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Abstract
A chiral polytope with Schläfli symbol {p1, . . . , pn−1} has at least 2p1 · · · pn−1 flags,
and it is called tight if the number of flagsmeets this lower bound. The Schläfli symbols
of tight chiral polyhedra were classified in an earlier paper, and another paper proved
that there are no tight chiral n-polytopes with n ≥ 6. Here we prove that there are
no tight chiral 5-polytopes, describe 11 families of tight chiral 4-polytopes, and show
that every tight chiral 4-polytope covers a polytope from one of those families.

Mathematics subject Classification (2010) 52B05 (20B25, 52B15)

1 Introduction

An abstract n-polytope is a partially ordered set that satisfies many of the proper-
ties of the face lattices of convex n-polytopes. The maximal chains (called flags)
are analogous to the simplices in the barycentric subdivision of a convex polytope.
Automorphisms are order-preserving bijections and are the combinatorial analogue of
symmetries of convex polytopes.

The group of automorphisms of an abstract polytope acts semiregularly on the set
of flags, and if the action is transitive (and thus regular), then the polytope is said to be
regular. These polytopes are regarded as themost symmetric and have been extensively
studied. The automorphism group of a regular polytope has a standard generating set,
and it is possible to recover the polytope from a group in this form, making it possible
to study regular polytopes completely in terms of their groups.

An abstract polytope is chiral whenever the automorphism group has two orbits
on the flags such that flags that differ in only one element are in opposite orbits.
This is the combinatorial analogue to having all symmetry by rotations but none by
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reflections. As with regular polytopes, the automorphism group of a chiral polytope
has a standard form, and we can build a chiral polytope out of such a group. The study
of chiral polytopes grew out from the study of chiral maps and twisted honeycombs
(see [7,8]), andwhile chiral 3-polytopes and chiral 4-polytopes are nowadays plentiful,
constructing chiral n-polytopes with n ≥ 5 seems to be much harder. To date, there is
no known natural family of chiral n-polytopes with one polytope for each n (whereas
there are many examples of families of regular n-polytopes, such as n-cubes). There is
a construction, described in [21], that takes a chiral n-polytope as input and produces
a chiral (n+1)-polytope, but the polytopes constructed this way are so large that their
individual study is out of reach with the current computational means available.

How can we find small examples of chiral polytopes? One strategy is to specify
part of the local structure (such as what kind of sub-units the polytope is built from)
and then use that local structure to put a lower bound on the number of flags. This
idea was used in [3] to find the smallest regular polytopes of each rank and in [11] to
explore bounds in the size of chiral polytopes. A polytope is called tight if its number
of flags is equal to some lower bound. For example, a chiral polyhedron (3-polytope)
with p-gonal faces and q edges at each vertex must have at least 2pq flags, and so a
tight chiral polyhedron has exactly 2pq flags (see [10]).

In [12], the first author determined the pairs (p, q) such that there is a tight chiral
polyhedronwith p-gonal faces and q edges at each vertex. Furthermore, the first author
showed in [11] that there are no tight chiral n-polytopes with n ≥ 6. In this work, we
exhibit 11 families of tight chiral 4-polytopes (see Table 4) and show that every tight
chiral 4-polytope covers one of the polytopes in these families. Furthermore, we prove
the following theorem.

Theorem 1 There are no tight chiral 5-polytopes.

2 Background

In this section, we summarize relevant definitions and results.

2.1 Abstract polytopes

Regular abstract polytopes are a combinatorial generalization of the notion of (geomet-
ric) polyhedra explored by Petrie, Coxeter, Grünbaum and Dress in the 20th Century
(see [6,15,16,18]). In what follows, we recall the basic definitions. For further details
see [19].

An abstract polytope (P,≤) of rank n is a partially ordered set satisfying the
following four axioms.

(I) It has a unique minimal element F−1 and a unique maximal element Fn .
(II) All maximal chains have precisely n + 2 faces, including F−1 and Fn . This

induces a strictly increasing rank function rank : P → {−1, . . . , n} where
rank(F−1) = −1 and rank(Fn) = n.
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(III) Diamond condition: Given two elements F , G with rank(G) = rank(F) + 2,
there exist precisely two elements H1 and H2 with rank(H1) = rank(H2) =
rank(F) + 1 such that F ≤ Hi ≤ G for i ∈ {1, 2}.

(IV) Strong connectivity: For any pair of incident elements {F,G} ⊆ P with
rank(G) − rank(F) ≥ 3, the incidence graph of the open interval (F,G) is
connected. (The incidence graph of a partially ordered set has the elements as
vertices, and two are adjacent if and only if the corresponding elements are
incident.)

Throughout this paper, we will encounter only abstract polytopes and we shall refer
to them simply as ‘polytopes.’ Rank 2 and 3 polytopes are also called poylgons and
polyhedra, respectively. For convenience, we refer to the polytope (P,≤) simply as
P . Two elements F,G of P are said to be incident if either F ≤ G or G ≤ F .

The elements ofP are called faces. Those of rank i are called i -faces. Following the
tradition, the 0- 1- and (n−1)-faces are called vertices, edges and facets, respectively.
For i ∈ {1, . . . , n − 2}, we define the i -skeleton of P as the partially ordered set
consisting of all the j-faces for j ≤ i . If F0 is a vertex and Fn−1 is an incident facet,
we say that the closed interval [F0, Fn−1] is a medial section of P .

The closed intervals of a polytope (also called sections) satisfy the axiomsof abstract
polytopes. In particular, any medial section of a polytope is a polytope. The section
[F0, Fn], where F0 is a vertex, is called the vertex-figure at F0. Every face F may
be identified with the section [F−1, F], and in this way it may be considered as an
abstract polytope.

The maximal chains of P are called flags. Due to the diamond condition, for any
flag Φ and any rank i ∈ {0, . . . , n − 1} there exists a unique flag Φ i that differs from
Φ precisely in the element of rank i . The flag Φ i is called the i -adjacent flag of Φ.
We extend this notation recursively in such a way that if w is a word on the alphabet
{0, . . . , n − 1} and i ∈ {0, . . . , n − 1} then (Φw)i = Φwi .

ThedualPδ of a polytopeP consists of the same elements asP with the partial order
reversed. In this way, if F is an i-face of an n-polytopeP , then it is an (n− i −1)-face
of Pδ .

An n-polytope is said to be flat whenever every vertex is incident to every facet.
Given 0 ≤ k < m ≤ n, we say that it is (k,m)-flat if every k-face is incident to every
m-face.

There is a unique polytope of rank 0 and a unique polytope of rank 1. They corre-
spond to the face lattices of a single point and of a line segment (with its two endpoints).
For each integer k ≥ 2, there is a unique polygon with k vertices, that corresponds
to the face lattice of a convex k-gon. There is also a unique apeirogon with infinitely
many vertices, corresponding to the face lattice of the tiling of the real line by unit
intervals. Therefore the rank 2 sections of a polytope are all isomorphic to k-gons for
some k or to apeirogons.

We say that a polytope is equivelar if, for every i ∈ {1, . . . , n − 1}, all sections
between an (i −2)-face and an incident (i +1)-face are pi -gons for some numbers pi ,
regardless of the choice of (i − 2)-face and (i + 1)-face. Regular and chiral polytopes
defined below are examples of equivelar polytopes. The Schläfli type (or type for short)
of an equivelar polytope is {p1, . . . , pn−1}.
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We say that an n-polytope Q is a quotient of a polytope P whenever there exists
a rank and adjacency preserving mapping from the faces of P to the faces of Q. (We
say that two i-faces are adjacent if they are incident to a common (i − 1)-face and
(i + 1)-face.) In such cases, we say that P covers Q.

An automorphism of P is an order-preserving bijection of its faces. The automor-
phism group is denoted by Γ (P) and acts freely on the set of flags. It follows from
the strong connectivity of P that all orbits of flags have the same size |Γ (P)|.

2.2 Regularity and chirality

In this subsection, we provide a general background on regular and chiral polytopes.
Our main interest in this paper is on chiral polytopes; hence, we shall follow the

approach given in [22] to the study of the automorphism groups of these two classes
of objects, and not the one in [19] for regular polytopes.

We say that an n-polytope P is regular whenever Γ (P) acts transitively on the set
of flags, and it is chiral whenever Γ (P) induces two orbits on the flags in such a way
that adjacent flags belong to distinct orbits. If P is regular or chiral we say that it is
rotary.

For every i ∈ {0, . . . , n − 1} the automorphism group of a rotary polytope acts
transitively on the i-faces. As a consequence, rotary polytopes are equivelar.

It is well-known that for every integers p1, . . . , pn−1 ≥ 2 there is a regular polytope
with type {p1, . . . , pn−1} (see [19, Chapter 3]. This is not the case for chiral polytopes,
as shown by the following lemma.

Lemma 1 If the last entry of the type of a polytope P is 2 then P is not chiral.

Proof If P is an n-polytope with a 2 as the last entry of its type then all (n − 3)-faces
belong to precisely two facets. By the diamond condition, also the (n−2)-faces belong
to two facets. The connectivity of the (n−2)-skeleton shows that P has precisely two
facets and all i-faces are incident to them for i ≤ n − 2.

The function that fixes every i-face for i ≤ n−2 and interchanges the two (n−1)-
faces is then an automorphism, and it maps every flag to its (n − 1)-adjacent. Hence
P is not chiral. ��

Every finite polygon is isomorphic to the face lattice of some convex regular poly-
gon, and hence it is regular. Also the unique infinite 2-polytope is regular. Hence the
rank of a non-regular polytope must be at least 3. Chiral polytopes exist in ranks 3 and
higher (see [21]).

All sections of regular polytopes are regular. The facets and vertex-figures of a
chiral n-polytope may be either regular or chiral; however, the (n − 2)-faces must be
regular (see [22, Proposition 9]). Note that chiral polytopes with chiral facets must
have rank at least 4.

Much of the work on chiral polytopes has been done through a particular presenta-
tion of their automorphismgroups thatwe explain next. For another useful presentation
see for example [5].

Given a fixed base flag Φ of a rotary n-polytope P there exist σi ∈ Γ (P) for
i ∈ {1, . . . , n−1} such thatΦσi = Φ i(i−1). We shall denote the group 〈σ1, . . . , σn−1〉
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byΓ +(P) and call it the rotationgroupofP . The automorphismsσi are called standard
generators of Γ +(P). If P has type {p1, . . . , pn−1}, then the order of σi is pi and
therefore Γ +(P) is a suitable quotient of the even subgroup [p1, . . . , pn−1]+ of the
Coxeter group [p1, . . . , pn−1] (see for example [19, Chapter 3]).

If P is chiral then Γ (P) = Γ +(P). Whenever P is regular, Γ +(P) has index at
most 2 inP; if the index is 2we say thatP is orientably regular, and it is non-orientably
regular ifΓ (P) = Γ +(P). In any of these cases, if F is an i-face andG is a j-face such
that F ≤ G and their ranks differ in at least 3 then Γ +([F,G]) = 〈σi+2, . . . , σ j−1〉.

For a rotary polytope P , the standard generators of Γ +(P) satisfy

(σi . . . σ j )
2 = id for every 1 ≤ i < j ≤ n − 1, (1)

as well as the intersection condition

AI ∩ AJ = AI∪J for every I , J ⊆ {0, . . . , n − 1}, (2)

where for I ⊆ {0, . . . , n − 1} the set AI denotes the stabilizer in Γ +(P) of those
faces Fi of the base flag with ranks i ∈ I . If I = {1, . . . , n − 1} \ {i, i + 1, . . . , j}
with i < j then AI = 〈σi+1, . . . , σ j 〉, which allows us to state the following lemma.
For other sets, I the generating sets XI of these stabilizers are more complicated (see
[22, Sect. 3]).

Lemma 2 LetP be a rotary polytope with Γ +(P) = 〈σ1, . . . , σn−1〉. If j ≤ i +1 ≤ k
then

〈σ1, . . . , σi 〉 ∩ 〈σ j , . . . , σk〉 = 〈σ j , . . . , σi 〉. (3)

If P is chiral, we may choose the base flag in one or in the other flag orbit. These
two choices produce non-equivalent sets of standard generators σi , in the sense that
the defining relations for Γ +(P) will not be the same for the two sets. One may think
of these two ways of looking at P as a left and right form of the same object; we can
go from one to the other just by ‘reflecting’ our setting from the base flag into any of
its adjacent flags. When doing this, we may take {σ−1

1 , σ 2
1 σ2, σ3, σ4, . . . , σn−1} as the

new set of standard generators for Γ (P). For a chiral polyhedron, another convenient
new set of generators is {σ−1

1 , σ−1
2 }. The enantiomorph of a chiral polytope P (with

an implicit base flag chosen) consists of the same polytope but where we change the
base flag to any of its adjacent flags. We denote the enantiomorph of P by P∗. For
more details about these forms see [23].

We mentioned that the rotation group of a rotary polytope is a group with a gener-
ating set satisfying (1) and the intersection condition (2). Conversely, a group with a
generating set satisfying (1) and a suitable version of (2) is the rotation group of an
orientable rotary polytope (that is, orientably regular or chiral).

The construction of the polytope from a group Γ = 〈σ1, . . . , σn−1〉 is detailed in
[22, Sect. 5]. It defines the i-face of the base flag as the subgroup of Γ generated by
the elements X{i} of A{i} mentioned before Lemma 2. The remaining i-faces are the
cosets of the base i-face under the right action of Γ . It also establishes that two faces
are incident if they have non-empty intersection. In particular, the sets of facets may be

123



842 Journal of Algebraic Combinatorics (2021) 54:837–878

identified with the right cosets of 〈σ1, . . . , σn−2〉 under Γ . Note that this construction
can be performed even if the group does not satisfy the intersection condition. The
output will still have well-defined flags, and it is possible to talk about regularity
through the action of its automorphism group.

