J Algebr Comb (2019) 49:179-191 @ CrossMark
https://doi.org/10.1007/510801-018-0825-3

On 2-distance-transitive circulants

Jiyong Chen! - Wei Jin?3 - Cai Heng Li*

Received: 17 March 2017 / Accepted: 9 April 2018 / Published online: 22 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract A complete classification is given of 2-distance-transitive circulants, which
shows that a 2-distance-transitive circulant is a cycle, a Paley graph of prime order,
a regular complete multipartite graph, or a regular complete bipartite graph of order
twice an odd integer minus a 1-factor.

Keywords 2-Distance-transitive - Circulant - Cayley graph

Supported by NSF of China (11661039,11231008,11771200,11561027) and NSF of Jiangxi
(20171BAB201010, 20171BCB23046, GJJ170321).

B Wei Jin
jinwei@jxufe.edu.cn

Jiyong Chen
cjy1988 @pku.edu.cn

Cai Heng Li
lich@sustc.edu.cn

School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of
China

2 School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013,
People’s Republic of China

3 Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang,
Jiangxi 330013, People’s Republic of China

4

Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055,
People’s Republic of China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-018-0825-3&domain=pdf

180 J Algebr Comb (2019) 49:179-191

1 Introduction

In this paper, all graphs are finite, simple, and undirected. An ordered pair of adjacent
vertices is called an arc. A graph I is called arc-transitive if all arcs are equivalent
under automorphisms of the graph. For a graph I" and two vertices u and v, the
distance between u and v in I" is denoted by d(u, v), which is the smallest length of
paths between u and v. The diameter diam(1") of I is the maximum distance occurring
over all pairs of vertices. An arc-transitive graph I is said to be 2-distance-transitive
if I" is not complete, and any two vertex pairs of vertices (u1, vy) and (u2, v2) with
d(uy,v1) = d(uz, v2) = 2 are equivalent under automorphisms.

A 2-arc is a triple of distinct vertices (u#, v, w) such that v is adjacent to both u
and w. A regular graph is called 2-arc-transitive if all 2-arcs are equivalent under
automorphisms. A 2-arc-transitive graph is obviously 2-distance-transitive.

The concept of 2-distance-transitive graph generalizes the concepts of distance-
transitive graph and 2-arc-transitive graph. Both distance-transitive graphs and 2-
arc-transitive graphs have been extensively studied, see [3,15]. The investigation of
2-distance-transitive graphs was initiated recently, see [4—6].

A vertex-transitive graph with n vertices is called a circulant if it has an automor-
phism of order n which acts freely on the set of vertices. Alspach et al. [1] classified
2-arc-transitive circulants; Miklavi¢ and Poto¢nik [13] classified distance-regular cir-
culants; Kovdcs [10] and Li [11] gave a characterization of arc-transitive circulants,
see Theorem 2.1. The purpose of this paper is to give a complete classification of
2-distance-transitive circulants, stated in the following main theorem.

Theorem 1.1 The class of 2-distance-transitive graphs consists of cycles, Paley
graphs of prime order, regular complete multipartite graphs, and regular complete
bipartite graphs of order twice an odd integer minus a 1-factor.

By definition, a 2-distance-transitive circulant is an arc-transitive circulant. Thus,
to prove Theorem 1.1, we only need to determine which of the arc-transitive circulants
described in [10, 11] are 2-distance-transitive. However, this is unexpectedly nontrivial
(see Lemmas 2.3-2.10), which motivates some interesting problems that we explain
below.

For a finite group G and a subset S of G such that 1 ¢ S and S = S~!, the Cayley
graph Cay(G, S) of G with respect to S is the graph with vertex set G and edge set
{{g.sg}| g € G,s € S}.Itisknown thata graph I is a Cayley graph of G if and only if
I" has an automorphism group which is isomorphic to G and regular on the vertex set,
see [2, Lemma 16.3] and [17]. For a Cayley graph I" = Cay(G, S), if G is a normal
subgroup of Autl”, then I is called a normal Cayley graph. The study of normal Cayley
graphs was initiated by Xu [18] and has been done under various additional conditions,
see [7,16]. A circulant is thus a Cayley graph of a cyclic group, and if further it is a
normal Cayley graph of a cyclic group, then it is called a normal circulant. Many inter-
esting examples of arc-transitive graphs and 2-arc-transitive graphs are constructed as
normal Cayley graphs, due to the fact that the arc-transitivity and 2-arc-transitivity of a
graph are equivalent to the local-transitivity and local-2-transitivity, respectively. The
status for 2-distance-transitive graphs is, however, different. To our best knowledge,
the known examples of 2-distance-transitive graphs are either distance-transitive or
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2-arc-transitive. For instance, 2-distance-transitive normal circulants are cycles and
Paley graphs by Theorem 1.1, which are distance-transitive. The following is a curious
question.

