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Abstract We propose a novel framework for generating classification rules from
relational data. This is a specialized version of the general framework intended for
mining relational data and is defined in granular computing theory. In the framework
proposed in this paper we define a method for deriving information granules from
relational data. Such granules are the basis for generating relational classification
rules. In our approach we follow the granular computing idea of switching between
different levels of granularity of the universe. Thanks to this a granule-based rela-
tional data representation can easily be replaced by another one and thereby adjusted
to a given data mining task, e.g. classification. A generalized relational data represen-
tation, as defined in the framework, can be treated as the search space for generating
rules. On account of this the size of the search space may significantly be limited. Fur-
thermore, our framework, unlike others, unifies not only the way the data and rules
to be derived are expressed and specified, but also partially the process of generating
rules from the data. Namely, the rules can be directly obtained from the information
granules or constructed based on them.

Keywords Multi-relational data mining · Database models · Granular computing ·
Classification

1 Introduction

The task of classification has extensively been studied in the field of data mining
(see, e.g., Han et al. 2011; Tan et al. 2005; Banks et al. 2004). This issue has also been
widely investigated for relational data (see, e.g., Džeroski and Lavrač 2001b; Zhen
et al. 2009; Thangaraj and Vijayalakshmi 2011). One can indicate many different
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techniques and algorithms for classifying relational data; however, a unified frame-
work for this task does not seem to have been introduced so far. Such a frame-
work is needed for unifying operations that are independent of the technique or
algorithm applied for classifying relational data. One can indicate the following
essential operations that need to be unified: relational object representation, search
space limitation and generation of relational patterns. These issues will briefly be
discussed.

1. An object of a single-table database is represented by a tuple of table attribute
values. An object of a database with a relational structure can be represented not
only by a tuple that belongs to a table to be analyzed, but also by a certain part of
the tuples of other tables that are directly or indirectly joined to the table under
consideration. Therefore, relational object representation can vary depending on
a given data mining task.

2. The search space for discovering relational patterns (e.g., relational classification
rules) may be very huge. This problem is typically overcome by applying lan-
guage bias which imposes some constraints on the patterns to be discovered,
thereby the search space is limited. However, the search space, after such a
limitation has been imposed on it, may still be large.

3. Rule-based classification is one of the most common classifying methods in data
mining. The way of deriving rules from data is usually provided not by a given
framework for mining relational data, but by a concrete algorithm that can be
defined in the framework; therefore, the whole process of the generation of rules
may be conducted from scratch each time any of the algorithm’s parameters
change.

The contribution of this paper is a framework for rule generation from relational
data (Sections 5 and 6). It addresses the three above-mentioned issues and is
a specialization of the general framework for mining relational data, which was
proposed in Hońko (2013) and is described in Section 4. The general framework
is defined in granular computing theory.

Granular computing (Pedrycz et al. 2008) can be viewed as a label of theories,
methodologies, techniques, and tools that make use of granules in the process of
problem solving (Yao 2000).

The general framework is based on an information system defined for relational
data. Information granules derived from the information system are defined based
on the notion of related sets, that is, sets of objects related (i.e., joined) to the objects
to be analyzed. Such granules are the basis for discovering relational knowledge.

In the framework proposed in this paper, relational data is represented as a class
of granules. Due to applying the granular computing idea of switching between
different levels of granularity of the universe, the accuracy level of the data repre-
sentation can be adjusted to a given data mining task, e.g., classification.

The generalized information granules obtained in our proposal can be viewed as
an abstract representation of relational data. Such a representation is treated as the
search space for discovering relational classification rules. Thanks to this, the size of
the search space may be significantly limited.

Since the search space is constructed based on information granules, the process
of discovering rules from the data is partially unified. Namely, rules can thus directly
be received from such granules or constructed based on them.
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In the following sections restate the existing frameworks for mining relational
data (Section 2), briefly describe granular computing (Section 3), introduce the
general framework for mining multi-relational data based on granular computing
(Section 4), and propose and analyze a specific version of the framework intended
for generating classification rules from relational data (Sections 5–7). The paper ends
with concluding remarks (Section 8).

2 Related works

In this section we describe the general frameworks for mining relational data in the
context of the generation of classification rules.

The research field within which the frameworks described below can be consid-
ered is multi-relational data mining (MRDM) (Džeroski and Lavrač 2001b; De Raedt
2008). MRDM concerns knowledge discovery from relational databases consisting
of multiple relations (tables). MRDM aims to integrate methods from existing fields
applied to an analysis of data represented by multiple relations, i.e. to produce new
techniques for mining multi-relational data.

One can indicate two commonly used frameworks for mining relational data:
inductive logic programming and relational database theory frameworks.

Early approaches for pattern discovery in relational data were defined in an
inductive logic programming (ILP) framework (Džeroski and Lavrač 2001a).

ILP is a research field at the intersection of machine learning and logic program-
ming. It provides a formal framework as well as practical algorithms for learning, in
an inductive way, relational descriptions from data represented by target examples
and background knowledge.

In ILP, data and induced patterns are represented as formulas in a first-order
language. Data is stored in deductive databases, where relations can be determined
extensionally as sets of ground facts and intensionally as sets of database clauses.
Patterns are typically expressed as logic programs, i.e., sets of Horn clauses.

In ILP, the pattern structure is determined by the so-called declarative bias
(Nédellec et al. 1996). It imposes some constraints on the patterns to be discovered.
Thanks to this bias one can determine, among other things, such as which relations
and how many times they may be used in patterns or how to replace a relation
attribute with a variable or a constant.

The task of generating classification rules is carried out in ILP in the following
way. A set E+ of positive examples and a set E− of negative examples of a target
relation are given along with a background knowledge B which usually consists of
Horn clauses. The task is to find a hypothesis H (a set of Horn clauses) that covers
all of the positive examples and does not cover any negative example. H is equivalent
to a set of classification rules.

An alternative framework (Knobbe 2006; Knobbe et al. 2000) for discovering
patterns in relational data is defined in relational database theory (RDB). In a
relational database, relations are usually determined extensionally as sets of tuples of
constants; however, they can also be determined intensionally as sets of views. The
relational patterns discovered in the relational database can be expressed as SQL
queries.

Unlike in the ILP framework, a specification of the pattern structure is not
required. Instead, the patterns are specified by the relationships that occur between
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the database entities, and are shown by the entity-relationship diagram. Alterna-
tively, a class diagram, which is a part of the Unified Modeling Language (UML),
is used to express bias (Knobbe et al. 2000). The UML class diagram shows how
associations (i.e., structural relationships) between given classes (which correspond
to the database tables) determine how objects in each class relate to objects in
another class. Moreover, the multiplicities of associations are also examined. Such
an association multiplicity provides information on how many objects in one class
are related to a single object in another, and vice versa.

