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Abstract
Harer and Zagier proved a recursion to enumerate gluings of a 2d-gon that result in an
orientable genus g surface, in their work on Euler characteristics of moduli spaces of
curves. Analogous results have been discovered for other enumerative problems, so it
is natural to pose the following question: how large is the family of problems for which
these so-called 1-point recursions exist? In this paper, we prove the existence of 1-point
recursions for a class of enumerative problems that have Schur function expansions. In
particular, we recover the Harer–Zagier recursion, but our methodology also applies
to the enumeration of dessins d’enfant, to Bousquet-Mélou–Schaeffer numbers, to
monotone Hurwitz numbers, and more. On the other hand, we prove that there is no
1-point recursion that governs single Hurwitz numbers. Our results are effective in
the sense that one can explicitly compute particular instances of 1-point recursions,
and we provide several examples. We conclude the paper with a brief discussion and
a conjecture relating 1-point recursions to the theory of topological recursion.

Keywords Harer–Zagier formula · 1-point functions · Holonomic functions · Schur
functions · Hurwitz numbers · Ribbon graphs · Dessins d’enfant
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1 Introduction

For integers g ≥ 0 and d ≥ 1, let ag(d) denote the number of ways to glue the edges
of a 2d-gon in pairs to obtain an orientable genus g surface. The data of a surface
constructed by gluing edges of polygons in pairs are often referred to in the literature
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as a ribbon graph. In their pioneering work, Harer and Zagier apply matrix model
techniques to this enumeration of ribbon graphs with one face to deduce a formula for
the virtual Euler characteristics of moduli spaces of curves. One consequence of their
calculation is the fact that the numbers ag(d) satisfy the following recursion [38].

(d + 1) ag(d) = 2(2d − 1) ag(d − 1) + (2d − 1)(d − 1)(2d − 3) ag−1(d − 2) (1)

Despite the simple appearance of this formula, Zagier later stated [44]: “No combi-
natorial interpretation of the recursion… is known”. The Harer–Zagier recursion has
since attracted a great deal of interest, and there now exist several proofs, some of
which are combinatorial in nature [1,11,34,45,49,57].

Inmore recentwork of the second author andNorbury [20], aswell as the subsequent
work of Chekhov [14], an analogue of the Harer–Zagier recursion was deduced for
the number of dessins d’enfant with one face. More precisely, let bg(d) denote the
number of ways to glue the edges of a 2d-gon, whose vertices are alternately coloured
black and white, in pairs to obtain an orientable genus g surface. Of course, we impose
the caveat that vertices may only be glued together if they share the same colour. The
numbers bg(d) satisfy the following recursion.

(d + 1) bg(d) = 2(2d − 1) bg(d − 1) + (d − 1)2(d − 2) bg−1(d − 2) (2)

It is natural to embed the problem of calculating ag(d) into the more general enu-
meration of ways to glue the edges of n labelled polygons with d1, d2, . . . , dn sides
to obtain an orientable genus g surface. This problem then lends itself naturally to a
simple combinatorial recursion, whose roots lie in the work of Tutte [61], but was first
expressed by Walsh and Lehman [62]. The mechanism for such a recursion comes
from removing an edge from the ribbon graph formed by the edges of the polygons,
and observing that one is left with either a simpler ribbon graph or the disjoint union
of two simpler ribbon graphs. The cost of combinatorial simplicity is the necessity to
consider gluings of an arbitrary number of polygons, rather than gluings of just one
polygon.

Recursions similar to those expressed in (1) and (2) have appeared in other con-
texts, such as random matrix theory [46]. However, it is not true in general that these
recursions involve three terms, as in the examples above. In the context of enumerative
geometry andmathematical physics, the analogues of ag(d) and bg(d) are known as 1-
point invariants, since they often arise as expansion coefficients of 1-point correlation
functions. And more generally, the enumeration of ways to glue n polygons to obtain
surfaces produces numbers known as n-point invariants. The preceding discussion
motivates us to make the following definition.

Definition 1 We say that the collection of numbers ng(d) ∈ C for integers g ≥ 0
and d ≥ 1 satisfies a 1-point recursion if there exist integers imax, jmax and complex
polynomials pi j , not all equal to zero, such that

imax∑

i=0

jmax∑

j=0

pi j (d) ng−i (d − j) = 0, (3)

123



Journal of Algebraic Combinatorics (2021) 53:469–503 471

whenever all terms in the equation are defined.

The current work is motivated by the following interrelated questions.

– What unified proofs of 1-point recursions exist, which encompass (1) and (2)?
– How universal is the notion of a 1-point recursion?

We partially answer these questions by first observing that the enumeration of both
ribbon graphs and dessins d’enfant can be expressed in terms of Schur functions. This
suggests that 1-point recursions may exist more generally for problems that may be
defined in an analogous way. Thus, we consider double Schur function expansions of
the following form.

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]

(4)

The precisemeaning of all terms appearing in this equationwill be discussed in Sect. 2,
particularly in Definition 2. It currently suffices to observe that the “enumerative prob-
lem” is stored in the numbers Ng,n(d1, d2, . . . , dn) appearing in the second line. Note
that the quantity Ng,n(d1, d2, . . . , dn) depends on the parameters q1, q2, . . ., although
we leave this dependence implicit to avoid overloading the notation. These Schur
function expansions were originally introduced by Harnad and Orlov [39], and the
numbers Ng,n(d1, d2, . . . , dn)were subsequently given a combinatorial interpretation
and referred to as weighted Hurwitz numbers by Guay-Paquet and Harnad [36,37].
More recently, Alexandov, Chapuy, Eynard and Harnad have studied these objects in
the context of topological recursion [2],

The primary contribution of this paper is an approach to proving 1-point recursions
for such “enumerative problems”. In particular, our main result is the following.

Theorem 1 Let G(z) ∈ C(z) be a rational function with G(0) = 1 and suppose that
finitely many terms of the sequence q1, q2, q3, . . . of complex numbers are nonzero.
Then, the numbers ng(d) = d Ng,1(d) defined by (4) satisfy a 1-point recursion.

The proof of this theorem will be taken up in Sect. 4, where we use the theory and
language of holonomic sequences and functions. The basic observation is Lemma 11,
which states that a 1-point recursion exists for ng(d) if and only if the sequence

nd =
∑

g

ng(d) �
2g−1 is holonomic over C(�).

Example 1 If we take G(z) = 1 + z and q = (0, 1, 0, 0, . . .) in (4), then we recover
the enumeration of ribbon graphs introduced earlier. In other words, we have ng(d) =
ag(d), so Theorem 1 asserts the existence of a 1-point recursion for the numbers ag(d).

Analogously, if we take G(z) = (1 + z)2 and q = (1, 0, 0, . . .) in (4), then we
recover the enumeration of dessins d’enfant introduced earlier. In other words, we
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have ng(d) = bg(d), so Theorem 1 asserts the existence of a 1-point recursion for the
numbers bg(d).

One of the features of the theory of holonomic sequences and functions is that there
are readily available algorithms to carry out computations, such as those found in the
gfun package forMaple [58]. Our proof of Theorem 1 not only asserts the existence
of 1-point recursions, but also yields an algorithm to produce them. We use this to
determine explicit 1-point recursions for:

– the enumeration of 3-hypermaps and 3-BMS numbers (see Proposition 5); and
– the enumeration of monotone Hurwitz numbers (see Proposition 8).

Example 2 The monotone Hurwitz numbers satisfy the following 1-point recursion.

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d)

As a partial converse to Theorem 1, we prove that there are enumerative problems
governed by double Schur function expansions that do not satisfy a 1-point recursion.
Of particular note is the case of single Hurwitz numbers, which arise from (4) by
taking G(z) = exp(z) and q = (1, 0, 0, . . .).

Proposition 1 The single Hurwitz numbers do not satisfy a 1-point recursion.

Underlying our work are the related notions of integrability and topological recur-
sion. Regarding the former, we only remark that the double Schur function expansions
of (4) are examples of hypergeometric tau-functions for the Toda integrable hierarchy
[56]. The topological recursion can be used to produce enumerative invariants from a
spectral curve, which is essentially a plane algebraic curve satisfying some mild con-
ditions and equipped with certain extra data. From the work of Alexandrov, Chapuy,
Eynard and Harnad [2], we know that the assumptions of Theorem 1 lead to numbers
Ng,n(d1, d2, . . . , dn) in (4) that can be calculated via the topological recursion. Fur-
thermore, the associated spectral curve is an explicit rational curve, which depends on
the particular choice of G(z) and q. Combining Theorem 1 with the aforementioned
work of Alexandrov et al. suggests the following conjecture, whose precise statement
will later appear as 2.

