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Abstract A complete classification is given of 2-distance-transitive circulants, which
shows that a 2-distance-transitive circulant is a cycle, a Paley graph of prime order,
a regular complete multipartite graph, or a regular complete bipartite graph of order
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1 Introduction

In this paper, all graphs are finite, simple, and undirected. An ordered pair of adjacent
vertices is called an arc. A graph Γ is called arc-transitive if all arcs are equivalent
under automorphisms of the graph. For a graph Γ and two vertices u and v, the
distance between u and v in Γ is denoted by d(u, v), which is the smallest length of
paths between u and v. The diameter diam(Γ ) ofΓ is themaximumdistance occurring
over all pairs of vertices. An arc-transitive graph Γ is said to be 2-distance-transitive
if Γ is not complete, and any two vertex pairs of vertices (u1, v1) and (u2, v2) with
d(u1, v1) = d(u2, v2) = 2 are equivalent under automorphisms.

A 2-arc is a triple of distinct vertices (u, v, w) such that v is adjacent to both u
and w. A regular graph is called 2-arc-transitive if all 2-arcs are equivalent under
automorphisms. A 2-arc-transitive graph is obviously 2-distance-transitive.

The concept of 2-distance-transitive graph generalizes the concepts of distance-
transitive graph and 2-arc-transitive graph. Both distance-transitive graphs and 2-
arc-transitive graphs have been extensively studied, see [3,15]. The investigation of
2-distance-transitive graphs was initiated recently, see [4–6].

A vertex-transitive graph with n vertices is called a circulant if it has an automor-
phism of order n which acts freely on the set of vertices. Alspach et al. [1] classified
2-arc-transitive circulants; Miklavič and Potočnik [13] classified distance-regular cir-
culants; Kovács [10] and Li [11] gave a characterization of arc-transitive circulants,
see Theorem 2.1. The purpose of this paper is to give a complete classification of
2-distance-transitive circulants, stated in the following main theorem.

Theorem 1.1 The class of 2-distance-transitive graphs consists of cycles, Paley
graphs of prime order, regular complete multipartite graphs, and regular complete
bipartite graphs of order twice an odd integer minus a 1-factor.

By definition, a 2-distance-transitive circulant is an arc-transitive circulant. Thus,
to prove Theorem 1.1, we only need to determine which of the arc-transitive circulants
described in [10,11] are 2-distance-transitive. However, this is unexpectedly nontrivial
(see Lemmas 2.3–2.10), which motivates some interesting problems that we explain
below.

For a finite group G and a subset S of G such that 1 /∈ S and S = S−1, the Cayley
graph Cay(G, S) of G with respect to S is the graph with vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. It is known that a graphΓ is a Cayley graph ofG if and only if
Γ has an automorphism group which is isomorphic to G and regular on the vertex set,
see [2, Lemma 16.3] and [17]. For a Cayley graph Γ = Cay(G, S), if G is a normal
subgroupofAutΓ , thenΓ is called anormalCayley graph. The studyof normalCayley
graphs was initiated byXu [18] and has been done under various additional conditions,
see [7,16]. A circulant is thus a Cayley graph of a cyclic group, and if further it is a
normal Cayley graph of a cyclic group, then it is called a normal circulant. Many inter-
esting examples of arc-transitive graphs and 2-arc-transitive graphs are constructed as
normal Cayley graphs, due to the fact that the arc-transitivity and 2-arc-transitivity of a
graph are equivalent to the local-transitivity and local-2-transitivity, respectively. The
status for 2-distance-transitive graphs is, however, different. To our best knowledge,
the known examples of 2-distance-transitive graphs are either distance-transitive or
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2-arc-transitive. For instance, 2-distance-transitive normal circulants are cycles and
Paley graphs by Theorem 1.1, which are distance-transitive. The following is a curious
question.

Question 1.2 Is there a normal Cayley graph which is 2-distance-transitive, but nei-
ther distance-transitive nor 2-arc-transitive?

Another interesting problem is to characterize 2-distance-transitive Cayley graphs
of certain special classes of groups, such as abelian groups and metacyclic groups.

2 Proof

We first introduce the classification of arc-transitive circulants given in [10,11], which
we need to prove Theorem 1.1.

