On 2-distance-transitive circulants

Jiyong Chen ${ }^{1}$ • Wei Jin ${ }^{2,3}$ • Cai Heng Li ${ }^{4}$

Received: 17 March 2017 / Accepted: 9 April 2018 / Published online: 22 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

A complete classification is given of 2-distance-transitive circulants, which shows that a 2-distance-transitive circulant is a cycle, a Paley graph of prime order, a regular complete multipartite graph, or a regular complete bipartite graph of order twice an odd integer minus a 1 -factor.

Keywords 2-Distance-transitive • Circulant • Cayley graph

[^0]
1 Introduction

In this paper, all graphs are finite, simple, and undirected. An ordered pair of adjacent vertices is called an arc. A graph Γ is called arc-transitive if all arcs are equivalent under automorphisms of the graph. For a graph Γ and two vertices u and v, the distance between u and v in Γ is denoted by $d(u, v)$, which is the smallest length of paths between u and v. The diameter $\operatorname{diam}(\Gamma)$ of Γ is the maximum distance occurring over all pairs of vertices. An arc-transitive graph Γ is said to be 2-distance-transitive if Γ is not complete, and any two vertex pairs of vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ with $d\left(u_{1}, v_{1}\right)=d\left(u_{2}, v_{2}\right)=2$ are equivalent under automorphisms.

A 2-arc is a triple of distinct vertices (u, v, w) such that v is adjacent to both u and w. A regular graph is called 2 -arc-transitive if all 2 -arcs are equivalent under automorphisms. A 2-arc-transitive graph is obviously 2-distance-transitive.

The concept of 2-distance-transitive graph generalizes the concepts of distancetransitive graph and 2-arc-transitive graph. Both distance-transitive graphs and 2-arc-transitive graphs have been extensively studied, see [3,15]. The investigation of 2-distance-transitive graphs was initiated recently, see [4-6].

A vertex-transitive graph with n vertices is called a circulant if it has an automorphism of order n which acts freely on the set of vertices. Alspach et al. [1] classified 2-arc-transitive circulants; Miklavič and Potočnik [13] classified distance-regular circulants; Kovács [10] and Li [11] gave a characterization of arc-transitive circulants, see Theorem 2.1. The purpose of this paper is to give a complete classification of 2-distance-transitive circulants, stated in the following main theorem.

Theorem 1.1 The class of 2-distance-transitive graphs consists of cycles, Paley graphs of prime order, regular complete multipartite graphs, and regular complete bipartite graphs of order twice an odd integer minus a 1-factor.

By definition, a 2-distance-transitive circulant is an arc-transitive circulant. Thus, to prove Theorem 1.1, we only need to determine which of the arc-transitive circulants described in $[10,11]$ are 2-distance-transitive. However, this is unexpectedly nontrivial (see Lemmas 2.3-2.10), which motivates some interesting problems that we explain below.

For a finite group G and a subset S of G such that $1 \notin S$ and $S=S^{-1}$, the Cayley $\operatorname{graph} \operatorname{Cay}(G, S)$ of G with respect to S is the graph with vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. It is known that a graph Γ is a Cayley graph of G if and only if Γ has an automorphism group which is isomorphic to G and regular on the vertex set, see [2, Lemma 16.3] and [17]. For a Cayley graph $\Gamma=\operatorname{Cay}(G, S)$, if G is a normal subgroup of Aut Γ, then Γ is called a normal Cayley graph. The study of normal Cayley graphs was initiated by Xu [18] and has been done under various additional conditions, see $[7,16]$. A circulant is thus a Cayley graph of a cyclic group, and if further it is a normal Cayley graph of a cyclic group, then it is called a normal circulant. Many interesting examples of arc-transitive graphs and 2-arc-transitive graphs are constructed as normal Cayley graphs, due to the fact that the arc-transitivity and 2-arc-transitivity of a graph are equivalent to the local-transitivity and local-2-transitivity, respectively. The status for 2-distance-transitive graphs is, however, different. To our best knowledge, the known examples of 2-distance-transitive graphs are either distance-transitive or

2-arc-transitive. For instance, 2-distance-transitive normal circulants are cycles and Paley graphs by Theorem 1.1, which are distance-transitive. The following is a curious question.

Question 1.2 Is there a normal Cayley graph which is 2-distance-transitive, but neither distance-transitive nor 2-arc-transitive?

Another interesting problem is to characterize 2-distance-transitive Cayley graphs of certain special classes of groups, such as abelian groups and metacyclic groups.

2 Proof

We first introduce the classification of arc-transitive circulants given in [10, 11], which we need to prove Theorem 1.1.

Let $\Gamma=(V, E)$ be a connected graph with vertex set V and edge set E. Its complement graph $\bar{\Gamma}$ is the graph with vertex V such that two vertices are adjacent in $\bar{\Gamma}$ if and only if they are not adjacent in Γ. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Then $\Gamma=\Gamma_{1}\left[\Gamma_{2}\right]$ denotes the lexicographic product of Γ_{1} and Γ_{2}, where the vertex set of Γ is $V_{1} \times V_{2}$, and two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) are adjacent in Γ if either u_{1} and v_{1} are adjacent in Γ_{1}, or $u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent in Γ_{2}.

For a positive integer b, let K_{b} be the complete graph with b vertices. For a graph Γ, the graph consisting of b vertex disjoint copies of Γ is denoted by $b \Gamma$, and $\Gamma\left[\overline{\mathrm{K}_{b}}\right]-b \Gamma$ is the graph whose vertex set is the same as $\Gamma\left[\overline{\mathrm{K}_{b}}\right]$ and edge set equals the edge set of $\Gamma\left[\overline{\mathrm{K}_{b}}\right]$ minus the edge set of $b \Gamma$.

