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Abstract
In the case where G = SL2(F) for a non-archimedean local field F and Γ is a discrete
torsion-free cocompact subgroup of G, there is a known relationship between the Ihara
zeta function for the quotient of the Bruhat–Tits tree of G by the action of Γ , and an
alternating product of determinants of twisted Poincaré series for parabolic subgroups
of the affine Weyl group of G. We show how this can be generalized to other split
simple algebraic groups of rank two over F and formulate a conjecture about how this
might be generalized to groups of higher rank.

Keywords Building · Ihara zeta function · Coxeter group · Poincaré series

1 Introduction

The classical Ihara zeta function [9] is a counting function associated with a discrete
torsion-free cocompact subgroup Γ of G = PGL2(F), where F is a non-archimedean
local field with the discrete valuation v and q elements in its residue field, defined as
follows:

Z(Γ , u) =
∏

[γ ]

(
1 − u�([γ ]))−1

.
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Here, [γ ] runs through all primitive conjugacy classes inΓ and � is the length function
defined as follows. For γ ∈ G with eigenvalues λ1 and λ2, define

�(γ ) = max

{
v

(
λ1

λ2

)
, v

(
λ2

λ1

)}
and �([γ ]) = min

{
�
(
γ ′) : γ ′ ∈ [γ ]} .

Here whenever λ1, λ2 /∈ F , we set �(γ ) = 1. On the other hand, one can also regard
Z(Γ , u) as a geometric counting function associated with the quotient of the Bruhat–
Tits tree of G by the action of Γ , denoted by BΓ , such that

Z(BΓ , u) =
∏

c

(
1 − u�(c)

)−1
.

Here, c runs through all primitive closed geodesics (which are equivalence classes of
primitive closed tailless and backtrack-less walks) in BΓ and �(c) is the path length
of c in graph theory.

Ihara showed that the zeta function is indeed a rational function given by the fol-
lowing formula

Z (BΓ , u) =
(
1 − u2

)χ(BΓ )

det
(
1 − Au + qu2

) . (1.1)

Here,χ(BΓ ) is theEuler characteristic and A is the adjacencymatrix of thefinite graph
BΓ , which is also a Hecke operator on G acting on spherical vectors of L2(Γ \G).

Hashimoto [6] showed that there is an easy way to see the rationality of Ihara zeta
function by considering the edge adjacency operator AE , which is an Iwahori–Hecke
operator of G acting on Iwahori spherical vectors of L2(Γ \G). Hashimoto showed
that

Z(BΓ , u) = 1

det(1 − AE u)
. (1.2)

It is natural to ask if one can generalize Ihara and Hashimoto’s result to other reduc-
tive groups. However, there is no canonical way to define Ihara zeta functions on finite
quotients of higher-dimensional buildings. Thus, one must find a new interpretation
of Eq. (1.1).

For example, the term det(1 − Au + qu2)
−1

can be regarded as the Langlands L-
function associated with the unramified subrepresentation L2(Γ \G) of G (see [12]
for details). In this case, the right-hand side of Eq. (1.1) is known in general and it
remains to figure out the left-hand side in terms of geometric zeta functions. For this
viewpoint, see [10,11] for the case of PGL3, [4] for PGSP4, [3] for the case of PGLn

over the 1-adic field, and [12] for the case of rank two algebraic groups over the 1-adic
field. Roughly speaking, they obtain an identity of the following form.

Zeta identity for groups of adjoint type:

the unramified Langlands L-function

= the alternating product of geometric zeta functions of various dimensions.
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Note that in Ihara’s original result and the above generalizations, G is always of
adjoint type. On the other hand, the building of G only depends on its root system so
that there are other groups having the same building as G. For instance, SL2(F) and
PGL2(F) have the same associated buildings, but SL2(F) is simply connected instead
of being of adjoint type. In this case, Hashimoto [7] gave a different way to express
Ihara’s identity.

Let W be the affine Weyl group of G = SL2(F) with the standard generating set S
consisting of elements of order two and K be the Iwahori subgroup of G. For w ∈ W ,
let ew be the Iwahori Hecke operator associated with w. Then, for each parabolic
subgroup WI generating by I ⊂ S, one can consider its Poincaré series WI (ρ, u)

attached to a representation ρ of the Iwahori Hecke algebra H(G, K ) as

WI (ρ, u) =
∑

w∈WI

ρ(ew)u�(w).

where �(·) is the word length with respect to S. Let πΓ be the representation of
H(G, K ) acting on L2(Γ \G/K ). Hashimoto’s result implies that

Z(BΓ , u) =
∏

I⊂S

det WI (πΓ , u)(−1)|I | . (1.3)

The main goal of this paper is to generalize Ihara’s result along this direction to simple
simply connected split algebraic groups of rank two. Note that the right-hand side of
the above equation can be naturally defined for simple simply connected split algebraic
groups of higher ranks. It remains to figure out the left-hand side. Comparing to the
result of adjoint type, we expect to obtain an identity of the following form.

Zeta identity for simply connected groups:

the geometric zeta function of top dimension

= the alternating product of twisted Poincaré series of parabolic subgroups.

Now suppose G is a simple simply connected split algebraic group of rank two.
In this case, the building B of G and its finite quotient BΓ are two dimensional
complexes. Instead of counting closed geodesics in a finite quotient BΓ which lift
to straight lines in B, we count closed geodesic strips in BΓ which lift to straight
strips in B. One can define the zeta function of closed geodesic strips Z(BΓ , u) by
the same manner as zeta function of closed geodesics (see Sect. 4.6 for details). The
main theorem of the paper is the following.

Theorem 1.1 Let πΓ be the representation of the Iwahori Hecke algebra H(G, K )

acting on L2(Γ \G/K ). There are two Iwahori–Hecke operators ew1 and ew2 , such
that

Z(BΓ , u) = 1

det
(
I − πΓ (ew1)u

�(w1)
)
det

(
I − πΓ (ew2)u

�(w2)
) . (1.4)
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Moreover, we also have

Z(BΓ , u) =
∏

I⊂S

det WI (πΓ , u)(−1)|I |+|S|
. (1.5)

Here, πΓ (ew1) and πΓ (ew1) are indeed chamber adjacency operators which play the
role of AE in Hashimoto’s formula (see Sect. 4.6 for details).

Remark The zeta function of closed geodesic strips in this paper is indeed the geomet-
ric zeta function of top dimension (which is called chamber zeta function or gallery
zeta function) occurred in the works [4,10,11].