Let Γ = (V, E) be a connected graph with vertex set V and edge set E . Its
complement graph Γ is the graph with vertex V such that two vertices are adjacent in
Γ if and only if they are not adjacent in Γ . Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be
two graphs. Then Γ = Γ1[Γ2] denotes the lexicographic product of Γ1 and Γ2, where
the vertex set of Γ is V1 × V2, and two vertices (u1, u2) and (v1, v2) are adjacent in
Γ if either u1 and v1 are adjacent in Γ1, or u1 = v1 and u2, v2 are adjacent in Γ2.

For a positive integer b, let Kb be the complete graph with b vertices. For a graph Γ ,
the graph consisting of b vertex disjoint copies ofΓ is denoted by bΓ , andΓ [Kb]−bΓ
is the graph whose vertex set is the same as Γ [Kb] and edge set equals the edge set of
Γ [Kb] minus the edge set of bΓ .

Theorem 2.1 [11, Theorem 1.3] Let Γ be a connected arc-transitive circulant of
order n which is not a complete graph. Then either

(1) Γ is a normal circulant, or
(2) there exists an arc-transitive circulant Σ of order m such that mb = n with

b,m > 1 and

Γ =
{

Σ
[
Kb

]
, or

Σ
[
Kb

] − bΣ, where (m, b) = 1.

Our proof of Theorem 1.1 is to analyze which graphs satisfying Theorem 2.1 are 2-
distance-transitive. We now describe all examples of 2-distance-transitive circulants,
which consist of cycles and the following three families:

Example 2.2 (1) Let Γ = Km[b] be a complete multipartite graph which has m parts
of size b. Clearly, Km[b] = Km[Kb]. Then AutΓ = Sb �Sm is 2-distance-transitive
on Γ and has a cyclic subgroup which is regular on the vertex set. Thus Γ is a
2-distance-transitive circulant.

(2) Let Γ = Kb,b − bK2 where b is an odd integer, namely, a complete bipartite
graph minus a 1-factor. Then Γ is of valency b − 1 and of diameter 3, and
AutΓ = Sb × S2 is distance-transitive and 2-arc-transitive. It follows that Γ is a
2-distance-transitive circulant.
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(3) Let q = pe be a prime power such that q ≡ 1 (mod 4). Let Fq be the finite
field of order q. Then the Paley graph P(q) is the graph with vertex set Fq , and
two distinct vertices u, v are adjacent if and only if u − v is a nonzero square
in Fq . The congruence condition on q implies that −1 is a square in Fq , and
hence P(q) is an undirected graph. This family of graphs was first defined by
Paley in 1933, see [14]. Note that the field Fq has (q − 1)/2 elements which are
nonzero squares, so P(q) has valency (q − 1)/2. Moreover, P(q) is a Cayley
graph for the additive group G = F

+
q

∼= Z
e
p. Let w be a primitive element of

Fq . Then S = {w2, w4, . . . , wq−1 = 1} is the set of nonzero squares of Fq , and
P(q) = Cay(G, S). If q = p is a prime, then P(p) is a circulant of prime order.
By [12], AutP(p) = F

+
p : 〈w2〉. This implies that P(p) is a 2-distance-transitive

normal circulant.

Proof of Theorem 1.1 By Example 2.2, cycles, regular complete multipartite graphs,
regular complete bipartite graphs of order twice an odd integer minus a 1-factor, and
Paley graphs of prime order are all distance-transitive and so 2-distance-transitive.

Conversely, let Γ = Cay(G, S) be a connected 2-distance-transitive circulant, and
G ∼= Zn . Then Γ is arc-transitive, and so Γ satisfies Theorem 2.1. If Γ is of valency
2, then Γ ∼= Cn . Assume that Γ has valency at least 3. Since Γ is arc-transitive, either
Γ is a normal circulant, or Γ satisfies part (2) of Theorem 2.1. We shall treat these
two cases in two subsections, respectively. In Sect. 2.1, we prove that if Γ is a normal
circulant, then Γ is a Paley graph of prime order, stated in Lemma 2.8. In Sect. 2.2,
we deal with nonnormal circulants and show that, if Γ is not a normal circulant, then
Γ is a regular complete multipartite graph, or a regular complete bipartite graph of
order twice an odd integer minus a 1-factor. �	

We now introduce a few notations which we will use later. For a graph Γ and
a vertex v, we denote by Γi (v) the i-th neighborhood of v in Γ , that is, the set of
vertices which are at distance i from v. A sequence of vertices v0, v1, . . . , vs is called
an s-geodesic if {vi , vi+1} is an edge for all 0 � i � s − 1 and d(v0, vs) = s. We
sometimes need to consider distances of the same pair of vertices in different graphs,
so let dΓ (u, v) denote the distance of u and v in the graph Γ .

