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Abstract We explain how the action of the Heisenberg algebra on the space of q-
deformed wedges yields the Heisenberg crystal structure on charged multipartitions,
by using the Boson–Fermion correspondence and looking at the action of the Schur
functions at q = 0. In addition, we give the explicit formula for computing this crystal
in full generality.

Keywords Fock space · Categorification · Quantum groups · Heisenberg algebra ·
Crystals · Symmetric functions · Combinatorics

1 Introduction

Categorification of representations of affine quantum groups has proved to be an
important tool for understanding many classic objects arising from modular group
representation theory, among which Hecke algebras and rational Cherednik algebras
of cyclotomic type, and finite classical groups. More precisely, the study of crystals
and canonical bases of the level � Fock space representations Fs of U ′

q(̂sle) gives
answers to several classical problems in combinatorial terms. In particular, we know
that the U ′

q(̂sle)-crystal graph of Fs can be categorified in the following ways:

– by the parabolic branching rule for modular cyclotomic Hecke algebras [1], when
restricting to the connected component containing the empty �-partition,

– by Bezrukavnikov and Etingof’s parabolic branching rule for cyclotomic rational
Cherednik algebras [23],
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– by the weak Harish-Chandra modular branching rule on unipotent representations
for finite unitary groups [3,10], for � = 2 and s varying.

In each case, the branching rule depends on some parameters that are explicitly deter-
mined by the parameters e and s of the Fock space.

Recently, there has been some important developments when Shan and Vasserot
[24] categorified the action of the Heisenberg algebra on a certain direct sum of Fock
spaces, in order to prove a conjecture by Etingof [5]. Losev gave in [19] a formulation
of Shan and Vasserot’s results in terms of crystals, as well as an explicit formula for
computing it in the asymptotic case (see Definition 3.5). Independently and using
different methods, the author defined a notion of Heisenberg crystal for higher level
Fock spaces [9], that turns out to coincidewith Losev’s crystal. An explicit formulawas
also given in another particular case, using level-rank duality. Like theU ′

q(̂sle)-crystal,
the Heisenberg crystal gives some information at the categorical level. In particular,
it yields a characterisation of

– the finite-dimensional irreducible modules in the cyclotomic Cherednik category
O by [24] and [9],

– the usual cuspidal irreducible unipotent modular representations of finite unitary
groups [4].

This paper solves two remaining problems about the Heisenberg crystal. Firstly,
even though it originally arises from the study of cyclotomic rational Cherednik alge-
bras (it is determined by combinatorial versions of certain adjoint functors defined
on the bounded derived category O), the Heisenberg crystal has an intrinsic exis-
tence as shown in [9]. Therefore, it is natural to ask for an algebraic construction of
the Heisenberg crystal which would be independent of any categorical interpretation.
This is achieved via the Boson–Fermion correspondence and the use of the Schur
functions, acting on Uglov’s canonical basis of Fs. This gives a new realisation of the
Heisenberg crystal, analogous to Kashiwara’s crystals for quantum group. Secondly,
we give an explicit formula for computing the Heisenberg crystal in full generality.
This generalises and completes the particular results of [19] and [9]. This is done in
the spirit of [6] where formulas for the U ′

q(̂sle)-crystal were explicited.
The present paper has the following structure. In Sect. 2, we start by introducing

in detail several combinatorial objects indexing the basis of the wedge space (namely
charged multipartitions, abaci and wedges) and the different ways to identify them.
Then, we quickly recall some essential facts about the U ′

q(̂sle)-structure of the Fock
spacesFs. Section 3 focuses on the Heisenberg action on the wedge spaceFs , seen as
a certain direct sum of level � Fock spaces Fs. In particular, we recall the definition
of the Heisenberg crystal given in [9]. Then, we give in Sect. 4 a solution to the first
problem mentioned above. More precisely, we recall the quantum Boson–Fermion
correspondence and fundamental facts about symmetric functions. Inspired by Shan
and Vasserot [24] and Leclerc and Thibon [18], we study the action of the Schur func-
tions on the wedge space and use a result of Iijima [11] to construct the Heisenberg
crystal as a version of this action at q = 0 (Theorem 4.4), resembling Kashiwara’s
philosophy of crystal and canonical bases. Most importantly, by doing so, we bypass
entirely Shan and Vasserot’s original categorical construction. Section 5 is devoted
to the explicit computation of the Heisenberg crystal. We introduce level � vertical
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e-strips, as well as the notion of good vertical e-strips by defining an appropriate order.
The action of the Heisenberg crystal operators is then given in terms of adding good
level � vertical e-strips (Theorem 5.11), which is reminiscent of the explicit formula
for the Kashiwara crystal operators first given in [14] (see also [6]). We relate this
result to other combinatorial procedures in the literature answering in particular a
question of Tingley [26]. In addition, we give several examples of explicit compu-
tations. Finally, we recall some useful facts about level-rank duality in “Appendix”,
enabling the definition of the Heisenberg crystal.

2 Higher level Fock spaces

2.1 Charged multipartitions and wedges

2.1.1 Charged multipartitions

Fix once and for all elements e, � ∈ Z≥2 and s ∈ Z. An �-partition (or simply
multipartition) is an �-tuple of partitions λ = (λ1, . . . , λ�). These will be represented
using Young diagrams. Denote �� the set of �-partitions and � = �1 the set of
partitions. Partitions will sometimes be denoted multiplicatively for convenience, e.g.

(2, 1, 1) = (2.12) = .

An �-charge (or simply (multi)charge) is an �-tuple of integers s = (s1, . . . , s�).We
write |s| = ∑�

j=1 s j . We call charged �-partition the data consisting of an �-partition
λ and an �-charge s, and denote it by |λ, s〉.

For a box γ = (a, b, j) in the Young diagram of λ (where a ∈ Z is the row
index of the box, b ∈ Z the column index and j ∈ {1, . . . , �} the coordinate), let
c(γ ) = b − a + s j , the content of γ . We will represent |λ, s〉 by filling the boxes of
the Young diagram of λ with their contents.

Example 2.1 Take � = 2, s = (−1, 2) and λ = (2.1, 12). We have s = −1 + 2 = 1
and

|λ, s〉 = (

-1 0
-2 , 2

1

)

.

In the following,wewill only considermulticharges sverifying |s| := s1+· · ·+s� =
s.

For a partitionλ, letλ′ denote its conjugate, that is the partitionobtainedby swapping
rows and columns in theYoung diagram of λ.We extend this to chargedmultipartitions
by setting |λ, s〉′ = |λ′, s′〉 where λ′ = ((λ�)′, . . . , (λ1)′) and s′ = (−s�, . . . ,−s1).

2.1.2 Abaci representation

A charged �-partition |λ, s〉 can also be represented by the Z-graded �-abacus

A(λ, s) =
{(

j, λ j
k + s j − k + 1

)

; j ∈ {1, . . . , �}, k ∈ Z≥1

}
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where λ
j
k denotes the k-th part of λ j . In the rest of this paper, we will sometimes

identify |λ, s〉 with A(λ, s).