Question 1.2 Is there a normal Cayley graph which is 2-distance-transitive, but nei-
ther distance-transitive nor 2-arc-transitive ?

Another interesting problem is to characterize 2-distance-transitive Cayley graphs
of certain special classes of groups, such as abelian groups and metacyclic groups.

2 Proof

We first introduce the classification of arc-transitive circulants given in [10,11], which
we need to prove Theorem 1.1.

Let I = (V, E) be a connected graph with vertex set V and edge set E. Its
complement graph T is the graph with vertex V such that two vertices are adjacent in
T if and only if they are not adjacent in I". Let I'T1 = (Vq, E1) and I = (Va, E») be
two graphs. Then I" = I'{[I»] denotes the lexicographic product of I'y and I, where
the vertex set of I" is V| x V>, and two vertices (11, uz) and (vy, v2) are adjacent in
I' if either u; and v; are adjacent in I'1, or u1 = vy and u3, vy are adjacent in I>.

For a positive integer b, let K;, be the complete graph with b vertices. For a graph I,
the graph consisting of b vertex disjoint copies of I" is denoted by bI", and I'[K}, ]| —b I
is the graph whose vertex set is the same as I'[K},] and edge set equals the edge set of
I'[K}] minus the edge set of b1I".

Theorem 2.1 [11, Theorem 1.3] Let I" be a connected arc-transitive circulant of
order n which is not a complete graph. Then either

(1) I' is a normal circulant, or
(2) there exists an arc-transitive circulant X of order m such that mb = n with
b,m > 1and

r— { E[E], or
Z’[Kb] —bX, where (m,b) = 1.

Our proof of Theorem 1.1 is to analyze which graphs satisfying Theorem 2.1 are 2-
distance-transitive. We now describe all examples of 2-distance-transitive circulants,
which consist of cycles and the following three families:

Example 2.2 (1) Let I' = K] be a complete multipartite graph which has m parts
of size b. Clearly, Ky = K [Kp]. Then Autl” = Sp1S,, is 2-distance-transitive
on I" and has a cyclic subgroup which is regular on the vertex set. Thus I is a
2-distance-transitive circulant.

(2) Let I' = Kpp — bKo where b is an odd integer, namely, a complete bipartite
graph minus a 1-factor. Then I" is of valency » — 1 and of diameter 3, and
Autl” = S; x S, is distance-transitive and 2-arc-transitive. It follows that " is a
2-distance-transitive circulant.
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(3) Let ¢ = p® be a prime power such that ¢ = 1 (mod 4). Let I, be the finite
field of order g. Then the Paley graph P(q) is the graph with vertex set I, and
two distinct vertices u, v are adjacent if and only if u — v is a nonzero square
in F;. The congruence condition on g implies that —1 is a square in F,, and
hence P(g) is an undirected graph. This family of graphs was first defined by
Paley in 1933, see [14]. Note that the field I, has (g — 1)/2 elements which are
nonzero squares, so P(g) has valency (¢ — 1)/2. Moreover, P(g) is a Cayley
graph for the additive group G = ]Fjl‘ = Zf,. Let w be a primitive element of
F,. Then § = {wz, w, . wil = 1} is the set of nonzero squares of Fy, and
P(g) = Cay(G, S). If ¢ = p is a prime, then P(p) is a circulant of prime order.
By [12], AutP(p) = IF;,F : (wz). This implies that P(p) is a 2-distance-transitive
normal circulant.