2.1 2-Distance-transitive normal circulants

Consider the cyclic group

G = 〈g〉 ∼= Zn .

Let Γ = Cay(G, S) be a connected 2-distance-transitive circulant of valency k � 3.
Then G = 〈S〉. Assume further that Γ is a normal circulant. Let A = AutΓ , and let u
be the vertex of Γ corresponding to the identity of the group G. Then Γ (u) = S and
A = G:Au . By [9, Lemma2.1], we have

Au = Aut(G, S) = {σ ∈ Aut(G) | Sσ = S}.

123



J Algebr Comb (2019) 49:179–191 183

Moreover, as Aut(G) is abelian and Au = Aut(G, S) is transitive and faithful on S, it
implies that Au is regular on S, and

|Au | = |S| = k.

We establish a series of lemmas to prove that Γ is a Paley graph.

Lemma 2.3 Γ has girth 3.

Proof Suppose that the girth ofΓ is greater than 4. Then, for each pair of vertices θ, θ ′
with distance d(θ, θ ′) = 2, there is a unique 2-arc between θ and θ ′. Hence Γ being
2-distance-transitive implies that it is 2-arc-transitive. By the classification given in
[1, Theorem 1.1], the graph Γ has girth 4, which is a contradiction.

Assume that Γ has girth 4. Then, for any vertex v ∈ Γ (u) = S, we have |Γ2(u) ∩
Γ (v)| = k − 1. Thus there are k(k − 1) edges between Γ (u) and Γ2(u). Since
|Au | = k and A is 2-distance-transitive on Γ , we conclude that Au acts transitively
on Γ2(u), and the size |Γ2(u)| is a divisor of |Au | = k. Let w ∈ Γ2(u) ∩ Γ (v).
Then |S ∩ Γ (w)| � |Γ (w)| = k. Note that |S ∩ Γ (w)| · |Γ2(u)| = k(k − 1). Hence
|S∩Γ (w)| = k−1 and k = |Γ2(u)| = |S|. It follows that |Γ3(u)∩Γ (w)|+ |Γ2(u)∩
Γ (w)| = 1. Set Γ (u) = {v = v1, . . . , vk} and Γ2(u) = {w = w1, . . . , wk}. Let
Γ2(u) ∩ Γ (v) = {w1, . . . , wk−1} and Γ (u) ∩ Γ (w) = {v1, . . . , vk−1}.

Assume that |Γ3(u) ∩ Γ (w)| = 0. Then |Γ2(u) ∩ Γ (w)| = 1. Since Γ is 2-
distance-transitive, the stabilizer Au is transitive on Γ2(u), so the induced subgraph
[Γ2(u)] ∼= (k/2)K2. As Γ has girth 4, it follows that [Γ2(u) ∩ Γ (v)] is an empty
graph, and so w1 is adjacent to wk . Thus [{w2, . . . , wk−1}] ∼= (k/2− 1)K2. However,
{w2, . . . , wk−1} ⊂ Γ2(u) ∩ Γ (v), contradicting the fact that [Γ2(u) ∩ Γ (v)] is an
empty graph. Therefore, |Γ3(u) ∩ Γ (w)| = 1, say Γ3(u) ∩ Γ (w) = {z}.

By the transitivity of Au on the set Γ (u), we have |Γ2(u) ∩ Γ (vk)| = |Γ2(u) ∩
Γ (v1)| = k−1. ThenΓ2(u)∩Γ (vk) = {w2, . . . , wk} since vk andw1 are not adjacent
in Γ . Note that (u, w), (v, z), (vk, z) are all vertex pairs of distance 2 and Γ is 2-
distance-transitive. We have |Γ (u)∩Γ (w)|, |Γ (v)∩Γ (z)| and |Γ (vk)∩Γ (z)| are all
equal to k−1.HenceΓ (v)∩Γ (z) = Γ (v)∩Γ2(u) andΓ (vk)∩Γ (z) = Γ (vk)∩Γ2(u).
Thus Γ (z) = Γ2(u) and Γ3(u) = {z}, so Γ has diameter 3 and is distance-transitive.
Therefore, {u} ∪ Γ3(u) is a block of imprimitivity of AutΓ on the vertex set V , and
Γ ∼= Kk+1,k+1 − (k + 1)K2. It is clear that Kk+1,k+1 − (k + 1)K2 is not a normal
circulant, which is a contradiction. Hence the girth of Γ is 3. �	
Lemma 2.4 The order |G| = n is odd.