The task of generating a classification is performed in an analogous way as in the
ILP framework. The set of tuples of the target relation is divided into two sets: a set
of objects of the class for which rules are to be generated and a set of objects of the
remaining classes. The task is to find a set of rules that are satisfied by all objects
from the former set and are not satisfied by any object from the latter set.

The main difference between the two frameworks with respect to classification
rule generation is in the way the data and rules are expressed. Therefore, one can
easily adapt a rule generation mechanism from one framework to another.

In order to summarize the two frameworks in the context of the issues described
in Section 1, i.e., relational object representation, search space limitation, and
generation of relational patterns, we can mention the following features.

1. In each of the frameworks relational data is represented by a database with a
relational structure, i.e., a deductive or relational database. Relational object
representation is alternatively adjusted to a given data mining task not by the
framework, but by a concrete algorithm.

2. The search space is limited in the frameworks only by bias or by the relationships
that occur between the database entities. Furthermore, the search space is not
explicitly given, but only determined by the constraints.

3. The frameworks unify the way the data and rules are described and specified.
However, this unification does not concern the process of discovering rules from
the data.

3 Granular computing

When analyzing data to discover knowledge, regardless of the tool used, we usually
aggregate the objects with common features into the same clusters (i.e., groups). Such
clusters can be treated as information derived from the database which is, in turn, the
basis for the discovery of knowledge. The clusters can be obtained in a variety of ways
depending, among others, on the task to be performed. Moreover, one can receive
many different partitions of the universe, i.e., families of clusters, for the same task.
The choice of the most proper partition can depend on which solution accuracy of the
problem under consideration is sufficient enough. The challenge is thus to develop a
framework for constructing and processing such clusters of data.

A field within which frameworks are developed for problem solving by the use of
granules (e.g., clusters of data) is granular computing (GC) (Bargiela and Pedrycz
2003; Pedrycz et al. 2008). This is a relatively new, rapidly growing field of research
(see, e.g., Zadeh 2010, 2011; Pedrycz and Chen 2011; Skowron et al. 2012). It can be
viewed as a label of theories, methodologies, techniques, and tools that make use of
granules in the process of problem solving (Yao 2000).
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A granule is usually understood as a collection of entities drawn together by
indistinguishability, similarity, proximity or functionality (Zadeh 1997). Therefore,
a granule can be defined as any object, subset, class, or cluster of a given universe.
The process of the formation of granules is called granulation. To clearly differentiate
granulation from clustering, the semantic aspect of granular computing is taken into
account. Therefore, we treat information granulation as a semantically meaningful
grouping of elements based on their indistinguishability, similarity, proximity or
functionality (Bargiela and Pedrycz 2008). To distinguish, in this work, granules
obtained as a result of plain clustering from those obtained as a result of semantically
meaningful grouping we will call the former 1-type information granules and the latter
2-type information granules.

Granulation can be performed by applying a top-down or bottom-up method. The
former concerns the process of dividing a larger granule into smaller and lower-level
granules, and the latter the process of forming a larger and higher-level granule with
smaller and lower-level sub-granules (Yao 2005).

One can receive many granularities of the same universe which differ in their lev-
els. A granule of high-level granularity, i.e., a high-level granule, represents a more
abstract concept, and a low-level granule a more specific one. A basic task of GC
is to switch between different levels of granularity. A more specific level granularity
may reveal more detailed information. On the other hand, a more abstract level
granularity may improve a problem’s solution thanks to omitting irrelevant details.

Much research has been devoted to granular computing in data mining (see, e.g.,
Pedrycz et al. 2008; Bargiela and Pedrycz 2003; Lin 2005; Lin and Zadeh 2004;
Skowron et al. 2012). However, a relatively small part of this research concerns the
multi-relational aspect of data mining (see, e.g., Stepaniuk 2008; Hońko 2010, 2013).
Moreover, a framework for generating classification rules from relational data by
employing granular computing does not seem to have been introduced into scientific
literature.

4 Granular computing framework for mining relational data

In this section we introduce the framework for mining relational data (Hońko 2013).
The framework is constructed based on granular computing theory. We introduce a
method for deriving information granules from relational data. Such granules are the
basis for the discovery of knowledge of a different type.

4.1 Relational data

We assume that we are given relational data that resides in a relational database;
however, our framework can also be defined for data stored in a deductive database.
We also assume that data is alternatively transformed, i.e., operations such as attribute
discretization, attribute aggregation, attribute reduction, or others, are applied.

Definition 1 (Relational database) A relational database can be defined in the
context of MRDM by the following notions:

– A relation schema is an expression of the form R(a1, a2, . . . , an), where R is a
relation name and ai (1 ≤ i ≤ n) are the attributes.
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– A relation is a subset of the Cartesian product Va1 × Va2 × · · · × Van , where Vai

(1 ≤ i ≤ n) are the value sets of attributes ai.
– A relational database D = T ∪ B is a collection of logically connected relations,

where T = {RT
1 , RT

2 , . . . , RT
nT

} and B = {RB
1 , RB

2 , . . . , RB
nB

} consist of target and
background relations, respectively.

The target table (i.e., relation)1 includes objects to be analyzed, e.g., objects for
which classification rules are mined. Such objects may reside in more than one table;
for example, each target table includes the objects of one class. Background tables
include additional objects which are directly or indirectly joined to the objects of the
target table. The same terms are used for the objects of the target and background
tables, i.e., the target and background objects.

Example 1 We are given a databaseD = {customer} ∪ {product, purchase} for the
customers of a grocery store.

Customer

c_id Name Class

1 Tom Jackson 1
2 Susan Clark 1
3 John Osborne 1
4 Adam Smith 0
5 Eve Lee 0
6 Ann Thompson 0

Product

p_id Name Price

1 bread 2.00
2 butter 3.50
3 milk 2.50
4 tea 5.00
5 coffee 6.00
6 cigarettes 6.50

Purchase

c_id p_id Amount Date

1 1 1 21.09.2010
1 3 2 21.09.2010
2 1 1 25.09.2010
2 3 1 26.09.2010
4 6 1 26.09.2010
4 2 3 26.09.2010
5 5 2 27.09.2010
6 4 2 27.09.2010

The target table customer includes basic data about the customers. The data is
divided into two groups according to the values of the attribute class. The back-
ground tables product and purchase include data about products purchased by the
customers.