Conjecture 1 Topological recursion on a rational spectral curve produces invariants
that satisfy a 1-point recursion.

In practice, one may only be interested in 1-point functions, as is the case for
the problem originally studied by Harer and Zagier [38]. Calculating these via the
topological recursion requires the knowledge of n-point functions for all positive
integers n. Thus, a 1-point recursion can provide an effective tool for calculation,
from both the practical and theoretical perspectives. For instance, a 1-point recursion
can lead to direct information regarding the structure of 1-point invariants—see 1 for
an example of this phenomenon.

We conclude the paper with some evidence towards the conjecture above as well
as a brief discussion on the related notion of quantum curves. In the context of the
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double Schur function expansions studied in this paper, quantum curves arise from
a specialisation of (4) that reduces the summation over all partitions to a summation
over 1-part partitions. On the other hand, we will observe that 1-point recursions arise
from a different specialisation that reduces it to a summation over hook partitions.

The structure of the paper is as follows.

– In Sect. 2, we introduce four classes of enumerative problems that will provide
motivation for and examples of our main results. These are: the enumeration of
ribbon graphs and dessins d’enfant; Bousquet-Mélou–Schaeffer numbers; Hur-
witz numbers; and monotone Hurwitz numbers. A common thread between these
problems is that their so-called partition functions have double Schur function
expansions.

– In Sect. 3, we precisely define double Schur function expansions and deduce an
expression for their 1-point invariants.We also present certain evaluations of Schur
functions that will subsequently prove useful.

– In Sect. 4, we recall the notion of holonomicity and relate it to the existence of
1-point recursions. This is used to prove Theorem 1 on the existence of 1-point
recursions, which then leads to an algorithm for 1-point recursions.

– In Sect. 5, we return to the four classes of enumerative problems introduced in
Sect. 2. For three of these, we present examples of 1-point recursions, but for the
case of single Hurwitz numbers, we prove that no such recursion exists. We also
demonstrate how 1-point recursions can be used to prove structural results, and
sometimes explicit formulas, for 1-point invariants.

– In Sect. 6, we discuss relations between our work and the theory of topological
recursion. In particular, we formulate a precise statement of 1, which loosely states
that is a 1-point recursion for the invariants arising from topological recursion
applied to a rational spectral curve. Some evidence towards this conjecture is
presented, along with some remarks on the similarity between our calculation of
1-point recursions and the calculation of quantum curves.

2 Enumerative problems

Our work is primarily motivated by the Harer–Zagier formula for the enumeration
of ribbon graphs with one face [38], as well as the analogue for the enumeration of
dessins d’enfant with one face [14,20]. Apart from the obvious similarities between
these two problems, they also both arise from double Schur function expansions. So
we propose to study the broad class of “enumerative problems” stored in double Schur
function expansions of the general form

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
)

Fλ(�).

Here, P is the set of all partitions (including the empty partition), sλ(p1, p2, . . .)
denotes the Schur function expressed in terms of power sum symmetric functions,
and Fλ(�) is a formal power series in � for each partition λ. We use the shorthand
p = (p1, p2, p3, . . .) and q = (q1, q2, q3, . . .) throughout the paper. Following the
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mathematical physics literature, we will refer to such power series as partition func-
tions (although we note that this name does not refer to the integer partitions that
appear in the equation above).

Remark 1 We emphasise that the notation for Schur functions used here differs from
that appearing, for example, in the bookofMacdonald [48]. In that reference, an infinite
set of commuting variables x1, x2, x3, . . . is introduced and each Schur function is a
symmetric function in these variables. On the other hand, we use sλ(p1, p2, p3, . . .) to
denote the Schur function corresponding to the partition λ, expressed as a polynomial
in the power sum symmetric functions p1, p2, p3, . . ., where pk = xk

1 +xk
2 +xk

3 +· · · .
This notation is commonly used in the literature on integrable hierarchies, in which
case p1, p2, p3, . . . correspond to flow parameters. As a concrete example, the Schur
function corresponding to the partition (2) in the variables x1, x2, x3, . . . is given by

(x21 + x22 + x23 + · · · ) + (x1x2 + x1x3 + x2x3 + · · · )
= 1

2
(x21 + x22 + x23 + · · · ) + 1

2
(x1 + x2 + x3 + · · · )2.

So in the notation of the present paper, we have s2(p1, p2, p3, . . .) = 1
2 p2 + 1

2 p21.

For our applications, we will take Fλ(�) to have the so-called content product form

Fλ(�) =
∏

�∈λ

G(c(�)�).

Here, the product is over the boxes in the Young diagram for λ, G(z) ∈ C[[z]] is a
formal power series normalised to have constant term 1, and c(�) denotes the content
of the box. Recall that the content of a box in row i and column j of a Young diagram
is the integer j − i .

The partition function can be expressed as

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
,

(5)

where Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, . . .]. For various natural choices of the formal
power series G(z) and the weights q1, q2, q3, . . ., the quantity Ng,n(d1, d2, . . . , dn)

enumerates objects of combinatorial interest.

Definition 2 Let G(z) ∈ C[[z]] be a formal power series with constant term 1 and let
q1, q2, q3, . . . be a set of commuting variables. For positive integers d1, d2, . . . , dn ,
define Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, q3, . . .] via the series expansions of the two
expressions in (5) in the variables p1, p2, p3, . . ..
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Remark 2 We suppress the explicit dependence on G(z) and q1, q2, q3, . . . to avoid
overloading the notation in Definition 2. Any particular choices of or assumptions on
G(z) and q1, q2, q3, . . . will usually be clear from the context.

Due to the homogeneity properties of Schur functions, we know that the quan-
tity Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, q3, . . .] is a weighted homogeneous polynomial
of degree d1 + d2 + · · · + dn in q1, q2, q3, . . ., where the weight of qi is i . In fact,
these have been referred to in the literature as weighted Hurwitz numbers and are
known to enumerate certain paths in the Cayley graph of S|d| generated by transposi-
tions [2,36,37,39]. Furthermore, it is known that the partition function Z(p;q; �) is a
hypergeometric tau-function for the Toda integrable hierarchy [56].

We now proceed to examine four classes of combinatorial problems that arise
from double Schur function expansions. Readers looking for the general description
of double Schur function expansions and their 1-point recursions may wish to skip
directly to Sect. 3.

2.1 Ribbon graphs and dessins d’enfant

Aribbon graph—also known as amap, embedded graph, fat graph or rotation system—
can be thought of as the 1-skeleton of a cell decomposition of an oriented compact
surface. Ribbon graphs arise naturally in various areas of mathematics, including
topological graph theory, moduli spaces of Riemann surfaces, and matrix models
[44]. A more formal definition is the following.

Definition 3 A ribbon graph is a finite connected graph equippedwith a cyclic ordering
of the half-edges meeting at each vertex. An isomorphism between two ribbon graphs
is a bijection between their sets of half-edges that preserves all adjacencies, as well as
the cyclic ordering of the half-edges meeting at each vertex.

Theunderlyinggraphof a ribbongraph is precisely the 1-skeletonof a cell decompo-
sition of a compact connected orientable surface. The cyclic ordering of the half-edges
meeting at every vertex allows one to reconstruct the 2-cells and hence, the underlying
oriented compact surface. Thus, one can assign a genus to a ribbon graph.

Alternatively, one can encode a ribbon graph as a pair of permutations (τ0, τ1) such
that τ1 has cycle type (2, 2, . . . , 2), and τ0 and τ1 generate a transitive subgroup of the
symmetric group. We think of these permutations as acting on the half-edges of the
ribbon graph, where τ0 rotates half-edges anticlockwise around their adjacent vertex
and τ1 swaps half-edges belonging to the same underlying edge. More generally, one
can consider an m-hypermap as a pair of permutations (τ0, τ1) such that τ1 has cycle
type (m, m, . . . , m), and τ0 and τ1 generate a transitive subgroup of the symmetric
group. For further information on these topics, one may consult the book of Lando
and Zvonkin [44].