Proof Suppose that |G| = n is an even integer. Since G = 〈S〉 and all elements of
S have the same order, it follows that S consists of generators of G. Without loss of
generality, we assume that g ∈ S. By Lemma 2.3, Γ has girth 3. Then there is gi ∈ S
such that (g, gi ) is an arc of Γ . This implies that gi−1 = gi g−1 belongs to set S.
Since Γ is a normal circulant, each element in S is a generator of G. This means
that 1, i − 1, i are all relatively prime to n. This contradicts the fact that n is an even
number. �	
Lemma 2.5 The second neighborhood Γ2(u) consists of generators of G.
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Proof Suppose that Γ2(u) contains an element which is not a generator of G. Then
|G| is not a prime. Since Au = Aut(G, S) is transitive on Γ2(u), none of the elements
in Γ2(u) is a generator.

As 〈S〉 = G and all elements of S are conjugate in Aut(G), we may assume that
g ∈ S. By Lemma 2.4, the order |G| is an odd integer. Thus g2 is a generator, and
g2 /∈ Γ2(u). Since g2 ∈ Γ (u) ∪ Γ2(u), g2 ∈ S = Γ (u). Assume that gr ∈ S where
r � n − 3. Then gr+1 = gr g ∈ Γ (u) ∪ Γ2(u). Thus either gr+1 is a generator of
G and gr+1 ∈ S, or gr+1 is not a generator and gr+1 ∈ Γ2(u). Similarly, we have
gr+2 = gr g2 ∈ Γ (u)∪Γ2(u). Therefore, either gr+2 is a generator ofG and gr+2 ∈ S,
or gr+2 is not a generator and gr+2 ∈ Γ2(u).

Let p be the smallest prime divisor of n = |G|. Then g, g2, . . . , gp−1 ∈ S, and
gp ∈ Γ2(u). Suppose that G is not a p-group. Let q be the second smallest prime
divisor of n. By the deduction above, we have gλ ∈ S for any 1 � λ � q − 1
with (λ, p) = 1. Noting that p is coprime to at least one of q − 2 and q − 1. If p
and q − 2 are coprime, then gq−2 ∈ S, so gq = gq−2g2 ∈ Γ2(u), as g2 ∈ S; if p
and q − 1 are coprime, then gq−1 ∈ S, so gq = gq−1g ∈ Γ2(u), as g ∈ S. Thus,
gq is in Γ2(u). However Γ is 2-distance-transitive and normal, which means that all
elements of Γ2(u) have the same order. This contradicts the fact that o(gp) �= o(gq)
and gp, gq ∈ Γ2(u). Thus G is a p-group.

Suppose that |G| = pr . If r � 3, then by a similar argument as the previous
paragraph, we have gλ ∈ S for any 1 � λ � pr − 1 with (λ, p) = 1. Hence
gp, gp2 ∈ Γ2(u). This is impossible since o(gp) �= o(gp2) and all elements of Γ2(u)

have the same order.
Therefore, we get n = p2. Furthermore, S = {gλ|1 � λ � p2 − 1, (p, λ) = 1}

and Γ2(u) = {gμp|1 � μ � p − 1}. Thus Γ ∼= Kp[p].
Note that Kp[p] is not normal. We have that Γ2(u) has no nongenerators of G. This

means Γ2(u) consists of generators of G. �	
Let

R = Γ2(u),

the second neighborhood of the vertex u (corresponding to the identity of G).

Lemma 2.6 The stabilizer Au is regular on R, and |R| = |S| divides p − 1 for each
prime divisor p of |G|.
Proof Since A is 2-distance-transitive on Γ , Au is transitive on R = Γ2(u). As
Au = Aut(G, S) is abelian and R consists of generators of G, Au is faithful on R.
Thus Au is regular on R = Γ2(u), and so |R| = |Au | = |S|.