When G is of rank n > 2, one may consider the zeta function Z(BΓ , u) counting
closed geodesic tube in BΓ which lift to straight tubes in B by the same manner
(however we will not define the zeta function of closed geodesic tubes in this paper).
If the above two theorems still hold, then there should exist some Iwahori Hecke
operators ew1 , . . . , ewn so that

Z(BΓ , u) = 1

det(I − πΓ (ew1)u
�(w1)) · · · det(I − πΓ (ewn )u

�(wn))

=
∏

I⊂S

det WI (πΓ , u)(−1)|I |+|S|
.

In the end of the paper, we verify the second part of the above identity with πΓ

replaced by the trivial representation ρ0. In this case, WI (ρ0, u) = WI (u) is the usual
(un-twisted) Poincaré series and the second part of the above identity becomes the
following.

∏

I⊂S

WI (u)(−1)|I |+|S| = 1(
1 − u�(w1)

) · · · (1 − u�(wn)
) .

We obtain the following result.

Theorem 1.2 Let W be the affine Coxeter group of rank n + 1. Then the alternating
product

∏
I⊂S WI (u)(−1)|I |+|S|

is the reciprocal of a polynomial of the form

(
1 − ud1

)
· · ·
(
1 − udn

)

where di are positive integers.

Note that for a general Coxeter group W ,
∏

I⊂S WI (u)(−1)|I |+|S|
is a rational function.

In fact, by direct computation, one can show that for an irreducible Coxeter group with
three generators, this alternating product is a reciprocal of a polynomial if and only if
it is an affine Coxeter group.

The paper is organized as follows. In Sect. 2, we review the definition of Poincaré
series and their twistings and state Hashimoto’s interpretation of Ihara’s formula.
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Especially, the result is based on a length-preserving decomposition of the affineWeyl
group of SL2. In Sect. 3, we study such decomposition for affine Weyl groups of rank
three and discuss their relation with geometric zeta functions in Sect. 4. The Proof of
Theorem 1.1 is given in the end of Sect. 4. In Sect. 5, we state our conjecture about
higher-dimensional cases and prove Theorem 1.2.

2 Twisted Poincaré series and Ihara zeta functions

2.1 Poincaré series

Let (W , S) be a Coxeter systemwith a generating set S consisting of elements of order
two. For w ∈ W , let �(w) be the shortest length of a word consisting of elements of
S whose product is equal to w. The Poincaré series associated with (W , S) is a power
series with integer coefficients defined as

W (u) =
∑

w∈W

u�(w).

For a subset D ofW , we also define D(u) = ∑
w∈D u�(w).Especially,we are interested

in the casewhere D = WI , the subgroupgenerated by some subset I ⊂ S. For instance,
when W is finite,

∑

I⊂S

(−1)|I | W (u)

WI (u)
= u�(w0).

Here, w0 is the unique element of maximal length. When W is infinite,

∑

I⊂S

(−1)|I | W (u)

WI (u)
= 0,

which implies that

W (u) =
⎛

⎝
∑

I�S

(−1)|I |+|S|+1

WI (u)

⎞

⎠
-1

. (2.1)

See [8, Sections 1.11 and 5.12] for the proof of these statements.

2.2 Hecke algebras

For a Coxeter system (W , S) and a formal parameter q, there is an associative
C-algebra Hq(W , S), called a Hecke algebra, with generators {ew}w∈W . The mul-
tiplication of Hq(W , S) is characterized by the following the relations:

(es + 1)(es − q) = 0, if s ∈ S;
ewev = ewv, if �(wv) = �(w) + �(v).
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Especially, if we set q = 1, then Hq(W , S) is isomorphic to the group algebra C[W ].
Recall that, one can identify the (affine) Hecke algebra Hq(W , S) and the Iwahori–
Hecke algebra H(G, K ) by mapping ew to KwK .

2.3 Twisted Poincaré series

For a representation (ρ, Vρ) of Hq(W , S), consider the following power series

D(ρ, u) =
∑

w∈D

ρ(ew)u�(w) ∈ End(Vρ)[[u]],

called the Poincaré series of D twisted by ρ. Note that when D contains the identity
element (e.g. D = WI ), the constant term of D(ρ, u) is the identity operator and
D(ρ, u) has an inverse in End(Vρ)[[u]].

Note that es �→ q for all s ∈ S induces a one-dimensional representation ρ1 of
Hq(W , S). In this case,

D(ρ1, u) =
∑

w∈D

ρ1(ew)u�(w) =
∑

w∈D

q�(w)u�(w) = D(qu).

Therefore, one can regard the usual Poincaré series as a special case of twisted Poincaré
series.

2.4 Ihara zeta functions

Let W be the affine Weyl group of G = SL2 over a local field F with pn elements
in its residue field. In this case, S = {s1, s2} and s1s2 has order infinity. Let the
formal parameter q be equal to pn , then the Hecke algebra Hq(W , S) is isomorphic
to the Iwahori–Hecke algebra of G. Fix a discrete torsion-free cocompact subgroup
Γ of G. Then, the quotient of the Bruhat–Tits tree B of G by Γ is a bipartite finite
(q + 1)-regular graph BΓ . The Ihara zeta function of BΓ is defined as

Z(BΓ , u) =
∏

c

(1 − u�(c))-1 ∈ Z[[u]].

Here, c runs over all primitive closed geodesics inBΓ and �(c) is the usual length in
graph theory.

Let πΓ be the complex representation of Hq(W , S) on the space of Iwahori-fixed
vectors of L2(Γ \G). In this case, elements in Hq(W , S) can be regarded as operators
on edges of BΓ and Hashimoto [6] showed that

Theorem 2.1 Z(BΓ , u) = det(1 − πΓ (es2s1)u
2)−1.

On the other hand, one can factor the group W as a product of three subsets as
follows.

W = 〈s1〉 × {(s2s1)
m}∞m=0 × 〈s2〉. (2.2)
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Here, for three subsets X , Y , Z of W , we say X factors into a product of Y and Z ,
denoted by X = Y × Z , if every element of X can be written as yz for unique some
y ∈ Y and z ∈ Z . Similar notations apply to factorization involving more than two
sets.

Note that all elements in the above product are reduced words. Therefore, for any
representation ρ of Hq(W , S), we have

W{s1,s2}(ρ, u) = W{s1}(ρ, u)

( ∞∑

i=1

ρ(es2es1)
mu2m

)
W{s2}(ρ, u)

= W{s1}(ρ, u)
(

I − ρ(es2es1)u
2
)-1

W{s2}(ρ, u)

Moreover, when ρ is a finite dimensional representation over a field K , one can
consider the determinant of WI (ρ, u), which is an invertible element in the power
series K [[u]] (since its constant term is equal to one). For convenience, define

Alt(W )(u) =
∏

I⊂S

WI (u)(−1)|I |+|S|

and

det Alt(W )(ρ, u) =
∏

I⊂S

det WI (ρ, u)(−1)|I |+|S|
.

It was pointed out in [15] that one can rewrite Hashimoto’s result as the following.