If P is non-orientably regular then that construction will produce the orientable
double cover of P . It follows that there is a one-to-one correspondence between ori-
entable rotary polytopes and groups satisfying (1) together with some version of (2).
For our purposes, we find convenient the following version of (2) that can be easily
deduced from [22, Lemma 10].

Lemma 3 Let Γ = 〈σ1, . . . , σn−1〉 be a group where each σi is nontrivial and the
order of σi . . . σ j is 2, for every 1 ≤ i < j ≤ n − 1. Then Γ satisfies the intersection
condition (2) if and only if

〈σ1, . . . , σi 〉 ∩ 〈σ j , . . . , σi+1〉 = 〈σ j , . . . , σi 〉, (4)

for every 2 ≤ j ≤ i + 1 ≤ n − 1, where if j = i + 1 then we interpret the right-hand
side as being the trivial group.

If P is orientably regular (resp. chiral) with Γ +(P) = 〈σ1, . . . , σn−1〉 then Pδ is
also orientably regular (resp. chiral) and, with respect to some flag, the i-th standard
generator of Γ +(Pδ) is σ−1

n−1−i , for i ∈ {1, . . . , n − 1}.
In upcoming sections, we will be interested in normal subgroups contained in 〈σi 〉

for some i . In those situations the following result will prove useful.

Lemma 4 Let P be a rotary 4-polytope, and let Γ +(P) = 〈σ1, σ2, σ3〉.
(a) For every k, σ3σ k

1 σ−1
3 = σ−1

2 σ−k
1 σ2.

(b) If K is a subgroup of 〈σ1〉, then σ−1
2 Kσ2 = K if and only if σ−1

3 Kσ3 = K.

Proof We start with

σ3σ1 = (σ1σ2)
2σ3σ1(σ2σ3)

2 = σ1σ2(σ1σ2σ3)
2σ2σ3 = σ1σ

2
2 σ3. (5)

It follows that

σ3σ
k
1 = (σ1σ

2
2 )kσ3.

Then

σ3σ
k
1 σ−1

3 = (σ1σ
2
2 )k = (σ−1

2 σ−1
1 σ2)

k = σ−1
2 σ−k

1 σ2.

That proves part (a). Part (b) follows since K = 〈σ k
1 〉 for some k. ��

123



Journal of Algebraic Combinatorics (2021) 54:837–878 843

2.3 Covers and quotients

From the definition of cover, we know that ifP andQ are orientable rotary n-polytopes
such thatP coversQ, then the flags ofP in one orbit under Γ +(P) are mapped by the
covering to the flags of Q in one orbit under Γ +(Q). As a consequence, there exists
N � Γ +(P) such that Q ∼= P/N . In other words, the faces of Q can be taken as the
orbits of faces of P under the action of N , and two of them are incident whenever
an element in the orbit of one face is incident to some element in the orbit of the
other face. (See [20, Example 2.15] for an example of a cover of polytopes that is not
induced by the action of a group of automorphisms.)

Conversely, given N � Γ +(P), the quotient P/N is a polytope if and only if
Γ +(P/N ) satisfies (1) and the intersection condition (4) with respect to the generators
{σi N }i∈{1,...,n−1}.

Whenever P is chiral, there exists a normal subgroup X(P) of Γ (P) satisfying
that P/X(P) is a regular structure (in the sense that all flags belong to the same orbit
under Γ (P/X(P)) and that if N � Γ (P) is such that P/N is a regular structure then
N ≥ X(P). The group X(P) is called the chirality group of P . Note that P is regular
if and only if X(P) is trivial.

Elsewhere the chirality grouphas been introduced in other terms (see for example [1,
2] and [9]), but for our purposes the universal property of the chirality groupmentioned
here is more convenient.

The mix of two polytopes P andQ with base flags ΦP and ΦQ, respectively, is the
smallest structureP♦Q (which itself may or may not be a polytope) with well-defined
ranks and adjacencies that covers simultaneously P and Q, while mapping the base
flag of P♦Q to ΦP and ΦQ, respectively. As noted in [14, Section 3], the choice of
base flags may be relevant when performing the mix of two chiral polytopes. This is
often taken into account by choosing a base flag from which to construct the standard
generators of the automorphism group.

If P and Q are orientable rotary polytopes with Γ +(P) = 〈σ1, . . . , σn−1〉 and
Γ +(Q) = 〈σ ′

1, . . . , σ
′
n−1〉 then Γ +(P♦Q) = 〈τ1, . . . , τn−1〉 ≤ Γ +(P) × Γ +(Q),

where τi = (σi , σ
′
i ). For convenience, we also denoteΓ +(P♦Q) byΓ +(P)♦Γ +(Q).

The mix of two orientably regular polytopes is orientably regular. However, the
mix of an orientable rotary polytope with a chiral polytope may be either orientably
regular or chiral.

The next lemma relates the notions of quotient and mix of orientable rotary poly-
topes.

Lemma 5 Let P be an orientable rotary polytope with base flag Φ0 and let K , N be
normal subgroups of Γ +(P). Then

P/(K ∩ N ) ∼= (P/K )♦(P/N ),

where the base flags of P/K and P/N are taken as Φ0 · K and Φ0 · N, respectively.

Proof The regular structure P/(K ∩ N ) (which may or may not be a polytope) covers
P/K mapping a face F · (K ∩ N ) to the face F · K . Similarly, it covers P/N . Hence
P/(K ∩ N ) covers the mix (P/K )♦(P/N ).
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Let Γ +(P) = 〈σ1, . . . , σn−1〉. Then there is a group epimorphism from
Γ +(P/(K ∩ N )) to Γ +((P/K )♦(P/N )) mapping σi · (K ∩ N ) to (σi · K , σi · N )

for i ∈ {1, . . . , n − 1}. This epimorphism sends the element σi1 · · · σik · (K ∩ N ) to
(σi1 · · · σik · K , σi1 · · · σik · N ). The latter is trivial if and only if σi1 · · · σik ∈ K ∩ N .
Since the kernel of the epimorphism is trivial, the isomorphism holds. ��

Given a chiral polytope P , there exists a smallest regular structure R with well-
defined ranks and adjacencies of flags that covers P (even if this structure is not a
polytope itself), in the sense that every regular polytope that covers P also coversR.
We shall call this structure the smallest regular cover of P .

Sometimes the smallest regular cover of P is a polytope itself; for example, when
the facets or the vertex-figures are regular (see [20, Corollary 7.5]). If the smallest
regular cover of P is a polytope then it is elsewhere also called the minimal regular
cover ofP; otherwise,P may have multiple polytopal regular covers that are minimal
in the partial order given by the covering relation.

The smallest regular cover R of a chiral polytope P is the regular structure
constructed (in the sense of [22]) from the group Γ (P)♦Γ (P∗), where P∗ is the
enantiomorph ofP (see [20, Sect. 7]). Wemay assume that if Γ (P) = 〈σ1, . . . , σn−1〉
then

Γ +(R) = 〈(σ1, σ−1
1 ), (σ2, σ

2
1 σ2), (σ3, σ3), . . . , (σn−1, σn−1)〉.

We next relate the chirality group of a chiral polytope with its smallest regular
cover. This is a direct consequence of [20, Remark 7.3].

Lemma 6 Let P be a chiral polytope and R its smallest regular cover. Then X(P) is
isomorphic to the kernel of the quotient from Γ +(R) to Γ (P).

The following result relates the smallest regular covers of chiral polytopes with that
of one of its facets.

Lemma 7 Let P be a chiral polytope with chiral facets isomorphic to Q. Then the
facets of the smallest regular cover of P are isomorphic to the smallest regular cover
of Q.

Proof Since the facets of P are chiral, P has rank n ≥ 4.
Let Γ (P) = 〈σ1, . . . , σn−1〉, let RP be the smallest regular cover of P and

let RQ be the smallest regular cover of Q. Then Γ +(RP ) = 〈σ1, . . . , σn−1〉♦
〈σ−1

1 , σ 2
1 σ2, σ3, . . . , σn−1〉 andΓ +(RQ) = 〈σ1, . . . , σn−2〉♦〈σ−1

1 , σ 2
1 σ2, σ3, . . . , σn−2〉.

Since the orientation preserving automorphism group of the facet ofRP is Γ +(RQ),
the lemma holds. ��

We conclude this section with a result that relates the chirality group of a chiral
polytope P with that of its facets.

Lemma 8 LetP be a chiral polytope with chiral facets isomorphic toQ. Then X(Q) ≤
X(P).
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Proof Let RP be the smallest regular cover of P , and let RQ be the smallest regular
cover ofQ. Then, by Lemma 7, the facets ofRP are isomorphic toRQ. By Lemma 6,
X(Q) is the kernel of the natural covering ηQ from Γ +(RQ) to Γ +(Q), whereas
X(P) is the kernel of the natural covering ηP from Γ +(RP ) to Γ +(P). Since the
kernel of ηQ is contained in the kernel of ηP , the result follows. ��

2.4 Tight polytopes

For the rest of the paper, all polytopes we deal with will be finite. A polytope of type
{p1, p2, . . . , pn−1} has at least 2p1 p2 · · · pn−1 flags, and if it has exactly that many
flags, we say it is tight [10, Prop. 3.3].

The first mention of the property of tightness occured in [3], while searching for
the smallest regular polytopes of each rank. There it was proven that for n ≥ 4, the
regular n-polytopes with fewest flags are always tight. Their study was extended in
[10] to equivelar polytopes that may not be regular. In particular, it was proven there
that an equivelar polytope is tight if and only if every section of rank 3 is flat. It follows
that every section of a tight polytope is itself tight. The following lemma is a natural
consequence of this fact.

Lemma 9 Let P and Q be tight rotary polytopes with types {p, q} and {q, r},
respectively. Suppose that Γ +(P) = [p, q]+/N1 and Γ +(Q) = [q, r ]+/N2 where
N1 � [p, q]+ and N2 � [q, r ]+ are subgroups induced by the sets of relations R1 and
R2, respectively. Then a rotary 4-polytope with facets isomorphic to P and vertex-
figures isomorphic toQ exists if and only if the group [p, q, r ]+/N3 has order pqr and
satisfies the intersection condition (4), where N3 is the subgroup induced by the rela-
tions in R1 in the first two generators and the relations R2 in the last two generators.
Moreover, such a 4-polytope must be unique.

Tight regular and chiral polyhedra were studied more deeply in [4,12] and [13].
We summarize relevant results on these polyhedra in Sect. 3. Some results on regular
polytopes of higher ranks can be found in [4].

The next proposition summarizes Corollary 3.4 and Theorem 3.5 of [11].

Proposition 1 (a) If P is a tight chiral 4-polytope then it has chiral facets or chiral
vertex-figures (or both).

(b) If P is a tight chiral 5-polytope then it has chiral facets, vertex-figures, and
medial sections.

(c) There are no tight chiral n-polytopes for n ≥ 6.

Since we shall work with the automorphism groups of chiral polytopes in place
of the polytopes themselves, it is useful to have a characterization of tightness that is
entirely group-theoretic.

Proposition 2 Suppose thatP is anorientable rotary n-polytopeof type {p1, . . . , pn−1},
with Γ +(P) = 〈σ1, . . . , σn−1〉. Then the following are equivalent:

(a) P is tight.
(b) |Γ +(P)| = p1 · · · pn−1.
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(c) Γ +(P) = 〈σ1〉 · · · 〈σn−1〉.
Proof The equivalence of (a) and (b) follows from the fact that |Γ +(P)| is equal to
half the number of flags.

Next we show that (b) and (c) are equivalent. For each 1 ≤ i ≤ n − 1, let

Si = 〈σi 〉 · · · 〈σn−1〉.

Then |Sn−1| = pn−1, and for i < n − 1,

Si = 〈σi 〉Si+1.

Therefore,

|Si | = |〈σi 〉| · |Si+1|
|〈σi 〉 ∩ Si+1| ,

and since Γ +(P) satisfies the intersection condition (4), the intersection on bottom is
trivial, and so

|Si | = pi · |Si+1|.

It follows that |S1| = p1 · · · pn−1. This shows that (c) implies (b).
Conversely, if |Γ +(P)| = p1 · · · pn−1, thenΓ +(P) has the same order as its subset

S1, which implies that Γ +(P) = S1. ��
Note that (b) and (c) are equivalent only in the presence of the intersection condition.
In light of Proposition 2, we will say that the group Γ = 〈σ1, . . . , σn−1〉 is tight

provided that Γ = 〈σ1〉 · · · 〈σn−1〉. Then Γ is the rotation group of a tight orientable
rotary polytope if and only if Γ is tight, and it satisfies the intersection condition (4).
The following result is immediate:

Proposition 3 If Γ is tight, then any quotient of Γ is tight. If P is a tight orientable
rotary polytope then any quotient of P is tight.

Proposition 3 imposes a restriction on the quotients of tight orientable rotary
polytopes. The contrapositive of the next proposition imposes another restriction to
quotients of tight orientably regular polytopes, namely that tight regular polytopes do
not have chiral quotients.

Proposition 4 If P is a tight orientable rotary n-polytope that covers a chiral n-
polytope then P itself is chiral.

Proof Let Q be a chiral quotient of P . We proceed by induction over n. By Proposi-
tion 1 (c), it is only necessary to show the statement for n ∈ {3, 4, 5}.