Proof of Theorem 1.1 By Example 2.2, cycles, regular complete multipartite graphs,
regular complete bipartite graphs of order twice an odd integer minus a 1-factor, and
Paley graphs of prime order are all distance-transitive and so 2-distance-transitive.
Conversely, let I' = Cay(G, S) be a connected 2-distance-transitive circulant, and
G = Z,. Then I' is arc-transitive, and so I" satisfies Theorem 2.1. If I" is of valency
2,then I' = C,,. Assume that I" has valency at least 3. Since I is arc-transitive, either
I' is a normal circulant, or I" satisfies part (2) of Theorem 2.1. We shall treat these
two cases in two subsections, respectively. In Sect. 2.1, we prove that if I” is a normal
circulant, then I" is a Paley graph of prime order, stated in Lemma 2.8. In Sect. 2.2,
we deal with nonnormal circulants and show that, if I” is not a normal circulant, then
I' is a regular complete multipartite graph, or a regular complete bipartite graph of
order twice an odd integer minus a 1-factor. O

We now introduce a few notations which we will use later. For a graph I" and
a vertex v, we denote by I;(v) the i-th neighborhood of v in I', that is, the set of
vertices which are at distance i from v. A sequence of vertices vg, v1, ..., Vs is called
an s-geodesic if {v;, vi41} is an edge forall 0 < i < s — 1 and d(vg, vs) = 5. We
sometimes need to consider distances of the same pair of vertices in different graphs,
so let dr (u, v) denote the distance of u and v in the graph I".

2.1 2-Distance-transitive normal circulants

Consider the cyclic group

Let I' = Cay(G, S) be a connected 2-distance-transitive circulant of valency k > 3.
Then G = (S). Assume further that I" is a normal circulant. Let A = Autl", and let u
be the vertex of I" corresponding to the identity of the group G. Then I"(x) = S and
A = G:A,.By[9, Lemma2.1], we have

A, = Aut(G, S) = {o € Aut(G) | 7 = S}.
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Moreover, as Aut(G) is abelian and A, = Aut(G, S) is transitive and faithful on S, it
implies that A, is regular on S, and

|Aul =[S = k.

We establish a series of lemmas to prove that I” is a Paley graph.
Lemma 2.3 I has girth 3.

Proof Suppose that the girth of I" is greater than 4. Then, for each pair of vertices 6, 6’
with distance d (0, 0") = 2, there is a unique 2-arc between 0 and 6’. Hence I" being
2-distance-transitive implies that it is 2-arc-transitive. By the classification given in
[1, Theorem 1.1], the graph I" has girth 4, which is a contradiction.

Assume that " has girth 4. Then, for any vertex v € I"'(u) = §, we have |5 (1) N
I'(v)] = k — 1. Thus there are k(k — 1) edges between I'(u) and I»(u). Since
|A,| = k and A is 2-distance-transitive on I", we conclude that A, acts transitively
on I5(u), and the size |5 (u)| is a divisor of |A,| = k. Let w € I>(u) N I'(v).
Then |S N I'(w)| < |I'(w)| = k. Note that |[SN I'(w)| - |[I>(u)| = k(k — 1). Hence
ISNTC(w)] =k—1andk = | (u)| = |S|. It follows that | I3 (u) N T (w) |+ [T () N
'w) =1.8SetI'u) = {v =wvy,...,v}and () = {w = wy, ..., wg}. Let
LwyNTw) ={w,...,wg—1}and I'(w) N I'(w) = {v1, ..., Vgk—1}.

Assume that |I3(u) N I'(w)| = 0. Then |[I>(u) N I'(w)| = 1. Since I' is 2-
distance-transitive, the stabilizer A, is transitive on I>(u), so the induced subgraph
[[5(w)] = (k/2)K;. As I' has girth 4, it follows that [I>(u) N I'(v)] is an empty
graph, and so w is adjacent to wg. Thus [{wo, ..., wr—1}] = (k/2 — 1)K». However,
{wa, ..., wk—1} C In(u) N I'(v), contradicting the fact that [/5(u) N I'(v)] is an
empty graph. Therefore, |I3(u) N I'(w)| = 1, say I3(u) N I'(w) = {z}.

By the transitivity of A, on the set I"(«), we have [I5(u) N I'(vg)| = |[[2m) N
I'(v))| =k—1.Then I (u)NTI (vi) = {wa, ..., w} since vy and w; are not adjacent
in I". Note that (u, w), (v, z), (v, z) are all vertex pairs of distance 2 and I is 2-
distance-transitive. We have |I" (u) N I"(w)|, |’ (v) N T (z)| and |I" (vg) N I (z)] are all
equaltok—1.Hence I'(v)NI'(z) = I'(w)NI(u)and I' (vp) NI (z) = T'(vp) NI ().
Thus I'(z) = I»(u) and I'3(u) = {z}, so I" has diameter 3 and is distance-transitive.
Therefore, {u} U I'3(u) is a block of imprimitivity of Aut/” on the vertex set V, and
I' = Kis1.4+1 — (k + DKy. It is clear that Kgy1 x+1 — (kK + 1)K3 is not a normal
circulant, which is a contradiction. Hence the girth of " is 3. O

Lemma 2.4 The order |G| = n is odd.