Example 2.2 With |λ, s〉 as inExample 2.1,weget the following corresponding abacus

A(λ, s)

=
{

. . . , (2,− 5), (2,− 4), (2,− 3), (2,−2), (2,− 1), (2, 0), (2, 2), (2, 3),

. . . , (1,− 5), (1,− 4), (1,− 3), (1,− 1), (1, 1)

}

which we picture as follows, by putting a (black) bead at position ( j, λ j
k + s j − k + 1)

where k ∈ Z≥1 and j ∈ {1, . . . , �} is the row index (numbered from bottom to top):

Note that the conjugate a multipartition can be easily described on the abacus: it
suffices to rotate it by 180 degrees around the point of coordinates ( 12 ,

�
2 ) and swap

the roles of the white and black beads.
Using the abaci realisation of charged multipartitions, we define below a bijection

τ : {|λ, s〉 ; λ ∈ �1} ∼−→ {|λ, s〉 ; λ ∈ ��, |s| = s}
A(λ, s) �−→ A(λ, s),

which can be seen as a twisted version of taking the �-quotient and the �-core of a
partition, see [28, Chapter 1]. However, unlike the usual �-quotient and �-core, τ and
τ−1 will depend not only on �, but also on e.

Writing down the Euclidean division first by e� and then by e, one can decompose
any n ∈ Z as n = −z(n)e� + (y(n) − 1)e + (x(n) − 1) with z(n) ∈ Z, 1 ≤ y(n) ≤ �

and 1 ≤ x(n) ≤ e. We can then associate to each pair (1, c) ∈ {1} × Z the pair
τ(1, d) = ( j, d) ∈ {1, . . . , �} × Z where

j = y(−c) and d = −(x(−c) − 1) + ez(−c).

In particular, τ sends the bead in position (1, c) into the rectangle z(−c), on the
row y(−c) and column x(−c) (numbered from right to left within each rectangle).

The map τ is bijective and we can see τ−1 as the following procedure:

(1) Divide the �-abacus into rectangles of size e ×�, where the z-th rectangle (z ∈ Z)
contains the positions ( j, d) for all 1 ≤ j ≤ � and −e + 1 + ze ≤ d ≤ ze.

(2) Relabel each ( j, d) by the second coordinate of τ−1( j, d), see Fig. 1 for an
example.

(3) Replace the newly indexed beads on a 1-abacus according to this new labeling.

Explicitly, τ and τ−1 verify the following formulas:

τ(1, c) = (− ⌊−c
e

⌋

mod � + 1 , (−c mod e) + e
⌊−c

e�

⌋ )

=
(−c−(−c mod e)

e mod � + 1 , (−c mod e) − e
(−c−(−c mod e�)

e�

))
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Fig. 1 Relabelling bead
positions in the �-abacus
according to τ−1, for � = 4 and
e = 3

and

τ−1( j, d) = (

1 , −(−d mod e) − e( j − 1) + e�
⌊−d

e

⌋)

= (1 , e(1 − j) + �d − (� + 1)(−d mod e)) .

Example 2.3 We go back to Example 2.2. The actions of τ and τ−1 are represented
below.

2.1.3 Wedges

Let P(s) denote the set of sequences of integers α = (α1, α2, . . . ) such that αk =
s − k + 1 for k sufficiently large, and set

P>(s) = {

(α1, α2, . . . ) ∈ P(s) | αk > αk+1 for all k ∈ Z≥1
}

.

Definition 2.4 An elementary wedge (respectively ordered wedge) is a formal element
uα = uα1 ∧ uα2 ∧ . . . where α ∈ P(s) (respectively α ∈ P>(s)).

Let |λ, s〉 be a charged �-partition with |s| = s, and let λ = (λ1, λ2, . . . ) be the
partition such that τ(|λ, s〉) = |λ, s〉. Set β = (β1, β2, . . . )where βk = λk + s −k +1

123



104 J Algebr Comb (2019) 49:99–124

for all k ∈ Z≥1. In other terms, β is the sequence of integers indexing the beads of
A(λ, s).

We clearly have β ∈ P>(s), so we can consider the elementary wedge uβ . In fact,
we will also identify |λ, s〉 with uβ .

To sum up, we will allow the following identifications:

|λ, s〉 ←→ A(λ, s)
τ←→ A(λ, s) ←→ uβ ←→ |λ, s〉.

We will denote

Bs = {|λ, s〉 ; λ ∈ ��} for an �-charge s

and

Bs = {|λ, s〉 ; λ ∈ �} =
⊔

|s|=s

Bs.

2.2 Fock space as U ′
q(

̂sle)-module

Let q be an indeterminate.

2.2.1 The JMMO Fock space

Fix an �-charge s. The Fock space associated to s is the Q(q)-vector space Fs with
basis Bs.

Theorem 2.5 (Jimbo et al. [14]). The space Fs is an integrable U ′
q(̂sle)-module of

level �.

The action of the generators of U ′
q(̂sle) depends on s and e, and is given explicitly

in terms of addable/removable boxes, see e.g. [7, Section 6.2]. In turn, this induces
a U ′

q(̂sle)-crystal structure (also called Kashiwara crystal) [15], usually encoded in a
graphBs, whose vertices are the elements of Bs, and with colored arrows representing
the action of the Kashiwara operators. An explicit (recursive) formula for computing
this graph was first given in [14]: two vertices are joined by an arrow if and only if
one is obtained from the other by adding/removing a good box, see [7, Section 6.2]
for details.

It has several connected components, each of which parametrised by its only source
vertex, or highest weight vertex. The decomposition of this graph in connected com-
ponents reflects the decomposition ofFs into irreducible representations (which exists
because Fs is integrable according to Theorem 2.5).

2.2.2 Uglov’s wedge space

Denote Fs the Q(q)-vector space spanned by the elementary wedges, and subject to
the straightening relations defined in [27, Proposition 3.16]. This is called the space
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of semi-infinite q-wedges, or simply the wedge space, and the elements of Fs will be
called wedges.

Using the straightening relations, a q-wedge can be expressed as a Q(q)-linear
combination of ordered wedges. In fact, one can show (see [27, Proposition 4.1]) that
the set of ordered wedges Bs forms a basis of Fs .

Remark 2.6 (1) The terminology “wedge space” is justified by the original construc-
tion of this vector space in the level one case by Kashiwara, Miwa and Stern [16].
In this context, one can first construct a quantum version of the usual k-fold wedge
product (or exterior power) 	k V , where V is the natural U ′

q(̂sle)-representation

(an affinisation of C
e ⊗ C

�). The space Fs is then defined as the projective limit
(taking k → ∞) of 	k V . In the higher level case, the analogous construction was
achieved by Uglov [27].

(2) Using the bijection between ordered wedges and partitions charged by s, one can
see Fs as a level 1 Fock space, whence the notation. In fact, it is sometimes called
the fermionic Fock space.