The casewhen n = 3was proven in [12, Prop. 2.5]. If n ∈ 4, 5, then byProposition 1
either the facets or the vertex-figures ofQ are chiral (n−1)-polytopes. Since the facets
and vertex-figures ofQ are quotients of the facets and vertex-figures ofP , the inductive
hypothesis implies that the facets or vertex-figures of P must be chiral. Hence P is
chiral. ��
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Propositions 3 and 4 have the following consequence. When taking polytopal quo-
tients of a tight chiral polytope P by normal subgroups of Γ +(P), we obtain tight
orientably regular or chiral polytopes, and if P is orientably regular then the quotients
are tight and regular. This suggests to try to find successive proper quotients of tight
chiral polytopes until we obtain tight regular polytopes. As we shall see, this is always
possible. Proposition 6 gives a condition for such quotients to exist. Other conditions
will be given in Sects. 4 and 5.

The chiral polytopes we will be interested in typically have a cyclic chirality group,
generated by a power of some σi . The following result describes circumstances where
this property is preserved when taking quotients.

Lemma 10 LetP be a tight chiral polytope with Γ (P) = 〈σ1, . . . , σn〉 andQ a chiral
quotient of P with Γ (Q) = 〈σ ′

1, . . . , σ
′
n〉. If X(P) ≤ 〈σ2〉 then X(Q) ≤ 〈σ ′

2〉.
Proof Let K � Γ (P) such that Q = P/K , and let R = P/K X(P). Then R is a
quotient of P/X(P), and since the latter is regular, Propositions 3 and 4 imply thatR
is regular as well. Now,R is the quotient ofQ by K X(P)/K , and sinceR is regular,
that implies that X(Q) is contained in K X(P)/K , which is the image of X(P) in
Γ (Q), and thus contained in 〈σ ′

2〉. ��
Next, we describe useful structural properties of the normal subgroups of the rota-

tion group of tight orientable rotary polytopes.

Lemma 11 LetP bea tight orientable rotary n-polytopewithΓ +(P) = 〈σ1, . . . , σn−1〉
and let K � Γ +(P) such that P/K is a tight orientable rotary n-polytope. Then there
exist nonnegative integers α1, . . . , αn−1 such that

K = 〈σα1
1 〉〈σα2

2 〉 · · · 〈σαn−1
n−1 〉.

Moreover, P/K has type {α1, . . . , αn−1}.
Proof For 1 ≤ i ≤ n − 1, let αi be the smallest positive integer such that σ

αi
i ∈ K ,

and let H = 〈σα1
1 〉 · · · 〈σαn−1

n−1 〉. Then clearly H ⊆ K . To show the reverse inclusion,

let γ ∈ K . By Proposition 2, we may write γ as σ
β1
1 · · · σβn−1

n−1 for some exponents βi .
Since γ ∈ K , we have that for every i ,

Kσ
β1
1 · · · σβi

i = K (σ
βi+1
i+1 · · · σβn−1

n−1 )−1.

Then, writing σi for the image of σi in Γ +(P)/K , we get that

σ
β1
1 · · · σβi

i = (σ
βi+1
i+1 · · · σβn−1

n−1 )−1.

Since Γ +(P)/K is the rotation group of a rotary polytope, Equation (3) implies that

σ
β1
1 · · · σβi

i = 1, whichmeans that σβ1
1 · · · σβi

i ∈ K for every i . In particular, σβ1
1 ∈ K ,

from which it follows that σ
β2
2 ∈ K (since σ

β1
1 σ

β2
2 ∈ K ), and continuing in this way
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it follows that each σ
βi
i ∈ K . By our choice of exponents αi , that means that each βi

is divisible by αi , and so γ ∈ H .
The type of P/K follows from Proposition 3 since K has order p1 · · · pn−1/

α1 · · · αn−1. ��
Proposition 5 Suppose that P is a tight orientable rotary n-polytope with Γ +(P) =
〈σ1, . . . , σn−1〉, and let N = 〈σ a1

1 〉〈σ a2
2 〉 · · · 〈σ an−1

n−1 〉 be a normal subgroup of Γ +(P).
If N does not contain any generator σi , then Γ +(P)/N is the rotation group of a tight
orientable rotary polytope.

Proof Let Γ +(P)/N = 〈σ1, . . . , σn−1〉. Since no generator σi is in N , it follows that
each σi has order at least 2. Then to prove that Γ +(P)/N is the rotation group of an
orientable rotary polytope, by Lemma 3 it suffices to show that

〈σ1, . . . , σi 〉 ∩ 〈σ j , . . . , σi+1〉 = 〈σ j , . . . , σi 〉,

for all i and j such that 2 ≤ j ≤ i + 1 ≤ n − 1. (In fact, it suffices to show that
the subgroup on the left is included in the subgroup on the right, since the reverse
inclusion is obvious.) Tightness will then follow from Proposition 3.

Consider an element of Γ +(P)/N that lies in

〈σ1, . . . , σi 〉 ∩ 〈σ j , . . . , σi+1〉.

We may write this element as ϕ1 = ϕ2, where

ϕ1 ∈ 〈σ1, . . . , σi 〉

and

ϕ2 ∈ 〈σ j , . . . , σi+1〉.

Then ϕ1 = γ ϕ2 for some γ ∈ N . Since P is tight, Proposition 2(c) says that we may

write γ = σ
b1
1 · · · σ bn−1

n−1 . Setting γ1 = σ
b1
1 · · · σ b j−1

j−1 and γ2 = σ
b j
j · · · σ bn−1

n−1 , we have
that by definition γ1 and γ2 both lie in N . Now,

γ −1
1 ϕ1 = γ2ϕ2,

and it follows that

γ −1
1 ϕ1 ∈ 〈σ1, . . . , σi 〉 ∩ 〈σ j , . . . , σn−1〉.

Then since Γ +(P) satisfies the intersection condition, it follows from Lemma 2 that
γ −1
1 ϕ1 ∈ 〈σ j , . . . , σi 〉. And since γ1 ∈ N , this implies that ϕ1 ∈ 〈σ j , . . . , σi 〉, which

is what we wanted to show. ��
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When considering Γ +(P) as a group acting on the set of i-faces of P for some i ,
the kernel of this action is a natural normal subgroup of P to consider. (Recall that the
kernel of the action of a group Γ on a set X is the subgroup of Γ fixing X pointwise.)
The next results give sufficient conditions for the kernel of the action on the vertex set
to be nontrivial.

Lemma 12 LetP be a tight orientable rotary polyhedron. If γ ∈ Γ +(P) fixes a vertex
and one of its neighbors then it fixes all vertices of P .

Proof Let u0 be the base vertex of P . Let Γ +(P) = 〈σ1, σ2〉, and let γ ∈ Γ +(P)

such that it fixes u0 and one of its neighbors v0.
Since the stabilizer of u0 is 〈σ2〉 then γ = σ a

2 for some a. Now, if σ a
2 fixes v0 then

it must fix all neighbors of u0, since all of them are images of v0 under 〈σ2〉. Since the
choice of base vertex is arbitrary, we have proven that if γ fixes a vertex u and one of
its neighbors then it fixes all neighbors of u.

The result then follows from the connectivity of the 1-skeleton of P . ��
The fact that the base facet of a tight polytope P contains all vertices of P implies

the following corollary.

Corollary 1 LetP bea tight orientable rotary n-polytopewithΓ +(P) = 〈σ1, . . . , σn−1〉.
If σ a

2 fixes a neighbor of the base vertex, then it fixes all vertices of P .

Corollary 2 Let P be a tight orientable rotary n-polytope with type {p1, . . . , pn−1}
with p1 ≤ p2. Then the kernel of the action of Γ +(P) on the vertex set is nontrivial.

Proof If P is a tight polytope of type {p1, . . . , pn−1}, then it has p1 vertices. The
automorphism σ2 fixes the base vertex while permuting the remaining p1 − 1. If
p1 ≤ p2, then each neighbor of the base vertex must have a nontrivial stabilizer under
〈σ2〉, since the group has order p2, which is larger than the largest possible orbit. ��

Now we are ready to exhibit a proper normal subgroup N of Γ +(P) that is a key
element in discussions in Sects. 4 and 5.

Proposition 6 Let P be a tight orientable rotary n-polytope with n ≥ 3 with type
{p1, . . . , pn−1} satisfying that p1 ≥ p2, and rotation groupΓ +(P) = 〈σ1, . . . , σn−1〉.
Then there exists an integer k such that 〈σ k

1 〉 is a nontrivial normal subgroup ofΓ +(P).

Proof By the dual version of Corollary 2 the group 〈σ1, σ2〉 has a nontrivial kernel
when acting on the 2-faces of the base 3-face ofP . These 2-faces correspond to cosets
of 〈σ1〉 in 〈σ1, σ2〉. Then there exists k ∈ {1, . . . , p1−1} such that 〈σ1〉σ�

2σ k
1 = 〈σ1〉σ�

2
for every �. In particular, when � = −1 this implies that σ−1

2 σ k
1 σ2 ∈ 〈σ1〉. Since the

latter group is cyclic, we have that 〈σ k
1 〉 is normal in 〈σ1, σ2〉. The result follows from

Lemma 4 and commutativity of σ k
1 with σi for every i ≥ 4. ��

3 Tight orientable rotary polyhedra and 4-polytopes

Much of the discussion on tight chiral n-polytopes for n ≥ 4 in Sects. 4, 5 and 6 is
based on what we know about tight orientable rotary polyhedra. In this section, we
summarize some important facts about them.
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We start with a simple result related to Lemma 1, and one of its consequences for
tight orientable rotary polyhedra.

Lemma 13 For every p ≥ 2, there is a unique polyhedron of type {p, 2} and it is
regular.

Proof Let P be a polyhedron with type {p, 2}. Then every vertex of P is incident
with precisely two edges and precisely two facets. Since adjacent vertices belong to
the same two facets, the connectivity of P forces P itself to have only two facets.
It follows that P is isomorphic to the face lattice of the map on the sphere whose
1-skeleton is an equatorial p-gon, and its two facets are the northern and southern
hemispheres. Clearly P is regular. ��
Lemma 14 IfP is an orientable rotary polyhedron with Γ +(P) = 〈σ1, σ2〉 and 〈σ1〉�
Γ +(P), then P has type {p, 2} for some p. In particular, P is regular.

Proof If σ−1
2 〈σ1〉σ2 = 〈σ1〉 then σ−1

2 σ1σ2 = σ k
1 for some k. Now, σ−1

2 σ1σ2 =
σ−1
2 σ−1

2 σ−1
1 , implying that σ−2

2 = σ k+1
1 . The intersection condition (4) tells us that

σ2 has order 2, and hence, the type of P is {p, 2} for some p. Lemma 13 implies the
regularity of P . ��

The rotation groups of tight orientable rotary polyhedra have many normal sub-
groups contained in the vertex or facet stabilizer. In the next result, we describe some
of these normal subgroups.

Proposition 7 Suppose P is a chiral or orientable rotary polyhedron of type {p, q},
with Γ +(P) = 〈σ1, σ2〉. If 〈σ a

2 〉 � Γ +(P), then σ a
2 σ1 = σ1σ

sa
2 for some s such that

s2 ≡ 1 (mod q/a). In particular, σ 2
1 commutes with σ a

2 , and if p is odd, then σ a
2 is

central.

Proof Without loss of generality, we may assume that a is a positive divisor of q. The
subgroup 〈σ a

2 〉 is normal if and only if σ−1
1 σ a

2 σ1 = σ sa
2 for some s. Furthermore, we

note that

σ a
2 = (σ1σ2)

−2σ a
2 (σ1σ2)

2

= (σ−1
2 σ−1

1 σ−1
2 )σ sa

2 (σ2σ1σ2)

= σ−1
2 σ−1

1 σ sa
2 σ1σ2

= σ−1
2 σ s2a

2 σ2

= σ s2a
2 ,

so that a ≡ s2a (mod q), and thus s2 ≡ 1 (mod q/a). It is now clear then that σ 2
1

commutes with σ a
2 , and if p is odd, then 〈σ 2

1 〉 = 〈σ1〉 so that σ1 commutes with σ a
2 as

well. ��
Lemma 15 Let P be a tight regular polyhedron with Γ +(P) = 〈σ1, σ2〉 and 〈σ2〉
core-free. Then 〈σ 2

1 〉 � Γ +(P).
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Proof First, [13, Theorem 3.3] says that Γ +(P) is the quotient of [p, q]+ by the extra
relation σ−1

2 σ1 = σ i
1σ

j
2 for some i and j . By [13, Proposition 3.2(a)], the subgroup

〈σ j−1
2 〉 is normal, so since we are supposing that 〈σ2〉 is core-free, we need j = 1.

Then taking the relation σ−1
2 σ1 = σ i

1σ2 and multiplying on the left by σ−1
1 and then

rewriting σ−1
1 σ−1

2 as σ2σ1 gives us σ2σ
2
1 = σ i−1

1 σ2. Furthermore, i must be odd;
Sect. 4 of [13] uses a parameter k which is shown at the end of the section to satisfy
i = 1 − k, and k and p are both even by [13, Lemma 4.8]. (Note that Lemma 4.8
requires the polyhedron to have no multiple edges; this is equivalent to asking for
〈σ2〉 to be core-free, by [13, Proposition 4.6].) Thus σ2 normalizes 〈σ 2

1 〉 and thus this
subgroup is normal. ��

Tight orientably regular polyhedra with no multiple edges were classified in [13,
Theorem 4.13]. The next theorem is a direct consequence.