Definition 4 Define the ribbon graph number Ag,n(d1, d2, . . . , dn) to be the weighted
count of ribbon graphs of genus g with n labelled faces of degrees d1, d2, . . . , dn . The
weight of a ribbongraphΓ is 1

|Aut Γ | ,whereAutΓ denotes the groupof face-preserving
automorphisms. The corresponding 1-point invariant is denoted ag(d) = 2d Ag,1(2d).
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(The factor of 2d in this definition provides agreement with the work of Harer and
Zagier [38] and produces a simpler 1-point recursion.)

We similarly define Am
g,n(d1, d2, . . . , dn) to be the weighted count of m-hypermaps

of genus g with n labelled faces of degrees d1, d2, . . . , dn . The corresponding 1-point
invariant is denoted am

g (d) = md Am
g,1(md).

The following result is a consequence of the work of Alexandrov, Lewanski and
Shadrin, in which they show an equivalence between counting hypermaps and the
notion of strictly monotone orbifold Hurwitz numbers [3].

Lemma 1 The ribbon graph numbers arise from taking q = (0, 1, 0, . . .) and G(z) =
1 + z in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ(0, 1

�
, 0, . . .)

∏

�∈λ

(1 + c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Ag,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

More generally, the enumeration of m-hypermaps arises from keeping G(z) = 1+ z,
but taking qm = 1 and qi = 0 for i �= m.

Ribbon graphs can be considered as special cases of the more general notion of
dessins d’enfant.

Definition 5 A dessin d’enfant is a ribbon graphwhose vertices are coloured black and
white such that every edge is adjacent to one vertex of each colour. An isomorphism
between two dessins d’enfant is an isomorphism between their underlying ribbon
graphs that preserves the vertex colouring.

One obtains the notion of a ribbon graph by considering dessins d’enfant in which
every black vertex has degree two. In that case, one can simply remove the degree two
vertex and amalgamate the adjacent two edges into a single edge, to obtain a ribbon
graph. Similarly, dessins d’enfant in which every black vertex has degree m give rise
to m-hypermaps.

Definition 6 The dessin d’enfant number Bg,n(d1, d2, . . . , dn) is the weighted count
of dessins d’enfant of genus g with n labelled faces of degrees 2d1, 2d2, . . . , 2dn .
The weight of a dessin d’enfant Γ is 1

|Aut Γ | , where Aut Γ denotes the group of face-
preserving automorphisms. The corresponding 1-point invariant is denoted bg(d) =
d Bg,1(d).

More generally, we can refine the enumeration by weighting with parameters that
record the degrees of the black vertices.

Definition 7 Define the double dessin d’enfant number Bg,n(d1, d2, . . . , dn) to be the
analogous weighted count of dessins d’enfant, where the weight of a dessin d’enfantΓ
with black vertices of degrees λ1, λ2, . . . , λ� is

qλ1qλ2 ···qλ�|Aut Γ | . The corresponding 1-point

invariant is denoted bg(d) = d Bg,1(d).
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Fig. 1 Table of ribbon graph numbers and double dessin d’enfant numbers

We have Bg,n(d1, d2, . . . , dn) ∈ Q[q1, q2, q3, . . .], since q1, q2, q3, . . . are inde-
terminates in the above definition. The following result generalises Lemma 1.

Lemma 2 The double dessin d’enfant numbers arise from taking q = (q1, q2, q3, . . .)
and G(z) = 1 + z in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

(1 + c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

One obtains the usual dessin d’enfant enumeration by setting q = (1, 1, 1, . . .) in
the double dessin d’enfant enumeration.

Z(p;q; �) = exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]

=
∑

λ∈P
sλ(p1, p2, . . .) sλ

( 1
�
, 1

�
, 1

�
, . . .

) ∏

�∈λ

(1 + c(�)�)

=
∑

λ∈P
sλ(p1, p2, . . .) sλ

( 1
�
, 0, 0, . . .

) ∏

�∈λ

(1 + c(�)�)2

The secondequality here relies on the fact that sλ(
1
�
, 1

�
, 1

�
, . . .) = sλ(

1
�
, 0, 0, . . .)

∏
(1+

c(�)�), which is a direct corollary of the hook-length and the hook-content formulas—
see (9).
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2.2 Bousquet-Mélou–Schaeffer numbers

One can encode a dessin d’enfant via a pair (σ1, σ2) of permutations acting on the
edges. Here, σ1 acts by rotating each edge anticlockwise around its adjacent black
vertex and σ2 acts by rotating each edge anticlockwise around its adjacent white
vertex. The connectedness of the dessin d’enfant is encoded in the fact that the two
permutations generate a transitive subgroup of the symmetric group. For more details,
one can consult the extensive literature on dessins d’enfant [44]. More generally, one
has the notion of Bousquet-Mélou–Schaeffer numbers [10].

Definition 8 For m a positive integer, the Bousquet-Mélou–Schaeffer (BMS) num-
ber Bm

g,n(d1, d2, . . . , dn) is equal to 1
|d|! multiplied by the number of tuples

(σ1, σ2, . . . , σm) of permutations in S|d| such that

–
∑m

i=1(|d| − k(σi )) = 2g − 2+ n + |d|, where k(σ ) denotes the number of cycles
in σ ;

– σ1 ◦ σ2 ◦ · · · ◦ σm has n labelled cycles with lengths d1, d2, . . . , dn ; and
– σ1, σ2, . . . , σm generate a transitive subgroup of the symmetric group.

The corresponding 1-point invariant is denoted bm
g (d) = d Bm

g,1(d).

Lemma 3 The m-BMS numbers arise from taking q = (1, 0, 0, . . .) and G(z) =
(1 + z)m in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( 1
�
, 0, 0, . . .

) ∏

�∈λ

(1 + c(�)�)m

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Bm
g,n(d1, d2, . . . , dn)

�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

By the Riemann existence theorem, one can consider Bm
g,n(d1, d2, . . . , dn) to be

the weighted count of connected genus g branched covers f : (C; p1, p2, . . . , pn) →
(CP

1;∞) such that

– f −1(∞) = d1 p1 + d2 p2 + · · · + dn pn ;
– all other ramification occurs at the mth roots of unity.

The weight of a branched cover f : C → CP
1 is 1

|Aut f | , where an automorphism of
f is a Riemann surface automorphism φ : C → C such that f ◦ φ = f .
More generally, we can refine the enumeration by weighting by parameters that

record the ramification profile at one of the roots of unity.

Definition 9 The double Bousquet-Mélou–Schaeffer number B
m
g,n(d1, d2, . . . , dn) is

the weighted count of genus g connected branched covers f : (C; p1, p2, . . . , pn) →
(CP

1;∞) such that

– f −1(∞) = d1 p1 + d2 p2 + · · · + dn pn ;
– all other ramification occurs at the mth roots of unity.
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Fig. 2 Table of double BMS-3 numbers

To a branched cover with ramification profile (λ1, λ2, . . . , λ�) over exp( 2π i
m ), we

assign the weight
qλ1qλ2 ···qλ�|Aut f | . The corresponding 1-point invariant is denoted b

m
g (d) =

d B
m
g,1(d).

These numbers arise from taking q = (q1, q2, q3, . . .) and G(z) = (1 + z)m−1

in (4).

2.3 Hurwitz numbers

Hurwitz numbers enumerate branched covers of the Riemann sphere. They were first
studied by Hurwitz [40] in the late nineteenth century, although interest in Hurwitz
numbers has been revived in recent decades due to connections to enumerative geom-
etry [24,54], integrability [55], and topological recursion [9,27].

Definition 10 The single Hurwitz number Hg,n(d1, d2, . . . , dn) is the weighted count
of genus g connected branched covers f : (C; p1, p2, . . . , pn) → (CP

1;∞) such
that

– f −1(∞) = d1 p1 + d2 p2 + · · · + dn pn ; and
– the only other ramification is simple and occurs at the mth roots of unity.

The weight of a branched cover f is 1
m! |Aut f | , where we have m = 2g − 2 + n + |d|

from the Riemann–Hurwitz formula. The corresponding 1-point invariant is denoted
hg(d) = d Hg,1(d).

Again, theRiemann existence theorem allows one to encode a branched cover via its
monodromy representation, which makes connection with permutation factorisations.
The result is the following algebraic description of single Hurwitz numbers.

Proposition 2 The single Hurwitz number Hg,n(d1, d2, . . . , dn) is 1
m! |d|! multiplied by

the number of tuples (τ1, τ2, . . . , τm) of transpositions in S|d| such that
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– m = 2g − 2 + n + |d|;
– τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn; and
– τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group.