Theorem 2.1 [11, Theorem 1.3] Let Γ be a connected arc-transitive circulant of order n which is not a complete graph. Then either
(1) Γ is a normal circulant, or
(2) there exists an arc-transitive circulant Σ of order m such that $m b=n$ with $b, m>1$ and

$$
\Gamma=\left\{\begin{array}{l}
\Sigma\left[\overline{\mathrm{K}_{b}}\right], \text { or } \\
\Sigma\left[\overline{\mathrm{K}_{b}}\right]-b \Sigma, \text { where }(m, b)=1 .
\end{array}\right.
$$

Our proof of Theorem 1.1 is to analyze which graphs satisfying Theorem 2.1 are 2-distance-transitive. We now describe all examples of 2-distance-transitive circulants, which consist of cycles and the following three families:

Example 2.2 (1) Let $\Gamma=\mathrm{K}_{m[b]}$ be a complete multipartite graph which has m parts of size b. Clearly, $\mathrm{K}_{m[b]}=\mathrm{K}_{m}\left[\overline{\mathrm{~K}_{b}}\right]$. Then Aut $\Gamma=\mathrm{S}_{b}\left\langle\mathrm{~S}_{m}\right.$ is 2-distance-transitive on Γ and has a cyclic subgroup which is regular on the vertex set. Thus Γ is a 2-distance-transitive circulant.
(2) Let $\Gamma=\mathrm{K}_{b, b}-b \mathrm{~K}_{2}$ where b is an odd integer, namely, a complete bipartite graph minus a 1 -factor. Then Γ is of valency $b-1$ and of diameter 3, and Aut $\Gamma=\mathrm{S}_{b} \times \mathrm{S}_{2}$ is distance-transitive and 2-arc-transitive. It follows that Γ is a 2-distance-transitive circulant.
(3) Let $q=p^{e}$ be a prime power such that $q \equiv 1(\bmod 4)$. Let \mathbb{F}_{q} be the finite field of order q. Then the Paley graph $\mathrm{P}(q)$ is the graph with vertex set \mathbb{F}_{q}, and two distinct vertices u, v are adjacent if and only if $u-v$ is a nonzero square in \mathbb{F}_{q}. The congruence condition on q implies that -1 is a square in \mathbb{F}_{q}, and hence $\mathrm{P}(q)$ is an undirected graph. This family of graphs was first defined by Paley in 1933, see [14]. Note that the field \mathbb{F}_{q} has $(q-1) / 2$ elements which are nonzero squares, so $\mathrm{P}(q)$ has valency $(q-1) / 2$. Moreover, $\mathrm{P}(q)$ is a Cayley graph for the additive group $G=\mathbb{F}_{q}^{+} \cong \mathbb{Z}_{p}^{e}$. Let w be a primitive element of \mathbb{F}_{q}. Then $S=\left\{w^{2}, w^{4}, \ldots, w^{q-1}=1\right\}$ is the set of nonzero squares of \mathbb{F}_{q}, and $\mathrm{P}(q)=\operatorname{Cay}(G, S)$. If $q=p$ is a prime, then $\mathrm{P}(p)$ is a circulant of prime order. By [12], Aut $\mathrm{P}(p)=\mathbb{F}_{p}^{+}:\left\langle w^{2}\right\rangle$. This implies that $\mathrm{P}(p)$ is a 2-distance-transitive normal circulant.

Proof of Theorem 1.1 By Example 2.2, cycles, regular complete multipartite graphs, regular complete bipartite graphs of order twice an odd integer minus a 1 -factor, and Paley graphs of prime order are all distance-transitive and so 2-distance-transitive.

Conversely, let $\Gamma=\operatorname{Cay}(G, S)$ be a connected 2-distance-transitive circulant, and $G \cong \mathbb{Z}_{n}$. Then Γ is arc-transitive, and so Γ satisfies Theorem 2.1. If Γ is of valency 2 , then $\Gamma \cong \mathrm{C}_{n}$. Assume that Γ has valency at least 3 . Since Γ is arc-transitive, either Γ is a normal circulant, or Γ satisfies part (2) of Theorem 2.1. We shall treat these two cases in two subsections, respectively. In Sect. 2.1, we prove that if Γ is a normal circulant, then Γ is a Paley graph of prime order, stated in Lemma 2.8. In Sect. 2.2, we deal with nonnormal circulants and show that, if Γ is not a normal circulant, then Γ is a regular complete multipartite graph, or a regular complete bipartite graph of order twice an odd integer minus a 1 -factor.

We now introduce a few notations which we will use later. For a graph Γ and a vertex v, we denote by $\Gamma_{i}(v)$ the i-th neighborhood of v in Γ, that is, the set of vertices which are at distance i from v. A sequence of vertices $v_{0}, v_{1}, \ldots, v_{s}$ is called an s-geodesic if $\left\{v_{i}, v_{i+1}\right\}$ is an edge for all $0 \leqslant i \leqslant s-1$ and $d\left(v_{0}, v_{s}\right)=s$. We sometimes need to consider distances of the same pair of vertices in different graphs, so let $d_{\Gamma}(u, v)$ denote the distance of u and v in the graph Γ.

2.1 2-Distance-transitive normal circulants

Consider the cyclic group

$$
G=\langle g\rangle \cong \mathbb{Z}_{n}
$$

Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected 2-distance-transitive circulant of valency $k \geqslant 3$. Then $G=\langle S\rangle$. Assume further that Γ is a normal circulant. Let $A=\operatorname{Aut} \Gamma$, and let u be the vertex of Γ corresponding to the identity of the group G. Then $\Gamma(u)=S$ and $A=G: A_{u}$. By [9, Lemma 2.1], we have

$$
A_{u}=\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}
$$

Moreover, as $\operatorname{Aut}(G)$ is abelian and $A_{u}=\operatorname{Aut}(G, S)$ is transitive and faithful on S, it implies that A_{u} is regular on S, and

$$
\left|A_{u}\right|=|S|=k
$$

We establish a series of lemmas to prove that Γ is a Paley graph.
Lemma 2.3 Γ has girth 3.
Proof Suppose that the girth of Γ is greater than 4 . Then, for each pair of vertices θ, θ^{\prime} with distance $d\left(\theta, \theta^{\prime}\right)=2$, there is a unique 2 -arc between θ and θ^{\prime}. Hence Γ being 2-distance-transitive implies that it is 2-arc-transitive. By the classification given in [1, Theorem 1.1], the graph Γ has girth 4 , which is a contradiction.