To examine objects apart from the tables they belong to, we use the notion of
relational object.

1The notions of relation and table are used in this paper interchangeably.
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Definition 2 (Relational object) We are given a database relation with the schema
R(a1, a2, . . . , an). An expression of the form R(v1, v2, . . . , vn) is an object of R if and
only if (v1, v2, . . . , vn) is a tuple of R.

For example, the first tuple of table customer from Example 1 is represented by
the object customer(1, Tom Jackson, 1).

In our approach we represent a relational database by an information system that
is constructed based on a standard information system (Pawlak 1991).

Definition 3 (Information system) An information system is a pair IS = (U, A),
where U is a non-empty finite set of objects, called the universe, and A is a non-
empty finite set of attributes.

Now we are ready to construct the information system for storing relational data.
We use DT and DB to denote, respectively, the sets of target and background
relations of database D = T ∪ B.

Let UDT = ⋃

R∈DT

R and UDB = ⋃

R∈DB

R be, respectively, the set of all target and

background objects of database D. Subsequently, let ADT = ⋃

R∈DT

AR
2 and ADB =

⋃

R∈DB

AR be, respectively, the set of all attributes of the target and background

relations of database D.
We use the following representation of a relational database.

Definition 4 (Information system for a relational database) A relational database
D = T ∪ B is represented by an information system ISD = (UD, AD)3, where

– UD = UDT ∪ UDB is a non-empty finite set of objects, called the universe,
– AD = ADT ∪ ADB is a non-empty finite set of attributes.

Example 2 Database D of Example 1 can be represented by information sys-
tem ISD = (UD, AD), where UD = UDT ∪ UDB , AD = ADT ∪ ADB are defined as
follows:

UDT = {customer(1, Tom Jackson, 1), customer(2, Susan Clark, 1), . . . ,

customer(6, Ann Thompson, 0)},
UDB = {product(1, bread, 2.00), product(2, butter, 3.50), . . . ,

product(6, cigarettes, 6.50),
purchase(1, 1, 1, 21.09.2010), purchase(1, 3, 2, 21.09.2010), . . . ,

purchase(6, 4, 2, 27.09.2010)},
ADT = {customer.id, customer.name, customer.class},
ADB ={product.p_id, product.name, product.price, purchase.c_id, purchase.p_id,

purchase.quantity, purchase.date}.

2 AR denotes here the set of all attributes of relation R.
3The information system is a logical representation rather than a physical one.
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4.2 Relational information

In our approach essential information acquired from the relational data are descrip-
tions of target objects. These descriptions are used, in a sense, to identify the objects,
i.e., the objects are compared to one another or to the patterns (e.g., classification
rules) based on their descriptions. We construct a description for each target object
based on the background relations. To construct such descriptions we introduce the
notion of a related set (Hońko 2010).

Definition 5 (Related objects) Object o is related to object o′ if and only if there
exists a key attribute joining o with o′.4

In our approach the key attribute is, in general, understood as an important
attribute for joining tables. It is usually a primary or foreign key. However, in some
cases it can also be another attribute by which one table can be joined with another
table or with itself.

A target object’s description is expressed by a set of background objects joined
with the target object. More precisely:

Definition 6 (Related set) A related set of a target object o, denoted by rlt(o), is a
set of background objects directly or indirectly related to the target object.

Each target object in our approach is processed along with its related set.

Example 3 Consider the target objects o1 = customer(1, Tom Jackson, 1), o2 =
customer(5, Eve Lee, 0) from the information system of Example 2. The related sets
of o1 and o2 are rlt(o1) = {purchase(1, 1, 1, 21.09.2010), purchase(1, 3, 2, 21.09.2010),
product(1, bread, 2.00), product(3, milk, 2.50)} and rlt(o2) = {purchase(5, 5, 2, 27.

09.2010), product(5, cof f ee, 6.00)}, respectively. The objects of relation purchase
(product) are directly (indirectly) related to the target objects by attribute c_id (by
relation purchase and attribute p_id).

For a given target object one can usually obtain more than one description, each
of which describes the object with different precision. Our objective is to choose
an appropriate description of the target object with respect to a given data mining
task. The precision of the target object’s description (i.e., the related set) can be
tuned by its depth level. To define a related set of a given depth level, we generalize
Definition 5.

Definition 7 (n-related objects) Object o0 is n-related to object on if and only if there
exist n − 1 objects such that oi is related to oi+1, where n > 0 and 0 ≤ i ≤ n − 1 .

4The tables the objects belong to are not assumed to be different.
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One can note that for n = 1, Definitions 5 and 7 are equivalent.
A related set of a given depth level is defined as follows.

Definition 8 (n-related set) The n-th depth level related set of a target object o,
denoted by rltn(o), is a set of background objects, each of which are m-related to
object o and m ≤ n.

We assume that rltn(o) = ∅ for n = 0. It is reasonable to study a target object
without its related set (i.e., the related set is empty) when the object itself includes
information, i.e., descriptive attributes occur in the target relation (e.g., attribute
class of relation customer).

Example 4 Consider the target object o = customer(1, Tom Jackson, 1) from the
information system of Example 2.

We can receive two different non-empty descriptions of o, namely rlt1(o) =
{purchase(1, 1, 1, 21.09.2010), purchase(1, 3, 2, 21.09.2010)} and rlt2(o) =
{purchase(1, 1, 1, 21.09.2010), purchase(1, 3, 2, 21.09.2010), product(1, bread, 2.00),
product(3, milk, 2.50)}.

As presented above, each target object is represented by the set of background
objects related to the target object. It is natural to treat such a set as a granule of
objects drawn together by their relationships with the target object. Therefore, we
examine a granule defined by the pair (o, rlt(o)), where o is a target object from a
given information system. Granules of this form are treated as 1-type information
granules.

A related set of a given target object can be viewed as its specific description.
In order to derive relational patterns (e.g., classification rules), the target object’s
description is generalized. To obtain a general description of a target object itself
and its related set, they are both generalized.

Definition 9 (Generalized target object) A generalized target object o, denoted by
ogen, is the target object with certain components replaced according to a given
substitution.5

Definition 10 (Generalized related set) A generalized related set of a target object o,
denoted by rltgen(o), is the related set with certain components replaced according to
the substitution (partially) constructed during the generalization of the target object.

A generalized n-related set is defined in an analogous way.
Related sets can be generalized in a variety of ways (for more details, see Hońko

(2010)). A method for generalization can be developed taking into consideration
language bias.