This algebraic description of single Hurwitz numbers then leads naturally to the
following result [55].

Lemma 4 The single Hurwitz numbers arise from taking q = (1, 0, . . .) and G(z) =
exp(z) in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( 1
�
, 0, 0, . . .

) ∏

�∈λ

exp(c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Hg,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

As with the enumerations considered previously in this section, one can consider a
generalisation of the Hurwitz enumeration to its “double” counterpart [17].

Definition 11 The double Hurwitz number H g,n(d1, d2, . . . , dn) is the weighted count
of genus g connected branched covers f : (C; p1, p2, . . . , pn) → (CP

1;∞) such
that

– f −1(∞) = d1 p1 + d2 p2 + · · · + dn pn ;
– the ramification profile over 0 is arbitrary; and
– the only other ramification is simple and occurs at the mth roots of unity.

The weight of a branched cover f with ramification profile (λ1, λ2, . . . , λ�) over 0 is
qλ1qλ2 ···qλ�

m! |Aut f | .

Remark 3 The notion of double Hurwitz number from Definition 11 differs from,
but is closely related to, the notion of double Hurwitz number that appears in various
places elsewhere in the literature [33,55]. In these references, double Hurwitz numbers
count branched covers of CP

1 in which both the ramification profiles over 0 and ∞
are specified. Up to a simple renormalisation, such numbers arise as coefficients of
the polynomial H g,n(d1, d2, . . . , dn) ∈ C[q1, q2, q3, . . .] defined above. The idea
of packaging these numbers together as in Definition 11 has proven to be useful in
the context of showing that double Hurwitz numbers are governed by topological
recursion [5,17]. Furthermore, the notion of double Hurwitz number that we adopt is
consistent with the use of the word “double” for other contexts in this paper, such as
in Definitions 7 and 9 .

Again, we have a natural double Schur function expansion for double Hurwitz
number partition function [55].
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Fig. 3 Table of single Hurwitz numbers and double Hurwitz numbers

Lemma 5 The double Hurwitz numbers arise from taking q = (q1, q2, q3, . . .) and
G(z) = exp(z) in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

exp(c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

H g,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

2.4 Monotone Hurwitz numbers

Monotone Hurwitz numbers first appeared in a series of papers by Goulden, Guay-
Paquet and Novak, in which they arose as coefficients in the large N asymptotic
expansion of the Harish-Chandra–Itzykson–Zuber matrix integral over the unitary
group U (N ) [30–32]. Their definition resembles that of Hurwitz numbers, but with a
monotonicity constraint imposed on the transpositions. This monotonicity condition
is rather natural from the standpoint of the Jucys–Murphy elements in the symmetric
group algebra C[S|d|]. Monotone Hurwitz numbers are known to obey several anal-
ogous properties to Hurwitz numbers. For instance, there is a polynomial structure
theorem [31], they are governed by topological recursion [16], there is a quantum
curve [16], and there is an ELSV-type formula [3,15].

Definition 12 The monotone Hurwitz number Mg,n(d1, d2, . . . , dn) is 1
|d|! multiplied

by the number of tuples (τ1, τ2, . . . , τm) of transpositions in S|d| such that

– m = 2g − 2 + n + |d|;
– τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn ;
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– τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group; and
– if τi = (ai bi ) with ai < bi , then b1 ≤ b2 ≤ · · · ≤ bm .

The corresponding 1-point invariant is denoted mg(d) = d Mg,1(d).

Lemma 6 The monotone Hurwitz numbers arise from taking q = (1, 0, 0, . . .) and
G(z) = 1

1−z in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( 1
�
, 0, 0, . . .

) ∏

�∈λ

1

1 − c(�)�

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

Again, one can consider a generalisation of the monotone Hurwitz enumeration to
its “double” counterpart.

Definition 13 Let the double monotone Hurwitz number Mg,n(d1, d2, . . . , dn) be the
weighted count of tuples (σ, τ1, τ2, . . . , τm) of transpositions in S|d| such that

– m = 2g − 2 + n + k(σ ), where k(σ ) denotes the number of cycles in σ ;
– σ ◦ τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn ;
– σ, τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group; and
– if τi = (ai bi ) with ai < bi , then b1 ≤ b2 ≤ · · · ≤ bm .

The weight of such a tuple with σ of cycle type (λ1, λ2, . . . , λ�) is 1
|d|! qλ1qλ2 · · · qλ�

.

The corresponding 1-point invariant is denoted mg(d) = d Mg,1(d).

Lemma 7 The double monotone Hurwitz numbers arise from taking q = (q1, q2, . . .)
and G(z) = 1

1−z in (4). In other words, we have

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

1

1 − c(�)�

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]
.

3 Double Schur function expansions

3.1 Partition functions and 1-point invariants

In the previous section, we established that for various choices of the formal power
series G(z) and the parameters q1, q2, q3, . . ., certain enumerative problems of geo-
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Fig. 4 Table of monotone Hurwitz numbers and double monotone Hurwitz numbers

metric interest are stored in the partition function via the following equation.

Z(p;q; �) =
∑

λ∈P
sλ(p1, p2, . . .) sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�)

= exp

[ ∞∑

g=0

∞∑

n=1

∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
�
2g−2+n

n! pd1 pd2 · · · pdn

]

(6)

We will be primarily concerned with the 1-point invariants that arise when n = 1.
In particular, we consider the numbers ng(d) = d Ng,1(d) stored in the partition
function, with the goal of determining whether or not there exists a 1-point recursion
governing these numbers.1 In order to obtain information about these numbers, we
deform the partition function via a parameter s that keeps track of the unweighted
degree in p1, p2, p3, . . . and then extract the 1-point invariants by differentiation.

[
∂

∂s
Z(sp;q; �)

]

s=0
=

∑

λ∈P

[
∂

∂s
sλ(sp1, sp2, . . .)

]

s=0
sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�)

=
∞∑

g=0

∞∑

d=1

Ng,1(d) �
2g−1 pd

1 The extra factor of d in the definition of ng(d)will have little bearing on our results, but is introduced here
for consistency with the original Harer–Zagier recursion and other results in the literature. We remark that
the 1-point recursions are generally simpler with this normalisation, as can be witnessed from (1) and (2).
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At this stage, it is natural to introduce the so-called principal specialisation pd = xd

to record the degree via the single variable x .

[
∂

∂s
Z(sx, sx2, sx3, . . . ;q; �)

]

s=0

=
∑

λ∈P

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0
sλ

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�) (7)

=
∞∑

g=0

∞∑

d=1

Ng,1(d) �
2g−1 xd (8)

3.2 Schur function evaluations

In this section, we deduce some facts about Schur functions that will be required at
a later stage. We begin with the crucial observation that the evaluation of the Schur
function appearing in (7) is zero unless λ is a hook partition. Here, and throughout the
paper, a hook partition refers to a partition of the form (k, 1d−k), where 1 ≤ k ≤ d.

Lemma 8

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0
=

{
(−1)d−k xd

d , if λ = (k, 1d−k) is a hook partition,

0, otherwise.

Proof The lemma follows from the hook-content formula [48], which states that

sλ(s, s, s, . . .) =
∏

�∈Λ

s + c(�)

h(�)
, (9)

where c(�) and h(�) denote the content and hook-length of a box in the Young
diagram for λ, respectively.

If λ is a non-empty partition that is not a hook, then its Young diagram contains at
least two boxeswith content 0. So the hook-content formula implies that sλ(s, s, s, . . .)
is a polynomial divisible by s2 and it follows that

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0
= 0.

If λ = (k, 1d−k) is a hook partition, then its hook-lengths are {1, 2, . . . , k − 1} ∪
{1, 2, . . . , d −k}∪{d}, while its contents are {1, 2, . . . , k −1}∪{−1,−2, . . . ,−(d −
k)} ∪ {0}. Thus, we obtain

sλ(s, s, s, . . .) = (−1)d−k (s + k − 1)(s + k − 2) · · · (s + k − d)

d(k − 1)!(d − k)! .
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By directly differentiating with respect to s and evaluating at s = 0, we obtain

[
∂

∂s
sλ(s, s, . . .)

]

s=0
= (−1)d−k

d
.

The powers of x appearing in the statement of the lemma can be reinstated, using the
fact that Schur functions are weighted homogeneous. 
�

Now use Lemma 8 in (7) to obtain the following.

