
J Intell Inf Syst (2016) 46:213–233
DOI 10.1007/s10844-014-0353-0

An efficient and flexible scanning of databases of protein
secondary structures
with the segment index and multithreaded alignment

Dariusz Mrozek · Bartek Socha · Stanisław Kozielski ·
Bożena Małysiak-Mrozek

Received: 27 February 2014 / Accepted: 22 December 2014 /
Published online: 30 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Protein secondary structure describe protein construction in terms of regular spa-
tial shapes, including alpha-helices, beta-strands, and loops, which protein amino acid chain
can adopt in some of its regions. This information is supportive for protein classification,
functional annotation, and 3D structure prediction. The relevance of this information and
the scope of its practical applications cause the requirement for its effective storage and pro-
cessing. Relational databases, widely-used in commercial systems in recent years, are one of
the serious alternatives honed by years of experience, enriched with developed technologies,
equipped with the declarative SQL query language, and accepted by the large community of
programmers. Unfortunately, relational database management systems are not designed for
efficient storage and processing of biological data, such as protein secondary structures. In
this paper, we present a new search method implemented in the search engine of the PSS-
SQL language. The PSS-SQL allows formulation of queries against a relational database in
order to find proteins having secondary structures similar to the structural pattern specified
by a user. In the paper, we will show how the search process can be accelerated by multi-
ple scanning of the Segment Index and parallel implementation of the alignment procedure
using multiple threads working on multiple-core CPUs.

Keywords Bioinformatics · Proteins · Secondary structure · Query language · Information
retrieval · Parallel programming · Alignment · Structure matching · SQL · Databases

This work was supported by the European Union from the European Social Fund (grant agreement
number: UDA-POKL.04.01.01-00-106/09). The work was performed using the infrastructure supported
by POIG.02.03.01-24-099/13 grant: “GeCONiI-Upper Silesian Center for Computational Science and
Engineering”.

D. Mrozek (�) · B. Socha · S. Kozielski · B. Małysiak-Mrozek
Institute of Informatics, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland
e-mail: dariusz.mrozek@polsl.pl

mailto:dariusz.mrozek@polsl.pl


214 J Intell Inf Syst (2016) 46:213–233

1 Introduction

Structural analysis of protein molecules can be performed on one of four organizational lev-
els, i.e. primary, secondary, tertiary, and quaternary structure (Branden and Tooze 1999).
Primary structures are usually the basic source of information on the composition of a pro-
tein molecule in terms of what types of amino acids the protein is composed of and what
is their order in a linear chain of the protein. Primary structure simply covers amino acid
sequence of a protein (Kessel and Ben-Tal 2010). The analysis and comparison of pro-
teins based on their primary structures is relatively simple comparing this process to the
analysis and comparison of protein tertiary structures and quaternary structures (Burkowski
2008). Tertiary structures and quaternary structures, i.e. protein 3D structures, show the
overall shape of proteins in three-dimensional space and require the location of all atoms
of a particular molecule to be determined either by experimental methods, like X-ray
crystallography or Nuclear Magnetic Resonance, or through prediction methods (Lesk
2010). The amount of protein structures in databases, such as Protein Data Bank (PDB)
(Berman et al. 2000), is lagging far behind the number of amino acid sequences, e.g. in Swis-
sProt database (Apweiler et al. 2004). Also, a simple analysis of tertiary or quaternary struc-
tures involves visualization tools, like RasMol (Sayle 1998), PyMol (Schrödinger 2010 ),
Jmol (Jmol Homepage ), or MViewer (Stanek et al. 2013). More sophisticated anal-
yses, e.g. comparison and alignment of protein 3D structures (Ye and Godzik 2003;
Eidhammer et al. 2004), require computationally complex algorithms and are usually
time-consuming processes (Mrozek et al. 2014).

Secondary structures are a kind of intermediate organizational level of protein struc-
tures, a level between the simple amino acid sequence and complex 3D structure. Secondary
structure, as an organizational level, describes a protein construction in terms of specific
spatial shapes the amino acid chain can adopt in some of its regions. It shows how the linear
chain of amino acids is formed in spiral α-helices, wavy β-strands, or loops (Fig. 1). And
indeed, these three shapes, α-helices, β-strands, and loops, are main general categories of
secondary structures. Secondary structure itself does not describe the location of particular
atoms in 3D space. It rather reflects local hydrogen interactions between particular atoms
of amino acids that are relatively close in the amino acid chain (Kessel and Ben-Tal 2010;
Lesk 2010).

Fig. 1 Types of secondary structures: (left) several spiral α-helices visible in the crystal structure of human
deoxyhaemoglobin (PDB ID: 2HHB) (Fermi et al. 1984), (right) several β-strands joined by loops in the
crystal structure of OspA mutant (PDB ID: 2I5V) (Makabe et al. 2008)



J Intell Inf Syst (2016) 46:213–233 215

The analysis of protein structures on the basis of the secondary structure types is very
supportive for many processes that are important from the viewpoint of biomedicine and
pharmaceutical industry, e.g. drug design. Algorithms comparing protein 3D structures and
looking for structural similarities quite often make use of the secondary structure rep-
resentation at the beginning, as one of the feature distinguishing one protein from the
other. Secondary structures are taken into account in algorithms for protein 3D structure
similarity searching, such as VAST (Gibrat et al. 1996), LOCK2 (Shapiro and Brutlag
2004), CTSS (Can and Wang 2003), CASSERT (Mrozek and Małysiak-Mrozek 2013).
Also in protein 3D structure prediction by comparative modeling (Källberg et al. 2012,
Yang et al. 2011), particular regions of protein structures are modeled through the adop-
tion of particular secondary structure types of proteins that structure is already determined
and deposited in a database. Secondary structure organizational level also shows what types
of secondary structure a protein molecule is composed of, what is their arrangement -
whether they are segregated or alternating each other. Based on the information proteins
are classified by systems, such as CATH (Orengo et al. 1997) and SCOP (Murzin et al.
1995). All these examples show how important the description by means of secondary
structures is.