Theorem 2 The types of the tight orientably regular polyhedra with no multiple edges
are:

(a) {p, 2} for some p ≥ 2,
(b) {2q, q} for some odd integer q ≥ 3,
(c) {p, q} with p = 2α1 Pα2

2 · · · Pαk
k for some α1 > 0, some distinct odd primes

P2, . . . , Pk, and q a proper even divisor of p satisfying that

– the maximal power of 2 dividing q is either 2, 4 or 2α1−1, and if it is 4 then
α1 ≥ 3,

– for i ∈ {2, . . . , k}, either Pαi
i divides q or Pi is coprime with q.

In [12], an atomic chiral polyhedron was defined as a tight chiral polyhedron with
type {p, q} that covers no chiral polyhedron of type {p′, q} or of type {p, q ′} for p′
a proper divisor of p and q ′ a proper divisor of q. It is easy to see that every tight
chiral polyhedron covers an atomic chiral polyhedron. Furthermore, we will see in
Corollary 4 that a stronger condition is true: atomic chiral polyhedra do not cover any
chiral polyhedra.

The atomic chiral polyhedrawere classified in [12,Lemma4.10,Theorem4.11,The-
orem 4.14]. Here we summarize and slightly simplify this classification (see [12,
Theorem 4.15]).

Theorem 3 Every atomic chiral polyhedron P is one of the polyhedra in Table 1, with
chirality group X(P) and enantiomorph P∗ as described in the table.

Proof First we will prove the claim for atomic chiral polyhedra of type {2m,mα} and
{mα, 2m}. We start by noting that for any rotation group 〈σ1, σ2〉 and for all t , the
relation σ−1

2 σ1 = σ 3
1 σ t

2 is equivalent to σ2σ
2
1 = σ 2

1 σ t
2, since:

σ−1
2 σ1 = σ 3

1 σ t
2 Multiply both sides by σ−1

1 on the left

σ−1
1 σ−1

2 σ1 = σ 2
1 σ t

2 Use σ−1
1 σ−1

2 = σ2σ1

σ2σ
2
1 = σ 2

1 σ t
2.
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Similarly, for all t , the relation σ2σ
−1
1 = σ−3

1 σ t
2 is equivalent to σ 2

1 σ2 = σ−t
2 σ 2

1 , since:

σ2σ
−1
1 = σ−3

1 σ t
2 Multiply both sides by σ1on the left

σ1σ2σ
−1
1 = σ−2

1 σ t
2 Use σ1σ2 = σ−1

2 σ−1
1

σ−1
2 σ−2

1 = σ−2
1 σ t

2 Invert both sides

σ 2
1 σ2 = σ−t

2 σ 2
1 .

Now, suppose that P is the atomic chiral polyhedron of type {2m,mα} whose group
is the quotient of [2m,mα]+ by the relations σ−1

2 σ1 = σ 3
1 σ 1+kmα−1

2 and σ2σ
−1
1 =

σ−3
1 σ−1+kmα−1

2 . (See [12, Theorem 4.11].) Then the above discussion shows that this

group is equivalent to the quotient of [2m,mα]+ by the relations σ2σ
2
1 = σ 2

1 σ 1+kmα−1

2

and σ 2
1 σ2 = σ 1−kmα−1

2 σ 2
1 . Furthermore, the second of those relations is superfluous,

since if σ2σ
2
1 = σ 2

1 σ 1+kmα−1

2 then

σ 1−kmα−1

2 σ 2
1 = σ 2

1 σ
(1−kmα−1)(1+kmα−1)
2 = σ 2

1 σ2.

So Γ (P) may be written in the form as it appears in Table 1.
Next, the proof of [12, Theorem 3.6] shows that 〈σmα−1

2 〉 is normal and that the
quotient of P by this normal subgroup is regular. Thus X(P) is a nontrivial subgroup
of 〈σmα−1

2 〉, and since the latter has prime order m, this implies that X(P) = 〈σmα−1

2 〉.
To find a presentation for Γ (P∗), we may change the defining relations of Γ (P)

by replacing σ1 with σ−1
1 and replacing σ2 with σ−1

2 . This yields:

σ−1
2 σ−2

1 = σ−2
1 σ−1−kmα−1

2 Invert both sides

σ 2
1 σ2 = σ 1+kmα−1

2 σ 2
1 .

From this, we obtain σ 2
1 σ 1−kmα−1

2 = σ
(1+kmα−1)(1−kmα−1)
2 σ 2

1 = σ2σ
2
1 . Thus, the enan-

tiomorph replaces the parameter k with −k (or equivalently, m − k).
A presentation for the dual of P (with respect to the same base flag as P) is

obtained by changing each defining relation, replacing σ1 with σ−1
2 and σ2 with σ−1

1 .

Applying this to the relation σ2σ
2
1 = σ 2

1 σ 1+kmα−1

2 and then inverting both sides yields

σ 2
2 σ1 = σ 1+kmα−1

1 σ 2
2 , matching the second row of Table 1.

This finishes the proof for atomic chiral polyhedra of type {2m,mα} and their
duals. The proof for the remaining polyhedra is analogous (referencing [12, Theo-
rems 3.7 and 3.8]), except that for type {2β−1, 2β} and its dual, it is not possible to
simplify the presentation in the same way that we can for the other two cases. ��
Corollary 3 Let P be an atomic chiral polyhedron with type {p, q} and p ≥ q. Then
p is a prime power.

It turns out that the atomic chiral polyhedra satisfy a stronger condition than their
definition would seem to imply.
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Corollary 4 If P is an atomic chiral polyhedron, then it does not properly cover any
chiral polyhedron.

Proof Suppose that P is an atomic chiral polyhedron of type {p, q}, and without loss
of generality, assume that p ≥ q so that p is a prime power mα (where we could have
m = 2). By the definition of atomic, P does not properly cover any chiral polyhedra
of type {p, q ′} or {p′, q}. Furthermore, ifQ is an orientable rotary polyhedron of type
{p′, q ′} where p′ is a proper divisor of p, then the kernel of the natural map from
Γ (P) to Γ (Q) contains 〈σmα−1

1 〉 (see Table 1), and since that is the chirality group of
P , it follows that Q is regular. ��

In light of Corollary 4, let us now make a (harmless) redefinition of what it means
to be atomic, while simultaneously generalizing the definition to higher rank.

Definition 1 A chiral polytope is atomic if it is tight and it does not properly cover
any chiral polytopes.

The following result is an immediate consequence of the definition of atomicity
and [12, Corollary 4.3], which states that every tight chiral polyhedron of type {p, q}
covers a tight orientable rotary polyhedron of type {p′, q} or {p, q ′}.
Proposition 8 If P is a tight chiral polyhedron of type {p, q} that is not atomic, then
it covers a tight chiral polyhedron of type {p′, q} or {p, q ′}.

When mixing tight orientable rotary polyhedra we may not get a tight structure, as
shown next.

Proposition 9 Let P and Q be distinct atomic chiral polyhedra of types {p, q} and
{p, q ′}, respectively, with q ′ a divisor of q (not necessarily proper). Then P♦Q is not
tight, regardless of the choice of base flags.

Proof The mix of P and Q with respect to any choice of base flags must have type
{p, q}, and if it were tight then it should be isomorphic to P and have Q as a proper
quotient. This is not possible since P is atomic. ��

Weconclude this sectionwith some technical lemmas that allow us to find polytopal
quotients of tight orientable rotary 4-polytopes.

Lemma 16 Let P be a tight chiral polyhedron with type {p, q} and Γ (P) = 〈σ1, σ2〉.
Then 〈σ 2

i 〉 is not normal in Γ (P).

Proof LetQ be an atomic chiral polyhedron covered by P with automorphism group
〈τ1, τ2〉. If we assume that 〈σ 2

i 〉 �Γ (P), then by the correspondence theorem in group
theory we must also have that 〈τ 2i 〉 � Γ (Q).

It was proven in [12, Proposition 4.1] that if Q has type {p′, q ′} and p′ > q ′ then
〈τ1〉 has a proper subgroup normal in Γ (Q). On the other hand, it is shown in [12,
Proposition 4.5] that either 〈τ1〉 or 〈τ2〉 is core-free in Γ (Q). Up to duality, we may
assume that p′ > q ′, and hence, we only need to show that 〈τ 21 〉 is not normal inΓ (Q).

Now, using the classification of atomic chiral polyhedra we see that if {p, q} =
{mα, 2m} then 〈τ 21 〉 = 〈τ1〉 and this is not normal in Γ (Q) (see Lemma 14). On the
other hand, if p and q are powers of 2, the dual version of [12, Lemma 4.13] tells us
that the core of 〈τ1〉 is 〈τ 41 〉. Hence, 〈τ 21 〉 is not normal in Γ (Q). ��
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Lemma 17 Let P be a chiral 4-polytope with chiral facets and let K be the kernel of
the action of Γ (P) on the vertex set. Then σi /∈ K for i ∈ {1, 2, 3}.
Proof The group K is a normal subgroup of Γ (P) that is contained in 〈σ2, σ3〉 since
it fixes the base vertex. The intersection condition (3) implies that σ1 /∈ K .

If σ2 ∈ K , then also σ1σ2σ
−1
1 ∈ K , which implies that σ−1

2 σ−2
1 ∈ K and so

σ 2
1 ∈ K . Since 〈σ1〉has trivial intersectionwith K (again by the intersection condition),

this implies that σ 2
1 = id, which contradicts Lemma 1.

Similarly, if σ3 ∈ K , then also σ2σ3σ
−1
2 ∈ K , which implies that σ−1

3 σ−2
2 ∈ K

and so σ 2
2 ∈ K . It follows that σ−1

1 σ 2
2 σ1 ∈ K . Then σ−1

1 σ 2
2 σ1 lies in the intersection

of 〈σ1, σ2〉 with 〈σ2, σ3〉, and so it must lie in 〈σ2〉. This implies that 〈σ 2
2 〉 is normal

in 〈σ1, σ2〉, contradicting Lemma 16. ��
Lemma 18 LetP be a tight orientable rotary 4-polytope, with Γ +(P) = 〈σ1, σ2, σ3〉.
Let K be the kernel of the action of Γ +(P) on the vertex set. Then:

(a) There are integers a and b such that K = 〈σ a
2 〉〈σ b

3 〉.
(b) P/K is a tight orientable rotary 4-polytope.

Proof Let a be the smallest positive integer such that σ a
2 ∈ K , and let b be the smallest

positive integer such that σ b
3 ∈ K . (We allow the possibility that σ a

2 = id or σ b
3 = id.)

Let N = 〈σ a
2 〉〈σ b

3 〉. Then clearly N is contained in K . To prove the first part, it remains
to show that K is contained in N .

Let H = 〈σ2, σ3〉, and suppose that the order of σ1 is p. Since P is tight, it has p
vertices, which we can identify with the cosets H , Hσ1, . . . , Hσ

p−1
1 . The action of

each automorphism on the vertices is by multiplication on the right. Now, suppose that
ϕ ∈ K , which in particular implies that ϕ ∈ 〈σ2, σ3〉. Since P is tight, Proposition 2
implies that we may write ϕ = σ c

2σ d
3 . Since σ c

2σ d
3 fixes all vertices, it follows that the

action of σ c
2 on vertices is the same as the action of σ−d

3 on vertices. Note that σ−1
3

fixes the neighbor of the base vertex in the base edge, namely,

Hσ−1
1 σ−1

3 = H(σ3σ1)
−1 = H(σ1σ

2
2 σ3)

−1 = Hσ−1
1 .

It follows that σ−d
3 fixes that vertex, and thus so does σ c

2 . However, by Corollary 1, if
a power of σ2 fixes a neighbor of the base vertex, then it fixes all vertices. Therefore,
σ c
2 ∈ K , from which it follows that σ d

3 ∈ K . Then by our choice of a and b, it follows
that ϕ ∈ N .

The second part follows from the first along with Lemma 17. ��

4 Atomic chiral 4-polytopes with chiral facets and vertex-figures

To understand the structure of tight chiral 4-polytopes, we use a strategy similar to
what was done with tight chiral polyhedra. Recall that a tight chiral 4-polytope is
atomic if it does not properly cover any chiral polytopes. It is clear that every tight
chiral polytope covers an atomic chiral polytope.Our goalwill be to classify the atomic
chiral 4-polytopes.
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By Proposition 1 (a), the facets or the vertex-figures of an atomic chiral 4-polytope
must be chiral. In this section, we classify all atomic chiral 4-polytopes that have chiral
facets and chiral vertex-figures, leaving the casewhen one of them is regular for Sect. 5.
We will show in Theorem 4 that an atomic chiral 4-polytope with chiral facets and
chiral vertex-figures must have atomic chiral facets and atomic chiral vertex-figures.
The classification of atomic chiral polyhedra will be then used to find all atomic chiral
4-polytopes with chiral facets and vertex-figures.

4.1 The structure of atomic chiral 4-polytopes with chiral facets and vertex-figures

Now we study atomic chiral 4-polytopes with chiral facets and chiral vertex-figures.
We find several restrictions on atomic chiral 4-polytopes, culminating in Theorem 4.

Proposition 10 Let P be an atomic chiral 4-polytope of type {p, q, r}, with chiral
facets and vertex-figures, and with Γ (P) = 〈σ1, σ2, σ3〉. Then:
(a) 〈σ1〉 and 〈σ3〉 are core-free in Γ (P).
(b) q > p and q > r .

Proof By duality, for the first part it suffices to prove that 〈σ1〉 is core-free. Suppose
thatP is a tight chiral 4-polytope with chiral facets and vertex-figures and suppose that
〈σ1〉 is not core-free. In other words, there is a nontrivial normal subgroup N = 〈σ a

1 〉
of Γ (P). If σ1 ∈ N , then 〈σ1〉 is normal in 〈σ1, σ2〉, and by Lemma 14, this implies
that the facets are regular, contradicting our assumptions. So σ1 /∈ N . Then the dual
of Proposition 5 shows that Γ (P)/N is the rotation group of a tight rotary polytope
Q. Since 〈σ2, σ3〉 has trivial intersection with N , the vertex-figures of Q must be
isomorphic to the vertex-figures ofP , which are chiral. ThusQ is chiral, which means
that P is not atomic. This proves part (a).