[
∂

∂s
Z(sx, sx2, sx3, . . . ;q; �)

]

s=0

=
∞∑

g=0

∞∑

d=1

Ng,1(d)�2g−1xd

=
∞∑

d=1

d∑

k=1

(−1)d−k xd

d
s(k,1d−k )

( q1
�

,
q2
�

, . . .
) ∏

�∈λ

G(c(�)�)

Extracting the xd coefficient yields the following result.

Lemma 9 The 1-point invariants ng(d) = d Ng,1(d) defined by (4) satisfy

∞∑

g=0

ng(d) �
2g−1 =

d∑

k=1

(−1)d−k s(k,1d−k )

( q1
�

,
q2
�

, . . .
) d∏

i=1

G((k − i)�),

for every positive integer d.

We will later be interested in setting the parameter qi = 0 for i sufficiently large.
In this case, we write sλ(

q1
�

,
q2
�

, . . . ,
qr
�

) to mean the Schur function sλ(
q1
�

,
q2
�

, . . .)

evaluated at qr+1 = qr+2 = · · · = 0.
We complete the section by presenting the following relations concerning Schur

functions, which will be useful for the next section [48].

Lemma 10 The Schur function indexed by the hook (k, 1d−k) can be expressed as

s(k,1d−k )(p) =
k∑

j=1

(−1) j+1 hk− j (p) ed−k+ j (p).

Here, hn and en, respectively, denote the homogeneous and elementary symmetric
functions, which can in turn be expressed in terms of power sum symmetric functions
via

∞∑

n=0

hn(p) xn = exp

[ ∞∑

k=1

pk

k
xk

]
and

∞∑

n=0

en(p) xn = exp

[ r∑

k=1

(−1)k−1 pk

k
xk

]
.
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In the case p1 = s and pk = 0 for k ≥ 2, the above expression evaluates to

s(k,1d−k )(s, 0, 0, . . .) =
(

d − 1

k − 1

)
sd

d! .

4 Recursions for 1-point functions

4.1 Holonomic sequences and functions

A sequence a0, a1, a2, . . . is said to be holonomic over K if the terms satisfy a nonzero
linear difference equation of the form

pr (d) ad+r + pr−1(d) ad+r−1 + · · · + p1(d) ad+1 + p0(d) ad = 0, (10)

where p0, p1, . . . , pr are polynomials over the field K of characteristic 0. Moreover,

a formal power series A(x) =
∞∑

d=0

ad xd is said to be holonomic over K if it satisfies

a nonzero linear differential equation of the form

[
Pr (x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1 + · · · + P1(x)
∂

∂x
+ P0(x)

]
A(x) = 0, (11)

where P0, P1, . . . , Pr are polynomials over K. The dual use of the term “holonomic”
is due to the elementary fact that the sequence a0, a1, a2, . . . is holonomic over K if
and only if the formal power series a0 + a1x + a2x2 + · · · is holonomic over K. For
our applications, we will use the ground field K = C(�).

Lemma 11 A 1-point recursion exists for the numbers ng(d) in the sense of Definition 1
if and only if the formal power series

F(x, �) =
∞∑

d=1

∞∑

g=0

ng(d) �
2g−1 xd

is holonomic over C(�).

Proof If F(x, �) is holonomic, then there exist polynomials P0, P1, . . . , Pr with coef-
ficients in C(�) such that

[
Pr (x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1 + · · · + P1(x)
∂

∂x
+ P0(x)

]
F(x, �) = 0.
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One can assume that the coefficients of P0, P1, . . . , Pr actually lie inC[�], by clearing
denominators in the equation above. Thus, the equation takes the form

⎡

⎣
finite∑

i, j,k=0

Ci jk �
i x j ∂k

∂xk

⎤

⎦ F(x, �) = 0, (12)

for some complex constants Ci jk . Applying Ci jk �
i x j ∂k

∂xk to a term ng(d) �
2g−1 xd

in the expansion for F(x, �) has the effect of shifting the powers of � and x , and
introducing a factor that is polynomial in d. So after collecting terms in the resulting
equation, one obtains a relation of the form of (3). Therefore, there exists a 1-point
recursion for the numbers ng(d).

Conversely, suppose that there exists a 1-point recursion for the numbers ng(d),
so there exists a relation of the form of (3). Multiplying both sides by �

2g−1 xd and
summing over g and d yields

∞∑

d=1

∞∑

g=0

imax∑

i=0

jmax∑

j=0

pi j (d) ng−i (d − j) �
2g−1 xd = 0.

Now replace pi j (d) xd with pi j
(
x ∂

∂x

)
xd and reindex the summations over d and g to

obtain

∞∑

d=1

∞∑

g=0

imax∑

i=0

jmax∑

j=0

pi j
(
x ∂

∂x

)
�
2i x j ng(d)�2g−1 xd = 0

⇒
[ imax∑

i=0

jmax∑

j=0

pi j
(
x ∂

∂x

)
�
2i x j

]
F(x, �) = 0.

This final equation can be expressed in the form of (12) by applying the commutation
relation [ ∂

∂x , x] = 1. It then follows that F(x, �) is holonomic over C(�). 
�
The following result lists some closure properties, which provide standard tools to

prove holonomicity [41].

Proposition 3 Let A(x) =
∞∑

d=0

ad xd and B(x) =
∞∑

d=0

bd xd be holonomic over a field

K of characteristic zero. Then,

(a) αA(x) + βB(x) is holonomic for all α, β ∈ K;
(b) the Cauchy product A(x) B(x) and the Hadamard product

(
anbn

)
n=0,1,2,... are

holonomic;
(c) the derivative a′(x) and the forward shift

(
an+1

)
n=0,1,2,... are holonomic; and

(d) the integral
∫ x A(x) dx and the indefinite sum

( ∑n
k=0 ak

)
n=0,1,2,... are holonomic.
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Definition 14 We define the order and degree of the difference equation

pr (d) ad+r + pr−1(d) ad+r−1 + · · · + p1(d) ad+1 + p0(d) ad = 0

to be r (assuming pr (d) �= 0) and max{deg p0, deg p1, . . . , deg pr }, respectively.
Similarly, we define the order and degree of the differential equation

[
Pr (x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1 + · · · + P1(x)
∂

∂x
+ P0(x)

]
A(x) = 0

to be r (assuming Pr (x) �= 0) and max{deg P0, deg P1, . . . , deg Pr }, respectively.
Note that for a fixed holonomic sequence or function, there are difference or differ-

ential operators of many possible orders and degrees that annihilate it. Furthermore, it
is not generally true that there exists such an operator that simultaneously minimises
both the order and the degree. Thus, one does not usually refer to the order and degree
of a holonomic sequence or function itself, but to the order and degree of a particular
operator.

4.2 Multivariate holonomic functions

There are competing ways in which the notion of holonomicity may be generalised
to the case of many variables, but the following is well-suited to our purposes. Let
x = (x1, x2, . . . , xn) and let K[[x]] = K[[x1, x2, . . . , xn]]. A multivariate formal
power series A(x) ∈ K[[x]] is said to be holonomic over K—also commonly known
as D-finite—if the set of derivatives

{
∂ i1+i2+···+in

∂xi1
1 ∂xi2

2 · · · ∂xin
n

A(x)

∣∣∣∣∣ i1, i2, . . . , in ∈ Z≥0

}

lie in a finite-dimensional vector space over K(x). This is equivalent to the fact that
A(x) satisfies a system of linear partial differential equations of the form

[
Pi,r (x)

∂r

∂xr
i

+ Pi,r−1(x)
∂r−1

xr−1
i

+ · · · + Pi,0(x)

]
A(x) = 0, for i = 1, 2, . . . , n,

(13)

where Pi j (x) ∈ K[x]. Clearly, the case n = 1 recovers the definition of a holonomic
function described earlier.

Definition 15 For A(x) =
∑

i1,i2,...,in

a(i1, i2, . . . , in) xi1
1 xi2

2 · · · xin
n ∈ K[[x]] and inte-

gers 1 ≤ k < � ≤ n, define the primitive diagonal

Ik�(A(x)) =
∑

i1,...,î�,...,in

a(i1, . . . , ik, . . . , ik, . . . , in) xi1
1 · · · xik

k · · · x̂ i�
� · · · xin

n ,
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where the hats denote omission of the index i� and the term xi�
� .

For example, taking k = 1, � = 2 and n = 4 leads to

I12(A(x1, x2, x3, x4)) =
∑

i1,i3,i4

a(i1, i1, i3, i4) xi1
1 xi3

3 xi4
4 .