1.1 Motivation

For scientists studying structures and functions of proteins, it is very important to collect
data describing protein construction in one place and have the ability to search particular
structures that satisfy given searching criteria. Consequently, this needs an appropriate rep-
resentation of protein structures allowing for effective storage and searching. The problem is
particularly important in the face of dynamically growing amount of biological and biomed-
ical data in databases, such as PDB (Berman et al. 2000) or SwissProt (Apweiler et al.
2004).

At the current stage of the development of IT technologies, a well-established posi-
tion in terms of collecting and managing various types of data reached relational databases
(Date 2003). Relational databases collect data in tables (describing part of reality) where
data are arranged in columns and rows. Modern relational databases also provide a declar-
ative query language - SQL that allows retrieving and processing collected data. The SQL
language gained a great power in processing regular data hiding details of the process-
ing under a quite simple SELECT statement. However, processing biological data, such
as protein secondary structures, by means of relational databases is hindered by several
factors:

– Data describing protein structures have to be managed by database management sys-
tems (DBMSs), which work excellent in commercial uses, but they are not dedicated
for storing and processing biological data. They do not provide the native support for
processing biological data with the use of the SQL language, which is a fundamental,
declarative way of data manipulation in most modern relational database systems.

– Processing of biological data must be performed by external tools and software
applications, forming an additional layer in the IT system architecture, which is a
disadvantage.

– Currently, results of data processing are returned in different formats, like: table-form
data sets, TXT, HTML or XML files, and users must adopt them in their software
applications.



216 J Intell Inf Syst (2016) 46:213–233

– Secondary processing of the data is difficult and requires additional external tools.

In other words, modern relational database management systems (DBMSs) require some
enhancements in order to deal with the data on secondary structures of proteins. A possi-
bility of collecting protein structural data in appropriate manner and processing the data
by submitting simple queries to a database would simplify the work of many researchers
working in the area of protein bioinformatics.

1.2 Related works

Actually, the problem of storing biological data describing bio-polymer structures of
proteins and DNA/RNA molecules in relational DBMSs and possessing appropriate meth-
ods and query language that allow processing the data has been noticed in the last decade.
However, there are only a few initiatives in the world reporting this kind of solutions for
various types of protein data. For example, the ODM BLAST (Stephens et al. 2004) is
a successful implementation of the BLAST family of methods in the commercial Oracle
database management system. ODM BLAST extends the SQL language providing appro-
priate functions for local alignment and similarity searching of DNA/RNA and protein
amino acid sequences. ODM BLAST works fast, but in terms of protein molecules it is lim-
ited only to the primary structure. The BioSQL (BioSQL ), which incorporates modules of
the BioJava project (Prlić et al. 2012), provides extended capabilities by focusing on bio-
molecular sequences and features, their annotation, a reference taxonomy, and ontologies.
However, BioSQL does not allow to process secondary structures. In Hammel and Patel
(2002), authors describe their search engine and the extension to the SQL language, which
allow searching on the secondary structures of protein sequences. In the solution, secondary
structures are represented by segments of different types of secondary structure elements,
e.g. hhhllleee. Authors have developed a dedicated search engine (Periscope) and an exten-
sion to the Oracle commercial database system - both allow to search proteins based on
secondary structures. In Tata et al. (2006), authors show the Periscope/SQ extension of the
Periscope system. Periscope/SQ is a declarative tool for querying primary and secondary
structures. To this purpose authors introduced new language PiQL, new data types and alge-
braic operators according to the defined query algebra PiOA. The PiQL language provides
many possibilities in terms of searching based on secondary structures of proteins. In the
paper (Wang et al. 2006), authors present their extensions to the object-oriented database
(OODB) by adding the Protein-QL query language and the Protein-OODB middle layer
for requests submitted to the OODB. Protein-QL allows to formulate simple queries that
operate on the primary, secondary and tertiary level. Finally, in Małysiak-Mrozek et al.
(2012) and Mrozek et al. (2010), we reported the PSS-SQL (Protein Secondary Structure
- Structured Query Language) that allows to search for protein similarities on the basis of
secondary structures. The search engine of the PSS-SQL utilized a single-thread alignment
procedure, which we found insufficient for effective processing in the era of multi-core
CPUs.

In the paper, we present a new search engine for the PSS-SQL. The search engine uses a
dedicated Segment Index and a new multithreaded implementation of the alignment method
in order to find protein similarities. The ideas of both techniques are presented in Section 2.
In Section 4, on the basis of the results of performed experimental tests, we will prove
that utilization of both techniques significantly accelerates the search process. In Section 5
we will also prove that time-consuming alignments preceded by multiple scanning of the
Segment Index are competitive to existing solutions mentioned above in this section.



J Intell Inf Syst (2016) 46:213–233 217

2 Storing and processing secondary structures in a database

Searching for protein secondary structure similarities by formulating queries in PSS-SQL
requires the data describing secondary structures to be stored in a database in an appro-
priate format. The format should guarantee an efficient processing of the data. Moreover,
searching for biological molecules, like proteins, based on the specified pattern has usu-
ally an approximate nature. This is caused by the fact that even though proteins are built up
with regularly occurring building blocks, like amino acids, these building blocks form larger
groups, like structural motifs or domains, and many proteins share such common regions.
As a consequence, scientists usually search similarities, rather than exact matches, between
protein molecules. For this reason, our new search engine relies on matching common
regions and chaining the matched pairs in order to find their optimal alignment. Therefore,
the search process is carried out in two main phases:

1. Multiple scanning of a dedicated Segment Index for secondary structures.
2. Alignment of found segments in order to return k-best solutions.

All these steps, including data preparation, creating and scanning the Segment Index, and
alignment will be discussed in the following sections.

2.1 Data preparation and storing

The new search engine of the PSS-SQL uses a specific representation of protein secondary
structures while storing them in a database.