Theorem 2.2 As a power series,

Z(BΓ , u) = det Alt(W )(πΓ , u). (2.3)

Note that the above theorem is the Eq. (1.3) in the introduction. Besides, this interpre-
tation suggests a possible way to generalize Ihara’s theorem to higher rank cases.

3 Affine Coxeter groups of rank three

3.1 Alternating products of Poincaré series

Suppose (W , S) is an irreducible affine Coxeter system of rank three where S =
{s1, s2, s3}. Let mi j be the order of si s j . There are three types of such Coxeter systems
up to isomorphism, characterized as the following:

• Type Ã2: (m12, m23, m13) = (3, 3, 3).
• Type C̃2: (m12, m23, m13) = (4, 2, 4).
• Type G̃2: (m12, m23, m13) = (6, 2, 3).
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Especially, every such Coxeter group is isomorphic to an affine Weyl group of some
irreducible root system. To evaluate Alt(W )(u), note that WI is a dihedral group or
a cyclic group of order two when I is a non-empty proper subset of S. In this case,
WI (u) can be written down directly. On the other hand, one can apply Eq. (2.1) to
compute the Poincaré series of W (u) and obtain the following results.

Alt(W )(u)-1 =

⎧
⎪⎨

⎪⎩

(1 − u3)2, if (W , S) is of type Ã2;
(1 − u4)(1 − u3), if (W , S) is of type C̃2;
(1 − u5)(1 − u3), if (W , S) is of type G̃2.

We shall show that the above identities can be extended to the case of twisted Poincaré
series of Hecke algebras.

3.2 Coxeter complexes

For the affine Coxeter system (W , S), fix a geometric realization of (W , S) on a real
vector space V endowed with a Euclidean metric invariant under W .

The hyperplane Hs fixed by an affine reflection s in W is called a wall. The set of
walls gives V a simplicial structure and the resulting simplicial complex is called the
Coxeter complex A of W . Connected components of V with all walls removed are
open 2-simplices, called alcoves or chambers.

The unique chamber whose boundary is contained in Hs1 ∪ Hs2 ∪ Hs3 is the funda-
mental chamberC . Label the edge (1-simplex) ofC by i if it is contained in Hsi . Then,
one can extend this labeling to a W -invariant labeling on all edges in A uniquely.

Besides, there is a bijection between W and chambers in A given by w �→ wC .
Moreover, ifw = si1 · · · sin , then the chambersC andwC can be linked by the gallery

C0 = C → C1 = si1C → C2 = si1si2C → · · · → Cn = si1 · · · sinC

such that the edge C̄k ∩ C̄k+1 is labeled by ik+1. In other words, starting from the
fundamental chamber C , one can cross the edges labeled by i1, . . . , in sequentially to
arrive at the chamber wC .

3.3 Straight strip

Letvi = Hsi+1∩Hsi+2 be the vertex of the fundamental chamberC where the subscripts
are read modulo 3. For convenience, we may assume that v3 is the origin of V . Then
the stabilizer of v3 in W is the linear subgroup W0 generated by s1 and s2, which is
the Weyl group (this follows from our special choice of the ordering of mi j in the
beginning of the section). For the affine transformationw ∈ W , we can uniquely write
w = w0wt where w0 ∈ W0 is the linear part of w and wt is a translation.

Now for i = 1, 2, removing all walls parallel to the vector vi from V , the connected
component containing C in the resulting set is called the fundamental straight stripTi

in the direction vi , which is the gray region in Figs. 1, 2, 3 and 4. Forw = w0wt ∈ W ,
wTi is a straight strip in the direction of w0vi and all such strips are called of type i .
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Fig. 1 Type Ã2
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w2C

w1C

Fig. 2 Type C̃2
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2 3

w 2C

w 1C
T 2

T 1

3.4 Stabilizer ofTi

Let Stab(Ti ) be the stabilizer of Ti consisting of elements mapping Ti to itself and
preserving the direction vi . LetL be the middle line ofTi , then for w ∈ Stab(Ti ), w
must preserveL and its action onL has to be a translation (in the direction of vi or
−vi ). If the action of w on L is trivial, w fixes L point-wisely and it is the identity
element or an affine reflection whose reflection axis is L . On the other hand, L is
not a wall (by the construction of Ti ) and w must therefore be the identity element
in this case. Therefore, elements in Stab(Ti ) are uniquely determined by their actions
onL .
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Fig. 3 T1 in type G̃2
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Fig. 4 T2 in type G̃2
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Letwi be the element in Stab(Ti ) such that its action onL is theminimal translation
in the direction of vi . Then, we have the following theorem.

Theorem 3.1 The stabilizer Stab(Ti ) is a cyclic group generated by wi .

By direct computation, we obtain the following.

1. When (W , S) is of type Ã2, we have w1 = s3s2s1 and w2 = s3s1s2.
2. When (W , S) is of type C̃2, we have w1 = s3s1s2s1 and w2 = s3s1s2.
3. When (W , S) is of type G̃2, we have w1 = s3s1s2s3s1 and w2 = s3s1s2s1s2.

One can check case by case to see that except for w1 in the case of type G̃2,
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• the length of (wi )
k is equal to |k| times of the length of wi .

In general, an element in W satisfying the above property is called straight (the notion
of straight element was first introduced by [13]).

Now, in the case of G̃2, we shall replace w1 by

w′
1 = s1w1s1 = (s1s3s1)s2s3 = (s3s1s3)s2s3 = s3s1(s3s2s3) = s3s1s2.

which is a generator of the stabilizer of s1T1. Then, w′
1 will be straight. To abuse the

notation, we will also denote w′
1 by w1 (in the case of the group G̃2) in the rest of

paper.
Let Hi = {(wi )

k}k∈Z≥0. Note that

Hi (u) =
∞∑

i=0

u�
(
wk

i

)
=

∞∑

i=0

uk�(wi ) =
(
1 − u�(wi )

)-1
.

Therefore, we can rewrite the result in Sect. 3.1 as

Proposition 3.2 For any affine Coxeter group (W , S) of rank three, the following
holds.

H1(u)H2(u) = Alt(W )(u).

3.5 Factorization of Coxeter groups

Next, we will factor W in terms of WI and Hi . To do so, we need the following lemma.

Lemma 3.3 Let D1, . . . , Dm be non-empty subsets of a Coxeter group W . If W =
D1 × · · · × Dm and D1(u) · · · Dm(u) = W (u), then this factorization is length-
preserving, i.e. for wi ∈ Di , �(w1 · · · wm) = �(w1) + · · · + �(wm).