Assume that Γ has girth 4. Then, for any vertex $v \in \Gamma(u)=S$, we have $\mid \Gamma_{2}(u) \cap$ $\Gamma(v) \mid=k-1$. Thus there are $k(k-1)$ edges between $\Gamma(u)$ and $\Gamma_{2}(u)$. Since $\left|A_{u}\right|=k$ and A is 2-distance-transitive on Γ, we conclude that A_{u} acts transitively on $\Gamma_{2}(u)$, and the size $\left|\Gamma_{2}(u)\right|$ is a divisor of $\left|A_{u}\right|=k$. Let $w \in \Gamma_{2}(u) \cap \Gamma(v)$. Then $|S \cap \Gamma(w)| \leqslant|\Gamma(w)|=k$. Note that $|S \cap \Gamma(w)| \cdot\left|\Gamma_{2}(u)\right|=k(k-1)$. Hence $|S \cap \Gamma(w)|=k-1$ and $k=\left|\Gamma_{2}(u)\right|=|S|$. It follows that $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|+\mid \Gamma_{2}(u) \cap$ $\Gamma(w) \mid=1$. Set $\Gamma(u)=\left\{v=v_{1}, \ldots, v_{k}\right\}$ and $\Gamma_{2}(u)=\left\{w=w_{1}, \ldots, w_{k}\right\}$. Let $\Gamma_{2}(u) \cap \Gamma(v)=\left\{w_{1}, \ldots, w_{k-1}\right\}$ and $\Gamma(u) \cap \Gamma(w)=\left\{v_{1}, \ldots, v_{k-1}\right\}$.

Assume that $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|=0$. Then $\left|\Gamma_{2}(u) \cap \Gamma(w)\right|=1$. Since Γ is 2-distance-transitive, the stabilizer A_{u} is transitive on $\Gamma_{2}(u)$, so the induced subgraph $\left[\Gamma_{2}(u)\right] \cong(k / 2) \mathrm{K}_{2}$. As Γ has girth 4, it follows that $\left[\Gamma_{2}(u) \cap \Gamma(v)\right]$ is an empty graph, and so w_{1} is adjacent to w_{k}. Thus $\left[\left\{w_{2}, \ldots, w_{k-1}\right\}\right] \cong(k / 2-1) \mathrm{K}_{2}$. However, $\left\{w_{2}, \ldots, w_{k-1}\right\} \subset \Gamma_{2}(u) \cap \Gamma(v)$, contradicting the fact that $\left[\Gamma_{2}(u) \cap \Gamma(v)\right]$ is an empty graph. Therefore, $\left|\Gamma_{3}(u) \cap \Gamma(w)\right|=1$, say $\Gamma_{3}(u) \cap \Gamma(w)=\{z\}$.

By the transitivity of A_{u} on the set $\Gamma(u)$, we have $\left|\Gamma_{2}(u) \cap \Gamma\left(v_{k}\right)\right|=\mid \Gamma_{2}(u) \cap$ $\Gamma\left(v_{1}\right) \mid=k-1$. Then $\Gamma_{2}(u) \cap \Gamma\left(v_{k}\right)=\left\{w_{2}, \ldots, w_{k}\right\}$ since v_{k} and w_{1} are not adjacent in Γ. Note that $(u, w),(v, z),\left(v_{k}, z\right)$ are all vertex pairs of distance 2 and Γ is 2-distance-transitive. We have $|\Gamma(u) \cap \Gamma(w)|,|\Gamma(v) \cap \Gamma(z)|$ and $\left|\Gamma\left(v_{k}\right) \cap \Gamma(z)\right|$ are all equal to $k-1$. Hence $\Gamma(v) \cap \Gamma(z)=\Gamma(v) \cap \Gamma_{2}(u)$ and $\Gamma\left(v_{k}\right) \cap \Gamma(z)=\Gamma\left(v_{k}\right) \cap \Gamma_{2}(u)$. Thus $\Gamma(z)=\Gamma_{2}(u)$ and $\Gamma_{3}(u)=\{z\}$, so Γ has diameter 3 and is distance-transitive. Therefore, $\{u\} \cup \Gamma_{3}(u)$ is a block of imprimitivity of Aut Γ on the vertex set V, and $\Gamma \cong \mathrm{K}_{k+1, k+1}-(k+1) \mathrm{K}_{2}$. It is clear that $\mathrm{K}_{k+1, k+1}-(k+1) \mathrm{K}_{2}$ is not a normal circulant, which is a contradiction. Hence the girth of Γ is 3 .

Lemma 2.4 The order $|G|=n$ is odd.
Proof Suppose that $|G|=n$ is an even integer. Since $G=\langle S\rangle$ and all elements of S have the same order, it follows that S consists of generators of G. Without loss of generality, we assume that $g \in S$. By Lemma 2.3, Γ has girth 3. Then there is $g^{i} \in S$ such that $\left(g, g^{i}\right)$ is an arc of Γ. This implies that $g^{i-1}=g^{i} g^{-1}$ belongs to set S. Since Γ is a normal circulant, each element in S is a generator of G. This means that $1, i-1, i$ are all relatively prime to n. This contradicts the fact that n is an even number.

Lemma 2.5 The second neighborhood $\Gamma_{2}(u)$ consists of generators of G.

Proof Suppose that $\Gamma_{2}(u)$ contains an element which is not a generator of G. Then $|G|$ is not a prime. Since $A_{u}=\operatorname{Aut}(G, S)$ is transitive on $\Gamma_{2}(u)$, none of the elements in $\Gamma_{2}(u)$ is a generator.

As $\langle S\rangle=G$ and all elements of S are conjugate in $\operatorname{Aut}(G)$, we may assume that $g \in S$. By Lemma 2.4, the order $|G|$ is an odd integer. Thus g^{2} is a generator, and $g^{2} \notin \Gamma_{2}(u)$. Since $g^{2} \in \Gamma(u) \cup \Gamma_{2}(u), g^{2} \in S=\Gamma(u)$. Assume that $g^{r} \in S$ where $r \leqslant n-3$. Then $g^{r+1}=g^{r} g \in \Gamma(u) \cup \Gamma_{2}(u)$. Thus either g^{r+1} is a generator of G and $g^{r+1} \in S$, or g^{r+1} is not a generator and $g^{r+1} \in \Gamma_{2}(u)$. Similarly, we have $g^{r+2}=g^{r} g^{2} \in \Gamma(u) \cup \Gamma_{2}(u)$. Therefore, either g^{r+2} is a generator of G and $g^{r+2} \in S$, or g^{r+2} is not a generator and $g^{r+2} \in \Gamma_{2}(u)$.