Let us assume that a protein P is described by the amino acid sequence (primary
structure):

P = {pi |i = 1, 2, , n ∧ pi ∈ Π ∧ n ∈ N}, (1)

where: n is the length of protein amino acid chain, i.e. the number of amino acids, and Π is
a set of twenty common types of amino acids.

Secondary structure of protein P can be then described as a sequence of secondary
structure elements (SSEs) related to amino acids in the protein chain:

S = {si |i = 1, 2, , n ∧ si ∈ Σ ∧ n ∈ N}, (2)

where each element si corresponds to a single element pi , and Σ is a set of secondary
structure types. The set Σ may be defined in various ways. A widely-accepted definition
of the set provides DSSP (Joosten et al. 2011; Kabsch and Sander 1983). The DSSP code
distinguishes the following secondary structure types:

– H = alpha helix,
– B = residue in isolated beta-bridge,
– E = extended strand, which participates in beta ladder,
– G = 3-helix (3/10 helix),
– I = 5 helix (pi helix),
– T = hydrogen bonded turn,
– S = bend.

In practice, the set is often reduced to the three general types (Frishman and Argos 1996):

– H = alpha helix,
– E = beta strand (or beta sheet),
– C = loop, turn or coil.



218 J Intell Inf Syst (2016) 46:213–233

F
ig

.
2

Sa
m

pl
e

am
in

o
ac

id
se

qu
en

ce
of

Z
in
c
tr
an
sp
or
t
sy
st
em

A
T
P
-b
in
di
ng

pr
ot
ei
n
ad
cC

in
th

e
St
re
pt
oc
oc
cu
s
pn
eu
m
on
ia
e

w
ith

th
e

co
rr

es
po

nd
in

g
se

qu
en

ce
of

se
co

nd
ar

y
st

ru
ct

ur
e

el
em

en
ts



J Intell Inf Syst (2016) 46:213–233 219

An example of such a representation of protein structure is shown in Fig. 2, where we
can see primary and secondary structures of a sample protein recorded as sequences. In such
a way both sequences can be effectively stored in a relational database, as it is presented in
Fig. 3.

2.2 Indexing of secondary structures

For the fast matching of regions that are common for the query protein structure (represented
by a given query pattern) and database structures, the new search engine of the PSS-SQL
uses additional data structures created in the database. A dedicated segment table is created
for the table field storing sequences of secondary structures elements. The segment table
consists of secondary structures and their lengths extracted from the sequences of SSEs,
together with locations of the particular secondary structure in the molecule (identified by
the residue number, Fig. 4, the startPos field). Then, additional Segment Index is created for
the segment table. The Segment Index is a B-Tree clustered index holding on the leaf level
data pages of the segment table. The idea of using the segment table and segment index is
adopted from the work (Hammel and Patel 2002). The Segment Index supports preliminary
filtering of protein structures that are not similar to the query pattern. During the filtering,
the PSS-SQL search engine extracts the most characteristic features of the query pattern
and, on the basis of the information in the index, eliminates proteins that do not meet the
search criteria.

While scanning the Segment Index, the search engine of the PSS-SQL tries to match
segments distinguished in the given query pattern to segments of the index. Afterward, pro-
teins that pass the filtering process are aligned to the query pattern. This indexing technique
accelerates the similarity searching.

2.3 Chaining matched pairs

In order to find optimal superposition of the query pattern on the database protein, matched
pairs of protein regions are aligned. The alignment method is performed with the use of
dynamic programming. When scanning a database the pairwise alignment occurs for each
pair of sequences, i.e., query sequence, given by a user, and a successive candidate sequence
from a database. In PSS-SQL, after performing multiple scanning of the Segment Index
(MSSI), a database protein structure SD of the length d residues is represented as a sequence
of segments (Fig. 5), which can be expanded to the following form:

SD = SSED
1 L1, SSED

2 L2, ..., SSED
n Ln, (3)

where: SSED
i ∈ Σ describes the type of secondary structure (as defined earlier), n ≤ d is

a number of segments (secondary structures) in a database protein, Li ≤ d is the length of
the ith segment of a database protein D.

Query protein structure SQ, given by a user in a form of string pattern, is represented by
ranges, which gives more flexibility in defining search criteria against proteins in a database:

SQ = SSE
Q
1 (L1;U1), SSE

Q
2 (L2; U2), ..., SSEQ

m (Lm; Um), (4)

where: SSE
Q
j ∈ Σ describes the type of secondary structure (as defined earlier), Lj ≤

Uj ≤ q are lower and upper limits for the number of successive SSEs of the same type, q



220 J Intell Inf Syst (2016) 46:213–233

F
ig

.3
Sa

m
pl

e
re

la
tio

na
lt

ab
le

st
or

in
g

se
qu

en
ce

s
of

se
co

nd
ar

y
st

ru
ct

ur
e

el
em

en
ts

SS
E

s
(s
ec
on
da
ry

fi
el

d)
,a

m
in

o
ac

id
se

qu
en

ce
s

(p
ri
m
ar
y

fi
el

d)
,a

nd
ad

di
tio

na
li

nf
or

m
at

io
n

of
pr

ot
ei

ns
fr

om
th

e
Sw

is
s-

Pr
ot

da
ta

ba
se

.T
he

ta
bl

e
(c

al
le

d
P
ro
te
in
T
bl

)
w

ill
be

us
ed

in
sa

m
pl

e
qu

er
ie

s
pr

es
en

te
d

in
ne

xt
se

ct
io

ns
.S

ec
on

da
ry

st
ru

ct
ur

es
w

er
e

pr
ed

ic
te

d
fr

om
am

in
o

ac
id

se
qu

en
ce

s
us

in
g

th
e

Pr
ed

at
or

pr
og

ra
m

(F
ri

sh
m

an
an

d
A

rg
os

19
96

)



J Intell Inf Syst (2016) 46:213–233 221

Fig. 4 Part of the segment table

is the length of the query protein SQ measured in residues, which is the maximal length of
the string query pattern resulting from expanding the ranges of the pattern, m is a number of
segments in the query pattern. Sample pattern for the query protein structure may look like
as follows: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10).