Let n = pt11 pt22 . . . pt�� , where p1 < p2 < · · · < p� are distinct primes. Let
G = 〈x1〉 × · · · × 〈x�〉, where o(xi ) = ptii for 1 � i � � and g = x1 . . . x�. Then

Au � Aut(G) = Aut(〈x1〉) × · · · × Aut(〈x�〉).
Set

Bj = Aut(〈x1〉) × · · · × Aut(〈x j−1〉) × Aut(〈x j+1〉) × · · · × Aut(〈x�〉),
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where 1 � j � �. We claim that Au ∩ Bj = {1} and Au ∼= Au B j/Bj � Zp j−1.
Assume that Au ∩ Bj �= {1}. Then there exists σ ∈ Au ∩ Bj such that σ �= 1.

Hence gσ = (x1 . . . x�)
σ = (x1 . . . x j−1)

σ x j (x j+1 . . . x�)
σ , and gσ g−1 �= 1 is not

a generator of G. Observing that g and gσ are in S, we have gσ g−1 ∈ S ∪ R,
which contradicts the fact that all elements in S and R are generators of G. Hence
Au ∩ Bj = {1} and

Au ∼= AuB j/Bj � Aut(〈x j 〉) ∼= Aut(Z
p
t j
j
) ∼= Z

(p j−1)p
t j−1

j

.

If p j divides |Au |, then there exists σ ∈ Au such that o(σ ) = p j . Furthermore,

xσ
j = x

λp j+1
j �= x j for some integer λ. Thus gσ g−1 ∈ 〈x1〉 × · · · × 〈x j−1〉 × 〈x p j

j 〉 ×
〈x j+1〉× . . . 〈x�〉 is not a generator of G. This contradicts the fact that gσ g−1 ∈ S∪ R.
Therefore, Au � Zp j−1 for 1 � j � �. Noting that Au acts regularly on S, |S| = |Au |.
Hence |S| divides pi − 1 for 1 � i � �. �	

By virtue of Lemma 2.6, we can assume that

Au = 〈σ 〉 and gσ = gλ,

where λ is coprime to n. Let gμ be an element of R and τ be an automorphism of G
such that gτ = gμ. Then (gμ)τ = (gτ )μ = gμ2

. Let k = |S| = |Au |. We have

S = g〈σ 〉 = {g, gλ, gλ2 , . . . , gλk−1},
R = (gμ)〈σ 〉 = {gμ, gμλ, gμλ2 , . . . , gμλk−1} = Sτ ,

Rτ = (gμ)〈σ 〉τ = (gμ)τ 〈σ 〉 = (gμ2
)〈σ 〉 = {gμ2

, gμ2λ, gμ2λ2 , . . . , gμ2λk−1}.

Let

Σ = Γ τ = Cay(G, S)τ = Cay(G, Sτ ) = Cay(G, R).

Then Σ and Γ are isomorphic. (Two graphs are isomorphic if there exists a bijection
between their vertex sets which preserves the adjacency and the nonadjacency.)

Lemma 2.7 Let x, y ∈ G. Then dΓ (x, y) = 2 if and only if dΓ (xy−1, u) = 2, and
the following conditions are equivalent:

(i) xy−1 ∈ R;
(ii) dΣ(x, y) = 1;
(iii) dΓ (x, y) = dΓ (xy−1, u) = 2.

Proof For any y ∈ G, let σy−1 be the right translation by y−1. Then σy−1 is an
automorphism of Γ since Γ is a Cayley graph of G. Thus for any x ∈ G, we have

dΓ (x, y) = dΓ (xσy−1 , yσy−1 ) = dΓ (xy−1, u).
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Noting that R = Γ2(u) = Σ(u), we have xy−1 ∈ R if and only if dΓ (xy−1, u) =
dΓ (x, y) = 2. By the same argument, we also have xy−1 ∈ R if and only if
dΣ(xy−1, u) = dΣ(x, y) = 1. �	

For two sets B1, B2, we use B1 	 B2 to denote B1 ∪ B2 when B1 ∩ B2 = ∅. We
denote Γ�i (u) = Γi (u) ∪ Γi+1(u) ∪ · · · ∪ Γdiam(Γ )(u).