Example 5 Consider again the target object o = customer(1, Tom Jackson, 1) from
the information system of Example 2 and its related set rlt2(o) = {purchase(1,

5A component of an object can be replaced with either a variable, a list of constants, or symbol “_”
if the component is not important for the consideration.
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1, 1, 21.09.2010), purchase(1, 3, 2, 21.09.2010), product(1, bread, 2.00), product(3,

milk, 2.50)}. The generalized target object and its related set can be of the follow-
ing forms ogen = customer(A, _, 1) and rlt2

gen(o) = {purchase(A, B, _, _), product(B,

[bread, milk], _)},6 respectively.
An object of the relation customer can be generalized according to the following

language bias constraint mode(customer(+type(c_id), _, #[0, 1])),7 which means that
the first argument of the relation customer has to be replaced with an input variable
of a type that is the same as that of attribute c_id, the second one has to be omitted,
and the third one can be replaced with 0 or 1 (i.e., the class label). In turn, the
substitution according to which object o is generalized is of the form {1c_id/A,

Tom Jackson/_}.

Based on the generalized target objects and their related sets, we define informa-
tion granules by their syntax and semantics. For this purpose we extend to a relational
case the method for constructing information granules (Skowron and Stepaniuk
2001).

In our approach an elementary granule is defined by a conjunction of relational
descriptors, i.e., expressions of the form R(t1, t2, . . . , tn), where R is a relation name
and ti (1 ≤ i ≤ n) are the terms.8

We are given information system ISD = (UD, AD).

– A generalized target object ogen of object o from ISD is a trivial elementary
granule, i.e., a single relational descriptor.
The meaning (i.e., semantics) of the granule, denoted by SEMISD(ogen), is the
set of target objects that satisfy the descriptor.

– A generalized related set rltgen(o) of target object o from ISD is an elementary
granule where each descriptor is constructed based on a background relation.
The meaning of the granule, denoted by SEMISD(rltgen(o)), is the set of target
objects for each of which there exists a substitution such that each descriptor
under the substitution is satisfied.

– A generalized target object ogen with its generalized related set rltgen(o) is
represented by the granule (ogen, rltgen(o)), i.e., the 2-type information gran-
ule.9 The meaning of the granule is SEMISD

(
(ogen, rltgen(o))

) = (SEMISD(ogen),

SEMISD(rltgen(o))).

Example 6 Consider information system ISD of Example 2 and the generalized
target object ogen = customer(A, _, 1) and its related set rlt2

gen(o) = {purchase(A,

B, _, _), product(B, [bread, milk], _)}.

6The denotation [v1, v2, . . . , vn] occurring in an object’s argument list means that the corresponding
attribute may take any of the values v1, v2, . . . , vn. We assume that lists are formed for attributes that
take on a relatively small number of values. Otherwise, the attributes are previously discretized.
7The mode declaration method used in this work is similar to that introduced in Muggleton (1995).
8A term is either a constant, a variable or a compound term. Here we use compound terms limited
to lists of constants.
9If the type of information granules is not mentioned, the granules are assumed to be of the 2-type.
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The meaning of granule (ogen, rlt2
gen(o)) is SEMISD

(
(ogen, rlt2

gen(o))
)

= ({o1, o2,

o3}, {o1, o2}) (oi stands for the i-th customer of database D).

The information granules as defined above can be viewed as an abstract repre-
sentation of relational data. The accuracy level of the representation can easily be
changed by taking another depth level of the related sets. Moreover, a representation
constructed based on the information granules of all of the target objects is treated
in our approach as the search space for discovering patterns. Thanks to this the size
of the search space may be significantly limited.

Granularity of the universe is defined by the set {SEMISD(rltn
gen(o)) : o ∈ UDT }.

Thus different depth levels of related sets correspond to different levels of informa-
tion granulation. As the depth level increases, a lower-level granularity is obtained.

4.3 Relational knowledge

The information granules defined in the previous section are the basis for the
discovery of relational knowledge. Thanks to constructing such granules we are able
to obtain knowledge of a different type. Therefore, we can consider as granules, e.g.,
frequent patterns and relational association rules, relational classification rules, and
relational clusters and their descriptions.

We will show how relational classification rules can be represented by granules.
Firstly, we restate the definition of a relational classification rule.

Definition 11 (Relational classification rule) A relational classification rule is an
expression of the form10

R(t1, t2, . . . , tn) ← R1
(
t1
1, t1

2, . . . , t1
n1

) ∧ R2
(
t2
1, t2

2, . . . , t2
n2

) ∧ · · · ∧ Rm
(
tm
1 , tm

2 , . . . , tm
nm

)
,

where R is a target relation, Ri (1 ≤ i ≤ m) are background relations, and indexed t
are the terms.

For simplicity’s sake we denote a relational rule as α ← β.
The accuracy (coverage) of the rule α ← β is the ratio between the number of objects
that satisfy α ∧ β and the number of objects that satisfy β (α).

Example 7 We are given database D of Example 1 and the classification rule α ←
β, where α = customer(A, _, 1)11 and β = purchase(A, B, _, _) ∧ product(B,

[bread, milk], _). Rule premise β is satisfied by objects o1, o2, each of which is from
class 1. Rule conclusion α is satisfied by objects o1, o2, o3. Hence, the rule’s accuracy
and coverage are 1 and 2/3, respectively.

10One can also take into account rules including negated descriptors or conditions formed based on
arguments of descriptors previously added.
11In our approach we assume that the last term of the rule conclusion is a constant that defines the
class the rule describes.
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Now we define granules through the relation classification rules.
We are given information system ISD = (UD, AD).

– A relational classification rule α ← β in ISD is represented by granule (α, β),
where α and β correspond to ogen and rltgen(o), respectively.
The meaning of the granule is SIMISD((α, β)) = (SIMISD(α), SIMISD(β)).
The rule’s accuracy and coverage can be calculated by accISD(α ← β) =
|SEMISD (ogen)∩SEMISD (rltgen(o))|

|SEMISD (rltgen(o))| and covISD(α ← β) = |SEMISD (ogen)∩SEMISD (rltgen(o))|
|SEMISD (ogen)| , re-

spectively.
– A set of relational classification rules is represented by the set of granules

{(αi, βi) : 1 ≤ i ≤ k}, where k is the cardinality of the set of rules. The meaning
of the granule is {SEMISD((αi, βi)) : 1 ≤ i ≤ k}.

Example 8 We are given information system ISD of Example 2 and the clas-
sification rule of Example 7, i.e., α ← β, where α = customer(A, _, 1) and β =
purchase(A, B, _, _) ∧ product(B, [bread, milk], _).