By Proposition 6, if p ≥ q then there exists a proper divisor k of p such that
〈σ k

1 〉 � Γ (P) contradicting part (a). A dual argument follows if r ≥ q. ��
Proposition 11 Let P be an atomic chiral 4-polytope of type {p, q, r}, with chiral
facets and vertex-figures, and with Γ (P) = 〈σ1, σ2, σ3〉. Then:
(a) The chirality group X(P) is 〈σ q ′

2 〉 for some q ′ with q/q ′ prime,
(b) The chirality groups of the base facet and vertex-figure are isomorphic to X(P).

Proof Let H and K be the kernels of the actions of Γ (P) on the vertices and on the
facets of P , respectively. By Proposition 10(b) together with Corollary 2 and its dual
form, H ≤ 〈σ2, σ3〉 and K ≤ 〈σ1, σ2〉 are nontrivial normal subgroups of Γ (P).
Therefore H ∩ K is a normal subgroup of Γ (P) that by the intersection condition is
contained in 〈σ2〉.

Now, Lemma 18 and its dual show that P/H and P/K are polytopes, and since
H and K are nontrivial and P is atomic, P/H and P/K are regular. Moreover, by
Lemma5,P/(H∩K ) ∼= P/H♦P/K is also regular, implying that H∩K is nontrivial.

Since P/(H ∩ K ) is regular, X(P) ≤ H ∩ K = 〈σm
2 〉 for some m. If q/m is not

prime, then 〈σmk
2 〉 �Γ (P) for any k, in particular, for some k such that q/mk is prime.

123



Journal of Algebraic Combinatorics (2021) 54:837–878 857

By atomicity of P , its quotient by 〈σmk
2 〉 is regular and, since it is a maximal quotient,

X(P) = 〈σmk
2 〉. This concludes part (a).

Part (b) follows from Part (a) and Lemma 8. ��
Proposition 12 Let P be an atomic chiral 4-polytope of type {p, q, r} with chiral
facets and vertex-figures. If q is a prime power then the facets and vertex-figures of P
are atomic chiral polyhedra.

Proof Suppose P has facets isomorphic to Q1 and vertex-figures isomorphic to Q2.
By Proposition 11, X(P) = X(Q1) = X(Q2), and these groups are cyclic of prime
order. If q is a prime power then X(P) is contained in all proper subgroups of 〈σ2〉,
and so Q1 does not cover any tight chiral polyhedra of type {p, q ′} with q ′ a proper
divisor of q. Proposition 10 says that 〈σ1〉 is core-free, and so alsoQ1 does not cover
any tight chiral polyhedra of type {p′, q} with p′ a proper divisor of p. It follows that
Q1 is atomic, and a dual argument proves that Q2 is atomic as well. ��

Weare now ready to prove themain necessary condition for a tight chiral 4-polytope
with chiral facets and chiral vertex-figures to be atomic.

Theorem 4 If P is an atomic chiral 4-polytope with chiral facets and chiral vertex-
figures, then the facets and vertex-figures are atomic chiral polyhedra.

Proof Assume that P has type {p, q, r}. The facets and vertex-figures of P are iso-
morphic to some chiral polyhedraQ1 andQ2, respectively. Proposition 11 (b) tells us

that X(P) = 〈σ q ′
2 〉 with q/q ′ prime and that X(P) = X(Q1) = X(Q2).

Assume to the contrary thatQi is not atomic for some i ∈ {1, 2}. Then, by Proposi-
tion 12, q must have at least two distinct prime factors, which by Corollary 3 implies
that neither Q1 nor Q2 is atomic. Let m = q/q ′, which is prime (but not necessarily
odd). Then q = mαt for some α and some t not divisible by m.

Since Q1 is not atomic there exists N1 � 〈σ1, σ2〉 such that Q1/N1 is an atomic
chiral polyhedron. By Lemma 11, there exist a and b such that N1 = 〈σ a

1 〉〈σ b
2 〉 and

Q1/N1 has type {a, b}.
Now X(Q1) = X(P), and therefore, σ q ′

2 /∈ N1. It follows that q/b divides t andmα

divides b. Lemma 10 implies that X(Q1/N1) is contained in the subgroup generated by
the second standard generator ofΓ (Q1/N1). SinceQ1/N1 is atomic, we can conclude
that a < b by the classification of atomic chiral polyhedra. Corollary 3 now tells us
that b = mα .

We proceed in a dualmanner to observe that there exists N2 = 〈σ b′
2 〉〈σ c

3 〉 ≤ 〈σ2, σ3〉
such that Q2/N2 is an atomic chiral polyhedron with type {b′, c} = {mα, c}. In
particular, b = b′.

Let K = 〈σ a
1 〉〈σ b

2 〉〈σ c
3 〉. We claim that K � Γ (P). To see this, note that

σ−1
2 (σ

k1a
1 σ

k2b
2 σ

k3c
3 )σ2 = (σ−1

2 σ
k1a
1 σ

k2b
2 σ2)(σ

−1
2 σ

k3c
3 σ2) ∈ (〈σ a

1 〉〈σ b
2 〉)(〈σ b

2 〉〈σ c
3 〉),

and as noted in the proof of Lemma 4,

σ3(σ
k1a
1 σ

k2b
2 σ

k3c
3 )σ−1

3 = (σ−1
2 (σ

−k1a
1 )σ2)(σ3σ

k2b
2 σ

k3c
3 σ−1

3 ) ∈ (〈σ a
1 〉〈σ b

2 〉)(〈σ b
2 〉〈σ c

3 〉).
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A dual argument shows that K is invariant under conjugation by σ1.
Now, Lemma 17 and Proposition 5 imply that P/K is a polytope, and since P is

atomic this polytope must be regular of type {a, b, c}. In particular, this implies that
the facets are regular polyhedra of type {a, b}. On the other hand, the facets must be
a quotient of Q1/N1, which is a tight chiral polyhedron of type {a, b}. But no tight
polyhedron properly covers another polyhedron of the same type, and so we have a
contradiction. ��

Now let us show that the conditions in Proposition 10 and Theorem 4 suffice if we
want to build an atomic chiral 4-polytope.

Corollary 5 A tight chiral 4-polytope P with chiral facets and vertex-figures is atomic
if and only if

(a) The facets and vertex-figures are atomic, and
(b) 〈σ1〉 and 〈σ3〉 are core-free in Γ (P).

Proof Theorem 4 and Proposition 10 prove that the conditions are necessary. Now,
suppose that P satisfies the conditions. IfQ is a proper chiral quotient of P , thenQ is
still tight, and so Proposition 1 says that either the facets or vertex-figures are chiral.
Without loss of generality, suppose that the facets of Q are chiral. The facets of P
cover the facets ofQ, and since the facets of P are atomic, this implies thatQ has the
same facets. In particular, if P has type {p, q, r}, then Q has type {p, q, r ′} for some
r ′ dividing r . By tightness, |Γ (P)| = pqr and |Γ (Q)| = pqr ′, and so since Q is a
proper quotient of P , we have r ′ �= r . Furthermore, Γ (Q) = Γ (P)/〈σ r ′

3 〉. But this
contradicts that 〈σ3〉 is core-free in Γ (P). ��

4.2 Classification of atomic chiral 4-polytopes with chiral facets and vertex-figures

In light of Lemma 9, once we know the possible types of facets and vertex-figures of
an atomic chiral 4-polytope, all we need to do is try amalgamating the compatible pairs
and see which ones give us a group of the proper size that satisfies the intersection
condition. Theorem 4 implies that the facets and vertex-figuresmust appear on Table 1.
Combined with Proposition 10, we find that the automorphism group of an atomic
chiral 4-polytope with chiral facets and vertex-figures must be one of the groups in
Table 2. For simplicity, we avoid including the various parameters (such as m, α, and
k1) in the names of the groups. The “extra relations” show how to define the group as
a quotient of the given parent group.

Using GAP [17], we verified that Γ2, Γ3, and Γ4 have the correct order and satisfy
the intersection condition for β = 5 and β = 6, and for all four choices of (ε1, ε2).
Thus, for these parameter values, the group is the automorphism group of a tight chiral
polytope. We similarly verified that Γ1 is the automorphism group of a tight chiral
polytope for m = 3, α ∈ {2, 3}, k1 = k2 ∈ {1, 2} and for m = 5, α = 2, k1 = k2 ∈
{1, . . . , 4}. Furthermore, for these values ofm and α, we verified that Γ1 does not have
the proper order when k1 �= k2, and so does not define the automorphism group of a
tight chiral polytope.

For the groupΓ1, wewill show that we do in fact need k1 = k2. Then, for each group
wewill describe a permutation representation of the group. There is a standard strategy
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that we used to determine the permutation representation, based on the following facts.
IfP is a tight chiral 4-polytope of type {p, q, r}, then the cosets of 〈σ1〉 are of the form
〈σ1〉σ b

2 σ c
3 , and Γ (P) acts on the set of cosets by right multiplication. Furthermore,

sinceΓ (P) is tight, then for every i we can rewrite 〈σ1〉σ b
2 σ c

3σi as 〈σ1〉σ b′
2 σ c′

3 for some
b′ and c′. So for each i , we determined how b′ and c′ depend on b and c. We then
encode the coset 〈σ1〉σ b

2 σ c
3 as the pair (b, c) ∈ Zq ×Zr and write down a description

of the multiplication.
Once we have a permutation representation, the following lemma will show that

we indeed have found the group of a tight chiral polytope.

Lemma 19 Suppose that P is a tight orientable rotary polyhedron and that Q is a
tight chiral polyhedron. Let Γ = 〈σ1, σ2, σ3〉 = [p, q, r ]+/N3, the amalgamation
of Γ +(P) with Γ +(Q) as defined in Lemma 9. Suppose that there is a permutation
group G = 〈π1, π2, π3〉 on Zq × Zr such that the function that sends each σi to πi

determines a group epimorphism. Further, suppose that:

(a) π1 fixes (0, 0).
(b) There is some point (b, c) such that the smallest power of π1 that fixes (b, c) is

π
p
1 .

(c) (b, 0)π2 = (b + 1, 0) for all b.
(d) (b, c)π3 = (b, c + 1) for all b and c.

Then Γ ∼= G, and Γ is the rotation group of a tight chiral polytope of type {p, q, r}.
Proof First, note that since G is a quotient of Γ , then π

p
1 = π

q
2 = πr

3 = id. The
given conditions then imply that no smaller powers of any πi will equal the identity.
Now, since Γ is a tight quotient of [p, q, r ]+, it follows that |G| ≤ |Γ | ≤ pqr . If we
can show that G satisfies the intersection condition, then Proposition 2 will imply that
|G| = pqr and thus that G ∼= Γ and that Γ is the rotation group of a tight orientable
rotary polytope of type {p, q, r}. Furthermore, by Lemma 9, such a polytope will have
chiral vertex-figures isomorphic to Q and thus it will be chiral itself.

To show that G satisfies the intersection condition, we first need to show that

〈π1〉 ∩ 〈π2〉 = {id} = 〈π2〉 ∩ 〈π3〉.

If ϕ = πa
1 = πb

2 , then

(0, 0) = (0, 0)πa
1 = (0, 0)πb

2 = (b, 0),

and so b ≡ 0 (mod q), which implies that ϕ is trivial. Similarly, if ϕ = πb
2 = πc

3 , then

(b, 0) = (0, 0)πb
2 = (0, 0)πc

3 = (0, c),

which implies that ϕ is trivial. Finally, we need to show that

〈π1, π2〉 ∩ 〈π2, π3〉.
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Consider ϕ in this intersection. Since G is a quotient of the tight group Γ , we may
write ϕ = πa

1 πb
2 = πb′

2 πc
3 for some a, b, b′, c. We have

(0, 0)πa
1 πb

2 = (0, 0)πb
2 = (b, 0)

and

(0, 0)πb′
2 πc

3 = (b′, 0)πc
3 = (b′, c).

It follows that c ≡ 0 (mod r ) and thus that πc
3 = id. So ϕ = πb′

2 ∈ 〈π2〉, as desired. ��
Theorem 5 The group Γ1 is the automorphism group of an atomic chiral 4-polytope
of type {2m,mα, 2m} if and only if k1 = k2.

Proof First let us show that k1 = k2. Note that

σ1σ
k1mα−1

2 = σ1σ
−1
2 σ

1+k1mα−1

2

= σ
1−k1mα−1

2 σ 3
1 σ

1+k1mα−1

2

= σ
1−k1mα−1

2 σ−1
2 σ1

= σ
−k1mα−1

2 σ1

Thus, conjugation by σ1 inverts σ
k1mα−1

2 , and since 1 ≤ k1 ≤ m − 1 and m is prime,

this implies that conjugation by σ1 inverts σmα−1

2 . A similar argument shows that

conjugation by σ3 inverts σmα−1

2 . Then, using Lemma 4(a) we see that

σ3σ
−1
2 σ1 = σ3σ

3
1 σ

1+k1mα−1

2

= σ−1
2 σ−3

1 σ2σ3σ2σ
k1mα−1

2

= σ−1
2 σ−3

1 σ−1
3 σ

k1mα−1

2

= σ−1
2 σ−3

1 σ
−k1mα−1

2 σ−1
3

= σ−1
1 σ

1−2k1mα−1

2 σ−1
3 .