Theorem 2.7 The wedge space Fs is an integrable U ′
q(̂sle)-module of level �.

Proof The identification Bs = {

uβ ∈ Fs | β ∈ P>(s)
} = {|λ, s〉 ∈ Fs ; |s| = s} =

⊔

|s|=s Bs of Sect. 2.1.3 yields the Q(q)-vector space decomposition

Fs =
⊕

|s|=s

Fs.

By Theorem 2.2.1, this decomposition still holds as integrable U ′
q(̂sle)-module. ��

3 The Heisenberg action

It turns out that the wedge space has some additional structure, namely that of a H-
module, where H is the (quantum) Heisenberg algebra. This has been first observed
by Uglov [27], generalising some results of Lascoux, Leclerc and Thibon [17]. Let us
recall the definition of this algebra.

3.1 The action of the bosons

Let us start by recalling the definition of the quantum Heisenberg algebra.

Definition 3.1 The (quantum) Heisenberg algebra is the unital Q(q)-algebraH with
generators pm , m ∈ Z

× and defining relations

[pm, pm′ ] = δm,−m′m
1 − q−2me

1 − q−2m
× 1 − q2m�

1 − q2m

for m, m′ ∈ Z
×. The elements pm are called bosons.
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Note that this is a q-deformation of the usual Heisenberg algebra with relations
[pm, pm′ ] = δm,−m′m.

Theorem 3.2 The formula

pm(uβ) =
∑

k≥1

uβ1 ∧ . . . ∧ uβk−1 ∧ uβk−e�m ∧ uβk+1 ∧ . . .

for uβ ∈ Fs and m ∈ Z
×

endows Fs with the structure of an H-module.

For a proof, we refer to [27, Proposition 4.4 and 4.5]. This is quite technical and
is done in two distinct steps, the second of which requires the notion of asymptotic
wedge. This will be crucial in Sect. 4.

Corollary 3.3 The action of the bosons preserves the level � Fock spaces Fs for
|s| = s.

One can use the explicit action of pm on Fs to show that it preserves the �-charges
s, or rely on Uglov’s argument [27, Section 4.3]. As a consequence of this corollary,
Fs = ⊕

|s|=s Fs also holds as H-module decomposition.

3.2 Some notations and definitions

For two partitions λ and μ, denote λ + μ the reordering of (λ1, μ1, λ2, μ2, . . . ) and
kλ the partition (λk

1.λ
k
2. . . . ). Extend these notations to �-partitions by doing these

operations coordinatewise.
Note that this is simply the conjugation of the usual notation for adding partitions

or multiplying by an integer.

Example 3.4 We have

+ 2 = + = .

We also define the notion of asymptotic charges, which will mostly be useful in
Sect. 4.

Definition 3.5 Let j0 ∈ {1, . . . , �}. A wedge uβ ∈ Fs is called j0-asymptotic if the
corresponding charged multipartition |λ, s〉 verifies s j0 − s j ≥ |λ| for all j �= j0.

3.3 The Heisenberg crystal

A notion of crystal for the Heisenberg algebra, or H-crystal, has been indepedently
introduced by Losev [19] and the author [9]. Explicit formulas for computing this

123



J Algebr Comb (2019) 49:99–124 107

crystal have been given in some particular cases: asymptotic in [19] and doubly highest
weight in [9].

Recall the definition of the H-crystal according to [9]. This requires the crystal
level-rank duality exposed in “Appendix”.

Definition 3.6 Let |λ, s〉 ∈ B(s), which we identify with its level-rank dual charged
e-partition. We call |λ, s〉 a doubly highest weight vertex if it is a highest weight vertex
simultaneously in the U ′

q(̂sle)-crystal and in the U ′
p(
̂sl�)-crystal.

Some important properties of doubly highest weight vertices are exposed in [9,
Section 5.2]. In particular, an element |λ, s〉 is a doubly highest weight vertex if and
only if it has a totally e-periodic �-abacus and a totally �-periodic e-abacus, according
to a result by Jacon and Lecouvey [12], see the definition therein. Moreover, every
bead of a given period encodes a same part size in λ, and one can define the partition
κ = κ(|λ, s〉) as (κ1, κ2 . . . ) where κk is the part encoded by the k-th period.

Definition 3.7 Let σ ∈ �. The Heisenberg crystal operator b̃σ (respectively b̃−σ ) is
the uniquely determined map Bs → Bs, |λ, s〉 �→ |μ, s〉 (respectively Bs → Bs �{0})
such that

(1) if |λ, s〉 is a doubly highest weight vertex, then |μ, s〉 is obtained from |λ, s〉 by
shifting the k-th period of �-abaci of |λ, s〉 by σk steps to the right (respectively
to the left when possible, and b̃−σ |λ, s〉 = 0 otherwise),

(2) it commutes with the Kashiwara crystal operators of U ′
q(̂sle) and of U ′

p(
̂sl�).

Definition 3.8 Wesay that |λ, s〉 ∈ Bs is a highestweight vertex forH if b̃−σ |λ, s〉 = 0
for all σ ∈ �.

Note that each b̃±σ is well defined since (2) allows to define b̃±σ |λ, s〉 even when
|λ, s〉 is not a doubly highest weight vertex. Moreover, [9, Theorem 7.6] claims that in
the asymptotic case, the Heisenberg crystal operators coincide with the combinatorial
maps introduced by Losev [19]. Note also that the definition of κ for doubly highest
weight vertices induces (by (2) of Definition 3.7) a surjective map κ : Bs → � such
that b̃−κ(|λ,s〉)|λ, s〉 is a highest weight vertex for H for all λ ∈ ��.

In order to have a description of the H-crystal similar to the U ′
q(̂sle)-crystal, see

Fig. 2, we wish to define theH-crystal as a graph whose arrows have minimal length.
Therefore, we define the following maps

b̃1,c = b̃ηb̃−κ and b̃−1,d = b̃θ b̃−κ

where η = κ �{γ }with γ = (a, b) being the addable box of κ verifying b−a = c and
where θ = κ\{γ } with γ = (a, b) being the removable box of κ verifying b − a = d,

Definition 3.9 The H-crystal of the wedge space Fs is the graph Cs with

(1) vertices: all charged �-partitions |λ, s〉 with λ ∈ �� and |s| = s.
(2) arrows : |λ, s〉 c−→ |μ, s〉 if |μ, s〉 = b̃1,c|λ, s〉.
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- -

0 - - 1

0 1 - 0
-1 - - 1 2 0 1 - 1

0

0 1 1 0 1 2 - 0 1
-1 - - 1 2 3 0 1

0 0 1 2 - 1 2
0

0
-1
-2

- -
1
0
-1

Fig. 2 The beginning of the Kashiwara crystal graphBs of Fs for � = 2, e = 3 and s = (0, 1)

Remark 3.10 – Note that b̃ηb̃−κ = b̃εb̃−ω for all ω ⊆ κ and ε ⊆ η such that
ε/ω = η/κ , so that the map b̃1,c depends only on η/κ .