Consider the generalizations of object o = customer(1, Tom Jackson, 1): ogen =
customer(A, _, 1), rlt2

gen(o) = {purchase(A, B, _, _), product(B, [bread, milk], _)}.
The rule α ← β can be represented by the granule (ogen, rlt2

gen(o)) with the mean-
ing SEMISD(α ← β) = ({o1, o2, o3}, {o1, o2}). The rule’s accuracy and coverage

are accISD(α ← β) = |SEMISD (ogen)∩SEMISD (rlt2
gen(o))|

|SEMISD (rlt2
gen(o))| = 1 and covISD(α ← β) =

|SEMISD (ogen)∩SEMISD (rlt2
gen(o))|

|SEMISD (ogen)| = 2/3.

5 Granular computing framework for generating relational classification rules

We propose the following framework for generating relational classification rules.
In this approach the rules can be generated by applying a top-down or bottom-up
method.

Given:

– ISD = (UD, AD) – the information system of database D;
– n – the depth level of related sets;

Find:

– RS – a set of classification rules;

Steps:

1. RS := ∅;
2. For each target object o of ISD compute rltn(o);
3. Choose one object from the target objects;
4. Based on the chosen object, generate an initial rule, i.e., a granule of the form

r = (ogen, rltm
gen(o)), where

4.1 The top-down case: m := 0;
4.2 The bottom-up case: m := n;
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5. Refine the initial rule r:

5.1 Compute a set of candidate rules:

5.1.1 The top-down case: RS′ := {r} ∪ special(r, m); Next m := m + 1;
5.1.2 The bottom-up case: RS′ := {r} ∪ general(r, m); Next m := m − 1;

5.2 r := best_candidate(RS′);
5.3 Repeat steps 5.1 and 5.2 until stop_criterion(r);

6. RS := RS ∪ {r};
7. Repeat steps 3–6 until stop_criterion(RS);

We will study selected steps of the above proposal.

Re 3. The way of choosing target objects is defined by the algorithm to be used.
One can observe that in the top-down case the choice of a target object is not
important because the generalization of each target object of a given class is
the same.

Re 4. The way target objects and their related sets are generalized in the top-down
case may vary from that in the bottom-up case.

Re 4.1. and 4.2.

The top-down case: An initial rule is to be the most general one, hence m = 0.
The bottom-up case: An initial rule is to be the most specific one, hence m = n.

Re 5.1. The function special(r, m) (general(r, m)) returns a set of allowed special-
izations (generalizations) of a rule r at a level m.12

Re 5.1.1. A specialization of a rule r is done in one of the following ways:

1. A variable that occurs in r is replaced with a list of values the var-
iable may take, e.g., a specialization of the rule customer(A, _,

1) ← purchase(A, B, C, _) is customer(A, _, 1) ← purchase(A, B,

[1, 2], _);13

2. A list of values that occurs in r as a component is replaced with its
non-empty sublist, e.g., a specialization of the rule customer(A, _,

1) ← purchase(A, B, [1, 2], _) is customer(A, _, 1) ← purchase(A,

B, 2, _);
3. r is extended by an additional condition, e.g., a specialization of the

rule customer(A, _, 1) ← purchase(A, C, [1, 2], _) is customer(A, _,

1) ← purchase(A, B, [1, 2], _) ∧ product(B, milk, _).

Re 5.1.2. A generalization of a rule r is done in one of the following ways:

1. A list of values that occurs in r as a component is replaced with a
new variable, e.g., a generalization of the rule customer(A, _, 1) ←
purchase(A, B, [1, 2], _) is customer(A, _, 1)← purchase(A, B, C, _);

12Allowed specializations or generalizations of a given rule are understood as those rules that can be
formed according to given constraints.
13If a list of values consists of one element, then the list is replaced with that element.
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2. A list of values that occurs in r as a component is replaced with
its superlist, e.g., a generalization of the rule customer(A, _, 1) ←
purchase(A, B, 2, _) is customer(A, _, 1)← purchase(A, B, [1, 2], _);

3. r is reduced by removing one of its conditions, e.g., a general-
ization of the rule customer(A, _, 1) ← purchase(A, B, [1, 2], _) ∧
product(B, milk, _) is customer(A, _, 1) ← purchase(A, C, [1, 2], _).

Re 5.2. The function best_candidate(S) returns a rule from S that has the highest
quality based on a given quality measure.

Re 5.3 The stop criterion is defined by a given technique or algorithm for generat-
ing classification rules. For step 7 it is done analogously.

We give an illustrative example of the generation of a rule.

Example 9 We are given information system ISD from Example 2. We examine the
top-down case and n = 1. We evaluate a rule based on its accuracy and use the
following constraints during the construction of the rule:

1. mode(customer(+type(c_id), _, #[0, 1])),
2. mode(1, purchase(+type(c_id), −type(p_id), −type(amount), _)), 14

3. mode(1, purchase(+type(c_id), −type(p_id), #[1, 2, 3], _)),

We have RS := ∅; Suppose that o2 = customer(2, Susan Clark, 1) is a chosen object.
We have rlt1(o2) = {purchase(2, 1, 1, 25.09.2010), purchase(3, 1, 1, 26.09.2010)}.
According to the above constraints, we get the following generalizations o2gen =
customer(A, _, 1), rlt1

gen(o2) = {purchase(A, B, C, _)}. The case m = 0. We have the
initial rule r = (o2gen , rlt0

gen(o2)) = (customer(A, _, 1),∅)15 with accuracy 1/2. Since
the set of specifications of r is empty under the given constraints, then r is the
best candidate. The case m = 1. Based on r we obtain the following rule of level 1:
r := (customer(A, _, 1), purchase(A, B, C, _)). We have the following specialization
of r at level 1 (accuracy given after the colon): (customer(A, _, 1), {purchase(A,

C, 1, _)}) : 2/3, (customer(A, _, 1), {purchase(A, C, 2, _)}) : 1/3, (customer(A, _, 1),
{purchase(A, C, 3, _)}) : 0, (customer(A, _, 1), {purchase(A, C, [1, 2], _)}) : 1/2,
(customer(A, _, 1), {purchase(A, C, [1, 3], _)}) : 2/3, (customer(A, _, 1), {purchase(A,

C, [2, 3], _)}) : 1/3. We take the first rule with the highest accuracy, i.e., r :=
(customer(A, _, 1), {purchase(A, C, 1, _)}). Since m = n, then RS := RS ∪ {r}.

6 Analysis of the framework

In this section we analyze the framework in terms of its properties, information lost
during granulation, and the set theoretical interpretation of granulation.