Let p be the smallest prime divisor of $n=|G|$. Then $g, g^{2}, \ldots, g^{p-1} \in S$, and $g^{p} \in \Gamma_{2}(u)$. Suppose that G is not a p-group. Let q be the second smallest prime divisor of n. By the deduction above, we have $g^{\lambda} \in S$ for any $1 \leqslant \lambda \leqslant q-1$ with $(\lambda, p)=1$. Noting that p is coprime to at least one of $q-2$ and $q-1$. If p and $q-2$ are coprime, then $g^{q-2} \in S$, so $g^{q}=g^{q-2} g^{2} \in \Gamma_{2}(u)$, as $g^{2} \in S$; if p and $q-1$ are coprime, then $g^{q-1} \in S$, so $g^{q}=g^{q-1} g \in \Gamma_{2}(u)$, as $g \in S$. Thus, g^{q} is in $\Gamma_{2}(u)$. However Γ is 2-distance-transitive and normal, which means that all elements of $\Gamma_{2}(u)$ have the same order. This contradicts the fact that $o\left(g^{p}\right) \neq o\left(g^{q}\right)$ and $g^{p}, g^{q} \in \Gamma_{2}(u)$. Thus G is a p-group.

Suppose that $|G|=p^{r}$. If $r \geqslant 3$, then by a similar argument as the previous paragraph, we have $g^{\lambda} \in S$ for any $1 \leqslant \lambda \leqslant p^{r}-1$ with $(\lambda, p)=1$. Hence $g^{p}, g^{p^{2}} \in \Gamma_{2}(u)$. This is impossible since $o\left(g^{p}\right) \neq o\left(g^{p^{2}}\right)$ and all elements of $\Gamma_{2}(u)$ have the same order.

Therefore, we get $n=p^{2}$. Furthermore, $S=\left\{g^{\lambda} \mid 1 \leqslant \lambda \leqslant p^{2}-1,(p, \lambda)=1\right\}$ and $\Gamma_{2}(u)=\left\{g^{\mu p} \mid 1 \leqslant \mu \leqslant p-1\right\}$. Thus $\Gamma \cong \mathrm{K}_{p[p]}$.

Note that $\mathrm{K}_{p[p]}$ is not normal. We have that $\Gamma_{2}(u)$ has no nongenerators of G. This means $\Gamma_{2}(u)$ consists of generators of G.

Let

$$
R=\Gamma_{2}(u),
$$

the second neighborhood of the vertex u (corresponding to the identity of G).
Lemma 2.6 The stabilizer A_{u} is regular on R, and $|R|=|S|$ divides $p-1$ for each prime divisor p of $|G|$.

Proof Since A is 2-distance-transitive on Γ, A_{u} is transitive on $R=\Gamma_{2}(u)$. As $A_{u}=\operatorname{Aut}(G, S)$ is abelian and R consists of generators of G, A_{u} is faithful on R. Thus A_{u} is regular on $R=\Gamma_{2}(u)$, and so $|R|=\left|A_{u}\right|=|S|$.

Let $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \ldots p_{\ell}^{t_{\ell}}$, where $p_{1}<p_{2}<\cdots<p_{\ell}$ are distinct primes. Let $G=\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{\ell}\right\rangle$, where $o\left(x_{i}\right)=p_{i}^{t_{i}}$ for $1 \leqslant i \leqslant \ell$ and $g=x_{1} \ldots x_{\ell}$. Then

$$
A_{u} \leqslant \operatorname{Aut}(G)=\operatorname{Aut}\left(\left\langle x_{1}\right\rangle\right) \times \cdots \times \operatorname{Aut}\left(\left\langle x_{\ell}\right\rangle\right)
$$

Set

$$
B_{j}=\operatorname{Aut}\left(\left\langle x_{1}\right\rangle\right) \times \cdots \times \operatorname{Aut}\left(\left\langle x_{j-1}\right\rangle\right) \times \operatorname{Aut}\left(\left\langle x_{j+1}\right\rangle\right) \times \cdots \times \operatorname{Aut}\left(\left\langle x_{\ell}\right\rangle\right)
$$

where $1 \leqslant j \leqslant \ell$. We claim that $A_{u} \cap B_{j}=\{1\}$ and $A_{u} \cong A_{u} B_{j} / B_{j} \lesssim \mathbb{Z}_{p_{j}-1}$.
Assume that $A_{u} \cap B_{j} \neq\{1\}$. Then there exists $\sigma \in A_{u} \cap B_{j}$ such that $\sigma \neq 1$. Hence $g^{\sigma}=\left(x_{1} \ldots x_{\ell}\right)^{\sigma}=\left(x_{1} \ldots x_{j-1}\right)^{\sigma} x_{j}\left(x_{j+1} \ldots x_{\ell}\right)^{\sigma}$, and $g^{\sigma} g^{-1} \neq 1$ is not a generator of G. Observing that g and g^{σ} are in S, we have $g^{\sigma} g^{-1} \in S \cup R$, which contradicts the fact that all elements in S and R are generators of G. Hence $A_{u} \cap B_{j}=\{1\}$ and

$$
A_{u} \cong A_{u} B_{j} / B_{j} \lesssim \operatorname{Aut}\left(\left\langle x_{j}\right\rangle\right) \cong \operatorname{Aut}\left(\mathbb{Z}_{p_{j}^{t_{j}}}\right) \cong \mathbb{Z}_{\left(p_{j}-1\right) p_{j}^{t_{j}-1}}
$$

If p_{j} divides $\left|A_{u}\right|$, then there exists $\sigma \in A_{u}$ such that $o(\sigma)=p_{j}$. Furthermore, $x_{j}^{\sigma}=x_{j}^{\lambda p_{j}+1} \neq x_{j}$ for some integer λ. Thus $g^{\sigma} g^{-1} \in\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{j-1}\right\rangle \times\left\langle x_{j}^{p_{j}}\right\rangle \times$ $\left\langle x_{j+1}\right\rangle \times \ldots\left\langle x_{\ell}\right\rangle$ is not a generator of G. This contradicts the fact that $g^{\sigma} g^{-1} \in S \cup R$. Therefore, $A_{u} \lesssim \mathbb{Z}_{p_{j}-1}$ for $1 \leqslant j \leqslant \ell$. Noting that A_{u} acts regularly on $S,|S|=\left|A_{u}\right|$. Hence $|S|$ divides $p_{i}-1$ for $1 \leqslant i \leqslant \ell$.