– By definition, each b̃±1,c is a composition of maps b̃±σ . Conversely, each b̃σ is a
composition of maps b̃1,c, see [9, Formula (6.17)]. We will also call the maps b̃1,c
Heisenberg crystal operators.

Proposition 3.11 (1) The H-module decomposition Fs = ⊕

|s|=s Fs induces a
decomposition of Cs .

(2) Each connected component of Cs is isomorphic to the Young graph.
(3) A vertex |λ, s〉 is source in Cs if and only if |λ, s〉 is a highest weight vertex for H.
(4) The depth of an element |λ, s〉 in Cs is |κ(|λ, s〉)|.
Proof We know fromDefinition 3.7 that the action of the crystal Heisenberg operators
preserves the multicharge, proving (1). In particular, there is a notion ofH-crystal for
Fs, which we denote Cs. Moreover, theH-crystal is characterised by being the preim-
age of a Uq(sl∞)-crystal on the set of partitions under a certain bijection, depending
on κ , see [9, Remark 6.16]. The Uq(sl∞)-crystal is exactly the Young graph on par-
titions, see Fig. 3, where the arrows are colored by the contents of the added boxes,
which proves (2). In fact, the bijection from the Young graph to a given connected
component, parametrised by its source vertex |λ, s〉 is given by σ �→ b̃σ |λ, s〉, and its
inverse is |λ, s〉 �→ κ(|λ, s〉). Point (3) is clear by definition, and (4) follows from the
definition of κ . ��

4 Canonical bases and Schur functions

4.1 The Boson–Fermion correspondence

Denote 	 the algebra of symmetric functions, that is, the projective limit of the Q(q)-
algebras of symmetric polynomials in finitely many indeterminates [21, Chapter 1]:

	 = Q(q)[X1, X2, . . . ]S∞ .
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Fig. 3 The beginning of the
Young graph

-

The space 	 has several natural linear bases, among which:

– the monomial functions {Mσ ; σ ∈ �} where Mσ = ∑

π Xπ1
1 Xπ2

2 . . . where the
sum runs over all permutations π of σ ,

– the complete functions {Hσ ; σ ∈ �} where Hσ = Hσ1 Hσ2 . . . and Hm =
∑

k1≤···≤km
Xk1 . . . Xkm for r ∈ N,

– the power sums {Pσ ; σ ∈ �} where Pσ = Pσ1 Pσ2 . . . and Pm = ∑

k≥1 Xr
k for

r ∈ N,
– the Schur functions {Sσ ; σ ∈ �} where Sσ = ∑

π∈� Kσ,π Mπ where Kσ,π are
the Kostka numbers, see [25, Chapter 7].

The expansion of Hm in the basis of the power sums is given by

Hm =
∑

π∈�|π |=m

1

zπ

Pπ ,

where zπ = �k>0kαk αk with αk = π ′
k − π ′

k+1, for all π ∈ �. Moreover, by duality,
the Kostka numbers also appear as the coefficients of the complete functions in the
basis of the Schur functions:

Hσ =
∑

π∈�

Kπ,σ Sπ .

By a result of Miwa, Jimbo and Date [22], there is a vector space isomorphism

Fs
∼−→ 	

|λ, s〉 �−→ Sλ,
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called the Boson–Fermion correspondence. In fact, when refering to the symmet-
ric realisation 	, one sometimes uses the term bosonic Fock space, as opposed
to the fermionic, antisymmetric definition of Fs . The following result is [24, Sec-
tion 4.2 and Proposition 4.6].

Proposition 4.1 There is a H-module isomorphism Fs � 	, where, at q = 1, the
action of pm on Fs is mapped to the multiplication by Pm on 	.

In general, the action of pm is mapped to a q-deformation of the multiplication
by Pm , and p−m to a q-deformation of the derivation with respect to Pm , see [17,
Section 5] and [27, Section 5.1].

4.2 Action of the Schur functions

In [18], Leclerc and Thibon studied the action of the Heisenberg algebra on level 1
Fock spaces in order to give an analogue of Lusztig’s version [20] of the Steinberg
tensor product theorem. Their idea was to use a different basis of 	 to compute the
Heisenberg action in a simpler way, namely that of Schur functions. This result has
been generalised to the level � case by Iijima in a particular case [11].

Independently, the Schur functions have been used by Shan and Vasserot to cate-
gorify theHeisenberg action in the context of Cherednik algebras.More precisely, they
constructed a functor on the category O for cyclotomic rational Cherednik algebras
corresponding to the multiplication by a Schur function on the bosonic Fock space 	

[24, Proposition 5.13].
The aim of this section is to use Iijima’s result to recover in a direct, simple way

the results of [9,19] and, by doing so, bypassing Shan and Vasserot’s categorical
constructions.

4.2.1 Canonical bases of the Fock space

In the early nineties, Kashiwara and Lusztig have independently introduced the notion
of canonical bases for irreducible highest weight representations of quantum groups,
see e.g. [15]. They are characterised by their invariance under a certain involution.
Uglov [27] has proved an analogous result for the Fock spaces Fs, even though it is
no longer irreducible. We recall the definition of the involution on Fs and Uglov’s
theorem.

For any r ∈N and t1, . . . , tr ∈ Z
r , let ι(t1, . . . , tr )=�

{

(k, k′) | k < k′ and tk = tk′
}

that is, the number of repetitions in (t1, . . . , tr ).

Definition 4.2 The bar involution is the Q(q)-vector space automorphism

Fs −→ Fs

q �−→ q = q−1

uβ �−→ uβ

123



J Algebr Comb (2019) 49:99–124 111

with

uβ = uβ1 ∧ . . . ∧ uβr ∧ uβr+1 ∧ . . .

= (−q)ι(y1,...,yr )q ι(x1,...,xr )(uβr ∧ . . . ∧ uβ1) ∧ uβr+1 ∧ . . .

where xk = x(βk) and yk = y(βk) for all k = 1, . . . , r according to the notation of
Sect. 2.1.2.

The bar involution behaves nicely on the wedge space, in particular it preserves the
level � Fock spaces Fs for |s| = s, and commutes with the bosons pm , this is [27,
Section 4.4]. We can now state Uglov’s result, that is derived from the fact that the
matrix of the bar involution is unitriangular.

Theorem 4.3 Let s ∈ Z
� such that |s| = s. There exist unique bases G+ =

{

G+(λ, s) ; λ ∈ ��

}

and G− = {

G−(λ, s) ; λ ∈ ��

}

of Fs such that, for � ∈ {+,−},
(1) G�(λ, s) = G�(λ, s)
(2) G�(λ, s) = |λ, s〉 mod q�1L� where L� = ⊕

λ∈��
Q[q�1]|λ, s〉.