Proof Since �(w1 · · · wm) ≤ �(w1) + · · · + �(wm), for any integer k we have

Ωk := {(w1, . . . , wm) ∈ D1 × · · · × Dm : �(w1) + · · · + �(wm) ≤ k}
⊆ {(w1, . . . , wm) ∈ D1 × · · · × Dm : �(w1 · · · wm) ≤ k}
= {w ∈ W : �(w) ≤ k} =: Ω ′

k .

On the other hand,

D1(u) · · · Dm(u) =
m∏

i=1

⎛

⎝
∑

wi ∈Di

u�(wi )

⎞

⎠ = |Ω0| +
∞∑

i=1

(|Ωi | − |Ωi−1|) ui
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and

W (u) = |Ω ′
0| +

∞∑

i=1

(|Ω ′
i | − |Ω ′

i−1|
)

ui

From D1(u) · · · Dm(u) = W (u), we conclude that |Ωi | = |Ω ′
i | for all i . Therefore,

Ωk = Ω ′
k and �(w1 · · ·wm) = �(w1) + · · · + �(wm) for wi ∈ Di . ��

Note that when �(w1 · · · wm) = �(w1) + · · · + �(wm), for any representation ρ of
Hq(W , S), we have

ρ(ew1···wm ) = ρ(ew1) · · · ρ(ewm ).

Together with the above lemma, we have

Theorem 3.4 If W = D1 × · · · × Dm and D1(u) · · · Dm(u) = W (u), then for any
representation ρ of Hq(W , S)

W (ρ, u) = D1(ρ, u) · · · Dm(ρ, u).

Let us give some examples of the above theorem. For subsets I ⊂ J ⊂ S, define

WJ/I = {w ∈ WJ : �(ws) > �(w),∀s ∈ I } and

WI\J = {w ∈ WJ : �(sw) > �(w),∀s ∈ I }

which are the sets of left minimal length WI -coset representatives and right minimal
length WI -coset representatives of WJ respectively (remark: more common notations
for left and right minimal length coset representative are W I

J and I WJ . However, such
notations may cause confusion when we consider the product of several such sets).

Theorem 3.5 [8, Sect. 1.11] For subsets I ⊂ J ⊂ S, the following hold.

1. WJ = WJ/I × WI = WI × WI\J .

2. WJ (u) = WJ/I (u)WI (u) = WI (u)WI\J (u).

For convenience, we also denote the set of generators I = {si1, . . . , sik } by its set of
indices {i1, . . . , ik}. Next, let us prove the following theorem for affine Coxeter groups
of rank three.

Theorem 3.6 Let D1, . . . , Dm be subsets of W given by the following.

• (D1, . . . , D5) = (W{1,2}/{2}, H1, W{2,3}/{3}, H2, W{1}\{1,3}) if (W , S) is of type Ã2

or C̃2.
• (D1, . . . , D4) = (W{2,1}/{1}, H2H1W{1,3}) if (W , S) is of type G̃2.

Then D1(u) · · · Dm(u) = W (u) and W = D1 × · · · × Dm.
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Proof Note that for type Ã2 or C̃2, by Proposition 4.5,

D1(u) · · · D5(u) = W{1,2}/{2}(u)H1(u)W{2,3}/{3}(u)H2(u)W{1}\{1,3}(u)

= W{1,2}(u)W{2,3}(u)W{1,3}(u)

W{1}(u)W{2}(u)W{3}(u)
Alt(W )(u) = W (u).

For type G̃2, note that W{2,3} = {e, s2, s3, s2s3} = W{2} × W{3}. Therefore,

W{2,3}(u) = W{2}(u)W{3}(u)

and

D1(u) · · · D4(u) = W{2,1}/{1}(u)H2(u)H1(u)W{1,3}(u)

= W{2,1}(u)W{1,3}(u)

W{1}(u)
Alt(W )(u) · W{2,3}(u)

W{2}(u)W{3}(u)
= W (u).

It remains to show that W = D1 × · · · × Dm . Our strategy is to study the
geometric interpretation of this factorization. As we mentioned before, for each
w = si1 · · · sik ∈ W , one can start from the fundamental chamber C and cross the
edges labeled by i1, . . . , in sequentially to arrive the chamber wC . Therefore, one can
find the collections of chambers Cm+1 = {C}, Cm = Dm(Cm+1), · · · ,C1 = D1(C2)

step by step.
More precisely, for the case of type Ã2, we have

1. C5 = D5(C) = {C, s3C, s3s1C}.
2. C4 = D4(C5) = {(w2)

iC5, i = 0 ∼ ∞}, where w2 = s3s1s2 is a glide reflection.

C

s3C

s3s1C

1

2 3 1

C5

C

w2C

(w2)2C
1

2 23 1

Form C5 to C4

3. C3 = D3(C4) = {C4, s2C4, s3s2C4}. Here, s3s2 is a rotation.
4. C2 = D2(C3) = {(w1)

iC3 : i = 0 ∼ ∞}, where w1 = s3s2s1 is a glide reflection.
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1

2 3
2

C

s2C

s3s2C

Form C4 to C3

1

2 3
2

1

C

w1C

(w1)2C

(w1)3C

Form C3 to C2

5. C1 = D1(C2) = {C1, s1C1, s2s1C1}. ��

Here, at each stage, the whole gray area is the region Ci ; connected components
with red boundaries are copies of Ci+1. Moreover, the set of dark gray triangles is the
image of Di (C). From these figures, we see that C1 = D1 · · · Dm(C) and W (C) are
bijective. We conclude that W = D1 × · · · × Dm .

The arguments are similar for type C̃2 and G̃2, sowe just draw the following figures.
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3.6 Type C̃2

C

C5

C

C4

C

C3

C

C2

C

C1

3.7 Type G̃2

��
Combining Theorems 3.4 and 3.6, we obtain the main result of this section.

Theorem 3.7 Let (W , S) be an affine Coxeter system of rank three and ρ be a finite
dimensional representation of Hq(W , S). Then

det H1(ρ, u) det H2(ρ, u) = det Alt(W )(ρ, u).

4 Zeta functions of closed geodesic strips

In this section, we will pass the result from affine Coxeter systems in the previous
section to algebraic groups.

4.1 Straight strips in the building

Let G be a simply connected connected split simple algebraic group over a local field
F with q elements in its residue field, whose affine Weyl group W is a Coxeter group
of rank three with the generating set S. LetB be the Bruhat–Tits building of G whose
chambers are parametrized by the cosets G/K , where K is the Iwahori subgroup,
which is the stabilizer of a fixed choice of the fundamental chamber. We shall identify
the Coxeter complex A of the Coxeter system (W , S) as the fundamental apartment
so that the fundamental chamber C in A is represented by the Iwahori subgroup K .
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Now for g ∈ G and the strip Ti defined Sect. 3.4 (which is a subset of A ) whose
stabilizer is generated by wi , we call gTi a straight strip of type wi .