By virtue of Lemma 2.6, we can assume that

$$
A_{u}=\langle\sigma\rangle \text { and } g^{\sigma}=g^{\lambda}
$$

where λ is coprime to n. Let g^{μ} be an element of R and τ be an automorphism of G such that $g^{\tau}=g^{\mu}$. Then $\left(g^{\mu}\right)^{\tau}=\left(g^{\tau}\right)^{\mu}=g^{\mu^{2}}$. Let $k=|S|=\left|A_{u}\right|$. We have

$$
\begin{aligned}
S & =g^{\langle\sigma\rangle}=\left\{g, g^{\lambda}, g^{\lambda^{2}}, \ldots, g^{\lambda^{k-1}}\right\}, \\
R & =\left(g^{\mu}\right)^{\langle\sigma\rangle}=\left\{g^{\mu}, g^{\mu \lambda}, g^{\mu \lambda^{2}}, \ldots, g^{\mu \lambda^{k-1}}\right\}=S^{\tau}, \\
R^{\tau} & =\left(g^{\mu}\right)^{\langle\sigma\rangle \tau}=\left(g^{\mu}\right)^{\tau\langle\sigma\rangle}=\left(g^{\mu^{2}}\right)^{\langle\sigma\rangle}=\left\{g^{\mu^{2}}, g^{\mu^{2} \lambda}, g^{\mu^{2} \lambda^{2}}, \ldots, g^{\mu^{2} \lambda^{k-1}}\right\} .
\end{aligned}
$$

Let

$$
\Sigma=\Gamma^{\tau}=\operatorname{Cay}(G, S)^{\tau}=\operatorname{Cay}\left(G, S^{\tau}\right)=\operatorname{Cay}(G, R)
$$

Then Σ and Γ are isomorphic. (Two graphs are isomorphic if there exists a bijection between their vertex sets which preserves the adjacency and the nonadjacency.)

Lemma 2.7 Let $x, y \in G$. Then $\mathrm{d}_{\Gamma}(x, y)=2$ if and only if $\mathrm{d}_{\Gamma}\left(x y^{-1}, u\right)=2$, and the following conditions are equivalent:
(i) $x y^{-1} \in R$;
(ii) $\mathrm{d}_{\Sigma}(x, y)=1$;
(iii) $\mathrm{d}_{\Gamma}(x, y)=\mathrm{d}_{\Gamma}\left(x y^{-1}, u\right)=2$.

Proof For any $y \in G$, let $\sigma_{y^{-1}}$ be the right translation by y^{-1}. Then $\sigma_{y^{-1}}$ is an automorphism of Γ since Γ is a Cayley graph of G. Thus for any $x \in G$, we have

$$
d_{\Gamma}(x, y)=d_{\Gamma}\left(x^{\sigma_{y}-1}, y^{\sigma_{y}-1}\right)=d_{\Gamma}\left(x y^{-1}, u\right)
$$

Noting that $R=\Gamma_{2}(u)=\Sigma(u)$, we have $x y^{-1} \in R$ if and only if $d_{\Gamma}\left(x y^{-1}, u\right)=$ $d_{\Gamma}(x, y)=2$. By the same argument, we also have $x y^{-1} \in R$ if and only if $d_{\Sigma}\left(x y^{-1}, u\right)=d_{\Sigma}(x, y)=1$.

For two sets B_{1}, B_{2}, we use $B_{1} \sqcup B_{2}$ to denote $B_{1} \cup B_{2}$ when $B_{1} \cap B_{2}=\emptyset$. We denote $\Gamma_{\geqslant i}(u)=\Gamma_{i}(u) \cup \Gamma_{i+1}(u) \cup \cdots \cup \Gamma_{\operatorname{diam}(\Gamma)}(u)$.

Lemma 2.8 The graph Γ is a Paley graph $\mathrm{P}(p)$, where $p \equiv 1(\bmod 4)$ is prime.
Proof By Lemma 2.5, $\Gamma_{2}(u)=R$ contains generators of G. If the diameter of Γ is 2, then all the elements in $G \backslash\{u\}$ are generators of G, and so n is an odd prime p. By Lemma 2.6, $|S|=|R|$, so $|S|=|R|=(p-1) / 2$. Thus S is either the set of square elements or the set of nonsquare elements of $G \backslash\{u\}$, and Γ is the Paley graph $\mathrm{P}(p)$, see also [8, Lemma 2.2].

In the remainder, we suppose that Γ has diameter at least 3 . Let (u, z, v, w) be a 3-geodesic of Γ. We set $k=|S|=|R|, a_{1}=|\Gamma(z) \cap S|, b_{1}=|\Gamma(z) \cap R|$ and $c_{2}=|\Gamma(v) \cap S|$. Let N be the number of edges in Γ with one end in S and the other end in R. Then

$$
N=b_{1}\left|z^{A_{u}}\right|=b_{1} k=c_{2}\left|v^{A_{u}}\right|=c_{2} k
$$

Hence $b_{1}=c_{2}$.
Note that all S, R, and R^{τ} are orbits of A_{u}. We will argue in two cases.
Case $1 R^{\tau} \neq S$.
Since $\Sigma_{2}(u)=R^{\tau}$ and $R^{\tau} \neq S$, it follows that $S \subseteq \Sigma_{\geqslant 3}(u)$. Thus, for each $y \in R$ and $x \in S, d_{\Sigma}(x, y) \neq 1$, and it follows from Lemma 2.7 that $d_{\Gamma}(x, y) \neq 2$.

Let $w \in R^{\tau}$. Then there exist vertices $z \in S$ and $v \in R$, such that (u, v, w) and (u, z, v) are 2-geodesics in Σ and Γ, respectively. Hence, by Lemma 2.7, $d_{\Gamma}(w, v)=$ 2 (Fig. 1).