On the other hand,

σ3σ
−1
2 σ1 = σ

1+k2mα−1

2 σ 3
3 σ1

= σ
k2mα−1

2 σ2σ1σ2σ
−3
3 σ−1

2

= σ
k2mα−1

2 σ−1
1 σ−3

3 σ−1
2
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= σ−1
1 σ

−k2mα−1

2 σ−3
3 σ−1

2

= σ−1
1 σ

1−2k2mα−1

2 σ−1
3 .

Thus σ
1−2k1mα−1

2 = σ
1−2k2mα−1

2 , and since k1 and k2 are defined modulo m (which is
an odd prime), it follows that k1 = k2.

Now, fix k1 = k2 = k. Let D = kmα−1. For b ∈ Zmα , we define b = −b +
b(b − 1)

2
D. Then we define permutations of Zmα × Z2m as follows:

(b, c)π1 =
{

(b + c
2D,−c), if c is even,

(b + 2 − c−1
2 D, 2 − c), if c is odd,

(b, c)π2 =
{

(b + 1 + c
2D, c), if c is even,

(b − 1 − c−1
2 D, c − 2), if c is odd,

(b, c)π3 = (b, c + 1).

Wewant to show that 〈π1, π2, π3〉 satisfies the defining relations ofΓ1. Here are several
intermediate calculations; the first three formulas help verify the fourth and fifth.

(a) bD = −bD
(b) b + t D = b − t D

(c) b = b(1 + D)

(d) (b, c)π1π2 = (b + 1,−c)

(e) (b, c)π2
1 =

{
(b(1 + D) − cD, c) if c is even,

(b(1 − D) + cD, c) if c is odd.

(f) (b, c)πm
2 =

{
(b + m, c), if c is even,

(b − m, c), if c is odd.

From the above, it is straightforward to show that

(b, c)π2t
1 =

{
(b(1 + t D) − tcD, c) if c is even,

(b(1 − t D) + tcD, c) if c is odd.

Then (b, c)π2m
1 = (b, c) since mD ≡ 0 (mod mα). We note that the action of π1 on

the second coordinate makes it clear that π1 has even order, and for 1 ≤ t ≤ m−1 we
have (1, 0)π2t

1 = (1+ t D, 0) �= (1, 0). So π1 has order 2m (and not a proper divisor).
From the sixth calculation above, it is clear that πmα

2 = id. It’s also clear that π3
has order 2m.

Next, we want to show that (π1π2)
2 = (π1π2π3)

2 = id. Since (b, c)π1π2 =
(b + 1,−c), we have:
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(b, c)(π1π2)
2 = (b + 1,−c)π1π2

= (b + 1 + 1, c),

and

b + 1 + 1 = −(b + 1) + (b + 1)b

2
D + 1

= −b + (−b + 1)(−b)

2
D

= b − b(b − 1)

2
D + (−b + 1)(−b)

2
D

= b.

So (b, c)(π1π2)
2 = (b, c). Essentially the same proof shows that (b, c)(π1π2π3)

2 =
(b, c). Verifying that (b, c)(π2π3)

2 = (b, c) is straightforward.
Finally, verifying thatπ2π

2
1 = π2

1π1+D
2 andπ2

3π2 = π1+D
2 π2

3 is relatively straight-
forward with the hints above. Lemma 19 and Corollary 5 then finish the proof. ��
Theorem 6 The group Γ2 is the automorphism group of an atomic chiral 4-polytope
of type {8, 2β, 8} for all four choices of (ε1, ε2) and for every β ≥ 5.

Proof Let D = 2β−3. For b ∈ Z2β , we define b = −b+b(b−1)Dε1. Then we define
permutations of Z2β × Z8 as follows:

(b, c)π1 =
{

(b + Dε2c,−c), if c is even,

(b + 2 − Dε2(c − 1), 2 − c), if c is odd,

(b, c)π2 =
{

(b + 1 + Dε2c, c), if c is even,

(b − 1 − Dε2(c − 1), c − 2), if c is odd,

(b, c)π3 = (b, c + 1).

The following intermediate calculations can be used to verify that there is a well-
defined epimorphism from Γ2 to 〈π1, π2, π3〉 sending each σi to πi .

(a) 4D ≡ 2β−1 and 8D ≡ 0 (mod 2β )
(b) If β = 5, then D2 ≡ 2β−1 (mod 2β ), and if β ≥ 6 then D2 ≡ 0 (mod 2β ).
(c) bD = −bD
(d) b + 2t D = b − 2t D for all t

(e) b = b(1 + 2Dε1)

(f) (b, c)π1π2 = (b + 1,−c)

(g) (b, c)π2
1 =

{
(b(1 + 2Dε1) − 2Dε2c, c) if c is even,

(b(1 − 2Dε1) + 2Dε1 + 2Dε2(c − 1), c) if c is odd.

(h) (b, c)π8
2 =

{
(b + 8, c), if c is even,

(b − 8, c), if c is odd.

123



864 Journal of Algebraic Combinatorics (2021) 54:837–878

We omit the details of showing that 〈π1, π2, π3〉 satisfies the defining relations of Γ2.
Lemma 19 and Corollary 5 then finish the proof. ��
Theorem 7 The group Γ3 is the automorphism group of an atomic chiral 4-polytope
of type {2β−1, 2β, 2β−1} for all four choices of (ε1, ε2) and for every β ≥ 5.

Proof Let D = 2β−3. For b ∈ Z2β , we define

b =
{
b(1 + Dε1) if b is even,

(b − 1)(1 − Dε1) − 1 if b is odd.

Then we define permutations of Z2β × Z2β−1 as follows:

(b, c)π1 =
{

(b + 2c + Dε2c, c(D + 1)) if c is even,

(b + 2c − Dε2(c − 1), c(D + 1) − D) if c is odd,

(b, c)π2 =
{

(b + 1 − 2c + Dε2c, c(D − 1)) if c is even,

(b + 1 − 2c − Dε2(c − 1), c(D − 1) − D) if c is odd,

(b, c)π3 = (b, c + 1).

The following intermediate calculations can be used to verify that there is a well-
defined epimorphism from Γ3 to 〈π1, π2, π3〉 sending each σi to πi .

(a) 4D ≡ 2β−1 and 8D ≡ 0 (mod 2β )
(b) If β = 5, then D2 ≡ 2β−1 (mod 2β ), and if β ≥ 6 then D2 ≡ 0 (mod 2β ).
(c) (b, c)π1π2 = (b + 1,−c)

(d) b + 1 = b − 1

(e) (b, c)π4
2 =

{
(b + 4, c) if c is even

(b + 4 + 4D, c) if c is odd.

(f) (b, c)π8
2 = (b + 8, c).

(g) (b, c)π2
1 =

{
(b(1 + 2Dε1) + 2c(2 + Dε1), c) if b is even,

(b(1 − 2Dε1) + 2c(2 − Dε1) + 4D − 4, c) if b is odd.

(h) (b, c)π4
1 =

{
(b + c(4D + 8), c) if b is even,

(b + (c − 1)(4D + 8), c) if b is odd.

(i) (b, c)π2β−2

1 = (b + 4D(b + c), c) ={
(b, c) if b and c have the same parity,

(b + 4D, c) if b and c have opposite parity.

Here we give more details on how to verify that 〈π1, π2, π3〉 satisfies the extra

relations from Table 2. To verify the relation π−1
2 π1 = π−1+2β−2

1 π
−3+ε12β−2

2 , we
rewrite it:

π−1
2 π1 = π−1+2β−2

1 π
−3+ε12β−2

2 Multiply by π−1
1 on the left
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π−1
1 π−1

2 π1 = π−2+2β−2

1 π
−3+ε12β−2

2 π−1
1 π−1

2 = π2π1

π2π
2
1 = π−2+2β−2

1 π
−3+ε12β−2

2 Multiply by π2
1 on the left and π4

2 on the right

π2
1π2π

2
1π4

2 = π2β−2

1 π
1+ε12β−2

2

Then we can show that both sides send (b, c) to

{
(b + 4Db + 2Dε1 + 1 − 2c + Dε2c, c(D − 1)) if c is even,

(b + 4Db − 2Dε1 + 1 − 2c − Dε2(c − 1), c(D − 1) − D) if c is odd.

After showing that that relation holds, we can use it to rewrite the second relation into
a form that is easier to verify:

π2π
−1
1 = π1+2β−2

1 π
3+ε12β−2

2 Multiply by π−1
1 on the left

π−1
1 π2π

−1
1 = π2β−2

1 π
3+ε12β−2

2 Rewrite using first relation

π
3−ε12β−2

2 π−2β−2

1 = π2β−2

1 π
3+ε12β−2

2 Multiply by π2 on the left and right

π
4−ε12β−2

2 π−2β−2

1 π2 = π2π
2β−2

1 π
4+ε12β−2

2

Then we can show that both sides send (b, c) to

{
(b + 4Db − 2Dε1 + 5 − 2c + Dε2c, c(D − 1)) if c is even,

(b + 4Db − 2Dε1 + 5 − 2c − Dε2(c − 1), c(D − 1) − D) if c is odd.

To verify the third relation, we rewrite it as π2π
−1
3 π2 = π

4+2ε2D
2 π1+2D

3 . Then we can
show that both sides send (b, c) to

{
(b + 4 + 2ε2D, c + 1 + 2D) if c is even,

(b + 4 − 2ε2D, c + 1 + 2D) if c is odd.

To verify the fourth relation, we multiply both sides by π4
2 on the left and π2 on the

right to obtain π4
2π3 = π

1+2ε2D
2 π−1+2D

3 π2. Then we can show that both sides send
(b, c) to

{
(b + 4, c + 1) if c is even,

(b + 4 + 4D, c + 1) if c is odd.

Lemma 19 and Corollary 5 then finish the proof. ��
Theorem 8 The group Γ4 is the automorphism group of an atomic chiral 4-polytope
of type {8, 2β, 2β−1} for all four choices of (ε1, ε2) and for every β ≥ 5.
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Proof We use the same permutation representation as Theorem 7, except that we now
define b = −b + b(b − 1)Dε1 as in Theorem 6. Note that since the relations of Γ4
that involve only σ2 and σ3 are the same as the relations in Γ3, and the permutation
representation for those two elements is the same, the only relations that need to be
verified are those that include σ1. Here are some intermediate calculations:

(a) (b, c)π2
1 =

{
(b(1 + 2Dε1), c) if c is even,

(b(1 − 2Dε1) + 2Dε1, c) if c is odd.

(b) (b, c)π4
1 =

{
(b(1 + 4Dε1), c) if c is even,

(b(1 − 4Dε1) − 4D, c) if c is odd.

(c) (b, c)π1π2 = (b + 1,−c). (Note that since this calculation and the definition of
b is the same as in Theorem 6, it follows at once that π1π2 and π1π2π3 have
order 2.)

(d) (b, c)π8
2 = (b + 8, c). (This follows from the same calculation in Theorem 7.)

Lemma 19 and Corollary 5 then finish the proof. ��
Table 4 includes information on all of the atomic chiral 4-polytopes with chiral

facets and vertex-figures.

5 Atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

Nowwe switch our attention to atomic chiral 4-polytopeswith regular facets and chiral
vertex-figures. The goal is to show that the vertex-figures are atomic chiral polyhedra
and then use the classifications in Sect. 3 to find all atomic chiral 4-polytopes with
regular facets.

5.1 The structure of atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

As in the previous section, we start by studying normal subgroups of the rotation group
of atomic chiral 4-polytopes, in this case with regular facets.

Lemma 20 Let P be an atomic chiral 4-polytope with regular facets, chiral vertex-
figures and type {p, q, r}. If Γ (P) = 〈σ1, σ2, σ3〉 then
(a) 〈σ1〉 is core-free,
(b) q is even,
(c) p < q.

Proof If 〈σ k
1 〉 � Γ (P), then by Proposition 5, P/〈σ k

1 〉 is a tight polytope with vertex-
figures isomorphic to those of P . The chirality of the vertex-figures of P contradicts
atomicity, proving part (a).

To prove part (b), assume to the contrary that q is odd. Since 〈σ1〉 is core-free, the
type of the facets of P must be the dual of one of the types listed in Theorem 2. The
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only possibility for q being odd is if the facets of P have type {2, q}. This contradicts
Lemma 1.

Part (c) follows from part (1) and Proposition 6. ��
Lemma 21 LetP be an atomic chiral 4-polytope with regular facets and chiral vertex-
figures. If P has type {p, q, r}, then the vertex-figures of P do not cover a chiral
polyhedron with type {q, r ′} for r ′ < r .

Proof Assume to the contrary that the vertex-figures of P cover a chiral polyhedron
Q with type {q, r ′} with r ′ < r . Then 〈σ r ′

3 〉 � 〈σ2, σ3〉, and Γ (Q) = 〈σ2, σ3〉/〈σ r ′
3 〉.

In particular, 〈σ r ′
3 〉 is normalized by conjugation by σ2. The dual version of Lemma 4

implies that it is also normalized by conjugation by σ1 and hence 〈σ r ′
3 〉 � Γ (P).

By Proposition 5, P/〈σ r ′
3 〉 is a 4-polytope. Furthermore, its vertex-figures are iso-

morphic to Q, which is chiral. This contradicts the atomicity of P . ��
Lemma 22 Let P be an atomic chiral 4-polytope with type {p, q, r}, regular facets
and chiral vertex-figures. Then the vertex-figures ofP do not cover a chiral polyhedron
with type {q ′, r} with either q ′ an even divisor of q or q ′ < q/2.