This result is compatible with Kashiwara’s crystal theory. More precisely, each
integrable irreducible highest weight U ′

q(̂sle)-representation is contained in Fs for
some s, by taking the span of the vectors |∅, s〉 for |s| = s, and it is proved in [27,
Section 4.4] that the bases G� restricted to U ′

q(̂sle)|∅, s〉 coincide with Kashiwara’s
lower and upper canonical bases. Therefore, we also call G� the (lower or upper if
� = − or + respectively) canonical basis of Fs.

4.2.2 Schur functions in the asymptotic case

Define the following operators on Fs

hm =
∑

|π |=m

1

zπ

pπ , hσ = hσ1hσ2 . . . and sσ =
∑

π∈�

K −1
π,σ hπ .

where K −1
π,σ are the inverse Kostka numbers, that is, the entries of the inverse of the

matrix of Kostka numbers. By Proposition 4.1, at q = 1, the action of hσ (respec-
tively sσ ) corresponds to themultiplication by a complete function (respectively Schur
function) on 	 through the Boson–Fermion correspondence.

Theorem 4.4 (1) The operators sσ induce maps s̃σ on Bs, preserving Bs for |s| = s.
(2) Let |λ, s〉 ∈ Fs be j0-asymptotic. We have s̃σ |λ, s〉 = |μ, s〉 with μ = λ + eσ

where σ j = ∅ if j �= j0 and σ j0 = σ , provided |μ, s〉 is still j0-asymptotic. In
particular, s̃σ coincides with the Heisenberg crystal operator b̃σ in this case.
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Remark 4.5 When λ = ∅, this says that s̃σ shifts the e rightmost beads in the j0-th
runner of A(λ, s), and one recovers Losev’s result, see for instance [9, Example 7.3].

Proof In a general manner, we can identify a crystal map Bs → Bs with an operator
on the wedge spaceFs mapping an element of G� to an element of G�, for � ∈ {+,−}.
Indeed, an element |λ, s〉 ∈ Bs can be identified with G�(λ, s). Another way to see
this is to look at the action on G�(λ, s) and put q = 0 or q = ∞ respectively in the
resulting vector. This provides the identification because of Condition (2) of Theorem
4.3. As a matter of fact, the action of sσ on a canonical basis element turns out to have
the desired form. Indeed, the version of [11, Theorem 4.12] in the j0-asymptotic case1

states that

sσ G+(λ, s) = G+(μ, s)

where μ = λ + eσ (with σ as in the statement of Theorem 4.4) provided:

– λ j0 is e-regular
– |λ, s〉 and |μ, s〉 are j0-asymptotic.

Here, Iijima’s original statement has been twisted by conjugation, because the level-
rank duality used in his result is the reverse of that of the present paper. Thus, the
notion of e-restricted multipartition is replaced by e-regular. Accordingly, we use the
upper canonical basis instead of the lower one. This statement can be extended to an
arbitrary j0-asymptotic element G+(λ, s) ∈ Fs , that is, without the restriction that

λ j0 is e-regular. To do this, for all λ ∈ ��, let λ = λ̃ + eπ where λ̃
j0 is e-regular and

π j = ∅ if j �= j0 and π j0 = π . Then, for all σ ∈ �,

sσ G+(λ, s) = sσ

(

sπ G+(λ̃, s)
)

by the above formula

= sτ G+(λ̃, s).

where τ = (σ ′ + π ′)′, which we can compute by the preceding formula. Note that
τ is the common addition of σ and π . For a general j0-asymptotic vector |λ, s〉, we
write again G+(μ, s) = sσ G+(λ, s). As explained in the beginning of the proof, this
induces a crystal map s̃σ : Bs → Bs , by additionnaly requiring that s̃σ commutes with
the Kashiwara crystal operators. In fact, when |λ, s〉 is j0-asymptotic, the formula for
s̃σ is precisely the formula for the Heisenberg crystal operator given in [19] (provided
again that one twists by conjugating), which coincides with b̃σ by [9, Theorem 7.6].
This completes the proof. ��

As explained in the proof, with this approach, s̃σ |λ, s〉 is identifiedwith sσ G+(λ, s).
The map sσ being an actual operator (on the vector space Fs), this justifies the termi-
nology “operator” for the maps b̃σ : Bs → Bs , thereby completing the analogy with
the Kashiwara crystal operators.

1 Note that Iijima’s definition of asymptoticity differs slightly from that of the present paper: it is defined
globally instead of locally.
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5 Explicit description of the Heisenberg crystal

In this section, we give the combinatorial formula for computing the Heisenberg
crystal in full generality. This completes the results of [19], where the asymptotic case
is treated, and of [9] where the case of doubly highest weight vertices (in the level-rank
duality) is treated, see “Appendix” for details.

5.1 Level � vertical strips

In the spirit of [14] and [6], we will express the action of the Heisenberg crystal
operators in terms of adding/removing certain vertical strips.

For a given charged multipartition |λ, s〉, we denote

W1(λ, s) = {

(a, b, j) ∈ Z>0 × Z≥1 × {1, . . . , �} | (a, b, j) /∈ λ

and (a, b − 1, j) ∈ λ}
W2(λ, s) = {(a, 1, j) ∈ Z>0 × {1} × {1, . . . , �} | (a, 1, j) /∈ λ}

andW (λ, s) = W1(λ, s) �W2(λ, s), so thatW (λ, s) is the set of boxes directly to the
right of λ (considering that it has infinitely many parts of size zero).

Definition 5.1 Let |λ, s〉 be a charged �-partition.

(1) A (level �) vertical e-strip is a sequence of e boxes γ1 = (a1, b1, j1), . . . , γe =
(ae, be, je) such that no horizontal domino appears, i.e. there is no 1 ≤ i ≤ e such
that ai+1 = ai and ji+1 = ji . Moreover, a vertical e-strip is called admissible if:
(a) The contents of γ1, . . . , γe are consecutive, say c(γi ) = c(γi+1) + 1 for all

1 ≤ i ≤ e.
(b) For all 1 ≤ i < i ′ ≤ e, we have ji ≥ ji ′ .

(2) The admissible vertical e-strips contained in W (λ, s) are denoted V (λ, s). For
convenience, we might drop the word “admissible” in the following.

(3) Let X ∈ V (λ, s). X is called addable if X ∩λ = ∅ and λ� X is still an �-partition.

Remark 5.2 This is a generalisation to multipartitions of:

– the usual notion of vertical strips for partitions, see for instance [21, Chapter I].
– the usual notion of admissible boxes for multipartitions, see for instance [6], [7,
Chapter 5].