Since Γ is 2-distance-transitive, there exists $\eta \in A_{v}$ such that $u^{\eta}=w$. Thus

$$
b_{1}=c_{2}=|\Gamma(v) \cap \Gamma(u)|=\left|\Gamma\left(v^{\eta}\right) \cap \Gamma\left(u^{\eta}\right)\right|=|\Gamma(v) \cap \Gamma(w)| .
$$

Since $\Gamma(v) \cap \Gamma(w) \subseteq R \cup \Gamma_{3}(u)$, we have

$$
\begin{equation*}
k=|\Gamma(v)|=|\Gamma(v) \cap S|+\left|\Gamma(v) \cap\left(R \cup \Gamma_{3}(u)\right)\right| \geqslant 2 b_{1} . \tag{1}
\end{equation*}
$$

Fig. 1 Case 1

For any $x \in S \cap \Gamma(z),(v, z, x)$ is a 2 -arc. Since $d_{\Gamma}(v, x) \neq 2, d_{\Gamma}(v, x)=1$ and $x \in \Gamma(v)$. Thus

$$
\begin{equation*}
\{z\} \sqcup(S \cap \Gamma(z)) \subseteq \Gamma(v) \cap S \tag{2}
\end{equation*}
$$

and $a_{1}+1 \leqslant b_{1}$. Consider the valency of the vertex z, we have

$$
\begin{equation*}
k=|\Gamma(z)|=1+a_{1}+b_{1} \leqslant 2 b_{1} . \tag{3}
\end{equation*}
$$

By inequalities (1) and (3), $k=2 b_{1}$, so (2) can be modified into

$$
\begin{equation*}
\{z\} \sqcup(\Gamma(z) \cap S)=\Gamma(v) \cap S . \tag{4}
\end{equation*}
$$

By the same deduction, for any $y \in \Gamma(z) \cap R$, we have

$$
\begin{equation*}
\{z\} \sqcup(\Gamma(z) \cap S)=\Gamma(y) \cap S . \tag{5}
\end{equation*}
$$

Similarly, for each $x \in \Gamma(z) \cap S \subset \Gamma(v) \cap S$,

$$
\begin{equation*}
\{x\} \sqcup(\Gamma(x) \cap S)=\Gamma(v) \cap S=\{z\} \sqcup(S \cap \Gamma(z)) . \tag{6}
\end{equation*}
$$

Equalities (5) and (6) indicate that for each $x \in \Gamma(z) \backslash\{u\}, \Gamma(x) \cap S \subset\{z\} \sqcup(\Gamma(z) \cap S)$.
Let $z^{\prime} \in S \backslash(\{z\} \cup \Gamma(z))$. Then $d_{\Gamma}\left(z, z^{\prime}\right)=2$. There is an automorphism $\eta \in A$ such that $z^{\eta}=u$ and $\left(z^{\prime}\right)^{\eta}=v$. Let $\left(z, x, z^{\prime}\right)$ be a $2-\operatorname{arc}$ in Γ. Then $z^{\prime} \in \Gamma(x) \cap S$ and $x \in \Gamma(z)$. Thus $x=u$ and

$$
1=\left|\Gamma(z) \cap \Gamma\left(z^{\prime}\right)\right|=|\Gamma(u) \cap \Gamma(v)|=b_{1} .
$$

Hence $k=2$. This contradicts the assumption that Γ has valency at least 3 .
Case $2 R^{\tau}=S$.
Since $R^{\tau}=S$, it follows that $\Gamma_{\geqslant 3}(u)=\Sigma_{\geqslant 3}(u)$. For each $x \in R$ and $y \in \Sigma_{\geqslant 3}(u)$, we have $d_{\Sigma}(x, y) \neq 1$. This implies $d_{\Gamma}(x, y) \neq 2$. Thus $\Gamma_{\geqslant 3}(u)=\Gamma_{3}(u)$ and $\operatorname{diam}(\Gamma)=3$ (Fig. 2).

Fig. 2 Case 2

Let $w \in \Gamma_{3}(u)$. Then there exist $z \in S, v \in R$ such that (u, z, v, w) is a 3-geodesic. Let

$$
\begin{aligned}
& b_{2}=\left|\Gamma(v) \cap \Gamma_{3}(u)\right|, \quad c_{3}=|\Gamma(w) \cap R|, \\
& a_{2}=|\Gamma(v) \cap R|, \quad a_{3}=\left|\Gamma(w) \cap \Gamma_{3}(u)\right| .
\end{aligned}
$$

Then $k=1+a_{1}+b_{1}=a_{2}+b_{2}+c_{2}=a_{3}+c_{3}$.
Let p be the smallest prime factor of n, and let N^{\prime} be the number of edges in Γ with one end in R and the other end in $\Gamma_{3}(u)$. Then

$$
k(k-1) \geqslant N^{\prime}=k b_{2} \geqslant\left|\Gamma_{3}(u)\right|=n-2 k-1 .
$$

Hence $n \leqslant k^{2}+k+1$. By Lemma 2.6, k is a divisor of $p-1$, and thus $k+1<p+1$. Then $n \leqslant k^{2}+k+1=k(k+1)+1<(p-1)(p+1)+1=p^{2}$, and so n is a prime. This implies that w is also a generator of G and $\left|w^{A_{u}}\right|=\left|A_{u}\right|=k$. Furthermore,

$$
N^{\prime}=\left|v^{A_{u}}\right| b_{2}=k b_{2} \geqslant\left|w^{A_{u}}\right| c_{3}=k c_{3}
$$

This means

$$
\begin{equation*}
c_{3} \leqslant b_{2} \tag{7}
\end{equation*}
$$

For any $x \in \Gamma(w) \cap \Gamma_{3}(u),(v, w, x)$ is a 2-arc. Since $d_{\Gamma}(v, x) \neq 2$, we have $d_{\Gamma}(v, x)=1$ and $x \in \Gamma(v)$. Thus

$$
\{w\} \sqcup\left(\Gamma(w) \cap \Gamma_{3}(u)\right) \subseteq \Gamma(v) \cap \Gamma_{3}(u),
$$

and

$$
\begin{equation*}
a_{3}+1 \leqslant b_{2} . \tag{8}
\end{equation*}
$$

By inequalities (7) and (8), we have

$$
\begin{equation*}
k=c_{3}+a_{3} \leqslant b_{2}+b_{2}-1 \tag{9}
\end{equation*}
$$

For any $x \in S \backslash\{z\},(z, u, x)$ is a $2-\operatorname{arc}$ in Γ, and $d_{\Gamma}(z, x) \leqslant 2$. Thus

$$
S=\{z\} \sqcup(\Gamma(z) \cap S) \sqcup\left(\Gamma_{2}(z) \cap S\right) .
$$

Note that $\Gamma_{2}(z) \cap S=\Sigma(z) \cap S$ and

$$
|\Sigma(z) \cap S|=\left|\Sigma^{\tau^{-1}}\left(z^{\tau^{-1}}\right) \cap S^{\tau^{-1}}\right|=\left|\Gamma\left(v^{\prime}\right) \cap R\right|=a_{2}
$$

for some $v^{\prime} \in R$ where the graph isomorphism τ is defined in the paragraph before Lemma 2.7. We have
$k=1+|\Gamma(z) \cap S|+\left|\Gamma_{2}(z) \cap S\right|=1+|\Gamma(z) \cap S|+|\Sigma(z) \cap S|=1+a_{1}+a_{2}$.