Proof Let Γ (P) = 〈σ1, σ2, σ3〉.
Assume first that the vertex-figures of P cover a chiral polyhedron Q with type

{q ′, r} with q ′ even. Then 〈σ q ′
2 〉 � 〈σ2, σ3〉. By the dual version of Lemma 15, 〈σ 2

2 〉 �
〈σ1, σ2〉. Since 〈σ q ′

2 〉 ≤ 〈σ 2
2 〉 and the latter is cyclic, we have that 〈σ q ′

2 〉 � Γ (P). Then

Proposition 5 shows thatP/〈σ q ′
2 〉 is a 4-polytope whose vertex-figures are isomorphic

to Q, contradicting atomicity of P .

Now, if q ′ is odd and q ′ < q/2 then 〈σ 2q ′
2 〉 is invariant under conjugation by

all generators σi and hence it is a proper normal subgroup of Γ (P). It follows that

P/〈σ 2q ′
2 〉 is a proper quotient ofP whose vertex-figures coverQ. Proposition 4 implies

that P/〈σ 2q ′
2 〉 is a chiral quotient of P , again contradicting atomicity of P . ��

Weare now ready to prove themain necessary condition for a tight chiral 4-polytope
with regular facets and chiral vertex-figures to be atomic.

Theorem 9 If P is an atomic chiral 4-polytope with regular facets and chiral vertex-
figures then the vertex-figures are atomic chiral polyhedra.

Proof Let Γ (P) = 〈σ1, σ2, σ3〉 and assume that the facets and vertex-figures of P are
isomorphic toQ1 andQ2, respectively. We shall abuse notation and write Γ +(Q1) =
〈σ1, σ2〉 and Γ (Q2) = 〈σ2, σ3〉.

Assume to the contrary that Q2 is not atomic. Lemmas 21 and 22 imply that Q2
covers no chiral polyhedron with type {q, r ′} with r ′ < r and that the only chiral
polyhedron covered by Q2 with type {q ′, r} for q ′ < q is such that q ′ = q/2.
Furthermore, q/2 must be odd.

First, we show that Q2/〈σ q/2
2 〉 is atomic. Note that since σ

q/2
2 has order 2 and

〈σ q/2
2 〉 � Γ (Q2), σ

q/2
2 is central in Γ (Q2). Let Γ (Q2/〈σ q/2

2 〉) = 〈σ̂2, σ̂3〉. By
Lemma 22, Q2/〈σ q/2

2 〉 does not cover a chiral polyhedron with type {q ′′, r} for
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q ′′ < q/2. On the other hand, if Q2/〈σ q/2
2 〉 covers a chiral polyhedron with type

{q/2, r ′} for r ′ < r then σ̂−1
2 σ̂ r ′

3 σ̂2 = σ̂ ar ′
3 for some integer a. Lifting this relation

to Γ (Q2), we have that σ−1
2 σ r ′

3 σ2 = σ
εq/2
2 σ ar ′

3 for some ε ∈ {0, 1}; however, by
Lemma 21 〈σ r ′

3 〉 is not normal in Γ (Q2) and hence ε = 1. Then, conjugation by σ2

interchanges the subgroups 〈σ r ′
3 〉 and 〈σ q/2

2 σ r ′
3 〉, implying that σ−�

2 σ r ′
3 σ�

2 ∈ 〈σ r ′
3 〉 if

and only if � is even. It follows that σ r ′
3 = σ

q/2
2 σ r ′

3 σ
q/2
2 /∈ 〈σ r ′

3 〉, a contradiction.

Therefore Q2/〈σ q/2
2 〉 is atomic.

SinceQ2/〈σ q/2
2 〉 is atomic and has type {q/2, r}with q/2 odd, we have that q/2 =

mβ and r = 2m for some odd prime m and positive integer β. In particular q =
2mβ and, by Theorem 2, p must be the odd prime power mβ . Furthermore, by [12,
Prop. 3.2 and Thm. 3.6], the atomic chiral polyhedron of type {mβ, 2m} covers a tight
regular polyhedron of type {m, 2m}, and so 〈σm

2 〉 is normal in 〈σ2, σ3〉/〈σ q/2
2 〉 and

indeed in 〈σ2, σ3〉 itself. Then, since the dual version of Lemma 15 tells us that 〈σ 2
2 〉

is normal in 〈σ1, σ2〉, it follows that 〈σ 2m
2 〉 is normal in Γ (P).

Abusing notation let Γ +(Q2/〈σm
2 〉) = 〈σ ′

2, σ3〉. Since m is odd and Q/〈σm
2 〉 is

regular, Proposition 7 and the dual version of Lemma 15 imply that σ 2
3 is central in

Γ +(Q2/〈σm
2 〉). If Γ +(P/〈σ 2m

2 〉) = 〈σ1, σ ′′
2 , σ3〉 then

σ ′′
2 σ 2

3 (σ ′′
2 )−1 = σ 2

3 (σ ′′
2 )εm

for some ε ∈ {0, 1}. Now, (σ ′′
2 )m generates a normal subgroup of order 2, and is thus

central. Then

id = σ ′′
2 σ 2m

3 (σ ′′
2 )−1 = (σ 2

3 (σ ′′
2 )εm)m = σ 2m

3 (σ ′′
2 )εm

2 = (σ ′′
2 )εm

2
.

Since σ ′′
2 has order 2m and m2 is odd, it follows that ε = 0, so in fact, σ 2

3 commutes
with σ ′′

2 . Then, by (5) we have that

σ−1
1 σ 2

3 σ1 = ((σ ′′
2 )2σ3)

2 = σ ′′
2 σ−2

3 (σ ′′
2 )−1 = σ−2

3 ,

and so conjugation by σ1 inverts σ 2
3 . Since p = mβ is odd, this implies that σ 2

3 = σ−2
3 ,

and so 2m (the order of σ3) divides 4, which is impossible. ��
Corollary 6 A tight chiral 4-polytopeP of type {p, q, r}with regular facets and vertex-
figures is atomic if and only if

(a) The vertex-figures are atomic,
(b) q is even, and
(c) 〈σ1〉 is core-free in Γ (P).

Proof Theorem 9 and Lemma 20 prove that the conditions are necessary. To prove that
they suffice, suppose that P satisfies the three conditions and suppose that P properly
covers a chiral 4-polytopeQ. Then the facets ofQ are covered by the regular facets of
P , and by Proposition 4, the facets ofQ are regular. Then by Proposition 1, the vertex-
figures of Q are chiral. These vertex-figures are covered by the vertex-figures of P ,
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which are atomic, and soQ has the same vertex-figures as P . In particular,Q has type
{p′, q, r} for some p′ dividing p. By tightness, |Γ (Q)| = p′qr and |Γ (P)| = pqr ,
and sinceQ is a proper quotient of P , we have p′ < p. Now, the kernel of the natural

epimorphism from Γ (P) to Γ (Q) includes σ
p′
1 . On the other hand, |〈σ p′

1 〉| = p/p′

so that |Γ (P)| = |Γ (Q)| · |〈σ p′
1 〉|. It follows that σ

p′
1 generates a nontrivial normal

subgroup of Γ (P), contradicting that 〈σ1〉 is core-free. So P must be atomic. ��

5.2 Classification of atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

If P is an atomic chiral 4-polytope with regular facets and chiral vertex-figures, then
Lemma 20 implies that the facets must be the dual of one of the polyhedra in Theo-
rem 2, and Theorem 9 implies that the vertex-figures must be one of the polyhedra in
Theorem 3 or its dual. The dual of Lemma 1 implies that the facets cannot be type
{2, q}. Then, after some manipulation of the relations in [13, Sect. 4] we have the
following lemma:

Lemma 23 The facets of an atomic chiral 4-polytope with regular facets must be one
of the following:

(a) Type {m, 2m} for an odd primem,with rotation group [m, 2m]+/(σ 2
2 σ1 = σ1σ

2
2 ).

(b) Type {4, 8}, with rotation group [4, 8]+/(σ 2
2 σ1 = σ1σ

2
2 ).

(c) Type {4, 2β} for some β ≥ 5, with rotation group [4, 2β ]+/(σ−1
2 σ1 =

σ−1
1 σ 1+2β−1

2 ).
(d) Type {2β−1, 2β} for some β ≥ 5, with rotation group [2β−1, 2β ]+/(σ2σ

−1
1 =

σ1σ
3−ε2β−1

2 ), with ε ∈ {0, 1}.
Now there are eight possibilities for the automorphism group of an atomic chiral

4-polytope with regular facets and chiral vertex-figures; see Table 3.
We will show that the first three groups do correspond to atomic chiral 4-polytopes,

whereas the remaining groups do not.

Theorem 10 The group Λ1 is the automorphism group of an atomic chiral polytope
of type {m, 2m,mα}, for each k satisfying 1 ≤ k ≤ m − 1.

Proof Let D = kmα−1. Then we define permutations of Z2m × Zmα as follows:

(b, c)π1 =
{

(b + 2c, c + c(c−1)
2 D) if b is even,

(b + 2c − 2, c + c(c−1)
2 D) if b is odd,

(b, c)π2 = (b + 1 − 2c,−c + c(c − 1)

2
D),

(b, c)π3 = (b, c + 1).

Here are a few intermediate calculations.
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Table 3 The candidate groups of atomic chiral 4-polytopes with regular facets and chiral vertex-figures

Group name Parent group Extra relations Notes

Λ1 [m, 2m,mα]+, σ 2
2 σ1 = σ1σ

2
2 m odd prime, α ≥ 2,

σ3σ
2
2 = σ 2

2 σ 1+kmα−1

3 1 ≤ k ≤ m − 1

Λ2 [4, 8, 2β ]+ σ 2
2 σ1 = σ1σ

2
2 β ≥ 5, ε = ±1

σ3σ
2
2 = σ 2

2 σ 1+ε2β−2

3

Λ3 [4, 2β−1, 2β ]+ σ−1
2 σ1 = σ−1

1 σ 1+2β−2

2 β ≥ 5, ε = ±1

σ−1
3 σ2 = σ−1+2β−2

2 σ−3+ε2β−2

3

σ3σ
−1
2 = σ 1+2β−2

2 σ 3+ε2β−2

3

Λ4 [4, 2β , 8]+ σ−1
2 σ1 = σ−1

1 σ 1+2β−1

2 β ≥ 5, ε = ±1

σ2σ
2
3 = σ 2

3 σ 1+ε2β−2

2

Λ5 [4, 2β , 2β−1]+ σ−1
2 σ1 = σ−1

1 σ 1+2β−1

2 β ≥ 5, ε = ±1

σ−1
3 σ2 = σ 3+ε2β−2

2 σ 1−2β−2

3

σ3σ
−1
2 = σ−3+ε2β−2

2 σ−1+2β−2

3

Λ6 [2β−1, 2β , 8]+ σ2σ
−1
1 = σ1σ

3−ε12
β−1

2 β ≥ 5,

σ2σ
2
3 = σ 2

3 σ
1+ε22

β−2

2 ε1 ∈ {0, 1}, ε2 = ±1

Λ7 [2β−1, 2β , 2β−1]+ σ2σ
−1
1 = σ1σ

3−ε12
β−1

2 β ≥ 5,

σ−1
3 σ2 = σ

3+ε22
β−2

2 σ 1−2β−2

3 ε1 ∈ {0, 1}, ε2 = ±1

σ3σ
−1
2 = σ

−3+ε22
β−2

2 σ−1+2β−2

3

Λ8 [2β−2, 2β−1, 2β ]+ σ2σ
−1
1 = σ1σ

3−ε12
β−2

2 β ≥ 5,

σ−1
3 σ2 = σ−1+2β−2

2 σ
−3+ε22

β−2

3 ε1 ∈ {0, 1}, ε2 = ±1

σ3σ
−1
2 = σ 1+2β−2

2 σ
3+ε22

β−2

3

(a) For all n, (b, c)πn
1 =

{
(b + 2nc, c + n c(c−1)

2 D) if b is even,

(b + 2nc − 2n, c + n c(c−1)
2 D) if b is odd.

(b) (b, c)π2
2 = (b + 2, c(1 + D))

(c) (b, c)π1π2 =
{

(b + 1,−c) if b is even ,

(b − 1,−c) if b is odd.
.

From these, it is routine to show that there is a well-defined epimorphism from Λ1 to
〈π1, π2, π3〉 sending each σi to πi . Lemma 19 and Corollary 6 then finish the proof. ��

Theorem 11 The group Λ2 is the automorphism group of an atomic chiral polytope
of type {4, 8, 2β}.
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Proof Let D = 2β−3. For b ∈ Z8, we define

b =
{
b if b is even,

b − 2 if b is odd.

Then we define permutations of Z8 × Z2β as follows:

(b, c)π1 =
{

(b − 2c, c(1 + Dε)) if c is even,

(b − 2c + 4, c(1 − Dε) + Dε) if c is odd,

(b, c)π2 =
{

(b + 1 − 2c, c(−1 + Dε)) if c is even,

(b + 1 − 2c, c(−1 − Dε) + Dε) if c is odd,

(b, c)π3 = (b, c + 1).

We note that

(b, c)π2
2 =

{
(b + 2, c(1 − 2Dε) if c is even,

(b + 2, c(1 + 2Dε) if c is odd.

Then it is routine to show that there is a well-defined epimorphism from Λ2 to
〈π1, π2, π3〉 sending each σi to πi . Lemma 19 and Corollary 6 then finish the proof. ��
Theorem 12 The group Λ3 is the automorphism group of an atomic chiral polytope
of type {4, 2β−1, 2β}.
Proof Let D = 2β−3. For b ∈ Z2β−1 , we define

b =
{
b(−1 − D) if b is even,

b(−1 − D) + D if b is odd.