Additionally, the SSE
Q
j can be replaced by the wildcard symbol ’?’, which denotes any

type of secondary structure element from Σ , and the value of the Uj can be replaced by the
wildcard symbol ’*’, which denotes Uj = +∞.

While aligning two protein structures SQ and SD we calculate the similarity matrix D,
according to the following formulas.

Di,0 = 0 for i ∈ [0, q], (5)

and

D0,j = 0 for j ∈ [0, d], (6)

and

Di,j = max

⎧
⎪⎪⎨

⎪⎪⎩

0
Di−1,j−1 + di,j

Ei,j

Fi,j

, (7)

Fig. 5 Sample protein structure (PDB ID: 2EZN) (Bewley et al. 1998) reduced to the sequence of secondary
structure elements (SSEs) and, after indexing, to the sequence of segments.



222 J Intell Inf Syst (2016) 46:213–233

for i ∈ [1, q], j ∈ [1, d], where q, d are lengths of proteins SQ and SD , and di,j is a match-

ing degree between elements SSED
i Li and SSE

Q
j (Lj ; Uj ) of both structures calculated by

using the following formula:

di,j =
{

ω+ if SSED
i = SSE

Q
j ∧ Li ≥ Lj ∧ Li ≤ Uj

ω− otherwise
, (8)

where: ω+ is a matching award, and ω− is a mismatch penalty. If the element SSE
Q
j is

equal to ’?’, then the matching procedure ignores the condition SSED
i = SSE

Q
j . Similarly,

if we assign the ’*’ symbol for the Uj , the procedure ignores the condition Li ≤ Uj .
Auxiliary matrices E and F , called gap penalty matrices, allow to calculate horizontal

and vertical gap penalties with the O(1) computational complexity (as opposed to original
method, where it was possible in a linear time O(n) for each direction). In the previous
version of the PSS-SQL, the calculation of the current element of the matrix D required an
inspection of all previously calculated elements in the same row (for a horizontal gap) and all
previously calculated elements in the same column (for a vertical gap). This led to the O(q ·
d ·(q+d)) computational complexity of the entire algorithm. By using gap penalty matrices,
we need only to check one previous element in a row and one previous element in a column.
Such an improvement gives a significant acceleration of the alignment method by reducing
general computational complexity of the algorithm to O(q · d), and taking into account
the representations of both aligned proteins (3) and (4), to O(m · n). The acceleration is
greater for longer sequences of secondary structure elements and larger similarity matrices
D. Elements of the gap penalty matrices E and F are calculated according to the following
equations:

Ei,j = max

{
Ei−1,j − δ

Di−1,j − σ
, (9)

and:

Fi,j = max

{
Fi,j−1 − δ

Di,j−1 − σ
, (10)

where: σ is the penalty for opening a gap in the alignment, and δ is the penalty for extending
the gap, and:

Ei,0 = 0 for i ∈ [0, q], Fi,0 = 0 for i ∈ [0, q], (11)

E0,j = 0 for j ∈ [0, d], F0,j = 0 for j ∈ [0, d], (12)

The new search engine of the PSS-SQL uses the following values for matching award
ω+ = 4, mismatch penalty ω− = −1, gap open penalty σ = −1, and gap extension penalty
δ = −0.5.

Filled similarity matrix D consists of many possible paths how two sequences of SSEs
can be aligned. Backtracking from the highest scoring matrix cell and going along until a
cell with score 0 is encountered allows to find the highest scoring alignment path. However,
in the version of the alignment method that we have developed, we find k-best alignments
by searching consecutive maxima in the similarity matrix D. This is necessary, since the
pattern is usually not defined precisely, contains ranges of SSEs or undefined elements.
Therefore, there can be many regions in a protein structure that fit the pattern. In the pro-



J Intell Inf Syst (2016) 46:213–233 223

cess of finding alternative alignment paths, the alignment method follows the value of the
internal parameter MPE (Minimum Path End), which defines the stop criterion. We find
alignment paths until the next maximum in the similarity matrix D is lower than the value
of the MPE parameter. The value of the MPE depends on the specified pattern, according
to the following formula.

MPE = (MPL × ω+) + (NoIS × ω−), (13)

where: MPL is the minimum pattern length, NoIS is the number of impre-
cise segments, i.e. segments, for which Li �= Ui . E.g. for the structural pattern
h(10;20),e(1;10),c(5),e(5;20) containing an α-helix of the length 10 to 20 ele-
ments, a β-strand of the length 1 to 10 elements, a loop of the length 5 elements, and a
β-strand of the length 5 to 20 elements, the MPL = 21 (10 elements of the type h, 1 ele-
ment of the type e, 5 elements of the type c, and 5 elements of the type e), the NoIS = 3
(first, second, and fourth segment), and therefore, MPE = 81.

2.4 Multithreaded implementation

Standard calculation of the similarity matrix D performed by a single thread negatively
affects performance of the search process or, at least, this leaves a kind of computational
reserve in the era of multi-core CPUs. The new search engine for the PSS-SQL uses all
processor cores that are available on the computer that hosts the database and the PSS-SQL
extension.

However, this required different approach while calculating values of particular cells of
the similarity matrix D. Successive cells cannot be calculated one by one, as in the original
algorithm, but calculations are carried out for cells located on successive diagonals, as it is
presented in Fig. 6. This is because, according to (7) each cell Di,j can be calculated only if
there are calculated cells Di−1,j−1, Di−1,j and Di,j−1. Such an approach to the calculation
of the similarity matrix is called a wavefront.