14An argument preceded by symbol “+” (“−”) has to be replaced with an input (output) variable.
The first argument of function mode (i.e., value 1) means that relation purchase can be used in the
construction of a pattern at most once.
15The granule (customer(A, _, 1),∅) can be transformed into the rule customer(A, _, 1) ← 1, where
the rule premise is satisfied by any object.
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6.1 The framework’s properties

We discuss the properties of our framework in the context of the essential problems
of relational data mining.

1. Relational object representation This issue is more complicated for the relational
case than when data resides in a single table. Namely, an object can be repre-
sented not only by the tuple that belongs to one relation (i.e., the target relation),
but also by tuples that belong to other relations that are directly or indirectly
joined to the target relation. The crucial task is thus to find a representation
such that, on the one hand, it is specific enough to identify objects and, on
the other hand, it is general enough to avoid too detailed information. In our
framework this problem is resolved thanks to applying the granular computing
idea of switching between different levels of granularity of the universe. Namely,
we can replace a given object representation with another one by changing the
depth level of related sets. Thanks to this the relational object representation can
be adjusted to a given data mining task (e.g., classification).

2. Search space limitation Relational data is distributed over multiple tables, and the
search space for discovering relational patterns may be very huge. In the current
frameworks (i.e., ILP and RDB), this problem is overcome by applying language
bias. It imposes some constraints on the patterns to be discovered, thereby the
search space is limited. Our framework is independent of the way language bias is
specified, thus bias from the ILP or RDB framework can be adapted. Moreover,
the search space in our framework is additionally limited. Namely, this is given
explicitly as a class of information granules derived from the data.

3. Generation of relational patterns The current frameworks unify the way to
generalize objects; however, the method for deriving patterns (e.g., classification
rules) from relational data is provided not by the frameworks, but by the concrete
algorithms that can be defined in the frameworks. Our framework partially
unifies the process of discovering rules from data. Namely, the rules are not
directly derived from the data, but from the information granules. A rule can
directly be obtained from an information granule (i.e., the rule is equivalent to
the granule) or constructed based on the granule (i.e., the rule is a specialization
or generalization of another rule that is equivalent to the granule).

6.2 Granular representation and information loss

The general idea is to construct a granular representation of the data that is conve-
nient for rule generation. The transformation of data into information granules may
cause information loss. However, we can control this during both the computation
of granules and rule generation. In our framework there are two cases when some
information may be lost.

1. Depth level change The idea of the depth level is to adjust the granular represen-
tation to a given data task (to preserve essential information and to remove the
detailed information). In order to avoid or minimize information loss that may
be caused by a limitation to a given depth level we follow the principle below:
If target objects that are distinguishable in the original database are distinguished
based on a given granular representation, then alternative information loss is not
essential.



202 J Intell Inf Syst (2013) 41:187–210

In order to follow this principle we check distinguishability of the objects at
a given depth level. If some objects are indistinguishable, we extend their
representation by applying a deeper level.

2. Transforming 1-type information granules into 2-type information granules. The
idea of the transformation is to achieve granules that are semantically different
from clustered data. Despite the fact that such a representation is richer
(it can reveal additional properties hidden in the data), some information can
be lost during the generalization of 1-type information granules. To overcome
this problem, granules can be modified (see the special function) in the process
of rule generation to retrieve information lost during the generalization.

Summing up, both a properly selected depth level and generalization method
should guarantee no essential information loss. However, if the former fails, we
examine a deeper level for the conflict target objects. If the latter fails, we de-
crease the level of generalization by specializing the granules of the conflict target
objects.

6.3 Set theoretical interpretation of relational data granulation

The commonly used approach for information granulation is based on the assump-
tion that all important features can be captured from data by forming granules as
subsets of the original data set. A consequence of this is that the information granules
are not semantically distinct from clustered entities. To overcome this inconvenience,
information granulation is viewed as a semantically meaningful grouping of elements
based on their indistinguishability, similarity, proximity or functionality (Bargiela
and Pedrycz 2008). Therefore, the problem to be solved can be cast in the formalism
of non-classical set theory, e.g., NBG set theory as proposed in Bargiela and Pedrycz
(2008), where apart from sets, classes that are semantically distinct from the sets are
also examined.

In terms of set theory we investigate in our framework a class of granules
constructed based on generalized related sets which is semantically distinct from a
set of granules formed based on non-generalized related sets. The class of granules is
a richer representation of the data. The granules reveal additional features hidden in
the data, namely, based on the semantics of a granule one can define its incidence
(the number of objects that shares the features encoded by the granule) and its
significance (decision class purity among objects that share the features encoded
by the granule). Both the incidence and significance of particular granules provide
properties essential for constructing classification rules. Therefore, one can say that
this representation is task-oriented since it shows additional properties of the original
data that are helpful for generating classification rules.

The way classification rules are derived from 1-type information granules differs
from that for 2-type information granules. In the former case, we search all of the
features possible under a given language bias and check through the granules that
represent objects which of them satisfy the features. In the latter case, we only search
and alternatively modify features encoded by the granules and check which objects
share the features. Despite these differences, 2-type information granulation is also
consistent with the original data. This is, in fact, an intermediate representation
between the original data and the classification rules to be derived.
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7 Evaluation of the framework

In this section we provide a theoretical evaluation of the framework. We show its
correctness and completeness as well as analyze its time complexity.

7.1 The Framework’s correctness and completeness

Firstly, we evaluate the way the information granules are constructed (see
Definitions 9 and 10. For the purposes of the evaluation form a simple algorithm.

We show that the set of granules returned by Generate_Granular_Rep is a proper
representation of the whole search space.

Definition 12 (Correctness of an algorithm for generating a representation of the
search space) An algorithm that generates a representation of the search space is
correct if every relationship produced by the algorithm occurs in the search space.

Definition 13 (Valid relationship) A relationship rs is valid in database D if there
exists an object o in D such that o satisfies rs.

Proposition 1 The Generate_Granular_Rep algorithm is correct.

Proof Since every relationship rs is produced by the algorithm based on a target or
background object o, then o satisfies rs. Hence, rs is valid by Definition 13.

Definition 14 (Completeness of an algorithm for generating a representation of the
search space)

An algorithm that generates a representation of the search space is complete if it
produces all valid relationships that occur in the search space.

Proposition 2 The Generate_Granular_Rep algorithm is complete.