Proof Suppose that |G| = n is an even integer. Since G = (S) and all elements of
S have the same order, it follows that S consists of generators of G. Without loss of
generality, we assume that g € S. By Lemma 2.3, I has girth 3. Then there is g’ € §
such that (g, g') is an arc of I". This implies that g'~! = g’¢~! belongs to set S.
Since I" is a normal circulant, each element in § is a generator of G. This means
that 1,7 — 1, i are all relatively prime to n. This contradicts the fact that  is an even
number. O

Lemma 2.5 The second neighborhood I'>(u) consists of generators of G.
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Proof Suppose that (1) contains an element which is not a generator of G. Then
|G| is not a prime. Since A, = Aut(G, S) is transitive on /3 (u), none of the elements
in I (u) is a generator.

As (S) = G and all elements of § are conjugate in Aut(G), we may assume that
g € S. By Lemma 2.4, the order |G| is an odd integer. Thus g is a generator, and
g% ¢ I>(u). Since g2 € I'(u) U I (u), g% € S = I'(u). Assume that g" € S where
r <n—3.Then ¢'t! = g"g € I'(u) U I (u). Thus either g"*! is a generator of
G and g"t! € S, or g"T! is not a generator and g’*! € I (u). Similarly, we have
g% = g"g% € I'(w)UIs(u). Therefore, either g" 72 is a generator of G and "2 € §,
or g"2 is not a generator and g" 2 € I (u).

Let p be the smallest prime divisor of n = |G|. Then g, g2,...,g"~! € S, and
gP € I»(u). Suppose that G is not a p-group. Let g be the second smallest prime
divisor of n. By the deduction above, we have g* € Sforany 1 < A < g — 1
with (A, p) = 1. Noting that p is coprime to at least one of ¢ —2 and g — 1. If p
and g — 2 are coprime, then g2 € S, so g9 = g972g%> € Ib(u), as g*> € S;if p
and ¢ — 1 are coprime, then g7~ ! € §,s0 g9 = g7 'g € I’ (u), as g € S. Thus,
g?isin I>(u). However I' is 2-distance-transitive and normal, which means that all
elements of I>(u) have the same order. This contradicts the fact that o(g”) # o(g9)
and g”, g9 € I>(u). Thus G is a p-group.

Suppose that |G| = p". If r > 3, then by a similar argument as the previous
paragraph, we have gA € Sforany 1 < A < p" — 1 with (A, p) = 1. Hence
gv, g”2 € I'>(u). This is impossible since o(g?) # o(gpz) and all elements of I (u)
have the same order.

Therefore, we get n = p?. Furthermore, S = {g*|1 < A < p> —1,(p, 1) = 1}
and () = {g"’]1 < u < p—1}. Thus I' = K.

Note that K[ 5] is not normal. We have that I () has no nongenerators of G. This
means [ () consists of generators of G. O

Let
R = I (u),

the second neighborhood of the vertex u (corresponding to the identity of G).

Lemma 2.6 The stabilizer A, is regular on R, and |R| = |S| divides p — 1 for each
prime divisor p of |G]|.

Proof Since A is 2-distance-transitive on I", A, is transitive on R = I>(u). As
A, = Aut(G, S) is abelian and R consists of generators of G, A, is faithful on R.
Thus A, is regular on R = I5(u), and so |R| = |A,| = |S].

Letn = pi'p?... pz‘, where p; < p» < --- < pg are distinct primes. Let
G = {x1) x -+ x {(xg), where o(x;) = pl{" for1 <i<fandg=xy...xs. Then

A, < Aut(G) = Aut({x1)) x - -+ x Aut({xg)).
Set

Bj = Aut((x1) x - x Aut((xj_1)) x Aut((xj41)) x - x Aut((x)).
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where 1 < j < €. We claim that A, N B; = {1} and A, = A,B;/B; < Lp;—1.

Assume that A, N B; # (1}. Then there exists o € A, N B; such that o # 1.
Hence g% = (x1...x¢)° = (X1...x;-1)°x;(xj41...x)°, and g°¢~! # 1 is not
a generator of G. Observing that g and g are in S, we have g°¢~' € SUR,
which contradicts the fact that all elements in S and R are generators of G. Hence
A, N Bj = {1} and

—1.