Example 5.3 Let � = 3, e = 4 and

|λ, s〉 = |(4.2, 2, 22.12), (1, 4, 6)〉 =
(

1 2 3 4
0 1 , 4 5 ,

6 7
5 6
4
3

)

.
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Then V (λ, s) consists of

X1 = ((1, 3, 3), (2, 3, 3), (1, 3, 2), (1, 5, 1)) with respective contents 8, 7, 6, 5,
X2 = ((3, 2, 3), (4, 2, 3), (2, 1, 2), (2, 3, 1)) with respective contents 5, 4, 3, 2,
X3 = ((3, 2, 3), (4, 2, 3), (2, 1, 2), (3, 1, 2)) with respective contents 5, 4, 3, 2,
X4 = ((4, 2, 3), (2, 1, 2), (3, 1, 2), (4, 1, 2)) with respective contents 4, 3, 2, 1,
X5 = ((2, 1, 2), (3, 1, 2), (4, 1, 2), (5, 1, 2)) with respective contents 3, 2, 1, 0,
X6 = ((3, 1, 2), (4, 1, 2), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0,−1,
X7 = ((3, 1, 2), (4, 1, 2), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0,−1,
X8 = ((5, 1, 3), (4, 1, 2), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0,−1,
X9 = ((5, 1, 3), (4, 1, 2), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0,−1,
X10 = ((5, 1, 3), (6, 1, 3), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0,−1,
X11 = ((5, 1, 3), (6, 1, 3), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0,−1,
X12 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (3, 1, 1)) with respective contents 2, 1, 0,−1,
X13 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (6, 1, 2)) with respective contents 2, 1, 0,−1,
X14 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (8, 1, 3)) with respective contents 2, 1, 0,−1,

and so on.

5.2 Action of the Heisenberg crystal operators b̃σ

We will define an order on the vertical e-strips of a given charged multipartition.
First, let γ = (a, b, j) and γ ′ = (a′, b′, j ′) be two boxes of |λ, s〉. Write γ > γ ′ if
c(γ ) > c(γ ′) or c(γ ) = c(γ ′) and j < j ′.

Remark 5.4 Note that this is the total order used to define the good boxes in a charged
�-partition, which characterises the Kashiwara crystals, see [7, Chapter 6].

By extension, let > denote the lexicographic order induced by > on e-tuples of
boxes in a given charged �-partition. This restricts to a total order on V (λ, s).

Definition 5.5 Let |λ, s〉 be a charged �-partition. Denote simply V = V (λ, s).

– The first good vertical e-strip of |λ, s〉 is themaximal element X1 ofV with respect
to >.

– Let k ≥ 2. The k-th good vertical e-strip of |λ, s〉 is the maximal element Xk of

{ X ∈ V | Xk−1 > X and Xk−1 ∩ X = ∅ }

with respect to >.

Remark 5.6 This generalises the notion of good boxes for multipartitions, see again
[6] or [7, Chapter 5].

In other terms, the greatest (with respect to >) vertical strip of |λ, s〉 is good, and
another admissible vertical strip is good except if one of its boxes already belongs to
a previous good vertical strip.
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Example 5.7 We go back to Example 5.3. Then we have Xk > Xk−1 for all k =
1, . . . , 14. Moreover, there are only four good addable vertical strips among these,
namely X1, X2, X6 and X13.

For σ = (σ1, σ2, . . . ) ∈ �, set

c̃σ : Bs −→ Bs

|λ, s〉 �−→ |μ, s〉

where μ is obtained from λ by adding recursively σk times the k-th good vertical
e-strip for k ≥ 1.

More explicitly, let h be the number of non-zero parts of σ and set recursively, for
k = 1, . . . , h and m = 0, . . . , σk

λ(k,m) =
⎧

⎨

⎩

λ if (k, m) = (1, 0)
λ(k−1,σk−1) if m = 0 and k ≥ 2
λ(k,m−1) � Xk(λ

(k,m−1)) otherwise,

where the Xk(λ) denotes the k-th good vertical e-strip of |λ, s〉. Then μ = λ(h,σh).
We are going to prove that the map c̃σ is well defined for all σ ∈ �, and that it

coincides with the Heisenberg crystal operator b̃σ , see Theorem 5.11. .

Lemma 5.8 The map c̃(1) is well defined.

Proof Let |λ, s〉 be a charged multipartition. We need to prove that the first good
vertical strip X of |λ, s〉 is addable. Assuming it is not the case, then there exists a
box (a, b, j) ∈ X such that (a − 1, b, j) /∈ X � λ and (a − 1, b − 1, j) ∈ λ. But
(a − 1, b, j) /∈ λ and (a − 1, b − 1, j) ∈ λ implies (a − 1, b, j) ∈ X , whence a
contradiction. ��
Corollary 5.9 For all σ ∈ �, the map c̃σ is well defined.

Proof If σ = ∅, then c̃σ = Id and so is well defined. So we assume σ �= ∅, say
σ = (σ1, σ2, . . . ). First of all, Lemma 5.8 and the recursive definition of c̃σ implies
that c̃(n) is well defined for all n ∈ Z≥1 (so in particular for n = σ1). We claim
that for all λ ∈ �� and for all �-charge s, the second good vertical e-strip X of
c̃(σ1)|λ, s〉 is addable σ1 times recursively. In fact, this relies on the simple observation
that c̃(σ1)|λ, s〉 = |λ(1,σ1), s〉 and that the second good vertical e-strip of λ(1,σi ) is the
second good vertical e-strip of λ already. Since the first good vertical e-strip of λ is
addable (Lemma 5.8), it is straightforward from Definition 5.5 and the observation
that the second good vertical e-strip of λ(1,σi ) is addable. So the second good vertical
e-strip of c̃(σ1)|λ, s〉 is addable. But since X2(λ

(1,σ1)) = X2(λ
(2,0)) is addable, so is

X2(λ
(2,m)) for all m = 1, . . . , σ2 (since σ2 ≤ σ1), which proves the claim. Since

σ1 ≥ σ2 ≥ σ3 ≥ . . . , the result follows by iterating up to h, the number of non-zero
parts in σ . ��
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Example 5.10 Take again the values of Example 5.3. Then, for σ = (2.13), we have

c̃σ |λ, s〉 = c̃

(

1 2 3 4
0 1 , 4 5 ,

6 7
5 6
4
3

)

=

⎛

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5 6

0 1 2

-1

,

4 5 6 7

3

2

1

0

-1

,

6 7 8 9

5 6 7 8

4 5

3 4

2

1

0

⎞

⎟

⎟

⎟

⎟

⎠

.

Each box of σ corresponds to a vertical e-strip, the matching being given by the colors.

We will prove the following theorem.

Theorem 5.11 For all σ ∈ �, we have

c̃σ = b̃σ .

5.3 Proof of Theorem 5.11

The strategy for proving this result consists in starting from the doubly highest weight
case, in which we know an explicit formula for b̃σ . Then, we show that the c̃±σ

commute with the Kashiwara crystal operators for U ′
p(
̂sl�), then U ′

q(̂sle), and use
the commutation of the Kashiwara crystals and the H-crystal (see Definition 3.7) to
conclude.

Proposition 5.12 Let |λ, s〉 be a doubly highest weight vertex. Then, for all σ ∈ �,
we have

c̃σ |λ, s〉 = b̃σ |λ, s〉.