Moreover, in order to avoid too many synchronizations between running threads (which
may lead to significant delays), the entire similarity matrix is divided to so called areas
(Fig. 7a). These areas are parts of the similarity matrix that have a smaller size q ′ × d ′.
Assuming that the entire similarity matrix has the size of q × d, where q and d are lengths

Fig. 6 Calculation of cells in the
similarity matrix D by using the
wavefront approach. Calculation
is performed for cells at
diagonals, since their values
depend on previously calculated
cells. Arrows show dependences
of particular cells and the
direction of value derivation



224 J Intell Inf Syst (2016) 46:213–233

Fig. 7 Division of the similarity matrix D into areas. (left) Arrows show mutual dependences between areas
during calculation of the matrix. (right) An order in which areas will be calculated in a sample similarity
matrix

of two compared sequences of secondary structure elements, the number of areas that must
be calculated is equal to:

nA =
⌈

q

q ′

⌉

×
⌈

d

d ′

⌉

. (14)

For example, for the matrix D of the size 382 × 108 and size of the area q ′ = 10 and

d ′ = 10, the nA =
⌈

382
10

⌉
×

⌈
108
10

⌉
= 39×11 = 429. Areas are assigned to threads working

START

Get coordinates z and v of the 
area Az,v that has been recently 

assigned to any thread

z = z - 1 
v = v + 1

Exists area 
Az,v?

Return area Az,v

z < 1?

z = z + v 
v = 1

z > nh+nv-1?

Finish calcula�ons

Y

Y

YN

N

N

Fig. 8 Scheduling algorithm for dispatching areas to working threads in the multithreaded implementation
of the alignment process (nh, nv - the number of areas along the horizontal and vertical edge of the similarity
matrix)



J Intell Inf Syst (2016) 46:213–233 225

in the system. Each thread is assigned to one area, which is an atomic portion of calculation
for the thread. Areas can be calculated according to the same wavefront paradigm. The area
Az,v can be calculated, if there have been calculated areas Az−1,v and Az,v−1 for z > 1
and v > 1, which implicates an earlier calculation of the area Az−1,v−1. The area A1,1 is
calculated as a first one, since there are no restrictions for calculation of the area.

In order to synchronize calculations, each area has a semaphore assigned to it.
Semaphores guarantee that an area will not be calculated until the areas that it depends on
have not been calculated. When all cells of an area have been calculated, the semaphore
is being unlocked. Therefore, each area waits for unlocking two semaphores - for areas
Az−1,v and Az,v−1 for z > 1 and v > 1. The order in which areas are calculated is provided
by a scheduling algorithm dispatching areas to threads (Fig. 8). When a thread completes
the calculation of the current area, it is asking for another area. For example, the order of
calculation of particular areas in the similarity matrix of the size 5 × 5 areas is presented
in Fig. 7b. Such a division of the similarity matrix into areas reduces the number of tasks
related to initialization of semaphores needed for synchronization purposes and reduces
the synchronization time itself, which as a result, increases efficiency of the alignment
algorithm.

Assuming that the value of each cell of an area is calculated at the same amount of time
and taking into account the mechanism of semaphores, the CPU occupancy in particular
periods of time, while calculating the similarity matrix from Fig. 7b on 4-core CPU, should
look like it is shown in Fig. 9.

3 Sample queries in PSS-SQL

The PSS-SQL extension provides a set of functions and procedures for processing pro-
tein secondary structures. Three of the functions (containSequence, sequencePosition and
sequenceMatch) can be effectively invoked from the SQL commands, usually the SELECT
statement.

Fig. 9 Order while calculating successive areas of the similarity matrix in particular periods of time
t1, t2, t3... for 4 working threads. Each column corresponds to one period of time and values in columns
correspond to area numbers



226 J Intell Inf Syst (2016) 46:213–233

The containSequence function verifies if a particular protein or a set of database pro-
teins contain the structural pattern specified as a query pattern. The sequencePosition and
sequenceMatch functions allow to match the specified pattern to the structure of a protein
or a group of database proteins. Pattern searching and matching is performed by multiple
scanning of the segment index built on the segment table, followed by the alignment of the
found segments. Both functions return a table containing information about the location of
query pattern in the structure of each database protein. Both functions differ in the way how
they are invoked in PSS-SQL queries.

Sample queries invoking both functions are shown in Listing 1. Since they return a table
of values, they are nested in the FROM clause of SQL statements (mainly SELECTs, but
also possible in some variants of UPDATE and DELETE statements). The use of the CROSS
APPLY operator, instead of traditional JOIN, allows to avoid specifying the join condition,
shortens the query syntax and, what even more important, improve performance, in the case
of complex filtering conditions in the WHERE clause.

These sample queries return Accession Numbers (AC) and names of proteins from
Staphylococcus aureus having the length greater than 150 residues and structural region
containing a β-strand of the length from 1 to 10 elements, an optional loop up to
5 elements, an α-helix of the length 5 to 6 elements, an optional loop up to 5 ele-
ments, a β-strand of the length 1 to 10 elements and a 5 element loop - pattern
e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5). Partial results of the query from
Listing 1 are shown in Fig. 10.

Results of the PSS-SQL queries are originally returned in a tabular form. However, an
addition of an extra FOR XML clause at the end of the SELECT statement, like in the
example in Listing 2, produces results in the XML format that can be easily transformed to
the HTML web page by using appropriate XSLT transformation file, and finally, published
in the Internet.



J Intell Inf Syst (2016) 46:213–233 227

F
ig

.1
0

Pa
rt

ia
l

re
su

lts
of

th
e

sa
m

pl
e

qu
er

ie
s

fr
om

L
is

tin
g

1
re

tu
rn

ed
as

a
re

la
tio

na
l

ta
bl

e,
re

tu
rn

ed
fi

el
ds

:
A
C

-
A

cc
es

si
on

N
um

be
r,
na
m
e

-
m

ol
ec

ul
e

na
m

e,
st
ar
tP
os

,e
nd
Po

s
-

po
si

tio
n,

w
he

re
th

e
pa

tte
rn

st
ar

ts
an

d
en

ds
in

th
e

ta
rg

et
pr

ot
ei

n
fr

om
th

e
da

ta
ba

se
,p

ri
m
ar
y

-
am

in
o

ac
id

se
qu

en
ce

of
a

pr
ot

ei
n,

m
at
ch
in
gS
eq

-
ex

ac
t

se
qu

en
ce

of
SS

E
s,

w
hi

ch
m

at
ch

es
to

th
e

pa
tte

rn
de

fi
ne

d
in

th
e

qu
er

y,
se
co
nd
ar
y

-
se

qu
en

ce
of

se
co

nd
ar

y
st

ru
ct

ur
e

el
em

en
ts

SS
E

s



228 J Intell Inf Syst (2016) 46:213–233

Partial results of the query from Listing 2 are presented in Fig. 11. An additional function
- superimpose - that was used in the presented query (Listing 2) highlights the alignment of
the matched sequence and the database sequence of SSEs.