A, = A,Bj/B; < Aut((x;)) = Aut(Zptj) =~ Z(p,fl)p’,f
J E J

If p; divides |A,|, then there exists ¢ € A, such that o(o) = p;. Furthermore,
o it 1e(xl)xn-x(xj_l)x(xf’)x

x? =x

j j
(xj+1) X ... {x¢) is not a generator of G. This contradicts the fact that g°g 1 € SUR.
Therefore, A, < ij_l for 1 < j < £.Noting that A, actsregularly on S, | S| = |A,|.
Hence |S| divides p; — 1 for 1 <i < 4. O

# xj for some integer A. Thus g% g~

By virtue of Lemma 2.6, we can assume that

A, = (o) and g7 = g,
where A is coprime to n. Let g/ be an element of R and t be an automorphism of G
such that g* = g/*. Then (g")" = (g")* = g“z. Letk = |S| = |A,|. We have
S=g"" ={g.¢"¢".....g" ),
R=(gM) = (gh gt g, ... g ) =57,
RT = (g7 = (gM)70) = (¢#)0) = (g, gh™h gi™¥ L g ¥ ).

’

Let
Y =1TI" =Cay(G, S)" = Cay(G, S*) = Cay(G, R).

Then X' and I" are isomorphic. (Two graphs are isomorphic if there exists a bijection
between their vertex sets which preserves the adjacency and the nonadjacency.)

Lemma 2.7 Let x,y € G. Then dr(x, y) = 2 if and only if dr (xy~', u) = 2, and
the following conditions are equivalent:

() xy ' eR;
(i) ds(x,y) = 1;
(i) dr(x,y) =dr@y~' u) =2.

Proof For any y € G, let o1 be the right translation by y~!. Then oy-1 is an

automorphism of I" since I" is a Cayley graph of G. Thus for any x € G, we have
dr(x,y) =dr™" y») =droy™" .
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Noting that R = I>(u) = X (u), we have xy_1 € R if and only if dp(xy_l, u) =
dr(x,y) = 2. By the same argument, we also have xy~! € R if and only if
ds(y™hu) =ds(x,y) = 1. O

For two sets B, By, we use B LI B to denote B; U B, when By N By = (J. We
denote I'>;(u) = Ii(u) U T (u) U--- U Igiamr) ).

Lemma 2.8 The graph I' is a Paley graph P(p), where p = 1 (mod 4) is prime.

Proof By Lemma 2.5, I>(u) = R contains generators of G. If the diameter of I" is 2,
then all the elements in G \ {u} are generators of G, and so n is an odd prime p. By
Lemma 2.6, |S| = |R]|, so |S| = |R| = (p — 1)/2. Thus § is either the set of square
elements or the set of nonsquare elements of G \ {u}, and I is the Paley graph P(p),
see also [8, Lemma 2.2].

In the remainder, we suppose that I has diameter at least 3. Let (u, z, v, w) be
a 3-geodesic of I'. We set k = |S| = |R|, a1 = |I'(z) N S|, by = |I'(z) N R| and
¢y = |I'(v) N S]. Let N be the number of edges in I” with one end in S and the other
end in R. Then

N = b1|ZA”| =bik = C2|vA“| = crk.

Hence b) = ¢3.

Note that all S, R, and R" are orbits of A,. We will argue in two cases.

Case I R # S.

Since ¥p(u) = R* and R* # S, it follows that S € X >3(u). Thus, foreach y € R
and x € S, dx(x,y) # 1, and it follows from Lemma 2.7 that dr (x, y) # 2.

Let w € R". Then there exist vertices z € S and v € R, such that (1, v, w) and
(u, z, v) are 2-geodesics in X and I, respectively. Hence, by Lemma 2.7, dr (w, v) =
2 (Fig. 1).

Since I" is 2-distance-transitive, there exists n € A, such that 7 = w. Thus

bi=c=[l')NTw=Ie)NTwh =) NTw).