The following result lists some closure properties for multivariate holonomic func-
tions [47,60].

Proposition 4 Let

A(x) =
∑

a(i1, i2, . . . , in) xi1
1 xi2

2 · · · xin
n and B(x)

=
∑

b(i1, i2, . . . , in) xi1
1 xi2

2 · · · xin
n

be holonomic functions over a field K of characteristic zero. Then,

(a) the primitive diagonal Ik�(A(x)) is holonomic for all 1 ≤ k < � ≤ n;
(b) the Cauchy product A(x) B(x) is holonomic;
(c) the Hadamard product A(x) ∗ B(x) = ∑

a(i1, i2, . . . , in) b(i1, i2, . . . , in)

xi1
1 xi2

2 · · · xin
n is holonomic; and

(d) the formal power series

∑

(i1,i2,...,in)∈C

a(i1, i2, . . . , in) xi1
1 xi2

2 · · · xin
n

is holonomic if C ⊆ Z
n≥0 is defined by a finite set of inequalities of the form∑

akik + b ≥ 0, where a1, a2, . . . , an, b ∈ Z.

4.3 Existence of 1-point recursions

We begin by proving the existence of 1-point recursions in the single case when
q = (1, 0, 0, . . .). (The word “single” has been ported from the context of Hurwitz
numbers to this more general setting.)

Theorem 2 Let G(z) ∈ C(z) be a rational function and let q = (1, 0, 0, . . .). Define
the numbers ng(d) = d Ng,1(d) via (4). Then, the numbers ng(d) satisfy a 1-point
recursion in the sense of Definition 1.
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Proof We define n(d) and calculate it as follows.

n(d) =
∞∑

g=0

ng(d) �
2g−1

=
d∑

k=1

(−1)d−k s(k,1d−k )

( 1
�
, 0, 0, . . .

) d∏

i=1

G((k − i)�) (Lemma 9)

= 1

d! �d

d∑

k=1

(−1)d−k
(

d − 1

k − 1

) d∏

i=1

G((k − i)�) (Lemma 10)

= 1

d �d

d∑

k=1

(−1)d−k 1

(k − 1)! (d − k)!
d∏

i=1

G((k − i)�) (14)

Define the sequences

uk = 1

(k − 1)! �k

k∏

i=1

G((i − 1)�) and vk = (−1)k

k! �k

k∏

i=1

G(−i�).

These are holonomic overC(�) since the ratios uk+1
uk

= G(k�)
k�

and vk+1
vk

= − G(−(k+1)�)
(k+1)�

are rational functions of k with coefficients from C(�). Hence, parts (b) and (c) of
Proposition 3 imply that the sequence

n(d) = 1

d

d∑

k=1

uk vd−k

is holonomic over C(�). So Lemma 11 guarantees the existence of a 1-point recursion
for ng(d). 
�

To tackle the case of general weights q = (q1, q2, . . . , qr , 0, 0, . . .), we use the
following lemma.

Lemma 12 If ad , bd , ud , vd are holonomic sequences, then so is

sd =
d∑

k=1

akbd−k

k−1∑

�=0

u�vd−�.

Proof Define the generating functions

A(x1) =
∞∑

n=1

an xn
1 , B(x2) =

∞∑

n=0

bn xn
2 , U (x3, x4) =

∞∑

n=0

un(x3x4)
n,

V (x4) =
∞∑

n=1

vn xn
4 .
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Observe that each of these is a holonomic function in the appropriate variables. Since
Cauchy products preserve holonomicity—see part (b) of 4—we know that

H(x3, x4) = x3
1 − x3

U (x3, x4) V (x4) =
∞∑

k=1

∞∑

n=1

(
k−1∑

�=0

u�vn−�

)
xk
3 xn

4

is holonomic. (We interpret the inner summation by discarding any terms that involve
vn−� with n − � ≤ 0.) By part (d) of 4, restricting to the terms satisfying n − k ≥ 0,
we obtain the holonomic function

Ĥ(x3, x4) =
∑

n≥k≥1

(
k−1∑

�=0

u�vn−�

)
xk
3 xn

4 .

Then,

L(x1, x2, x3, x4) = A(x1) B(x2) Ĥ(x3, x4)

=
∞∑

i=1

∞∑

j=0

∑

n≥k≥1

ai b j

(
k−1∑

�=0

u�vn−�

)
xi
1x j

2 xk
3 xn

4

is holonomic by closure under Cauchy products. Invoking part (a) of 4, we know that

I13(L(x1, x2, x3, x4)) =
∞∑

k=1

∞∑

j=0

∞∑

n=k

akb j

(
k−1∑

�=0

u�vn−�

)
xk
1 x j

2 xn
4

is holonomic.Nowuse part (d) of 4with the inequalities j+k−n ≥ 0 and− j−k+n ≥
0—in other words, restricting to j = n − k—to deduce holonomicity of

L̂(x1, x2, x4) =
∞∑

k=1

∞∑

n=k

akbn−k

(
k−1∑

�=0

u�vn−�

)
xk
1 xn−k

2 xn
4 .

By evaluating this formal power series at x1 = 1, x2 = 1 and x4 = x—which clearly
preserves holonomicity—we obtain the desired result. 
�

We are now in a position to prove Theorem 1, which we restate in the following
way.

Theorem 3 Let G(z) ∈ C(z) be a rational function satisfying G(0) = 1 and let
q = (q1, q2, . . . , qr , 0, 0, . . .). Define the numbers ng(d) = d Ng,1(d) via (4). Then,
the generating function

∞∑

d=1

∞∑

g=0

ng(d) �
2g−1 xd (15)
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is holonomic over C(�), so the numbers ng(d) satisfy a 1-point recursion in the sense
of Definition 1.

Proof We calculate the coefficient n(d) of xd in (15) as follows.

n(d) =
∞∑

g=0

ng(d) �
2g−1

=
d∑

k=1

(−1)d−k s(k,1d−k )

( q1
�

,
q2
�

, . . . ,
qr
�

) d∏

i=1

G((k − i)�)

=
d∑

k=1

(−1)d−k
d∏

i=1

G((k − i)�)

k∑

j=1

(−1) j+1 hk− j
( q1

�
, . . . ,

qr
�

)
ed−k+ j

( q1
�

, . . . ,
qr
�

)

=
d∑

k=1

k∏

i=1

G((i − 1)�)

d−k∏

i=1

G(−i�)

k−1∑

�=0

h�

( q1
�

, . . . ,
qr
�

)
(−1)d−�+1 ed−�

( q1
�

, . . . ,
qr
�

)

Now define the sequences

an =
n∏

i=1

G((i − 1)�), un = hn
( q1

�
,

q2
�

, . . . ,
qr
�

)
,

bn =
n∏

i=1

G(−i�), vn = (−1)n+1 en
( q1

�
,

q2
�

, . . . ,
qr
�

)
.

The first two are holonomic over C(�) since the ratios an+1
an

= G(n�) and bn+1
bn

=
G(−(n + 1)�) are rational functions of n with coefficients from C(�). The last two
are holonomic over C(�) due to Lemma 10, from which we deduce that

[
�

∂

∂x
−

r∑

k=1

qk xk−1

] ( ∞∑

n=0

un xn

)
= 0

and
[

�
∂

∂x
+

r∑

k=1

(−1)kqk xk−1

] ( ∞∑

n=0

vn xn

)
= 0.

Hence, Lemma 12 implies that the sequence

n(d) =
d∑

k=1

akbd−k

k−1∑

�=0

u�vd−�

is holonomic over C(�). It then follows from Lemma 11 that there exists a 1-point
recursion for the numbers ng(d). 
�
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4.4 Algorithms for 1-point recursions

One of the features of the theory of holonomic sequences and functions is the fact that
theoretical results can often be turned into effective algorithms. Although Theorem 3
only asserts the existence of 1-point recursions, its proof can be converted into an
algorithm to calculate them from the initial data of the rational function G(z) and the
positive integer r that records the number of nonzero weights q = (q1, q2, . . . , qr ).
For example, a naive though feasible approachwould be to express the putative 1-point
recursion as

D∑

i=0

R∑

j=0

ai j di n(d − j) = 0,

and treat this as a linear system in the (D+1)(R+1) variables ai j ∈ C(�). One obtains
a linear constraint for each positive integer d, so a finite number of these allows for
the computation of the 1-point recursion.