4 Efficiency of PSS-SQL

We have performed various experiments in order to test the efficiency of the new search
engine for PSS-SQL query language developed as an extension to Microsoft SQL Server and
Transact-SQL. Tests were performed on the Microsoft SQL Server 2012 Enterprise Edition
working on nodes of the virtualized cluster controlled by the HyperV hypervisor hosted on
Microsoft Windows 2008 R2 Datacenter Edition 64-bit. The host server had the following
parameters: 2x Intel Xeon CPU E5620 2.40 GHz, RAM 32 GB, 3x HDD 1TB 7200 RPM.
Cluster nodes were configured to use 4 CPU cores and 4GB RAM per node, and worked
under the Microsoft Windows 2008 R2 Enterprise Edition 64-bit operating system.

Most of our tests were performed on the database storing 6 360 protein structures.
However, in order to compare our search engine to one of the competitive solutions, we
performed some tests on the database storing 248 375 protein structures.

During our experiments we measured execution times for various query patterns. The
query patterns were passed as a parameter of the sequencePosition function. Tests were
performed for queries containing the following sample patterns:

– SSE1: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10)
– SSE2: h(30;40),c(1;5),?(50;60),c(5;10),h(29),c(1;5),h(20;25)
– SSE3: h(10;20),c(1;10),h(243),c(1;10),h(5;10),c(1;10),h(10;15)
– SSE4: e(1;10),c(1;5),e(27),h(1;10),e(1;10),c(1;10),e(5;20)
– SSE5: e(5;20),h(2;5),c(2;40),?(1;30),e(5;*)

Pattern SSE1 represents protein structure built only with β-strands connected by loops.
Pattern SSE2 consists of several α-helices connected by loops and one undefined segment
of SSEs (’?’ wildcard symbol). Patterns SSE3 and SSE4 have regions that are unique in
the database, i.e. h(243) in pattern SSE3 and e(27) in pattern SSE4. Pattern SSE5 has a
wildcard symbol ’*’ for undetermined length, which slows down the search process.

In order to verify the influence of particular acceleration techniques on the execution
times, tests were carried out for the PSS-SQL in three variants:

Fig. 11 Partial results of the query from Listing 2 returned as an XML file



J Intell Inf Syst (2016) 46:213–233 229

– without multithreading (–MT, on an old search engine),
– with multithreading, but without multiple scanning of the Segment Index (+MT–MSSI,

on a new search engine),
– with multithreading and with multiple scanning of the Segment Index (+MT+MSSI, on

a new search engine).

Results of the tests presented in Fig. 12 prove that the performance of +MT–MSSI variant
is higher, and in case of SSE1 and SSE2 even much higher, than –MT variant (implemented
in the previous search engine of the PSS-SQL). For +MT+MSSI we can see additional
improvement of the performance. It is difficult to estimate the overall acceleration, because
it tightly depends on the uniqueness of the pattern. The more unique the pattern is, the more
proteins are filtered out based on the Segment Index, the fewer proteins are aligned and
the less time we need to obtain results. We can see it clearly in Fig. 12 for patterns SSE3
and SSE4 that have precisely defined, unique regions h(243) and e(27). For universal
patterns, like SSE1 and SSE2, for which we can find many fitting proteins or multiple
alignments, we can observe longer execution times. In such cases, the parallelization and
multiple scanning of the Segment Index start playing a more significant role. In these cases,
the length of the pattern influences the alignment time - for longer patterns we experienced
longer response times. We have not observed any dependency between the type of the SSE
and the response time.

However, specifying wildcards in the query pattern increases the waiting period, which
is visible for the pattern SSE5 (Fig. 13). In Fig. 13 for the pattern SSE5 we can also see
how beneficial the use of the MSSI technique can be. In this particular case, the execution
time was reduced from 920 seconds in –MT (old search engine), and 550 seconds in +MT–
MSSI, to 15 seconds in +MT+MSSI, which gives 61.33-fold speed up over the –MT variant
and 36.67-fold speed up over the +MT–MSSI variant.

Fig. 12 Execution time for various query patterns SSE1-SSE4 and for three variants of the PSS-SQL lan-
guage: without multithreading (–MT, old search engine), with multithreading, but without multiple scanning
of the Segment Index (+MT–MSSI, new search engine), with multithreading and with multiple scanning of
the Segment Index (+MT+MSSI, new search engine)



230 J Intell Inf Syst (2016) 46:213–233

Fig. 13 Execution time for query pattern SSE5 for three variants of the PSS-SQL language: without multi-
threading (–MT, old search engine), with multithreading, but without multiple scanning of the Segment Index
(+MT–MSSI, new search engine), with multithreading and with multiple scanning of the Segment Index
(+MT+MSSI, new search engine)

5 Discussion

PSS-SQL language with the new search engine complements existing relational database
management systems, which are not designed to process biological data, such as protein
secondary structures. By extending the standard SELECT, UPDATE and DELETE state-
ments of the SQL language, the PSS-SQL provides a declarative method for retrieving,
modifying and deleting records. Records that satisfy the criteria given by a user can be
returned in a table-like form or as an XML document, which is easy to display as a web
page. In such a way, the PSS-SQL extension to RDBMS provides a kind of domain spe-
cific language for processing protein secondary structures. This is especially important for
relational database designers, wide group of biological data analysts and bioinformaticians.