Lemma 2.8 The graph Γ is a Paley graph P(p), where p ≡ 1 (mod 4) is prime.

Proof By Lemma 2.5, Γ2(u) = R contains generators of G. If the diameter of Γ is 2,
then all the elements in G \ {u} are generators of G, and so n is an odd prime p. By
Lemma 2.6, |S| = |R|, so |S| = |R| = (p − 1)/2. Thus S is either the set of square
elements or the set of nonsquare elements of G \ {u}, and Γ is the Paley graph P(p),
see also [8, Lemma 2.2].

In the remainder, we suppose that Γ has diameter at least 3. Let (u, z, v, w) be
a 3-geodesic of Γ . We set k = |S| = |R|, a1 = |Γ (z) ∩ S|, b1 = |Γ (z) ∩ R| and
c2 = |Γ (v) ∩ S|. Let N be the number of edges in Γ with one end in S and the other
end in R. Then

N = b1|zAu | = b1k = c2|vAu | = c2k.

Hence b1 = c2.
Note that all S, R, and Rτ are orbits of Au . We will argue in two cases.
Case 1 Rτ �= S.
Since 	2(u) = Rτ and Rτ �= S, it follows that S ⊆ 	�3(u). Thus, for each y ∈ R

and x ∈ S, d	(x, y) �= 1, and it follows from Lemma 2.7 that dΓ (x, y) �= 2.
Let w ∈ Rτ . Then there exist vertices z ∈ S and v ∈ R, such that (u, v, w) and

(u, z, v) are 2-geodesics in	 and Γ , respectively. Hence, by Lemma 2.7, dΓ (w, v) =
2 (Fig. 1).

Since Γ is 2-distance-transitive, there exists η ∈ Av such that uη = w. Thus

b1 = c2 = |Γ (v) ∩ Γ (u)| = |Γ (vη) ∩ Γ (uη)| = |Γ (v) ∩ Γ (w)|.

Since Γ (v) ∩ Γ (w) ⊆ R ∪ Γ3(u), we have

k = |Γ (v)| = |Γ (v) ∩ S| + |Γ (v) ∩ (R ∪ Γ3(u))| � 2b1. (1)

Fig. 1 Case 1
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For any x ∈ S ∩ Γ (z), (v, z, x) is a 2-arc. Since dΓ (v, x) �= 2, dΓ (v, x) = 1 and
x ∈ Γ (v). Thus

{z} 	 (S ∩ Γ (z)) ⊆ Γ (v) ∩ S (2)

and a1 + 1 � b1. Consider the valency of the vertex z, we have

k = |Γ (z)| = 1 + a1 + b1 � 2b1. (3)

By inequalities (1) and (3), k = 2b1, so (2) can be modified into

{z} 	 (Γ (z) ∩ S) = Γ (v) ∩ S. (4)

By the same deduction, for any y ∈ Γ (z) ∩ R, we have

{z} 	 (Γ (z) ∩ S) = Γ (y) ∩ S. (5)

Similarly, for each x ∈ Γ (z) ∩ S ⊂ Γ (v) ∩ S,

{x} 	 (Γ (x) ∩ S) = Γ (v) ∩ S = {z} 	 (S ∩ Γ (z)). (6)

Equalities (5) and (6) indicate that for each x ∈ Γ (z)\{u},Γ (x)∩S ⊂ {z}	(Γ (z)∩S).
Let z′ ∈ S \ ({z} ∪ Γ (z)). Then dΓ (z, z′) = 2. There is an automorphism η ∈ A

such that zη = u and (z′)η = v. Let (z, x, z′) be a 2-arc in Γ . Then z′ ∈ Γ (x)∩ S and
x ∈ Γ (z). Thus x = u and

1 = |Γ (z) ∩ Γ (z′)| = |Γ (u) ∩ Γ (v)| = b1.

Hence k = 2. This contradicts the assumption that Γ has valency at least 3.
Case 2 Rτ = S.

Since Rτ = S, it follows that Γ�3(u) = 	�3(u). For each x ∈ R and y ∈ 	�3(u),
we have d	(x, y) �= 1. This implies dΓ (x, y) �= 2. Thus Γ�3(u) = Γ3(u) and
diam(Γ ) = 3 (Fig. 2).