To implement this approach, one requires explicit and simultaneous bounds on the
degree D and the order R of such a recursion. We remark that it is possible to obtain
such bounds in terms of the degree of G(z) and the positive integer r . Begin with the
operators that annihilate the generating functions for the sequences an, bn, un, vn that
appear in the proof of Theorem 3. Then use known bounds for the degree and order
of operators that annihilate functions obtained by the holonomicity closure properties
used in the proof—namely Cauchy product, taking diagonals, restricting summations,
and evaluation. We do not pursue these calculations in the current work.

There aremore efficient algorithms for computingwith holonomic functions that are
implemented in thegfun package forMaple [58]. The following example concerning
monotone Hurwitz numbers demonstrates how our results lead to effective algorithms
to produce previously unknown 1-point recursions.

Example 3 The proof of Theorem 2 implies that monotone Hurwitz numbers satisfy
the relation

m(d) =
∞∑

g=0

mg(d) �
2g−1 = 1

d

d∑

k=1

uk vd−k,

where uk+1
uk

= G(k�)
k�

and vk+1
vk

= − G(−(k+1)�)
(k+1)� . So the sequence m(d) can be obtained

by taking the Cauchy product of uk and vk , and then taking the Hadamard product
of the result and the sequence 1

k . In Appendix 1, we demonstrate several lines of
Maple code that explicitly implements the above procedure to produce the following
previously unknown 1-point recursion for monotone Hurwitz numbers.

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d)
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5 Examples and applications

In this section, we return our attention to the enumerative problems introduced in
Sect. 2. In particular, we apply themethodology developed in Sect. 4 to deduce 1-point
recursions for the enumeration of hypermaps, Bousquet-Mélou–Schaeffer numbers
and monotone Hurwitz numbers. For the case of single Hurwitz numbers, the weight
generating function G(z) is not a rational function, so Theorem 1 ceases to apply.
As a partial converse to this theorem, we show that single Hurwitz numbers do not
satisfy a 1-point recursion. We furthermore demonstrate how our calculations may
yield explicit formulas and polynomial structure results for 1-point invariants.

5.1 Hypermaps and Bousquet-Mélou–Schaeffer numbers

The methodology of Sect. 4 allows one to recover the 1-point recursions for the
enumeration of ribbon graphs and dessins d’enfant, stated as (1) and (2), respectively.
Recall that these two examples inspired the current work. It is possible to use the
methodology developed in Sect. 4 to deduce other 1-point recursions, although the
results are often rather lengthy to state. The following result provides two examples.

Proposition 5 The 3-hypermap enumeration satisfies the following 1-point recursion.

2d(2d + 1) a3
g(d) = 3(3d − 1)(3d − 2) a3

g(d − 1)

+ (3d − 1)(3d − 2)(9d2 − 8d + 2) a3
g−1(d − 1)

− (d − 1)(3d − 1)(3d − 2)(3d − 4)(3d − 5)(6d − 7) a3
g−2(d − 2)

+ (d − 1)(d − 2)(3d − 1)(3d − 2)(3d − 4)(3d − 5)

(3d − 7)(3d − 8) a3
g−3(d − 3)

The 3-BMS numbers satisfy the following 1-point recursion.

2d(2d + 1)(3d − 4) b3g(d) = 3(3d − 1)(3d − 2)(3d − 4) b3g(d − 1)

+ (d − 1)(3d + 1)(9d3 − 22d2 + 14d − 2) b3g−1(d − 1)

− (d − 1)2(d − 2)(18d4 − 93d3 + 1722 − 127d + 26)

b3g−2(d − 2)

+ (d − 1)2(d − 2)5(d − 3)(3d − 1) b3g−3(d − 3)

5.2 Hurwitz numbers

Observe that Theorem 1 does not apply in the case of Hurwitz numbers, since the
weight generating function G(z) = exp(z) is not rational. Thus, the following result
provides a partial converse to our main theorem.

Proposition 6 The single Hurwitz numbers do not satisfy a 1-point recursion.
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Proof By Lemma 11, we know that the single Hurwitz numbers satisfy a 1-point
recursion if and only if the sequence

h(d) = 1

d! �d

d∑

k=1

(−1)d−k
(

d − 1

k − 1

)
exp(d(2k − d − 1)�/2)

= 1

d! �d
exp(−d(d + 1)�/2) (exp(d�) − 1)d−1

is holonomic over C(�). However, if this were the case, then we could evaluate at
� = 1 to deduce that the sequence

1

d! exp(−d(d + 1)/2) (exp(d) − 1)d−1

is holonomic overC. It is known that holonomic sequences a1, a2, a3, . . . overCmust
satisfy the asymptotic growth condition ad = O(d!α) for some constant α. On the
other hand, we have

1

d! exp(−d(d + 1)/2) (exp(d) − 1)d−1 ∼ 1

d! exp(d(d − 3)/2).

Applying Stirling’s formula, we see that this grows too fast to be holonomic. So it
follows that the single Hurwitz numbers do not satisfy a 1-point recursion. 
�

Equation (14) still applies to this case though, so the 1-part Hurwitz numbers satisfy

∞∑

g=0

hg(d) �
2g−1 = 1

d! �d

d∑

k=1

(−1)d−k
(

d − 1

k − 1

)
exp (d(2k − d − 1)�/2) .

By extracting coefficients of � on both sides, we recover the following formula.

Proposition 7 The 1-part single Hurwitz numbers are given by

hg(d) = (d/2)d+2g−1

d! (d + 2g − 1)!
d−1∑

k=0

(−1)k
(

d − 1

k

)
(d − 1 − 2k)d+2g−1.

In particular, it follows that hg(d) = dd

d! pg(d), where pg is a polynomial of degree
3g − 1. One can make sense of this statement in the case g = 0 by taking p0(d) = 1

d .

Weremark that the polynomial structure derivedhere is a direct corollary of themore
general polynomial structure for single Hurwitz numbers with any number of parts.
This in turn follows from the ELSV formula, which relates single Hurwitz numbers
to intersection theory on moduli spaces of curves [24]. The formula of Proposition 7
is not new either, but first appeared in the work of Shapiro, Shapiro and Vainshtein
[59]. The result and proof here may generalise to other settings, as we will observe in
the context of monotone Hurwitz numbers.
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5.3 Monotone Hurwitz numbers

In 4.4, we observed that the following 1-point recursion for monotone Hurwitz num-
bers could be deduced from several lines of Maple code. As with the Harer–Zagier
recursion, it would be of interest to have an independent and purely combinatorial
proof of this statement.

Proposition 8 The 1-part monotone Hurwitz numbers satisfy the 1-point recursion

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d).

In the context of monotone Hurwitz numbers, (14) implies that

∞∑

g=0

mg(d) �
2g−1 = 1

d! hd

d∑

k=1

(−1)d−k
(

d − 1

k − 1

) d∏

j=1

1

1 − (k − j)�

= (2d − 2)!
d! (d − 1)!

d−1∏

k=−d+1

1

1 − k�
.

The identity that leads to the second equality can be established by considering the
residue at � = 1

k for −d + 1 ≤ k ≤ d − 1. By extracting coefficients of � on both
sides, we recover the following formula.

Corollary 1 The 1-part monotone Hurwitz numbers satisfy the equation

mg(d) = (2d − 2)!
d!(d − 1)!

∑

k1+···+kd−1=g

d−1∏

i=1

i2ki

= (2d − 2)!
d!(d − 1)!

∑

1≤m1≤m2≤···≤mg≤d−1

(m1m2 · · · mg)
2.

From the latter summation, it follows that mg(d) = (2d
d

)
pg(d), where pg is a poly-

nomial of degree 3g − 1. One can make sense of this statement in the case g = 0 by
taking p0(d) = 1

d .

This polynomial structure is a particular case of the more general result derived by
Goulden, Guay-Paquet and Novak [31], who prove that monotone Hurwitz numbers
satisfy

Mg,n(d1, d2, . . . , dn) =
n∏

i=1

(
2di

di

)
× Pg,n(d1, d2, . . . , dn),

where Pg,n is a polynomial of degree 3g −3+n. One wonders whether the techniques
of this paper can be used to prove this more general structure theorem.
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6 Relations to topological recursion and quantum curves

6.1 Topological recursion

In this section, we aim to address the question: how universal is the notion of a
1-point recursion? Thus, one seeks a natural class of “enumerative” problems for
which 1-point recursions exist. Such a class should include not only the ribbon graph
and dessin d’enfant enumerations, but also those families of problems encompassed
by Theorem 3—namely, those arising from the double Schur expansion of (4) with
q = (q1, q2, . . . , qr , 0, 0, . . .) and a rational weight generating function G(z). We
claim that a natural candidate is the class of problems governed by the topological
recursion that we subsequently discuss.