Proof Weneed to translate the explicit formula for b̃σ , given in terms of abaci, in terms
of �-partitions. By the correspondence given in Sect. 2.1, an e-period in the �-abacus
A = A(λ, s) (see [12, Section 2.3]) corresponds to a good vertical e-strip in |λ, s〉.
Therefore, it yields an addable admissible vertical e-strip if ( j1, d1 + 1) /∈ A where
( j1, d1) is the first bead of the period. Thus, shifting the k-th e-period ofA by σk steps
to the right amounts to adding the k-th good vertical strip of |λ, s〉. In other terms b̃σ is
the same as c̃σ when restricted to doubly highest weight vertices (cf. Definition 3.6).

��
Proposition 5.13 Let |λ, s〉 be a highest weight vertex forU ′

q(̂sle). Then, for all σ ∈ �,
we have

c̃σ |λ, s〉 = b̃σ |λ, s〉.

Proof Write |λ, s〉 = Ḟj|λ, s〉 where |λ, s〉 is the highest weight vertex for U ′
p(
̂sl�)

associated to |λ, s〉, and where Ḟj = ˜̇f jr . . . ˜̇f j1 is a sequence of Kashiwara crystal
operators of U ′

p(
̂sl�). Because of Theorem A.4, the two Kashiwara crystals commute,
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and thus |λ, s〉 is a doublyhighestweight vertex.Weprove the result by inductionon r ∈
N. If r = 0, then |λ, s〉 is a doubly highest weight vertex and this is Proposition 5.12.
Suppose that the result holds for a fixed r − 1 ≥ 0. Write |ν, t〉 = ˜̇f jr−1 . . . ˜̇f j1 |λ, s〉,
so that |λ, s〉 = ˜̇f jr |ν, t〉. Because the crystal level-rank duality is realised in terms of

abaci, we need to investigate one last time the action of ˜̇f jr in the abacus.We know that
˜̇f jr acts on an e-partition by adding its good addable jr -box (i.e. of content jr modulo

�). This corresponds to shifting a particular (white) bead one step up in the e-abacus
of |ν, s〉, see Example A.3 for an illustration. Now, if jr �= 0, then this corresponds
to moving down a (black) bead in the �-abacus. Since the resulting abacus A(λ, s)
is again totally e-periodic (the two Kashiwara crystals commute), this preserves the
e-period containing this bead. If jr = 0, then moving this white bead up corresponds
to moving a black bead in position (�, d) in the �-abacus (which is the first element
of its e-period) down to position (1, d − e). Again, this preserves the e-period. In
both cases, the reduced jr -word in the e-abacus (see [9, Section 4.2] for details) is
unchanged and

˜̇f jr c̃σ |ν, t〉 = c̃σ
˜̇f jr |ν, t〉. (∗)

Therefore, we have

b̃σ |λ, s〉 = b̃σ
˜̇f jr |ν, t〉

= ˜̇f jr b̃σ |ν, t〉 by Definition 3.7

= ˜̇f jr c̃σ |ν, t〉 by induction hypothesis

= c̃σ
˜̇f jr |ν, t〉 by (∗)

= c̃σ |λ, s〉.
��

We are now ready to prove Theorem 5.11. It remains to investigate the action of
the Kashiwara crystal operators of U ′

q(̂sle).

Proof of Theorem 5.11 Write |λ, s〉 = Fi|λ, s〉 where |λ, s〉 is the highest weight
vertex for U ′

q(̂sle) associated to |λ, s〉, and where Fi = f̃ir . . . f̃i1 is a sequence of

Kashiwara crystal operators of U ′
q(̂sle). We prove the result by induction on r ∈ N. If

r = 0, then |λ, s〉 is a highest weight vertex for U ′
q(̂sle) and this is Proposition 5.13.

Suppose that the result holds for a fixed r −1 ≥ 0. Write |ν, s〉 = f̃ir−1 . . . f̃i1 |λ, s〉, so
that |λ, s〉 = f̃ir |ν, s〉. Consider the reduced ir -word for |ν, s〉. Again, it is preserved
by the action of c̃σ by Property (1) of Definition 5.1, and we have

˜̇f jr c̃σ |ν, t〉 = c̃σ
˜̇f jr |ν, t〉.

The commutation of b̃σ with f̃ir together with the induction hypothesis completes the
proof. ��
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Remark 5.14 Theorem 5.11 also yields an explicit description of the operators b̃1,c,
see their definition in Sect. 3.3. It acts on any charged �-partition by adding its k-th
good vertical e-strip, where c is the content of the k-th addable box of κ , where the
boxes are ordered with respect to > as defined in Sect. 5.2.

5.4 Impact of conventions and relations with other results

We end this section by mentioning an alternative realisation of theH-crystal. In fact,
some of the combinatorial procedures require some conventional choices, such as the
maps τ and τ̇ yielding the level-rank duality, or the order on the boxes or on the
vertical strips of multipartition. Like in the case of Kashiwara crystals, see e.g. [2,
Remark 3.17] or [9, Remark 4.9] Choosing a different convention yields to a slightly
different version of the Heisenberg crystal.

We have already seen in the proof of Theorem 4.4 that conventions can be adjusted
to fit Losev’s [19] or Iijima’s [11] results about the action of a Heisenberg crystal
operator or a Schur function respectively. This is done by using the conjugation of
multipartitions. More precisely, one can decide to identify a charged �-partition |λ, s〉
with |λ′, s〉 instead of |λ, s〉 with the notations of Sect. 2.1.2. Then, the action of the
Heisenberg crystal operators is expressed in terms of addable horizontal e-strips in the
�-partition. This is equivalent to changing the order on the vertical strips, applying a
Heisenberg crystal operator, and then conjugate.

One could also decide to exchange the role of τ and τ̇ in the level-rank duality,
see “Appendix”. Then, applying a Heisenberg crystal operator on an �-abacus would
de decribed in terms of the corresponding e-abacus. More precisely, b̃1,c would then
consists in shifting a �-period in the e-abacus in the particular case where it is totally �-
periodic (see also the proof of Proposition 5.12). This permits to give an interpretation
of Tingley’s tightening procedure on descending �-abaci [26, Definition 3.8], thereby
answering Question 1 of [26, Section 6].

Proposition 5.15 Let A be a descending �-abacus. For all k ≥ 1, denote Tk the k-th
tightening operator associated to A. We have

Tk(A) = b̃−1,c(A)

where c is determined by k.

Proof Recall that for this statement, we have considered the realisation of the Heisen-
berg crystal with the alternative version of level-rank-duality, swapping the roles of
τ and τ̇ , so that the operators b̃−1,c act on the e-abacus (rather than the �-abacus) by
removing a vertical �-strip (Theorem 5.11). Remember that b̃−1,c = b̃θ b̃−κ where θ

depends on c. Now, if an �-abacus is descending [26, Definition 3.6], its corresponding
e-abacus is totally �-periodic. In particular, the corresponding e-partition is a highest
weight vertex in the U ′

p(
̂sl�)-crystal, and we can use Proposition 5.13. In particular,

b̃−κ and b̃θ act by shifting �-periods in the e-abacus, and b̃−1,c shifts one �-period,
say the k-th one, one step to the left in the e-abacus. This precisely what Tk does. ��

123



J Algebr Comb (2019) 49:99–124 119

Finally, we mention that in another particular case, the Heisenberg crystal oper-
ator b̃−κ coincide with the canonical U ′

q(̂sle)-isomorphism ϕ (up to cyclage) of [8,
Theorem 5.26] used to construct an affine Robinson–Schensted correspondence.