Fix a discrete torsion-free cocompact subgroup Γ of G, the quotientBΓ is a finite
complex with the fundamental group Γ . We will give a geometric interpretation of
Theorem 3.7 as a zeta function of closed geodesic strips onBΓ .

4.2 Chambers in an apartment

In order to study straight strips in the building, we need a criterion to determine when
a given set of chambers is contained in an apartment. Let C1 = g1C and C2 = g2C
be two chambers in the buildingB. Recall the Weyl distance of C1 and C2 is defined
to be

δ(C1, C2) = w ∈ W

where w satisfies g−1
1 g2 ∈ KwK . Then, we have the following lemma.

Lemma 4.1 [1, Exercise 5.77] Let S be a collection of chambers of B. If for any
three chambers C1, C2, and C3 in S , we have

δ(C1, C3) = δ(C1, C2)δ(C2, C3).

Then S is contained in an apartment in the maximal apartment system.

On the other hand, when the Iwahori subgroup is open and compact (which is always
the case when F is a non-archimedean local field), the group G acts transitively on the
maximal apartment systems (see [5, Sect. 17.7] for details). Together with the above
lemma, we have the following useful theorem.

Theorem 4.2 If γ ∈ KwK and w is straight (i.e. �(w)k = k�(w) for all k), then
{γ kC : k ∈ Z} is contained in gA for some g ∈ G.

4.3 Stabilizer of straight strips

Let T := Ti be the fundamental straight strip in the direction of v = vi defined in
Sect. 3.4. Note that for a simplicial automorphism σ on T , its action on the middle
lineL is either an affine reflection (which has a fixed point) or a translation by kv for
some real number k. In the later case, when k > 0, σ

∣∣
L is called a positive translation

(with respect to v). Note that Aut1(T ) is a cyclic generated by a minimal positive
translation. Now let Aut(T ) be the group of simplicial automorphisms of T and
consider the following subgroup of Aut(T ).

Aut1(T ) = {σ ∈ Aut(T ) : σ |L is a translation}

and

Aut2(T ) = {σ ∈ Aut(T ) : σ is type-preserving}.
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Then, one can verify that Aut1(T )∩Aut2(T ) is a cyclic group generated byw = wi ,
on a case-by-case basis from Figs. 1, 2, 3 and 4 in Sect. 2.

Since G is simply connected, the action of G on the building is type-preserving.
Moreover, the assumption that Γ is discrete and torsion-free implies that no non-
identity element can have a fixed point in the building. Thus, the setwise stabilizer of
T in Γ acts faithfully on T and

〈γ0〉 = StabΓ (T ) ∼= StabΓ (T )
∣∣
T ⊆〈w〉

for some unique γ0 with γ0
∣∣
L being a positive translation. A similar result is true for

any other straight strip in the building B. Thus, immediately, we have the following
lemma.

Proposition 4.3 For γ ∈ Γ , if γ (gT ) = gT , then γ gC = gwkC for some k ∈ Z.
Especially, it implies that g−1γ g ∈ Kwk K .

Denote by SConv(〈γ 〉gC ) the simplicial convex hull of {γ ngC }n∈Z, which is the
smallest simplicial convex set containing this set.

Proposition 4.4 For γ ∈ Γ and g ∈ G, suppose that g−1γ g ∈ Kwk K for some
k ∈ Z. Then SConv(〈γ 〉gC ) is a straight strip.

Proof Recall that w = wi is straight and so is wk (see Sect. 3.4). By Theorem 4.2,
the set {g−1γ k gC : k ∈ Z} is contained in some apartment g′A , and so are the set
{γ k gC : k ∈ Z} and its simplicial convex hull SConv(〈γ 〉gC ). Moreover, we may
assume that g′C = gC since the stabilizer of an apartment acts transitively on its
chambers. Note that every chamber in the apartment g′A is uniquely determined by
its Weyl distance to the chamber g′C . On the other hand, we have

δ
(

g′C , g′wknC
)

= wkn = δ
(
gC , γ ngC

)

for all n ∈ Z. We conclude that gγ nC = g′wknC for all n and hence

SConv (〈γ 〉gC ) = g′SConv
(
〈wk〉C

)
= g′T .

Here, we use the fact that SConv
(〈wk〉C ) = T which can be checked case by case

via Figs. 1, 2, 3 and 4. ��

4.4 Pointed closed geodesic strips

Consider the following set

P = {
(γ, gC , gT ) : g ∈ G, γ ∈ Γ , γ (gT ) = gT , γ |gL is a positive translation

}

= {
(γ, gC , gT ) : g ∈ G, γ ∈ Γ , γ (gT ) = gT , g−1γ g |L is a positive translation

}
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endowed with an equivalence relation defined as follows: (γ1, g1C , g1T ) ∼
(γ2, g2C , g2T ) if there exists some γ ∈ Γ , such that

γ g1T = g2T , γ g1C = g2C , γ γ1g1C = γ2g2C .

The equivalence class of (γ, gC , gT ) is given by

[
(γ, gC , gT )

] =
{(

γ̃ γ γ̃ −1, γ̃ gC , γ̃ gT
)

: ∀γ̃ ∈ Γ
}

.

We define the notion of a “pointed closed geodesic strip of type w” in BΓ to be an
equivalence class of P . Note that when γ (gT ) = gT , the projection of gT is a
closed strip in BΓ , called a closed geodesic strip of BΓ . Therefore, each pointed
closed geodesic strip can be regarded as a closed geodesic strip with a fixed choice
chamber in BΓ . In other words, the pointed closed strips are analogue of the closed
geodesics with fixed starting vertex/directed edge in graphs.

Combing Propositions 4.3 and 4.4, when γ (gT ) = gT , SConv(〈γ 〉gC ) is a also
straight strip and it must be equal to gT . Thus we have the following proposition.

Proposition 4.5 For (γ, gC , gT ) ∈ P , (γ, gC , gT ) = (γ, gC ,SConv(〈γ 〉gC )).

Now let g1C , . . . gnC be a complete list of liftings of chambers inBΓ .

Theorem 4.6 The set ∪∞
k=1Pk forms a set of representatives of the equivalence classes

in P , where

Pk = {(γ, giC ,SConv(〈γ 〉giC ) : γ ∈ Γ , i ∈ {1, 2, . . . n}, g−1
i γ gi ∈ Kwk K }.