The topological recursion of Chekhov, Eynard and Orantin was originally inspired
by the loop equations in the theory of matrix models [12,25]. It has since found
widespread applications to various problems across mathematics and physics. For
example, it is known togovern the enumerationofmapson surfaces [4,19,21,23,42,51],
various flavours of Hurwitz problems [7,9,16,18,27], the Gromov–Witten theory of P

1

[22,53] and toric Calabi–Yau threefolds [8,26,28]. There are also conjectural relations
to knots invariants [6,35]. Much of the power of the topological recursion lies in its
universality—in other words, its wide applicability across broad classes of problems—
and its ability to reveal commonality among such problems.

The topological recursion can naively be thought of as a vast generalisation of
Tutte’s recursion for the enumeration of ribbon graphs. It calculates n-point functions
in a recursivemanner, starting from the input data of a spectral curve. For our purposes,
we restrict to the class of rational spectral curves, that are given by a pair (x(z), y(z))
of rational functions satisfying some mild assumptions. For more information on the
theory of the topological recursion, one should consult the relevant literature [25].

The following result asserts that the weighted Hurwitz numbers—essentially, the
Ng,n(d1, d2, . . . , dn) of (4)—are governed by the topological recursion.

Theorem 4 (Alexandrov, Chapuy, Eynard and Harnad [2]) The rational spectral curve
given by

x(z) = z

G(Q(z))
and y(z) = Q(z)

z
G(Q(z)), where Q(z) = q1z + q2z2 + · · · + qr zr ,

produces correlation differentials that satisfy

ωg,n =
∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)

n∏

i=1

di xdi −1
i dxi .

This lends credence to the following conjecture, which states that 1-point recursions
exist for rational spectral curves in general.

Conjecture 2 Consider a rational spectral curve given by the pair of rational functions
(x(z), y(z)). Suppose that the correlation differentials produced by the topological
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recursion applied to this spectral curve have an expansion of the form

ωg,n =
∞∑

d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)

n∏

i=1

di xdi −1
i dxi .

Then the numbers ng(d) = d Ng,1(d) satisfy a 1-point recursion.

We conclude this section with an example of a problem that is governed by topo-
logical recursion and satisfies a 1-point recursion, but does not satisfy the conditions
of Theorem 3. Thus, one can consider this as further evidence towards the conjecture
above.

Example 4 Chekhov and Norbury [13] consider topological recursion applied to the
spectral curve x2y2 − 4y2 − 1 = 0 given by the rational parametrisation

x(z) = z + 1

z
and y(z) = z

z2 − 1
.

The resulting correlation differentials can be expressed as

ωg,n =
∞∑

d1,d2,...,dn=1

Jg,n(d1, d2, . . . , dn)

n∏

i=1

di z
di −1
i dzi .

These are derivatives of the correlation functions for the Legendre ensemble, which
arise from a particular Hermitian matrix model, as well as related models from confor-
mal field theory. In the latter context, Gaberdiel, Klemm and Runkel use null vectors
for Virasoro highest weight representations to deduce an equation [29, equation (4.18)]
that is equivalent to a 1-point recursion for the numbers jg(d) = d Jg,1(d). In sum-
mary, the 1-point invariants produced by the topological recursion on the rational
spectral curve above satisfy a 1-point recursion.2

Kontsevich and Soibelman have recently provided an alternative and more general
formulation of the topological recursion [43]. It allows one to calculate n-point func-
tions using a technique that is ostensibly more algebraic and less analytic. So it may
provide a promising approach to 2.

6.2 Quantum curves

The notion of quantum curves is closely related to that of topological recursion [52].
In short, they are non-commutative deformations of spectral curves that are used as
the input to the topological recursion. Although it is not currently clear when they
exist, the quantum curve phenomenon has been proven or observed in many instances
of the topological recursion.

2 Observe that we are here expanding in z, while 2 has been expressed in terms of x . However, since they
are related by a rational change of coordinates, this does not affect the existence of a 1-point recursion.
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A quantum curve can be viewed as a differential operator P̂ (̂x, ŷ) that annihilates
the so-called principal specialisation of the partition function.

P̂ (̂x, ŷ) Z(p; �)|pi =xi = 0

We use here the operators x̂ = x and ŷ = −�
∂
∂x . The quantum curve phenomenon

is the fact that there is a natural choice of the operator P̂ (̂x, ŷ) whose semi-classical
limit—obtained by setting � = 0 and allowing x and y to commute—recovers the
spectral curve P(x, y) = 0.

In the context of the double Schur expansions considered in this paper, the principle
specialisation of the wave function is given by

Ψ (x;q; �) =
∑

λ∈P
sλ(x, x2, x3, . . .) sλ(

q1
�

,
q2
�

, . . .)
∏

�∈λ

G(c(�)�).

As in Sect. 3, the hook-content formula stated in (9) may be invoked to simplify the
expression to obtain

Ψ (x;q; �) =
∞∑

d=0

xd s(d)(
q1
�

,
q2
�

, . . .)

d−1∏

k=1

G(k�)

=
∞∑

d=0

xd
d−1∏

k=1

G(k�)[yd ] exp
( r∑

k=1

qk

k�
yk

)
.

Here, [yd ] denotes extraction of the coefficient of yd .
We simply remark here that our calculation of the 1-point invariants from the par-

tition function in Sect. 3 bears a strong resemblance to the calculation of the quantum
curve from the partition function [2,3,50]. In the former case, the partition function
reduces to a sum over hook partitions, while in the latter case, it reduces to a sum over
1-part partitions. One may wonder whether there may be a deeper connection here.

Acknowledgements The second author was partially supported by the Australian Research Council grants
DE130100650 and DP180103891.

ExampleMaple code for 1-point recursions

In Example 3, we asserted that a 1-point recursion for monotone Hurwitz numbers
could be derived from several lines of code, using the gfun package forMaple [58].
We reproduce such code below,whichmay be adapted for other enumerative problems.
> with(gfun):

> G(z) := 1
1−z :

> rec1:={d*hbar*m(d+1)-G(d*hbar)*m(d)=0, m(0)=0, m(1)=1}:

> rec2:={(d+1)*hbar*m(d+1)+G(-(d+1)*hbar)*m(d)=0, m(1)=-G(-hbar)}:

> rec3:={(d+1)*m(d+1)-d*m(d)=0, m(1)=1}:
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> recprod:={cauchyproduct(rec1, rec2, m(d))=0}:

> finalrec:=‘rec*rec‘(recprod, rec3, m(d));

{(−2 + 4 ∗ d) ∗ m(d) + (−d − 1 + hbar2 ∗ d3 + hbar2 ∗ d2) ∗ m(d + 1), m(0) =
0, m(1) = _C[0]}

We next provide some explanatory notes to indicate how the code above produces
the desired 1-point recursion. Recall that monotone Hurwitz numbers satisfy the rela-
tion

m(d) =
∞∑

g=0

mg(d) �
2g−1 = 1

d

d∑

k=1

uk vd−k,

where uk+1
uk

= G(k�)
k�

and vk+1
vk

= − G(−(k+1)�)
(k+1)� .

– Line 1 loads the gfun package intoMaple.
– Line 2 defines the weight generating function G(z) that produces monotone Hur-
witz numbers.

– Line 3 expresses the recursion satisfied by the sequence u0, u1, u2, . . . above.
– Line 4 expresses the recursion satisfied by the sequence v0, v1, v2, . . . above.
– Line 5 expresses the recursion satisfied by the sequence 1

1 ,
1
2 ,

1
3 , . . ..

– Line 6 determines a recursion for the Cauchy product of the sequences
u0, u1, u2, . . . and v0, v1, v2, . . ..

– Line 7 determines a recursion for the Hadamard product of the Cauchy product
from the previous line and the sequence 1

1 ,
1
2 ,

1
3 , . . ..

– The output asserts that

(−2� + 4d�) m(d) + (−d − 1 + �
2d3 + �

2d2) m(d + 1) = 0.

By collecting the coefficient of h2g−1 and shifting the index, we obtain the 1-point
recursion

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d).
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