The PSS-SQL language with the new search engine can be used for the fast classifica-
tion of proteins based on their secondary structures. For example, systems such as SCOP
(Murzin et al. 1995) and CATH (Orengo et al. 1997) make use of the secondary structure
description of protein structures in order to classify proteins into classes and families. PSS-
SQL can be also supportive in protein 3D structure prediction by homology modeling, where
appropriate structure profile can be found based on primary and secondary structure and the
secondary structure can be superimposed on the protein of the unknown 3D structure before
performing a free energy minimization.

Comparing the new search engine of the PSS-SQL to other approaches presented in
Section 1.2, we can notice that all variants of the PSS-SQL extend the syntax of the SQL.
This makes the PSS-SQL similar to PiQL (Tata et al. 2006), rather than to ProteinQL
(Wang et al. 2006). ProteinQL was developed for the Object-Oriented Database and relies
on its own domain specific database and dedicated ProteinQL interpreter and translator. As
opposed to ProteinQL, both PiQL and PSS-SQL extend capabilities of Relational Database
Management Systems (RDBMS). They extend the syntax of the SQL language by providing



J Intell Inf Syst (2016) 46:213–233 231

additional functions that can be nested in particular clauses of the SQL commands. How-
ever, the form of queries provided by users is different. PiQL accepts query patterns in a
full form that is similar to BLAST (Altschul et al. 1990) - a tool used for fast local match-
ing of bio-molecular sequences of DNA and proteins. Query patterns provided in PSS-SQL
are similar to those presented by Hammel and Patel (2002). The pattern defined in a query
does not have to be specified strictly. Segments in the pattern can be specified as intervals
and they can have undefined lengths. Both languages allow specifying query patterns with
undefined types of the SSE or patterns, where some SSE segments may occur optionally.
Therefore, the search process has an approximate nature, regarding various possible options
for segment matching. The possibility of defining patterns that include optional segments
allows users to specify gaps in a particular place.

In the new search engine of the PSS-SQL we also used the method of scanning the Seg-
ment Index in order to accelerate the search process. The method was adopted from the work
of Hammel and Patel (2002). However, after multiple scans of the Segment Index Hammel
and Patel used sort-merge join operations in order to join segments from the same candidate
proteins and decide, whether they meet specified query conditions or not. The novelty of the
new search engine of the PSS-SQL lies in the alignment of the found segments. Alignment
implemented in PSS-SQL gives the unique possibility of finding many matches for the same
database protein and returning k-best matches, matches that in some particular cases can be
separated by gaps. These are not the gaps defined by a user and specified by an optional
segment, but the gaps providing better alignment of particular regions. This type of match-
ing is typical for similarity searching between biomolecular sequences, such as DNA/RNA
sequences or amino acid sequences. Presented approach extends the spectrum of searching
and guarantees the optimality of the results according to assumed scoring system.

Despite the fact that our solution uses the alignment procedure, which is computationally
complex, it gained quite a good performance. We have compared the efficiency of the new
search engine of the PSS-SQL (+MT+MSSI variant) and language presented by Hammel
and Patel for single-predicate exact match queries with various selectivity (between 0.3 %
and 6 %) using the database storing 248 375 proteins (515 MB for ProteinTbl used in
examples, 254 MB for segment table storing 11 986 962 segments). The new search engine
of the PSS-SQL was on average 5.14 faster than Comm-Seg implementation, 3.28 faster than
Comm-CSP implementation, both implemented on a commercial ORDBMS, and 1.84 faster
than ISS-MISS(1) implementation on Periscope/SQ (Hammel and Patel 2002). This proves,
that our new search engine compensates the efficiency loss caused by alignment procedure
by using the Segment Index. In such a way, the PSS-SQL joins wide capabilities of the
alignment process (possible gaps, mismatches, and many solutions), provides optimality and
quality of results, and guarantees efficiency of scanning databases of secondary structures.

6 Summary

Integrating methods of protein secondary structure similarity searching with database man-
agement systems provides an easy way for manipulation of biological data without the
necessity of using external data mining applications. The PSS-SQL extension presented in
this paper is a successful example of such integration. PSS-SQL is certainly a good option
for biological and biomedical data analysts who want to process their data on the server side.
This has many advantages that are typical for such a processing in the client-server archi-
tecture. Entire logic of data processing is performed on the database server, which reduces
the load on the user’s computer. Therefore, data exploration is performed while retrieving



232 J Intell Inf Syst (2016) 46:213–233

data from a database. Moreover, the number of data returned to the user, and the network
traffic between the server and the user application, are much reduced.

The new search engine of the PSS-SQL with implemented multithreaded alignment pro-
cedure allows to utilize the whole capable computing power more efficiently. The search
engine adapts to the number of processing units possessed by the server, which hosts the
database management system, and to the number of cores used by the database system.
This results in better performance while scanning huge databases of protein secondary
structures.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool.
Journal of Molecular Biology, 215, 403–10.

Apweiler, R., Bairoch, A., Wu, C.H., et al. (2004). Uniprot: the Universal Protein knowledgebase. Nucleic
Acids Research, 32(Database issue), D115–9.

Berman, H. et al. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235–242.
Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M., Gronenborn, A.M. (1998).

Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Natural Structural Biology, 5(7),
571–8.

BioSQL. http://biosql.org/.
Branden, C., & Tooze, J. (1999). Introduction to Protein Structure, 2nd ed: Garland Science.
Burkowski, F. (2008). Structural Bioinformatics: An Algorithmic Approach, 1st ed: Chapman and Hall/CRC.
Can, T., & Wang, Y. (2003). CTSS: A robust and efficient method for protein structure alignment based on

local geometrical and biological features. In Proceedings of the 2003 IEEE Bioinformatics Conference
(CSB 2003) (pp. 169–179).