Proof (by contradiction) Suppose that there exists a valid relationship rs in the
search space SS such that it is not produced by the algorithm (1). Let o be an object
that satisfies rs, and let rs′ be a relationship produced by the algorithm based on o.
We have o satisfies rs and rs′ (2). By (1), we have rs 
≡ rs′ (3).

1. The case: rs is more general than rs′.
We obtain that rs is constructed based on more than one object. Let O be the set
of all objects that satisfy rs. We have o ∈ O. Let RS be the set of relationships
produced by the algorithm such that each rs′′ ∈ RS is constructed based on one
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o′ ∈ O. We have rs′ ∈ RS. We receive rs ≡ ∨
rs′′∈RS rs′′. Therefore, rs can be

produced by the algorithm. Hence, contradiction with (1).
2. The case: rs′ is more general than rs.

We obtain that rs is constructed based on more than one object. Let O be
the set of all objects that satisfy rs′. There exists a subset O′ ∈ O such that
rs ≡ ∨

rs′′∈RS rs′′ and each rs′′
i ∈ RS is constructed based on one o ∈ O′. There-

fore, rs can be produced by the algorithm. Hence, a contradiction with (1).
3. Case: rs is not more general than rs′ and vice versa.

(a) The case: rs ≡ rs′.
It leads to a contradiction with (3).

(b) The case: rs 
≡ rs′.
We obtain that o satisfies neither rs nor rs′. Hence, a contradiction with (2).

�


Definition 15 (Correctness of the rule generation algorithm) An algorithm that
generates a rule set is correct if every rule produced by the algorithm has a quality
not less than a given threshold.

Proposition 3 An algorithm constructed based on the framework is correct.

Proof The correctness is guaranteed by step 5.3 of the framework. Namely, a rule is
added to the rule set if the rule’s quality is not less than a given threshold. �


Definition 16 (Completeness of the rule generation algorithm)
An algorithm that generates a rule set is complete if it produces all (required) rules
that have a quality not less than a given threshold.

Proposition 4 An algorithm constructed based on the framework is complete.

Proof Suppose there exists o ∈ UDT such that o does not satisfy any r ∈ RS, where
RS is the rule set produced by the algorithm. Let r′ be the rule constructed based on
o. We have r′ 
∈ RS (1). Regardless of the quality measure, we can assume that the
quality of r′ is lower than a given threshold due to at least one of the following:

1. The number of objects o ∈ UDT satisfying r′ such that class(o) = class(r)16 is
lower than a given threshold.
Let c be the condition of r′ such that c decreases the quality of r′. Let c′ be a
condition found over the whole search space such that r′ after replacing c with
c′ is of the desired quality. We obtain that c′ is more general than c. Therefore,
c′ ≡ c ∨ C, where C is a disjunction of conditions. By Proposition 2, we have that
each condition of C can be constructed by the Generate_Granular_Rep algo-
rithm. Hence, c′ can be constructed based on results produced by Generate_
Granular_Rep or by the general function. Hence,a contradiction with (1).

16The class function returns the class label for an object and, for a rule, the label of the class the rule
describes.
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2. The number of objects o ∈ UDT satisfying r′ such that class(o) 
= class(r) is lower
than a given threshold.
Let c and c′ be defined as in the previous case. We have c is more general than
c′. Therefore, c ≡ c′ ∨ C, where C is a disjunction of conditions. Hence, c′ can
be constructed by omitting the condition of C or by using the special function. It
leads to a contradiction with (1). �


7.2 The framework’s complexity

We provide an analysis of the framework’s time complexity. We study the operations
of granule formation and rule generation.
Let n = |UDT | and m = |UDB |.
1. The cost of the formation of granules (o, rlt(o)) for all o ∈ DT is

T(n, m) = nm′ ≤ nm = O(nm),

where m′ is the number of all objects 1. from the database’s tables to be scanned.
In a pessimistic case we have m′ = m.

2. The cost of the generalization of all granules (o, rlt(o)) ∈ U is

T(n, m) = |U |
∑

o′∈{o}∪rlt(o)

∑

a∈attr(o′)
1 = n(|rlt(o)| + 1)C ≤ n(m + 1)C = O(nm),

where C = ∑

a∈attr(o′)
1 is the cost of the generalization of an object o′ .17 C does not

depend on the data size.

Relational data is represented by a class of granules of the form (ogen, rltgen(o)).
One can observe that the size of this representation only depends on the size of
UDT . Namely, we assume that a given database is representative, i.e., (almost) all
relationships occur in the database. Therefore, adding new background objects does
not affect (or hardly affects) the form of the generalized related sets. Hence, we can
ignore the size of rltgen(o) when analyzing the complexity of the approach for rule
generation.

1. Construct a rule (without checking the rule’s satisfaction).
Let o be a target object based on which a rule is constructed. To generate a rule
we need to scan objects from rltgen(o) to check which of them should be taken
as the rule’s conditions. We assume that the cost of scanning a set is equal to its
cardinality.
The cost of rule generation is

T(n) =
∑

o′∈rltgen(o)

1 = |rltgen(o)| ≤ C = O(1),

where C = max{|rltgen(o)| : o ∈ UDT }.

17attr(o) is the collection of all components of an object o.
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2. Compute special(r, i) or general(r, i) for all conditions of a rule.

(a) Step 5.1.2.1
To generalize a rule we need to replace a list of values that occur in the
rule’s condition with a variable. We assume that the cost of the replacement
of a list of values is 1.
Let RS be the set of all rules, r the rule to be generated, cond(r) the set of
all conditions of a rule r, and compmod(c) the set of components (constants,
a list of constants or variables) of a rule condition c to be modified, i.e.,
generalized or specialized. The cost of the generalization of a rule is

T(n) =
∑

c∈cond(r)

∑

l∈compmod(c)

1 = |cond(r)||compmod(c)| ≤ C1C2 = O(1),

where C1 = max{|cond(r)| : r ∈ RS}, C2 = max{|compmod(c)| : c ∈ cond(r),
r ∈ RS}. Values C1 and C2 are small and do not depend on the data size.

(b) Step 5.1.1.1
To specialize a rule we need to replace its condition variable with a list of
values. We assume that the cost of the replacement of a variable is 1.
Let val(V) be the values set of a variable V , and LV the set of lists of values
taken into account during the replacement of a variable V. The cost of the
specialization of a rule is

T(n) =
∑

c∈cond(r)

∑

V∈compmod(c)

∑

l∈LV

1 ≤
∑

c∈cond(r)

∑

V∈compmod(c)

(2|val(V)| − 2)

= |cond(r)||compmod(c)|(2|val(V)| − 2) ≤ C1C2(2
C3 − 2) = O(1),

where C1 = max{|cond(r)| : r ∈ RS}, C2 = max{|compmod(c)| : c ∈ cond(r),
r ∈ RS}, C3 = max{|val(V)| : V ∈ var(c), c ∈ cond(r), r ∈ RS}. In the pes-
simistic case we have LV = P(val(V)) \ {∅, val(V)}.18 C1 and C2 are small
and do not depend on the data size and neither does C3, since we assume
that the data is discretized.