Proof For an element p = (γ, gC , gT ) of P , first we show that p is equivalent to
some element in Pk . Write gC = δgiC for some representative giC and δ ∈ Γ .
Then by Proposition 4.5,

p = (γ, gC ,SConv(〈γ 〉gC )) = (γ, δgiC ,SConv(〈γ 〉δgiC ))

which is equivalent to

p′ = (δ−1γ δ, giC , δ−1SConv(〈γ 〉δgiC )) = (γ ′, giC ,SConv(〈γ ′〉giC ))

where γ ′ = δ−1γ δ ∈ Γ . Next, we show that p′ is indeed an element of some Pk .
Since gC = δgiC and γ (gT ) = gT , we have ga = δgi for some a ∈ K and
g−1γ g ∈ Kwk K for some positive integer k. Therefore,

g−1
i γ ′gi = g−1

i δ−1γ δgi = a−1g−1γ ga ∈ Kwk I .

Thus, p′ ∈ Pk .
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To complete the proof, it remains to show that all elements in ∪∞
k=1Pk are

not equivalent. Suppose that (γ1, gi1C ,SConv(〈γ1〉gi1C ) are equivalent, (γ2, gi2C ,

SConv(〈γ2〉gi2C )). Then

γ gi1T = gi2T , γ gi1C = gi2C , γ γ1gi1C = γ2gi2C

for some γ ∈ Γ . Since {giC } are representatives of Γ -orbits, we have g = gi1 = gi2 .
Therefore γ gC = gC which implies γ ∈ Γ ∩ gK g−1 = {e} (since the intersection
is a discrete compact torsion-free subgroup). Thus, γ must be the identity element.
Applying the third part of the above condition,

γ γ1gi1C = γ2gi2C ⇒ γ1gC = γ2gC ⇒ γ −1
1 γ2 ∈ Γ ∩ gK g−1 ⇒ γ1 = γ2.

We conclude that any two equivalent elements are always the same element. ��
Now for a pointed closed geodesic strip p represented by some element inPk , we

define its length �(p) to be k�(w) and its normalized length �0(p) to be k.

4.5 Counting pointed closed geodesic strips

Recall that one can identify the (affine) Hecke algebra Hq(W , S) and the Iwahori–
Hecke algebra H(G, K ) bymapping ew to KwK . LetπΓ be the natural representation
of Hq(W , S) acting on L2(Γ \G/K ) and let Aw be the matrix of πΓ (ew) with respect
to the basis of characteristic functions onΓ g1K , . . . , Γ gn K , denoted by { f1, . . . , fn}.
Write

Kwk K =
⊔

α∈Ωk

αK ,

Then

(Ak
w)i, j = #{α ∈ Ωk : Γ gi K = Γ g jαK }.

Theorem 4.7 The cardinality of Pk is equal to the trace of (Aw)k .

Proof Note that when Γ gi K = Γ g jαK , there exists some γ ∈ Γ , such that γ gi K =
g jαK and such γ is unique since if there exists γ ′ satisfying the same condition, then
again we have γ ′γ −1 ∈ Γ ∩ gi K g−1

i = {e}. Therefore, we can rewrite the above as

(Ak
w)i, j = #{(α, γ ) ∈ Ωk × Γ : γ gi K = g jαK }.

On the other hand, when γ gi K = g jαK , we have γ gi K ⊂ g j Kwk K and conversely,
when γ gi K ⊂ g j Kwk K there exists a unique α ∈ Ωk such that γ gi K = g jαK .
Therefore, we obtain

(Ak
w)i, j = #{γ ∈ Γ : γ gi K ⊆ g j Kwk K } = #{γ ∈ Γ : g−1

j γ gi ∈ Kwk K }.
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Consequently, we have

tr((Aw)k) = #{(gi K , γ ) : i = 1 ∼ n, γ ∈ Γ , g−1
i γ gi ∈ Kwk K } = #Pk .

��

4.6 Closed geodesic strips

We shall regard pointed closed geodesic strips as analogues of closed geodesics with a
fixed starting vertex in finite graphs. In this subsection, we define the concept of closed
geodesic strips, which are an analogue of closed geodesics without a fixed starting
vertex in finite graphs. Set

P̃ = {(γ, gT ) : g ∈ G, γ ∈ Γ , γ (gT ) = gT , γ |gL is a positive translation}
and define (γ1, g1T ) ∼ (γ2, g2T ) if there exists some chambers C1 and C2 such that
(γ1, C1, g1T ) ∼ (γ2, C2, g2T ). Equivalence classes of P̃ are called closed straight
strips in BΓ (of type w).

Furthermore, a closed geodesic strip is called primitive if it is not a repetition of a
shorter closed geodesic strip. It is clear that every closed geodesic strip is a repetition
of a unique primitive closed geodesic strip.

Theorem 4.8 The number of pointed closed geodesic strips mapped to a given closed
geodesic strip is equal to the normalized length of its primitive closed geodesic strip.

Proof Consider the canonical map σ from P to P̃ given by σ((γ, gC , gT )) =
(γ, gT ). By Proposition 4.3, we have

σ−1 ((γ, gT )) =
{(

γ, gwkC , gT
)

: k ∈ Z

}
.

Observe that the equivalence relation on P̃ is induced form the equivalence relation
onP and σ induces a map σ̃ fromP/ ∼ to P̃/ ∼, which is the map from the set of
closed geodesic strips to the set of pointed closed geodesic strips by dropping pointed
chambers. The size of the preimage of the equivalence class of [(γ, gT )] is given by

#σ̃−1([(γ, gT )]) = #
(
{(γ, gwkC , gT ) : k ∈ Z}/ ∼

)
.

To evaluate the left-hand side of the above equation, recall that the setwise stabi-
lizer StabΓ (gT ) is a cyclic group containing γ . Let γ0 be the unique generator of
StabΓ (gT ) satisfying that γ |gL is a positive translation. Then, γ = (γ0)

m for some
positive integer m and γ0gC = gwk0C for some positive integer k0. Moreover, the
closed strip [(γ, gT )] is primitive. Now we have

{(
γ, gwkC , gT

)
: k ∈ Z

}
/ ∼=

{(
γ, gwkC , gT

)
: k ∈ Z

}
/〈γ0〉

which contains exactly k0 elements. ��
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4.7 Zeta functions of closed geodesic strips

Set

Zwi (BΓ , u) =
∏

c

(1 − u�0(c))−1 =
∏

[c]
(1 + u�0(c) + u2�0(c) + · · · ) ∈ Z[[u]]

where c runs through primitive closed geodesic strips of type wi and �0(c) is its
normalized length defined in Sect. 4.4. Note that there are only finite many primitive
closed strips with a given length. Therefore, the infinite product in the above definition
is well-defined.

Recall that if a closed strip c of type wi has normalized length n, then its length
�(c) = n�(wi ). Define the zeta function of closed geodesic strips of BΓ to be

Z (BΓ , u) = Zw1

(
BΓ , u�(wi )

)
Zw2

(
BΓ , u�(w2)

)
.

4.8 The Proof of Theorem 1.1

Like the case of graph zeta functions, zeta functions of straight strips also have infinite
sum expression.

