being a ZDD. However, the current heuristics used to construct VDDs do result
in these VDDs being ZDDs. The conceptual advantage of this is that all results and algo-
rithms given for ZDDs in Knuth (2011) then apply. Accordingly, a description of the own
algorithms used for constructing a ZDD from the decomposition tree has been omitted here.

Besides querying a VDD, the maintenance of variant tables is an important practical
aspect. Since variant tables are often very compressible, maintenance in a spreadsheet in the
form of c-tuples suggests itself. It is easy to expand such c-tuples into a relational form of
value (feature) tuples. The converse is the subject of research, such as Katsirelos and Walsh
(2007). The column heuristics proposed in Section 5 together with merging VDD nodes to
set-labeled nodes (Section 6.1) offer a way to obtain an external representation of a variant
table in compressed form as c-tuples, and this is also a contribution to this research.

A column heuristic is a proposed static heuristic for constructing a VDD with fast com-
pilation times (see Section 7.3). Moreover, the preferred column heuristic has yielded very

25It would be interesting to investigate whether a column-oriented database could in itself be directly used in
constraint propagation. This was proposed by a colleague at SAP some time ago, but has not been followed
up on.



84 J Intell Inf Syst (2017) 49:59–86

acceptable overall compression (although not necessarily optimal). This means that it facil-
itates table maintenance through a spreadsheet-like external representation, which can be
compiled back to a VDD quick enough to be acceptable in user interaction (see Section 7.4).

Table maintenance with VDDs directly (without generating an explicit set of c-tuples) is
a current development topic for the VDD implementation. The rationale for this is that some
variant tables cannot be compressed using c-tuples, but may be compressible using VDDs.
For example, if a column VariantID is added for the extended T-shirt in (1) that assigns a
unique identifying number to each possible T-shirt variant, then any representation as a list
of tuples would have one tuple for each variant, and is therefore not compressible. However,
a compression using a VDD is still possible for shared subtables.

VDDs support the following features that either exist in the legacy environment of the
SAP VC ((Blumöhr et al. 2012)) or are required by customers:

– String and numeric data types (see Section 7.1 for details)
– Numeric intervals in table cells and restrictions (see Section 6.3)
– Negative tables (listing excluded combinations of product features)

Negative variant tables are the subject of Haag (2015a), but this is considered out of
scope here, as the compression possible due to negation did not prove to be additionally
beneficial over the straight VDD compression described here.

As pointed out in Section 6.4, a VDD constructed with a column heuristic and subsequent
merging to set-labelled nodes allows a direct mapping to and from an MDD. The VDD
implementation has so far not been compared with MDD implementations. But, in the event
that an MDD package is deployed in a business, the heuristic approach to generating VDDs
could be used to generate MDDs there. Conversely, a VDD offers a binary representation
of an MDD. This could be used in evaluating the MDD should that prove opportune. For
example, the complexity of evaluation in a VDD directly depends on its number of nodes
(see Sections 4.3 and 4.3), which allows precise performance predictions.

Besides the topic of providing direct support for variant table maintenance, the following
topics are also subjects for future work:

– Improved performance for the evaluation of set-labeled nodes.
– Dynamic determination of a best column order. For MDDs this is treated in Berndt

(2016).
– Providing support for an equi-join (��) operation on tables as in (2). This is ongoing

development.
– Using VDDs to store problem solving states inside (legacy) arc consistency and

constraint satisfaction algorithms. For MDDs this is the topic of Andersen et al. (2007).
– More closely comparing the MDD approaches with the VDD approach.

The goal of the work with MDDs in Berndt (2016) and Berndt et al. (2012) and with
BDDs in Matthes et al. (2012) is to check consistency given very large sets of con-
straints. A competing approach looked at there is to use SAT solving (determining Boolean
satisfiability). As the goal here is different, SAT-solving was not considered.

To sum up: The current state of the VDD implementation meets the goal of providing
fast compression and evaluation of variant tables in a form that is suitable for deployment in
a legacy environment with low cost and risk. As tables are treated individually, it is always
possible to fall back on the existing legacy solution for any tables that may not be compilable
to a VDD. The fast compile times are important in an interactive table maintenance setting.
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Rather surprisingly, evaluation of merged VDDs with set-labeled nodes is currently
slower than their non-merged counterparts. The author believes this is due to a suboptimal
implementation, and one topic of future work is trying to improve this. The sizes of the
actual files used to store a VDD is noticeably smaller using set-labeled nodes, so they do
provide a definite advantage.

Finally, a more general research topic would be to more formally investigate commonal-
ities between the following three approaches:

– BDDs in various flavors ((Knuth 2011))
– Compression into c-tuples and constraint slicing ((Gharbi et al. 2014; Katsirelos and

Walsh 2007))
– Read optimized databases (such as column-oriented databases ((Stonebraker et al.

2005))).

The VDD approach has elements of all three of the above. There are differences in
the underlying technology that needs to be deployed and in the heuristics that suggest
themselves.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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