Fig. 2 Case 2
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Letw ∈ Γ3(u). Then there exist z ∈ S, v ∈ R such that (u, z, v, w) is a 3-geodesic.
Let

b2 = |Γ (v) ∩ Γ3(u)|, c3 = |Γ (w) ∩ R|,
a2 = |Γ (v) ∩ R|, a3 = |Γ (w) ∩ Γ3(u)|.

Then k = 1 + a1 + b1 = a2 + b2 + c2 = a3 + c3.
Let p be the smallest prime factor of n, and let N ′ be the number of edges in Γ

with one end in R and the other end in Γ3(u). Then

k(k − 1) � N ′ = kb2 � |Γ3(u)| = n − 2k − 1.

Hence n � k2 + k+1. By Lemma 2.6, k is a divisor of p−1, and thus k+1 < p+1.
Then n � k2 + k +1 = k(k +1)+1 < (p−1)(p+1)+1 = p2, and so n is a prime.
This implies that w is also a generator of G and |wAu | = |Au | = k. Furthermore,

N ′ = |vAu |b2 = kb2 � |wAu |c3 = kc3.

This means
c3 � b2. (7)

For any x ∈ Γ (w) ∩ Γ3(u), (v,w, x) is a 2-arc. Since dΓ (v, x) �= 2, we have
dΓ (v, x) = 1 and x ∈ Γ (v). Thus

{w} 	 (Γ (w) ∩ Γ3(u)) ⊆ Γ (v) ∩ Γ3(u),

and
a3 + 1 � b2. (8)

By inequalities (7) and (8), we have

k = c3 + a3 � b2 + b2 − 1. (9)

For any x ∈ S \ {z}, (z, u, x) is a 2-arc in Γ , and dΓ (z, x) � 2. Thus

S = {z} 	 (Γ (z) ∩ S) 	 (Γ2(z) ∩ S).

Note that Γ2(z) ∩ S = 	(z) ∩ S and

|	(z) ∩ S| = |	τ−1
(zτ

−1
) ∩ Sτ−1 | = |Γ (v′) ∩ R| = a2

for some v′ ∈ R where the graph isomorphism τ is defined in the paragraph before
Lemma 2.7. We have

k = 1 + |Γ (z) ∩ S| + |Γ2(z) ∩ S| = 1 + |Γ (z) ∩ S| + |	(z) ∩ S| = 1 + a1 + a2.

123



J Algebr Comb (2019) 49:179–191 189

Hence k = 1 + a1 + b1 = 1 + a1 + a2, and

b1 = a2. (10)

For any x ∈ Γ (z) ∩ S, (v, z, x) is a 2-arc in Γ . Thus we have dΓ (x, v) � 2. Then

{z} 	 (Γ (z) ∩ S) ⊆ (Γ (v) ∩ S) 	 (Γ2(v) ∩ S)

= (Γ (v) ∩ S) 	 (	(v) ∩ S)

and

1 + a1 � b1 + b1.

Thus b1 = k − (1 + a1) � k − 2b1 = b2. By inequality (9),

k = 2b1 + b2 > 2b2 − 1 � k.

This is a contradiction.
Therefore, Γ is of diameter 2, and is a Paley graph as observed above. �	

2.2 2-Distance-transitive nonnormal circulants

Let Γ = (V, E) be an arc-transitive circulant which is not a normal circulant. By
Theorem 2.1, there exists an arc-transitive circulant Σ of order m such that mb = n,
and

Γ =
{

Σ
[
Kb

]
, or

Σ
[
Kb

] − bΣ, where (m, b) = 1.

We next determine which of these graphs are 2-distance-transitive.
The vertex set V of Γ is partitioned into m parts of size b, and thus we may label

the vertices as

V = {vi, j | 1 � i � m, 1 � j � b}

such that

Bi := {vi,1, vi,2, . . . , vi,b}, where 1 � i � m

are blocks for AutΓ . Let B = {B1, B2, . . . , Bm}, the corresponding block system
for AutΓ acting on V . The quotient graph ΓB is the graph with vertex set VB = B
such that two vertices B1, B2 ∈ B are adjacent if and only if there exist u1 ∈ B1
and u2 ∈ B2 which are adjacent in Γ . Then ΓB ∼= Σ , and each element g ∈ AutΓ
naturally induces a permutation g on setB which is an automorphism of the graph ΓB.
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Lemma 2.9 Let u be an arbitrary vertex inΓ . Then, except for the caseΓ = 	[K2]−
2	, the subset {u} ∪ Γ2(u) ⊂ V is a block of size b.