Theorem 4.9 As a function in the complex variable u, the zeta function Zwi (BΓ , u)

can be expressed as

Zwi (BΓ , u) = exp

( ∞∑

n=1

Nnun

n

)
= det

(
1 − Awi u

)−1

for |u| < ‖Awi ‖−1. Here, ‖Awi ‖ is the operator norm of Awi and Nn is the number
of pointed closed geodesic strips of type wi of normalized length n.

Proof Since tr((Awi )
n) = Nn and the Taylor series of log(1 − u) converges when

|u| < 1, we have

∞∑

n=1

Nnun

n
=

∞∑

n=1

tr
((

Awi

)n)
un

n
= log

(
det

(
1 − Awi u

)−1
)

when |u| < ‖Awi ‖−1.

Let P0 be the set of primitive pointed closed geodesic strips of type wi and P̃0
be the set of primitive closed geodesic strips of type wi . By Theorem 4.8, when
|u| < ‖Awi ‖−1 we have
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∞∑

n=1

Nnun

n
=
∑

c∈P

u�(c)

�(c)
=
∑

c∈P0

∞∑

m=1

um�(c)

m�(c)
=
∑

c∈P̃0

∞∑

m=1

um�(c)

m

=
∑

c∈P̃0

log
(
1 − u�(c)

)−1

= log
∏

c∈P̃0

(
1 − u�(c)

)−1
.

Here, we use the fact that
∑∞

n=1
Nnun

n converges absolutely when |u| < ‖Awi ‖−1

so that we can change the order of summation. ��
Note that det(1− Awi u) is a polynomial and Awi is the matrix of πΓ (ewi ). Therefore,
as a power series in u, we also have

Z (BΓ , u) = det
(
1 − πΓ

(
ew1

)
u�(w1)

)−1
det

(
1 − πΓ

(
ew2

)
u�(w2)

)−1

which proves the first part of Theorem 1.1. On the other hand, by the definition of
Hi (ρ, u) in Sect. 3, we have

Hi (πΓ , u) = (I − πΓ (ewi )u
�(wi ))−1.

Together with the above equation and Theorem 3.7, we have

Z(BΓ , u) = det H1(πΓ , u) det H2(πΓ , u) = det Alt(W )(πΓ , u)

which proves the second part Theorem 1.1.

5 Alternating products of Poincaré series

Note that one can generalize the definition of straight strips to “straight tubes” in the
higher rank cases in the following manner. Once again one identifies the apartment
with a real vector space and the origin with a special vertex v , and then for each
vertex other than v with a corresponding vector vi one may consider the connected
components of the complement of the union of all the hyperplanes which are invariant
under translation by the vector vi . In this way, one obtains the straight tubes in the
direction vi for each i , and one may study their stabilizers. We expect that there exists
an analogue of Theorems 1.1 and 3.7 for higher ranks cases.More precisely, let (W , S)

be an irreducible affine Coxeter group of rank |S| = n + 1, and set

Alt(W )(u) =
∏

I⊂S

WI (u)(−1)|I |+|S|
.

Then, we have the following conjecture.
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Conjecture 5.1 There exist straight elements w1, . . . , wn ∈ W such that for Hi =
{wk

i }k∈Z≥0 , the following two identities holds.

1. wi is a generator of the stabilizer of some straight tube.
2. Alt(W )(u) = H1(u) · · · Hn(u).
3. For any finite dimensional representation ρ of Hq(W , S),

n∏

i=1

det Hi (ρ, u) =
∏

I⊂S

det WI (ρ, u)(−1)|I |+|S|
.

Note that the above conjecture implies that

Alt(W )(u)-1 =
(
1 − ud1

)
· · ·
(
1 − udn

)
(5.1)

where di = �(wi ) are positive integers.
In the rest of the paper, we examine Eq. (5.1) for all affine Coxeter groups.
Let R be an irreducible reduced crystallographic root system of rank n, and let W0

be the Weyl group with generating set S0, and let W be the affine Weyl group with
generating set S. Let h be the Coxeter number of W0. Denote by [a, b]k the multiset
consisting integers between a and b with multiplicity k and denote it by [a]k when
a = b. For example,

[3]2 = {3, 3} and [2, 4]3 = {2, 2, 2, 3, 3, 3, 4, 4, 4}.

The main result of this section is the following theorem which is the same theorem as
Theorem 1.2 with the extra table of di .

Theorem 5.2 For the affine Weyl group W , its power series Alt(W )(u)-1 is indeed a
polynomial of the form

(
1 − ud1

)
· · ·
(
1 − udn

)

where di are integers with n + 1 = d1 ≤ d2 ≤ · · · ≤ dn ≤ h as shown as in the
following table.

Type Coxeter number h {d1, . . . , dn}
An n + 1 [h]n
Bn 2n [n + 1, h]
Cn 2n [n + 1, h]
Dn 2n − 2 [n + 1, h] � [h]2
E6 12 {7, 9, 9, 11, 12, 12}
E7 18 {8, 10, 11, 13, 14, 17, 18}
E8 30 {9, 11, 13, 14, 17, 19, 23, 29}
F4 12 {5, 7, 8, 11}
G2 6 {3, 5}
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Remark Note that dn is always equal to h or h − 1, and further the number of times
h occurs in the set of all dn is equal to the connection index minus one. Moreover,
dn = h − 1 only when W is of type E7, F4 or G2. These three types of groups are the
only simple algebraic groups whose simply connected and adjoint forms are the same.
Besides, the multiplicity of h in the above table is equal to the number of conjugacy
classes of Coxeter elements.

5.1 MacDonald’s formula

We shall prove the above theorem usingMacDonald’s formula [14] for Poincaré series
of affine Weyl groups in terms of positive roots. Let us recall his result. Let R be a
reducible root system in a finite dimensional real vector space V . Fix a set of simple
roots B = {α1, . . . , αn} and let R+ be the set of positive roots with respect to B. Let
S0 be the set of reflections corresponding to B and W0 be the group generated by S0,
which is the Weyl group of R. In this case, (W0, S0) forms a finite Coxeter system.
For a root α = ∑

ciαi , its height is defined as

ht(α) =
n∑

i=1

ci .

Theorem 5.3 (MacDonald) The following identities hold.

W0(u) =
∏

a∈R+

1 − uht(a)+1

1 − uht(a)

Next, let us consider the affine root system R̃ = R × Z, whose elements λ = (α, k)

are regarded as affine functions on V

λ(x) = (α, x) + k.

For convenience, we also denote λ by k + α and regard R as a subset of R̃. Let
B̃ = B ∪{α0}, where α0 = 1−ρ and ρ is the highest root. Let R̃+ be the set of positive
affine roots, which elements are non-negative integer linear combinations of B̃. Let S
be the set of affine reflections corresponding to B̃ and W be the group generated by
S, which is the affine Weyl group of R. Then, (W , S) is a Coxeter system associated
with R̃. For k + α = ∑n

i=0 ciαi ∈ R̃, define its weight to be

ht(k + α) =
n∑

i=0

ci .