(c) Step 5.1.1.2 and 5.1.2.2
Analogously to the above point.

(d) Step 5.1.1.3
To specialize a rule we need to choose a new condition. We assume that the
cost of the choice of a condition is 1.
Let condi(r) be the set of all conditions to be generated for a rule r at a
given level i. The cost of the specialization of a rule is

T(n) =
∑

c∈condi(r)

1 = |condi(r)| ≤ C = O(1),

where C = max{|condi(r)| : r ∈ RS} is small and does not depend on the
data size.

18 P(X) is the power set of X.
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(e) Step 5.1.2.3
To generalize a rule we need to scan all of the rule’s conditions in order to
remove one of them. We assume that the cost of the removal of a condition
is 1.
Let r be a rule to be specialized. The cost of the generalization of a rule is

T(n) =
∑

c∈cond(r)

1 = |cond(r)| ≤ C = O(1),

where C = max{|cond(r)| : r ∈ RS} is small and does not depend on the data
size.

3. Check if the target objects satisfy a rule.
If a rule is only constructed by adding or removing conditions (step 5.1.1.3 or
5.1.2.3), it is enough to scan rltgen(o) to check if o satisfies the rule. If any
condition of a rule is generalized or specialized (steps 5.1.1.1-2 or 5.1.2.1-2), we
need to additionally scan rlt(o) to check if o satisfies the condition. However,
we assume that the background objects from rlt(o) are associated with the
corresponding objects from rltgen(o). Thanks to this there is no need to scan the
whole rlt(o). Hence, we can ignore the cost of finding a background object to
satisfy a given condition and we assume that the cost of the verification of a
condition is 1.
Let O ⊆ UDT be a set of objects for which a rule is to be checked, and mod(c)
the set of all conditions derived from a condition c by using the special or general
function. The cost of checking the rule satisfaction is

T(n) =
∑

o∈O

∑

o′∈rltgen(o)

∑

c∈cond(r)

∑

c′∈mod(c)

1

= |o ∈ O||rltgen(o)||{c ∈ cond(r)}||mod(c)| ≤ nC1C2C3 = O(n),

where C1 = max{|rltgen(o)| : o ∈ UDT }, C2 = |cond(r)|, C3 = max{|mod(c)| : c ∈
cond(r)}. When the whole rule is only constructed by adding or removing
conditions (step 5.1.1.3 or 5.1.2.3), then C3 = 1.

The operations from points 1–3 are independent, thus the complexity of the
generation of a rule is O(1) + O(1) + O(n) = O(n). We assumed that the database
is representative, hence we obtain that the number of rules does not depend on the
data size. Thus, the complexity of the generation of a rule set RS is

|RS|O(n) = O(n).

Based on the above analysis we can immediately show the rule generation
approach’s scalability with respect to the data size.

Definition 17 (Algorithm’s scalability) An algorithm is scalable with respect to data
size n if it has a linear time complexity.

Proposition 5 An algorithm for rule generation based on the framework is scalable.

Proof The algorithm’s time complexity for data size n is O(n), hence, and by
Definition 17, the algorithm is scalable. �
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8 Conclusions and future directions

We have proposed in this work a granular computing framework for generating
classification rules from relational data. The framework is based on the general
framework for mining relational data. The structure for storing relational data in
this framework is an information system that is constructed by adapting the notion
of a standard information system. Information granules derived from the information
system are used to construct relational classification rules.

Conclusions that involve the approach proposed in this paper are the following.

1. The framework can be helpful when a given database consists of many tables
and some background objects are joined with the target ones through a number
of tables. In this case there arises the problem of how deeply one should search
the database for background objects that are joined with the target ones. In our
framework the search level can easily be changed so as to adjust the target object
representation to a given data mining task.

2. Our framework can also be useful when the search space limitation affected by
language bias is not sufficient. The search space can additionally be limited, since
it is given as a set of information granules derived from the data.

3. Our framework has an advantage over the ILP and RDB frameworks in terms
of generation of patterns. Namely, the framework, unlike others, partially unifies
the process of discovering patterns from data. This is done by constructing the
search space based on information granules. The patterns can thus directly be
derived from such granules or constructed based on them.

Furthermore, in this framework one can define new algorithms as well as redefine
existing ones for generating relational classification rules.

Since our research as presented in this paper is theoretical, a direction for future
work is to develop an algorithm in the framework. More detailed directions that
involve some important practical issues are the following.

1. Granulation of semantically distinct attributes In the approach proposed in this
paper one can indicate two types of attributes: descriptive attributes (which
are replaced with values) and key attributes (which are replaced with vari-
ables). Such an attribute distribution usually naturally results from the database
structure. However, in some cases an additional type of attributes is desirable.
Namely, except for descriptive and key attributes one can consider functional
ones. They can be used to characterize the functional nature of the data. As the
results reported in Pedrycz and Bargiela (2010) show the conceptual distinction
between descriptive and functional attributes can have an essential influence on
information granulation.

2. Optimization of the levels of granularity In our approach data is transformed into
information granules. Thanks to that, we obtain a higher-level representation of
data. Namely, an information granule can represent a group of target objects,
revealing their important properties. The information granules can be adjusted
by applying a depth level. However, it is possible that at a given level the
number of possible descriptors can be relatively high. Therefore, an additional
adjustment that relies on the selection of the most important descriptions would
be helpful. Such an adjustment can be based on a criterion maximizing the
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number of target objects from the same class that are represented by the same
granule, cf. Pedrycz and Bargiela (2012).

3. Interpretability of information granules An important issue of granular comput-
ing is interpretability of information granules. This task is complex and requires
a comprehensive analysis of all aspects of the environment on which granules are
developed and used (Mencar 2009). Interpretability of granules proposed in this
paper can be estimated by examining relational classification rules obtained by
the transformation of the granules. Any information granule in our approach can
in an easy way be transformed into a classification rule. Therefore, information
granules can be evaluated by measuring interpretability of the corresponding
rules from the point of view of understandability. For example, it can be done by
adapting an approach proposed in Mencar et al. (2011) that evaluates how much
the semantics of fuzzy rules is coherent with their logical view.
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