Date, C. (2003). An introduction to database systems, 8th edn. USA: Addison-Wesley.
Eidhammer, I., Inge, J., Taylor, W.R. (2004). Protein Bioinformatics: An Algorithmic Approach to Sequence

and Structure Analysis: John Wiley & Sons.
Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R. (1984). The crystal structure of human deoxyhaemoglobin

at 1.74 A resolution. Journal of Molecular Biology, 175, 159–174.
Frishman, D., & Argos, P. (1996). Incorporation of non-local interactions in protein secondary structure

prediction from the amino acid sequence. Protein Engineering, 9(2), 133–142.
Gibrat, J., Madej, T., Bryant, S. (1996). Surprising similarities in structure comparison. Current Opinion in

Structural Biology, 6(3), 377–385.
Hammel, L., & Patel, J.M. (2002). Searching on the secondary structure of protein sequences. In Proceedings

28th International Conference on Very Large Data Bases, Hong Kong, China, 2002 (pp. 634–645).
Jmol Homepage. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org.
Joosten, R.P., Te Beek, T.A.H., Krieger, E., Hekkelman, M.L., et al. (2011). A series of PDB related databases

for everyday needs. Nucleic Acid Research, 39(Database issue), D411–D419.
Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers, 22, 2577–2637.
Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J. (2012). Template-based protein structure

modeling using the RaptorX web server. Nature Protocols, 7, 1511–1522.
Kessel, A., & Ben-Tal, N. (2010). Introduction to Proteins: Structure, Function, and Motion, 1ed: Chapman

& Hall/CRC Mathematical & Computational Biology, CRC Press.
Lesk, A.M. (2010). Introduction to Protein Science: Architecture, Function, and Genomics, 2ed. USA:

Oxford University Press.
Makabe, K., Biancalana, M., Yan, S., Tereshko, V., Gawlak, G., Miller-Auer, H., Meredith, S.C., Koide, S.

(2008). High-resolution structure of a self-assembly-competent form of a hydrophobic peptide captured
in a soluble beta-sheet scaffold. Journal of Molecular Biology, 378, 459–467.

http://biosql.org/
http://www.jmol.org


J Intell Inf Syst (2016) 46:213–233 233

Małysiak-Mrozek, B., Kozielski, S., Mrozek, D. (2012). Server-Side Query Language for Protein Structure
Similarity Searching. In In: Human - Computer Systems Interaction: Backgrounds and Applications.
Advances in Intelligent and Soft Computing, (Vol. 2 pp. 395–415). Berlin Heidelberg: Springer.

Mrozek, D., Brożek, M., Małysiak-Mrozek, B. (2014). Parallel implementation of 3D protein structure
similarity searches using a GPU and the CUDA. Journal of Molecular Modeling, 20, 2067.

Mrozek, D., & Małysiak-Mrozek, B. (2013). CASSERT: A Two-Phase Alignment Algorithm for Matching
3D Structures of Proteins. In Kwiecień, A., Gaj, P., Stera, P. (Eds.) Proceedings of 22nd International
Conference on Computer Networks, Communications in Computer and Information (Vol. 370, pp. 334–
343): Springer-Verlag, CCIS.

Mrozek, D., Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S. (2010). PSS-SQL: Protein Secondary Struc-
ture - Structured Query Language. Proceedings of 32th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS 2010 (pp. 1073–1076). Argentina: Buenos Aires.

Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C. (1995). SCOP: A structural classification of proteins
database for the investigation of sequences and structures. Journal of Molecular Biology, 247, 536–540.

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., et al. (1997). CATH - A hierarchic classification of protein
domain structures. Structure, 5(8), 1093–1108.

Prlić, A., Yates, A., Bliven, S.E., Rose, P.W., et al. (2012). BioJava: an open-source framework for
bioinformatics in 2012. Bioinformatics, 28, 2693–2695.

Schrödinger, L.L.C. (2010 ). The PyMOL molecular graphics system, version 1.3r1 . PyMOL The PyMOL
Molecular Graphics System, Version 1.3: Schrödinger, LLC. http://www.pymol.org.

Sayle, R. (1998). RasMol, Molecular Graphics Visualization Tool. Biomolecular Structures Group, Glaxo
Welcome Research & Development, Stevenage, Hartfordshire, 5/02/2013. http://www.umass.edu/
microbio/rasmol/.

Shapiro, J., & Brutlag, D. (2004). FoldMiner and LOCK2: protein structure comparison and motif discovery
on the web. Nucleic Acids Research, 32, 536–41.

Stanek, D., Mrozek, D., Małysiak-Mrozek, B. (2013). MViewer: Visualization of protein molecular structures
stored in the PDB, mmCIF and PDBML data formats. In Kwiecień, A., Gaj, P., Stera, P. (Eds.) CN 2013
(Vol. 370, pp. 323–333): CCIS.

Stephens, S., Chen, J.Y., Thomas, S.h. (2004). ODM BLAST: Sequence homology search in the RDBMS.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering.

Tata, S., Patel, J.M., Friedman, J.S., Swaroop, A. (2006). Declarative querying for biological sequences.
Proceedings 22nd International Conference on Data Engineering, IEEE Computer Society, 87–98.

Wang, Y., Sunderraman, R., Tian, H. (2006). A domain specific data management architecture for protein
structure data. Proceedings 28th IEEE EMBS Annual Int. Conf., New York City, USA, 2006, pp 5751–
5754.

Yang, Y., Faraggi, E., Zhao, H., Zhou, Y. (2011). Improving protein fold recognition and template-based
modeling by employing probabilistic-based matching between predicted one-dimensional structural
properties of the query and corresponding native properties of templates. Bioinformatics, 27, 2076–82.

Ye, Y., & Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists.
Bioinformatics, 19(2), 246–255.

http://www.pymol.org
http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/

	An efficient and flexible scanning of databases of protein secondary structures
	Abstract
	Introduction
	Motivation
	Related works

	Storing and processing secondary structures in a database
	Data preparation and storing
	Indexing of secondary structures
	Chaining matched pairs
	Multithreaded implementation

	Sample queries in PSS-SQL
	Efficiency of PSS-SQL
	Discussion
	Summary
	Open Access
	References