Then, we also have

ht(k + α) = kht(1) + ht(α) = kh + ht(α).
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Here, h is the Coxeter number which is equal to ht(1) = 1 + ht(ρ).

Consider the set

P = {λ ∈ R̃ : 0 < ht(λ) < h} = R+ ∪ {1 − α : α ∈ R+}.

Theorem 5.4 (MacDonald) The following identities hold.

W (u) = 1
(
1 − uh

)n
∏

a∈P

1 − uht(a)+1

1 − uht(a)
.

5.2 A Proof of Theorem 5.2

For a subset I of S, consider the Möbius function μ(I ) = (−1)|I | which satisfies the
property

∑

I⊂J⊂S

μ(J ) =
{

μ(S), if I = S;
0, otherwise.

Then, we can write the alternating product as:

Alt(W )(u) =
∏

I⊂S

WI (u)(−1)|I |+|S| =
∏

I⊂S

WI (u)μ(I )μ(S).

Now for a subset I of S, let B̄I be the subset of B̃ consisting positive simple affine
roots corresponding to affine reflections in I . Let R̄I be the subroot system of R̃ with
the set of simple roots B̄I . Then, we have R̄+

I ⊂ R̄+
J if I ⊂ J . Note that every

proper subroot system R̄I is a (finite) reducible root system so that WI (u) satisfies
Theorem 5.3.

Applying Theorems 5.3 and 5.4 to the above equation, we have

Alt(W )(u) = W (u)
∏

I�S

WI (u)μ(I )μ(S)

= 1

(1 − uh)n

∏

λ∈P

(
1 − uht(λ)+1

1 − uht(λ)

)
·
∏

I�S

∏

λ∈R̄+
I

(
1 − uht(λ)+1

1 − uht(λ)

)μ(I )μ(S)

.

To simplify the above equation, for a positive affine root λ = ∑n
i=0 ciαi with ci ≥ 0,

define its support to be

Supp(λ) =
{
αi ∈ B̃ : ci �= 0

}
.
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Then, λ is a positive root in R̄J when Supp(λ) ⊂ B̄J . Thus

∏

I�S

∏

λ∈R̄+
I

(
1 − uht(λ)+1

1 − uht(λ)

)μ(I )μ(S)

=
∏

λ∈R̄+

∏

I :Supp(λ)⊂B̄I �B̃

(
1 − uht(λ)+1

1 − uht(λ)

)μ(I )μ(S)

.

On the other hand, it is easy to see that every positive root in the proper subroot
systemwith height bounded by h, which implies such root is contained in P . Therefore,
we can write the alternating product as:

Alt(W̃ )(u) = 1

(1 − uh)n

∏

λ∈P

(
1 − uht(λ)+1

1 − uht(λ)

)μ(S)2

·
∏

λ∈P

∏

Supp(λ)⊂B̄I �B̃

(
1 − uht(λ)+1

1 − uht(λ)

)μ(I )μ(S)

= 1

(1 − uh)n

∏

λ∈P

∏

Supp(λ)⊂B̄I ⊂B̃

(
1 − uht(λ)+1

1 − uht(λ)

)μ(I )μ(S)

= 1

(1 − uh)n

∏

λ∈P,Supp(λ)=B̄

1 − uht(λ)+1

1 − uht(λ)
.

Since P = {λ ∈ R̃ : 0 < ht(λ) < h} = R+ ∪ {1 − α : α ∈ R+} and none of
element in R+ satisfies Supp(α) = B̄, we can write the above result as

Alt(W )(u) = 1

(1 − uh)n

∏

α∈R+,Supp(1−α)=B̄

1 − uht(1−a)+1

1 − uht(1−α)
.

Observe that 1 − α = (1 − ρ) + (ρ − α). Therefore, Supp(1 − α) = B̄ if and only
if Supp(ρ − α) = B. On the other hand, one can find the complete list positive roots
R+ and the highest root ρ in [2]. Therefore, we can compute those elements with
Supp(λ − α) = B case-by-case.

For example, suppose R is of type Bn . We have

R+ =
⎧
⎨

⎩
∑

i≤k≤ j

αk : 1 ≤ i ≤ j ≤ n

⎫
⎬

⎭
⋃

⎧
⎨

⎩
∑

i≤k< j

αk + 2
∑

j≤k≤n

αk : 1 ≤ i < j ≤ n

⎫
⎬

⎭

and

ρ = a1 + 2a2 + 2a3 + · · · + 2an .
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Therefore, I (1 − α) = B if and only if α is of the form
∑

i≤k≤ j

αk, 1 < i ≤ j ≤ n.

The set of weight of those α is

[1]n−1 � [2]n−2 � · · · � [n − 2]2 � [n − 1].

Note that the Coxeter number h = 1 + ht(ρ) = 2n and the set of weight of 1 − α is

[h − 1]n−1 � [h − 2]n−2 � · · · � [n + 2]2 � [n + 1].

We can also rewrite the above set of weight of as

[n + 1, h − 1] � [n + 2, h − 1] � · · · � [h − 2, h − 1] � [h − 1].

Now we have

Alt(W )(u) = 1

(1 − uh)n

∏

α∈R+,Supp(ρ−α)=B

1 − uht(1−a)+1

1 − uht(1−a)

= 1

(1 − u2n)n

2n−1∏

i=n+1

2n−1∏

j=i

1 − u j+1

1 − u j

= 1

(1 − u2n)n

2n−1∏

i=n+1

1 − u2n

1 − ui

=
2n∏

i=n+1

1

1 − ui
.

which proves Theorem 5.2 for type Bn . For the rest of cases, the computations are
similar so we only record the heights of those positive root α with Supp(ρ − α) = B
in the following table.

Type Coxeter no. h Heights of 1 − α with Supp(ρ − α) = B

An n + 1 Empty set

Bn 2n
⊔

i [i, h − 1], i ∈ [n + 1, h − 1]
Cn 2n

⊔
i [i, h − 1], i ∈ [n + 1, h − 1]

Dn 2n − 2
⊔

i [i, h − 1], i ∈ [n + 1, h − 1]
E6 12

⊔
i [i, h − 1], i = 7, 9, 9, 11

E7 18
⊔

i [i, h − 1], i = 8, 10, 11, 13, 14, 17

E8 30
⊔

i [i, h − 1], i = 9, 11, 13, 14, 17, 19, 23, 29

F4 12
⊔

i [i, h − 1], i = 5, 7, 8, 11

G2 6
⊔

i [i, h − 1], i = 3, 5
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