Then we define permutations of Z2β−1 × Z2β as follows:

(b, c)π1 =
{

(b − cD, c(−1 + Dε)) if c is even,

(b − (c − 1)D + 2, (1 − c)(1 + Dε) + 1) if c is odd,

(b, c)π2 =
{

(b + 1 + cD, c(1 + Dε)) if c is even,

(b − 1 + (c − 1)D, (c − 1)(1 − Dε) − 1 if c is odd,

(b, c)π3 = (b, c + 1).

Here are some intermediate calculations:

(a) If a is even, then a + b = a + b.

(b) b ≡ b(1 + 2D) (mod 2β−1).

(c) (b, c)π2
1 =

{
(b(1 + 2D), c(1 − 2Dε)) if c is even,

(b(1 + 2D) − 2D, (c − 1)(1 + 2Dε) + 1) if c is odd,
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(d) (b, c)π8
2 =

{
(b + 8, c), if c is even,

(b − 8, c − 16), if c is odd.

(e) (b, c)π1π2 = (b + 1,−c)

Let us rewrite the first extra relation of Λ3 as σ2σ
2
1 = σ 2

1 σ 1+2D
2 (see the proof of

Theorem 3, noting that σ−1
1 = σ 3

1 ). Similarly, we rewrite the second extra relation
by multiplying both sides on the left by σ2, and the third relation by multiplying both
sides on the right by σ2. Then one can check that there is a well-defined epimorphism
from Λ3 to 〈π1, π2, π3〉 sending each σi to πi . Lemma 19 and Corollary 6 then finish
the proof. ��

In order to rule out the remaining cases, we will use the following lemma.

Lemma 24 Suppose that Λ is a quotient of [p, q, r ]+ satisfying

σ 2
2 σ1 = σ1σ

2t
2 ,

σ−1
3 σ2 = σ a

2 σ c
3 ,

σ3σ
−1
2 = σ b

2 σ−c
3 ,

and suppose that b is odd. Then

σ 2t+2
2 σ3 = σ3σ

−t(b+1)−1+a
2 .

Proof First, we note that

σ−1
1 σ 2

2 σ3σ1 = σ−1
1 σ 2

2 σ1σ
2
2 σ3 = σ 2t+2

2 σ3.

On the other hand,

σ−1
1 σ 2

2 σ3σ1 = σ−1
1 σ2σ

−1
3 σ−1

2 σ1

= σ−1
1 σ c

3σ−b−1
2 σ1

= σ−1
1 σ c

3σ1σ
−t(b+1)
2

= σ2σ
−c
3 σ

−t(b+1)−1
2

= σ3σ
−t(b+1)−1+a
2 .

��
Proposition 13 The groups Λ4 and Λ6 satisfy

σ−1
3 σ2 = σ−1−ε2β−2

2 σ−3
3

and

σ3σ
−1
2 = σ 1−ε2β−2

2 σ 3
3 .
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Proof First:

σ2σ
2
3 = σ 2

3 σ 1+ε2β−2

2 Rewrite σ2σ3 as σ−1
3 σ−1

2

σ−1
3 σ−1

2 σ3 = σ 2
3 σ 1+ε2β−2

2 Multiply on the left by σ3

σ−1
2 σ3 = σ 3

3 σ 1+ε2β−2

2 Invert both sides

σ−1
3 σ2 = σ−1−ε2β−2

2 σ−3
3

Next, we note that since σ2σ
2
3 = σ 2

3 σ 1+ε2β−2

2 , it follows that

σ 1−ε2β−2

2 σ 2
3 = σ 2

3 σ
(1−ε2β−2)(1+ε2β−2)
2 = σ 2

3 σ2.

Finally:

σ 2
3 σ2 = σ 1−ε2β−2

2 σ 2
3 Rewrite σ3σ2 as σ−1

2 σ−1
3

σ3σ
−1
2 σ−1

3 = σ 1−ε2β−2

2 σ 2
3 Multiply on the right by σ3

σ3σ
−1
2 = σ 1−ε2β−2

2 σ 3
3 .

��
Theorem 13 The groups Λ4 and Λ5 are not the automorphism groups of tight chiral
4-polytopes.

Proof In Λ4 and Λ5, the relation σ−1
2 σ1 = σ−1

1 σ 1+2β−1

2 is equivalent to σ2σ
−1
1 =

σ1σ
−1+2β−1

2 (see [13, Proposition 3.1]), and this implies that σ 2
2 σ1 = σ2σ

−1
1 σ−1

2 =
σ1σ

2(−1+2β−2)
2 . Then Proposition 13 and Lemma 24 prove that both groups satisfy

σ 2β−1

2 σ3 = σ3, and so σ2 does not have order 2β as required. ��
Theorem 14 The groups Λ6 and Λ7 are not the automorphism groups of tight chiral
4-polytopes.

Proof If either group is the automorphism group of a tight chiral 4-polytope, then
Proposition 6 implies that 〈σ1, σ2〉 and 〈σ2, σ3〉 both have a normal subgroup of the
form 〈σ k

2 〉. It follows that 〈σ 2β−1

2 〉 is normal in 〈σ1, σ2, σ3〉, which means that σ 2β−1

2 is
central.

Now, the relation σ2σ
−1
1 = σ1σ

3−ε12β−1

2 implies that σ 2
2 σ1 = σ1σ

2(1+ε12β−2)
2 .

Proposition 13 implies that we may use Lemma 24, which then implies that in

Λ6, σ
4+ε12β−1

2 σ3 = σ3σ
−4−ε12β−1

2 . So conjugation by σ3 inverts σ
4+ε12β−1

2 , and

since σ 2β−1

2 is central, this implies that conjugation by σ3 inverts σ 4
2 . Now, σ 2

3 σ2 =
σ3σ

−1
2 σ−1

3 = σ
1+ε22β−2

2 σ 2
3 , and it follows that σ 4

3 σ2 = σ
1+ε22β−1

2 σ 4
3 . Then σ 4

3 σ 2
2 =

σ
2(1+ε22β−1)
2 σ 4

3 = σ 2
2 σ 4

3 , and since σ3 has order 8, this implies that σ 2
2 = σ 4

3 σ 2
2 σ 4

3 . So:

σ3σ
4
2 = σ−1

2 σ−1
3 σ2σ

2
2
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= σ
−2+ε22β−2

2 σ−3
3 σ 2

2

= σ
−2+ε22β−2

2 σ3σ
2
2 σ 4

3

= σ
−2+ε22β−2

2 σ
−2+ε22β−2

2 σ−3
3 σ 4

3

= σ
−4+ε22β−1

2 σ3.

Since we also have that conjugation by σ3 inverts σ 4
2 , this implies that σ 2β−1

2 = id,
and so σ2 does not have the desired order.

In Λ7, Lemma 24 implies that σ 4+ε12β−1

2 σ3 = σ3σ
4+ε12β−1

2 . Since σ 2β−1

2 is central,
this implies that σ3 commutes with σ 4

2 . However,

σ3σ
−4−ε22β−2

2 = σ3σ
−1
2 σ

−3−ε22β−2

2

= σ
−3+ε22β−2

2 σ−1+2β−2

3 σ
−3−ε22β−2

2

= σ
−4+ε22β−2

2 σ3.

Then σ−2β−2

2 = σ 2β−2

2 , which implies that σ 2β−1

2 = id, and again σ2 does not have the
desired order. ��
Theorem 15 The group Λ8 is not the automorphism group of tight chiral 4-polytope.

Proof IfΛ8 were the automorphism group of a tight chiral 4-polytope, then 〈σ2〉would
be core-free in 〈σ2, σ3〉 (see Proposition 6 and [12, Proposition 4.5]). We will show
that in fact, σ3 normalizes a nontrivial subgroup of 〈σ2〉.

From the relation σ2σ
−1
1 = σ1σ

3−ε12β−2

2 , it follows that σ 2
2 σ1 = σ1σ

2−ε12β−2

2 , and

thus, for each k, σ 2k
2 σ1 = σ1σ

(1−ε12β−3)2k
2 . Then

σ−1
1 σ3σ

2
2 σ1 = σ−1

1 σ3σ1σ
2−ε12β−2

2

= σ 2
2 σ3σ

2−ε12β−2

2 .

On the other hand,

σ−1
1 σ3σ

2
2 σ1 = σ−1

1 σ−2+2β−2

2 σ
−3+ε22β−2

3 σ1

= σ−1
1 σ−2+2β−2

2 σ1σ2σ
3−ε22β−2

3 σ−1
2

= σ
−1+2β−2+ε12β−2

2 σ
3−ε22β−2

3 σ−1
2

= σ
−1+2β−2+ε12β−2

2 σ
3−ε22β−2

3 σ 1−2β−2

2 σ−2+2β−2

2

= σ
−1+2β−2+ε12β−2

2 σ−1
2 σ3σ

−2+2β−2

2 .

Putting these together, we find that σ
−4+2β−2+ε12β−2

2 σ3 = σ3σ
4−2β−2−ε12β−2

2 , and so
σ3 normalizes a nontrivial subgroup of 〈σ2〉. ��
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Table 4 summarizes the atomic chiral 4-polytopes with chiral vertex figures. The
duals of the first three rows yield atomic chiral 4-polytopes with regular vertex-figures,
and the last two rows correspond to a dual pair of chiral 4-polytopes. In total, there
are 11 families of atomic chiral 4-polytopes. Thus we have shown:

Theorem 16 Every tight chiral 4-polytope covers one of the polytopes in Table 4 or
its dual.

Proposition 14 If P is an atomic chiral 4-polytope with regular facets, then X(P) is
contained in 〈σ3〉.
Proof An atomic chiral 4-polytope P with regular facets has automorphism group
Λ1, Λ2, or Λ3. In each case, the chirality group of the vertex-figures is a cyclic group
of prime order of the form 〈σ c

3 〉 that is normal in 〈σ2, σ3〉 (see Table 1), and thus in
Γ (P) (by the dual of Lemma 4). The quotient of Γ (P) by this normal subgroup
is a polytope, by Proposition 5, and thus, it is regular (by atomicity). Therefore, the
chirality group of the vertex-figures contains the chirality group of P , and since the
former has prime order and the latter is nontrivial, it follows that the two coincide,
proving the claim. ��

6 Tight chiral 5-polytopes

Recall that a tight chiral 5-polytope must have chiral facets and chiral vertex-figures
(see Proposition 1 (c)). In this section, we prove Theorem 1, that is, that no such
polytope exists.

Recall that a tight chiral 5-polytope P with Γ (P) = 〈σ1, σ2, σ3, σ4〉 is atomic if it
does not properly cover any tight chiral polytope. Clearly, every tight chiral 5-polytope
covers an atomic chiral 5-polytope.

We start by giving properties that atomic chiral 5-polytopes must satisfy, should
they exist.

Lemma 25 LetP be a tight chiral 5-polytope with type {p, q, r , s} where q ≥ r . Then
the kernel of the action of Γ (P) on the chains containing a 3-face and a facet is
nontrivial.

Proof The stabilizer of the chain containing the base 3-face and the base facet is Δ =
〈σ1, σ2〉. The remaining chains can be associated to right cosets of Δ. Proposition 6
implies that there is a nontrivial subgroup 〈σ k

2 〉 that is normal in 〈σ2, σ3, σ4〉. Then it
follows that for all a and b we have (〈σ1, σ2〉σ a

3 σ b
4 )σ k

2 = 〈σ1, σ2〉σ a
3 σ b

4 , and so σ k
2

fixes all chains containing a 3-face and a facet. ��
Lemma 26 Let P be an atomic chiral 5-polytope with Γ (P) = 〈σ1, σ2, σ3, σ4〉 and
type {p, q, r , s}. If q ≥ r then

(a) X(P) is 〈σ q ′
2 〉 for some q ′ satisfying that q/q ′ is prime,

(b) The chirality groups of the base facet and the base vertex-figure are also 〈σ q ′
2 〉.
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Proof Let H and K be the kernels of the actions of Γ (P) on the vertices and on the
chains consisting of a 3-face and a 4-face, respectively. By Corollary 2 and Lemma 25,
H and K are nontrivial. Therefore H ∩ K is a normal subgroup of Γ (P) that by the
intersection condition is contained in 〈σ2〉. The rest of the proof is as in Proposition 11.

��
Now we can prove Theorem 1.

Proof of Theorem 1 It suffices to show that there are no atomic chiral 5 polytopes.
Suppose to the contrary that P is an atomic chiral 5-polytope. Up to duality, we may
assume that q ≥ r . Let K be the base facet. It must be a tight chiral 4-polytope,
by Proposition 1(b), and since the facets of the facets of a chiral polytope are always
regular,K has regular facets. Now, Lemma 26 says thatK has chirality group contained
in 〈σ2〉. Let K′ be an atomic chiral 4-polytope that is covered by K, with Γ (K′) =
〈σ ′

1, σ
′
2, σ

′
3〉. Then Lemma 10 says that X(K′) is contained in 〈σ ′

2〉, which contradicts
Proposition 14. ��

7 Concluding remarks

The study of tight chiral polytopes was originated in the search for chiral polytopes
with a small number of flags. In ranks 3 and 4, the atomic chiral polytopes are now
classified; this constitutes the first step for a full classification of tight chiral 3- and
4-polytopes. However, the techniques used to classify tight regular polyhedra fail in
the chiral setting, and the full classification seems to require several more steps.

The nonexistence of tight chiral n-polytopes for n ≥ 5 strengthens the general belief
that for each n ≥ 5 the chiral n-polytopes with the fewest flags have considerablymore
flags than the regular n-polytopes with the fewest flags. See also [11, Theorem 5.5].
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