Hence $k=1+a_{1}+b_{1}=1+a_{1}+a_{2}$, and

$$
\begin{equation*}
b_{1}=a_{2} \tag{10}
\end{equation*}
$$

For any $x \in \Gamma(z) \cap S,(v, z, x)$ is a $2-\operatorname{arc}$ in Γ. Thus we have $d_{\Gamma}(x, v) \leqslant 2$. Then

$$
\begin{aligned}
\{z\} \sqcup(\Gamma(z) \cap S) & \subseteq(\Gamma(v) \cap S) \sqcup\left(\Gamma_{2}(v) \cap S\right) \\
& =(\Gamma(v) \cap S) \sqcup(\Sigma(v) \cap S)
\end{aligned}
$$

and

$$
1+a_{1} \leqslant b_{1}+b_{1}
$$

Thus $b_{1}=k-\left(1+a_{1}\right) \geqslant k-2 b_{1}=b_{2}$. By inequality (9),

$$
k=2 b_{1}+b_{2}>2 b_{2}-1 \geqslant k .
$$

This is a contradiction.
Therefore, Γ is of diameter 2, and is a Paley graph as observed above.

2.2 2-Distance-transitive nonnormal circulants

Let $\Gamma=(V, E)$ be an arc-transitive circulant which is not a normal circulant. By Theorem 2.1, there exists an arc-transitive circulant Σ of order m such that $m b=n$, and

$$
\Gamma=\left\{\begin{array}{l}
\Sigma\left[\overline{\mathrm{K}_{b}}\right], \text { or } \\
\Sigma\left[\overline{\mathrm{K}_{b}}\right]-b \Sigma, \text { where }(m, b)=1 .
\end{array}\right.
$$

We next determine which of these graphs are 2-distance-transitive.
The vertex set V of Γ is partitioned into m parts of size b, and thus we may label the vertices as

$$
V=\left\{v_{i, j} \mid 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant b\right\}
$$

such that

$$
B_{i}:=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, b}\right\}, \text { where } 1 \leqslant i \leqslant m
$$

are blocks for Aut Γ. Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, the corresponding block system for Aut Γ acting on V. The quotient graph $\Gamma_{\mathcal{B}}$ is the graph with vertex set $V_{\mathcal{B}}=\mathcal{B}$ such that two vertices $B_{1}, B_{2} \in \mathcal{B}$ are adjacent if and only if there exist $u_{1} \in B_{1}$ and $u_{2} \in B_{2}$ which are adjacent in Γ. Then $\Gamma_{\mathcal{B}} \cong \Sigma$, and each element $g \in$ Aut Γ naturally induces a permutation \bar{g} on set \mathcal{B} which is an automorphism of the graph $\Gamma_{\mathcal{B}}$.

Lemma 2.9 Let u be an arbitrary vertex in Γ. Then, except for the case $\Gamma=\Sigma\left[\overline{\mathrm{K}_{2}}\right]-$ 2Σ, the subset $\{u\} \cup \Gamma_{2}(u) \subset V$ is a block of size b.

Proof It is clear that B_{1} is a block of size b for Aut Γ. Without loss of generality, set $u=v_{1,1}$, since Γ is vertex-transitive. Thus, we only need to show that $B_{1}=$ $\{u\} \cup \Gamma_{2}(u)$.

Let $w=v_{1,2} \in B_{1}$. We have $d_{\Gamma}(u, w) \geqslant 2$ since the induced subgraph $\left[B_{1}\right] \cong \overline{\mathrm{K}_{b}}$. Suppose that B_{1}, B_{2} are two vertices of $\Gamma_{\mathcal{B}}$ which are adjacent. If $\Gamma=\Sigma\left[\overline{\mathrm{K}_{b}}\right]$, then $\left(u, v_{2,1}, w\right)$ is a 2-geodesic of Γ. If $\Gamma=\Sigma\left[\overline{\mathrm{K}_{b}}\right]-b \Sigma$, where $b \geqslant 3$, then $\left(u, v_{2,3}, w\right)$ is a 2-geodesic of Γ. Thus in either case, $w \in \Gamma_{2}(u)$. By the same deduction, for any $w^{\prime} \in B_{1} \backslash\{u\}$, we have $w^{\prime} \in \Gamma_{2}(u)$. Hence $B_{1} \subseteq\{u\} \cup \Gamma_{2}(u)$.

Let $A=$ Aut Γ and A_{u} be the stabilizer of vertex u. Since Γ is 2-distance-transitive and B_{1} is a block of V for A, we have $w^{A_{u}}=\Gamma_{2}(u) \subseteq B_{1}$. Thus $\{u\} \cup \Gamma_{2}(u)=B_{1}$, and it is a block of size b on V for A.

Lemma 2.10 Let Γ be a 2-distance-transitive circulant which is not a normal circulant. Then $\Gamma=\mathrm{K}_{m[b]}$ or $\mathrm{K}_{b, b}-b \mathrm{~K}_{2}$.
Proof Assume first that $m=2$. Since Γ is of valency at least 3 by our assumption, either $b \geqslant 3$ and $\Gamma=\mathrm{K}_{b, b}$, or $b \geqslant 5$ and $\Gamma=\mathrm{K}_{2}\left[\overline{\mathrm{~K}_{b}}\right]-b \mathrm{~K}_{2}=\mathrm{K}_{b, b}-b \mathrm{~K}_{2}$. We next consider the case where $m \geqslant 3$.

Assume that $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{b}\right]$ with $m \geqslant 3$. Let $u=v_{1,1} \in B_{1}$. By Lemma 2.9, $\{u\} \cup \Gamma_{2}(u)=B_{1}$ is a block for $A=\operatorname{Aut} \Gamma$. Thus there is no vertex $w \in V \backslash B_{1}$ at distance 2 with u in Γ. It follows that Σ is a complete graph, and so $\Gamma \cong \Sigma\left[\overline{\mathrm{K}_{b}}\right] \cong$ $\mathrm{K}_{m[b]}$.