Since I'(v) N I'(w) € R U I'3(u), we have

k=Ir@|=[@NS+ W NRUIS@W)| > 2by. (D
r Y=1I7
bl Co //' . //' .
" 1 R R 'l/ T \\\ ‘l/ \\l
il ol
U L. | U a |
S R I>s(u) R R™  Yss3(u)

Fig.1 Casel
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For any x € SN I'(z), (v, z,x) is a 2-arc. Since df (v, x) # 2,dr(v,x) = 1 and
x € I'(v). Thus
{ZuSNr@)crwns )

and a; 4+ 1 < bj. Consider the valency of the vertex z, we have
k=|I@)|=1+a +b <2b. 3)
By inequalities (1) and (3), k = 2by, so (2) can be modified into
{Zu@NS)=Tw)NS. 4)
By the same deduction, for any y € I'(z) N R, we have
{Zu@nNs) =rins. (%)
Similarly, foreachx e I'(z)NS C I'(v)N S,
xjur NS =rwNS={z}uSNIk). 6)

Equalities (5) and (6) indicate that foreach x € I'(z)\{u}, I'(x)NS C {z}u(I"(2)NS).

Letz € S\ ({z} U I'(2)). Then dr(z,z") = 2. There is an automorphism n € A
such that z7 = u and (/)" = v. Let (z, x, z/) bea2-arcin I". Then 7’ € I'(x) N S and
x € I'(z). Thus x = u and

Il=Fr@QNIE) =Iwnr @ =b.

Hence k = 2. This contradicts the assumption that I" has valency at least 3.

Case 2 R* = S.

Since R* = §, it follows that I'>3(u) = ¥>3(u). Foreachx € Rand y € X>3(u),
we have dx(x,y) # 1. This implies dr(x,y) # 2. Thus I'>3(u) = I3(u) and
diam(I") = 3 (Fig. 2).

r by
;’bl Czybz 03. o o
1 | 2 | 3 2
U U
S R [s(u) R S Yi3(u)

Fig.2 Case2
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Letw € I'3(u). Thenthereexistz € S, v € R such that (u, z, v, w) is a 3-geodesic.
Let

by =|I'w)NI3@w)l, c3=|I"(w) N R,
a=|I"W)NR|, a3 =|I"(w) N T3]

Thenk =14a1+ by =a+br+cr =az +c3.
Let p be the smallest prime factor of 7, and let N’ be the number of edges in I”
with one end in R and the other end in I’3(u). Then
k(k—1)> N =kby > |I3(u)| =n — 2k — 1.
Hence n < k*>+k+ 1. By Lemma 2.6, k is a divisor of p— 1, and thus k+1 < p+ 1.
Thenn < k*4+k+1=k(k+1)+1 < (p—1(p+1)+1= p? andson isa prime.
This implies that w is also a generator of G and |w4+| = |A,| = k. Furthermore,

N’ = |v2|by = kby > |w™*|c3 = kc3.

This means
c3 < bs. @)

For any x € I'(w) N I'3(u), (v, w, x) is a 2-arc. Since dr (v, x) # 2, we have
dr(v,x) =1and x € I'(v). Thus

{whu (I'(w) N I3) € T'(v) N 50,

and
az+ 1< by (3)

By inequalities (7) and (8), we have
k=c3+a3 <by+by—1. ©)]
For any x € S\ {z}, (z,u, x) isa2-arcin I", and dr (z, x) < 2. Thus
S={zju@NSur@)NSI).
Note that I>(z) NS = X(z) N S and
IZ@NSI=I5" G NS | =IFW)NRI=a

for some v’ € R where the graph isomorphism 7 is defined in the paragraph before
Lemma 2.7. We have

k=14T@QNS|+ NRE@NS| =1+ [FT@NS|+[S@ NS =1+a +a.
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Hencek =1+a; + by =14 ay + az, and
bl =daj. (10)
Foranyx € I'(z2) N S, (v, z, x) isa 2-arc in I". Thus we have dr (x, v) < 2. Then

{Zu@NS ST NSHuUr(w)NS)
= () NS)L(Zw)NS)

and
1 +ay < by +by.
Thus by =k — (1 +ay) > k — 2b; = by. By inequality (9),
k=2b1+by>2by—12>k.

This is a contradiction.
Therefore, I" is of diameter 2, and is a Paley graph as observed above. O

2.2 2-Distance-transitive nonnormal circulants

Let I' = (V, E) be an arc-transitive circulant which is not a normal circulant. By
Theorem 2.1, there exists an arc-transitive circulant X' of order m such that mb = n,
and

I ) K;,], or
| Z[Kp] —bX, where (m, b) = 1.