Proof It is clear that B1 is a block of size b for AutΓ . Without loss of generality,
set u = v1,1, since Γ is vertex-transitive. Thus, we only need to show that B1 =
{u} ∪ Γ2(u).

Letw = v1,2 ∈ B1. We have dΓ (u, w) � 2 since the induced subgraph [B1] ∼= Kb.
Suppose that B1, B2 are two vertices of ΓB which are adjacent. If Γ = Σ[Kb], then
(u, v2,1, w) is a 2-geodesic of Γ . If Γ = Σ[Kb]−bΣ , where b � 3, then (u, v2,3, w)

is a 2-geodesic of Γ . Thus in either case, w ∈ Γ2(u). By the same deduction, for any
w′ ∈ B1 \ {u}, we have w′ ∈ Γ2(u). Hence B1 ⊆ {u} ∪ Γ2(u).

Let A = AutΓ and Au be the stabilizer of vertex u. Since Γ is 2-distance-transitive
and B1 is a block of V for A, we have wAu = Γ2(u) ⊆ B1. Thus {u} ∪ Γ2(u) = B1,
and it is a block of size b on V for A. �	
Lemma 2.10 Let Γ be a 2-distance-transitive circulant which is not a normal circu-
lant. Then Γ = Km[b] or Kb,b − bK2.
Proof Assume first that m = 2. Since Γ is of valency at least 3 by our assumption,
either b � 3 and Γ = Kb,b, or b � 5 and Γ = K2[Kb] − bK2 = Kb,b − bK2. We
next consider the case where m � 3.

Assume that Γ = Σ[Kb] with m � 3. Let u = v1,1 ∈ B1. By Lemma 2.9,
{u} ∪ Γ2(u) = B1 is a block for A = AutΓ . Thus there is no vertex w ∈ V \ B1 at
distance 2 with u in Γ . It follows that Σ is a complete graph, and so Γ ∼= Σ[Kb] ∼=
Km[b].

Now, let Γ = Σ[Kb] − bΣ with m � 3 and b � 3. Again, by Lemma 2.9,
{u} ∪ Γ2(u) = B1 is a block for A = AutΓ . Similarly, there is no vertex w ∈ V \ B1
at distance 2 with u in Γ , and Σ is a complete graph. Therefore, (u, v2,2, v3,1) is a
2-geodesic in Γ . This contradicts the fact that v3,1 /∈ B1 = {u} ∪ Γ2(u).

Finally, assume that Γ = Σ[K2] − 2Σ with m � 3. According to Lemma 2.1,
m is relatively prime to b. Hence m is an odd integer. If Σ is a complete graph, then
Γ = Km[2] − 2Km . Note that Km[2] − 2Km is isomorphic to K2[m] − mK2. We have
Γ ∼= K2[m] −mK2. IfΣ is not a complete graph, then it is clear that the quotient graph
ΓB is also 2-distance-transitive. By the argument above we have ΓB is isomorphic
to Cm , P(p), or Km′[b′]. When p = 5, the Paley graph P(5) is isomorphic to C5.
If ΓB ∼= Cm then � ∼= C2m is normal, a contradiction. If ΓB ∼= P(p) for p > 5,
there is a triangle in ΓB. If ΓB ∼= Km′[b′], then there exists a triangle in ΓB too. In
either case, let (B1, B2, B3) be a triangle in ΓB and (B1, B2, B4) be a 2-geodesic in
ΓB. Since Γ = Σ[K2] − 2Σ , it follows that the vertex v2,2 is adjacent to v1,1, v3,1,
and v4,1, and the vertex v1,1 is not adjacent to v3,1 and v4,1. Hence (v1,1, v2,2, v3,1)

and (v1,1, v2,2, v4,1) are two 2-geodesics in Γ . Thus there exists an automorphism
σ ∈ AutΓ such that vσ

1,1 = v1,1 and vσ
3,1 = v4,1. This is impossible since σ induces

an automorphism of ΓB and 1 = dΓB (B1, B3) �= dΓB (B1, B4) = 2. �	
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