Now, let $\Gamma=\Sigma\left[\overline{\mathrm{K}_{b}}\right]-b \Sigma$ with $m \geqslant 3$ and $b \geqslant 3$. Again, by Lemma 2.9, $\{u\} \cup \Gamma_{2}(u)=B_{1}$ is a block for $A=\operatorname{Aut} \Gamma$. Similarly, there is no vertex $w \in V \backslash B_{1}$ at distance 2 with u in Γ, and Σ is a complete graph. Therefore, $\left(u, v_{2,2}, v_{3,1}\right)$ is a 2-geodesic in Γ. This contradicts the fact that $v_{3,1} \notin B_{1}=\{u\} \cup \Gamma_{2}(u)$.

Finally, assume that $\Gamma=\Sigma\left[\overline{\mathrm{K}_{2}}\right]-2 \Sigma$ with $m \geqslant 3$. According to Lemma 2.1, m is relatively prime to b. Hence m is an odd integer. If Σ is a complete graph, then $\Gamma=\mathrm{K}_{m[2]}-2 \mathrm{~K}_{m}$. Note that $\mathrm{K}_{m[2]}-2 \mathrm{~K}_{m}$ is isomorphic to $\mathrm{K}_{2[m]}-m \mathrm{~K}_{2}$. We have $\Gamma \cong \mathrm{K}_{2[m]}-m \mathrm{~K}_{2}$. If Σ is not a complete graph, then it is clear that the quotient graph $\Gamma_{\mathcal{B}}$ is also 2-distance-transitive. By the argument above we have $\Gamma_{\mathcal{B}}$ is isomorphic to $\mathrm{C}_{m}, \mathrm{P}(p)$, or $\mathrm{K}_{m^{\prime}\left[b^{\prime}\right]}$. When $p=5$, the Paley graph $\mathrm{P}(5)$ is isomorphic to C_{5}. If $\Gamma_{\mathcal{B}} \cong \mathrm{C}_{m}$ then $\Gamma \cong \mathrm{C}_{2 m}$ is normal, a contradiction. If $\Gamma_{\mathcal{B}} \cong \mathrm{P}(p)$ for $p>5$, there is a triangle in $\Gamma_{\mathcal{B}}$. If $\Gamma_{\mathcal{B}} \cong \mathrm{K}_{m^{\prime}\left[b^{\prime}\right]}$, then there exists a triangle in $\Gamma_{\mathcal{B}}$ too. In either case, let $\left(B_{1}, B_{2}, B_{3}\right)$ be a triangle in $\Gamma_{\mathcal{B}}$ and $\left(B_{1}, B_{2}, B_{4}\right)$ be a 2-geodesic in $\Gamma_{\mathcal{B}}$. Since $\Gamma=\Sigma\left[\overline{\mathrm{K}_{2}}\right]-2 \Sigma$, it follows that the vertex $v_{2,2}$ is adjacent to $v_{1,1}, v_{3,1}$, and $v_{4,1}$, and the vertex $v_{1,1}$ is not adjacent to $v_{3,1}$ and $v_{4,1}$. Hence ($v_{1,1}, v_{2,2}, v_{3,1}$) and ($v_{1,1}, v_{2,2}, v_{4,1}$) are two 2 -geodesics in Γ. Thus there exists an automorphism $\sigma \in \operatorname{Aut} \Gamma$ such that $v_{1,1}^{\sigma}=v_{1,1}$ and $v_{3,1}^{\sigma}=v_{4,1}$. This is impossible since σ induces an automorphism of $\Gamma_{\mathcal{B}}$ and $1=d_{\Gamma_{\mathcal{B}}}\left(B_{1}, B_{3}\right) \neq d_{\Gamma_{\mathcal{B}}}\left(B_{1}, B_{4}\right)=2$.

References

[^1]2. Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (1993)
3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin, Heidelberg, New York (1989)
4. Corr, B., Jin, W., Schneider, C.: Finite two-distance-transitive graphs. J. Graph Theory (2017). https:// doi.org/10.1002/jgt. 22112
5. Devillers, A., Giudici, M., Li, C.H., Praeger, C.E.: Locally s-distance transitive graphs. J. Graph Theory 69(2), 176-197 (2012)
6. Devillers, A., Giudici, M., Li, C.H., Praeger, C.E.: Locally s-distance transitive graphs and pairwise transitive designs. J. Combin. Theory Ser. A 120, 1855-1870 (2013)
7. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: On normal 2-geodesic transitive Cayley graphs. J. Algebraic Combin. 39, 903-918 (2014)
8. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: Finite 2-geodesic transitive graphs of prime valency. J. Graph Theory 80, 18-27 (2015)
9. Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243-256 (1981)
10. Kovács, I.: Classifying arc-transitive circulants. J. Algebraic Combin. 20, 353-358 (2004)
11. Li, C.H.: Permutation groups with a cyclic regular subgroup and arc transitive circulants. J. Algebraic Combin. 21, 131-136 (2005)
12. Lim, T.K., Praeger, C.E.: On generalized Paley graphs and their automorphism groups. Michigan Math. J. 58, 293-308 (2009)
13. Miklavič, Š., Potočnik, P.: Distance-regular circulants. European J. Combin. 24(7), 777-784 (2003)
14. Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311-320 (1933)
15. Praeger, C.E.: An O'Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. 47(2), 227-239 (1993)
16. Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. 60, 207-220 (1999)
17. Sabidussi, G.: Vertex-transitive graphs. Monatsh. Math. 68, 426-438 (1964)
18. Xu, M.Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182, 309-319 (1998)

[^0]: Supported by NSF of China $(11661039,11231008,11771200,11561027)$ and NSF of Jiangxi (20171BAB201010, 20171BCB23046, GJJ170321).

 Wei Jin
 jinwei@jxufe.edu.cn
 Jiyong Chen
 cjy1988@pku.edu.cn
 Cai Heng Li
 lich@sustc.edu.cn

 1 School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
 2 School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, People's Republic of China

 3 Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, People's Republic of China

 4 Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China

[^1]: 1. Alspach, B., Conder, M., Marušič, D., Xu, M.Y.: A classification of 2-arc transitive circulants. J. Algebraic Combin. 5, 83-86 (1996)