We next determine which of these graphs are 2-distance-transitive.

The vertex set V of I" is partitioned into m parts of size b, and thus we may label
the vertices as

V=_v;l1<i<m, 1<j<b}
such that
Bi :={vi1,vi2,...,vip}, Wwhere ] <i <m

are blocks for Autl". Let B = {By, Ba, ..., By}, the corresponding block system
for AutI” acting on V. The quotient graph I'g is the graph with vertex set Vg = B
such that two vertices By, By € B are adjacent if and only if there exist u; € Bj

and u» € B> which are adjacent in I". Then I'p = X, and each element g € Autl”
naturally induces a permutation g on set 3 which is an automorphism of the graph I's.
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Lemma 2.9 Let u be an arbitrary vertex in I'. Then, except for the case I’ = X[Ky]—
2%, the subset {u} U In(u) C V is a block of size b.

Proof 1t is clear that By is a block of size b for Aut/". Without loss of generality,
set u = vy,1, since I" is vertex-transitive. Thus, we only need to show that B) =
{u} U Iy (u). o

Letw = vy € B;. Wehave dr (1, w) > 2 since the induced subgraph [B;] = K.
Suppose that By, B, are two vertices of I'g which are adjacent. If I = X [Kp], then
(u, v2,1, w)isa2-geodesicof I'. If I = Y[Kp]—bX, where b > 3, then (u, v2.3, W)
is a 2-geodesic of I". Thus in either case, w € I2(u). By the same deduction, for any
w’ € By \ {u}, we have w’ € I';(u). Hence By C {u} U I'>(u).

Let A = Autl" and A, be the stabilizer of vertex u. Since I" is 2-distance-transitive
and B is a block of V for A, we have w4« = I5(u) € By. Thus {u} U Ih(u) = By,
and it is a block of size b on V for A. O

Lemma 2.10 Let I' be a 2-distance-transitive circulant which is not a normal circu-
lant. Then I' = K151 or Kp p, — bKos.

Proof Assume first that m = 2. Since I" is of valency at least 3 by our assumption,
eitherb > 3and I' = Kpp,orb > Sand I' = KZ[K_;,] — bKy = Kp p — DKy, We
next consider the case where m > 3.

Assume that I' = X[K,] with m > 3. Letu = vy, € Bj. By Lemma 2.9,
{u} U I>(u) = By is a block for A = Autl". Thus there is no vertex w € V \ By at
distance 2 with u in I". It follows that ¥ is a complete graph, and so I' = X[K,] =
Km[h]~ o

Now, let I' = X[Kp] — bX withm > 3 and b > 3. Again, by Lemma 2.9,
{u} U I(u) = By is ablock for A = Autl". Similarly, there is no vertex w € V \ B
at distance 2 with # in I", and ¥ is a complete graph. Therefore, (u, v22,v3,1) is a
2-geodesic in I". This contradicts the fact that v3,; ¢ By = {u} U I2(u).

Finally, assume that I’ = ¥ [K_z] — 2% with m > 3. According to Lemma 2.1,
m is relatively prime to b. Hence m is an odd integer. If X' is a complete graph, then
I' = Kju2) — 2Ky, Note that K,,;;2; — 2K,,, is isomorphic to Kp(,,) — mK>. We have
I' = Kyp[;n) —mKy. If X' is not a complete graph, then it is clear that the quotient graph
Iz is also 2-distance-transitive. By the argument above we have ' is isomorphic
to Cy, P(p), or K,yjp;. When p = 5, the Paley graph P(5) is isomorphic to Cs.
If I's = C,, then ' = Cy,, is normal, a contradiction. If I'g = P(p) for p > 5,
there is a triangle in I'z. If I's = K131, then there exists a triangle in I’z too. In
either case, let (Bj, B2, B3) be a triangle in I'g and (B, B2, Bs4) be a 2-geodesic in
I's. Since I' = X [K;] — 2%, it follows that the vertex v 2 1s adjacent to vy 1, V3,1,
and vg4,1, and the vertex vy, is not adjacent to v3 | and v4 1. Hence (vy,1, v2,2, v3,1)
and (v1,1, v2,2, v4,1) are two 2-geodesics in I". Thus there exists an automorphism
o € Autl” such that 07,1 = v1,1 and vg’l = v4,1. This is impossible since ¢ induces
an automorphism of I'z and 1 = dr;(B1, B3) # dr;(B1, Bs) = 2. O
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