Proposition 5.16 Let |λ, s〉 ∈ Bs be a doubly highest weight vertex. Write κ =
κ(|λ, s〉). We have

b̃−κξ h |λ, s〉 = ϕ|λ, s〉,

where h is the number of parts of κ and ξ is the cyclage isomorphism, see [8, Propo-
sition 4.4].

Proof We use the notations of [8]. First of all, because of [9, Proposition 5.7], doubly
highest weight vertices are cylindric in the sense of [8, Definition 2.3], and ϕ|λ, s〉 is
therefore well defined, and simply verifies ϕ = ψ t where t is the number of pseu-
doperiods in |λ, s〉 and ψ is the reduction isomorphism. In fact, by definition of κ , we
have t = h, the number of (non-zero) parts of κ , and it suffices to apply the cyclage h
times to |λ, s〉 to match the formulas for b̃−κ and ψ t . ��

5.5 Examples of computations

By Remark 5.14, the Heisenberg crystal can be computed recursively from its highest
weight vertices, each of which yields a unique connected component, isomorphic to
the Young graph by Proposition 3.11.

The empty multipartition is obviously a highest weight vertex forH, and so is every
multipartition with less than e boxes. For instance, if � = 2, s = (0, 1) and e = 3, we
can compute the connected components of the Heisenberg crystal of Fs with highest
weight vertex (-, -) and ( 0 , -). Up to rank 13, we get the following subgraph of the
H-crystal. - -
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For e = 2 and s = (3, 2, 5), the 3-partition (2, 1, 4) is clearly a highest weight
vertex for H by Theorem 5.11. The corresponding connected component, up to rank
17 is the following graph.

123



120 J Algebr Comb (2019) 49:99–124

3 4 2 5 6 7 8

3 4 2 3 5 6 7 8
4

3 4 5 2 3 4 5 6 7 8
4 5

3 4
2 2 3

5 6 7 8
4
3

3 4 5 2 3 4 5 6 7 8
4 5 6

3 4
2 2 3 4

5 6 7 8
4 5
3

3 4
2
1

2 3

5 6 7 8
4
3
2

3 4 5 6 2 3 4 5 6 7 8
4 5 6 7

3 4 5
2 2 3 4

5 6 7 8
4 5 6
3

3 4
2 3 2 3 4

5 6 7 8
4 5
3 4

3 4
2
1
0

2 3 4

5 6 7 8
4 5
3
2

3 4
2
1
0

2 3
1

5 6 7 8
4
3
2

We also wish to give an example in the asymptotic case. Take � = 3, s = (0, 7, 19),
λ = (1, 3.2.1, 3.1) and e = 3, so that |λ, s〉 is a highest weight vertex for H and is
3-asymptotic. We see in the following corresponding H-crystal that the elements b̃σ ,
for |σ | < 4, only act on the third component of |λ, s〉, but that b̃(14) acts already on
the second component. This illustrates Theorem 4.4 (2).
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Fig. 4 Relabelling bead
positions in the e-abacus
according to τ̇−1, for � = 4 and
e = 3. One should compare this
with the labeling of Fig. 1

Appendix A: Crystal level-rank duality

Werecall, using a slightly different presentation, the results of [9, Section 4] concerning
the crystal version of level-rank duality.

There is a double affine quantum group action on the wedge space. In Sect. 2.2.1,
we have explained how U ′

q(̂sle) acts onFs . It turns out that U ′
p(
̂sl�), where p = −1/q,

acts on Fs in a similar way. More precisely we will:

(1) index ordered wedges by charged e-partitions, using an alternative bijection τ̇ ,
(2) make U ′

p(
̂sl�) act on Fs via this new indexation by swapping the roles of e and �

and replacing q by p.

To define τ̇ , recall that we have introduced the quantities z(n) ∈ Z, 1 ≤ y(n) ≤ �

and 1 ≤ x(n) ≤ e for each n ∈ Z. To each pair (1, c) ∈ {1} × Z, we associate the pair
τ̇ (1, d) = ( j, d) ∈ {1, . . . , �} × Z where

j = x(−c) and d = −(y(−c) − 1) + �z(−c).

In particular, τ̇ sends the bead in position (1, c) into the rectangle z(−c), on the
row x(−c) and column y(−c) (numbered from right to left within each rectangle).

The map τ̇ is bijective and we can see τ̇−1 as the following procedure:

(1) Divide the �-abacus into rectangles of size e ×�, where the z-th rectangle (z ∈ Z)
contains the positions ( j, d) for all 1 ≤ j ≤ � and −e + 1 + ze ≤ d ≤ ze.

(2) Relabel each ( j, d) by the second coordinate of τ̇−1( j, d), see Fig. 4 for an
example.

(3) Replace the newly indexed beads on a 1-abacus according to this new labeling.

We see that τ̇−1, so also τ̇ , actually only depends on e, not on �. In fact, explicit
formulas for τ̇ and τ̇ (1) are given by

τ̇ (1, c) =
(

(−c mod e) + 1 , −
⌊−c

e

⌋)

=
(

(−c mod e) + 1 ,
−c − (−c mod e)

e

)

,

and

τ̇−1( j, d) = (1 , −( j − 1) + ed) ,
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and one notices that τ̇ corresponds to taking the usual e-quotient and the e-core of a
partition, where the e-core is encoded in the e-charge.More precisely, the renumbering
of the beads according to τ̇ is the well-know “folding” procedure used to compute the
e-quotient, see [13].

Definition A.1 The (twisted) level-rank duality is the bijective map τ̇ ◦ (.)′ ◦ τ−1

Remark A.2 The map τ̇ ◦ τ−1 already defines a level-rank duality, this was the one
studied by Uglov [27]. However, the twisted version defined above (i.e. where the
conjugation is added) is the one that is relevant when it comes to crystals, see Theorem
A.4 below.

There is a convenientway topicture the crystal level-rankduality as follows. Starting
from an �-abacus, stack copies on top of each other by translating by e to the right.
Then, extract a vertical slice of the resulting picture, and read off the corresponding
e-partition by looking at the white beads (instead of black beads) in each column,
starting from the leftmost one.

Example A.3 The abacus A(λ, s) with � = 4, e = 3, λ = (1,∅, 13, 5) and s =
(−1,−1, 1, 1) looks as follows (the origin is represented with the boldfaced vertical
bar).

Stacking copies of A(λ, s) gives

and extracting one vertical e-abacus yields
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which corresponds to |(1, 2.12, 2.14), (−1, 1, 0)〉.
We have the following induced maps

⊕

|s|=s

Fs
τ−1

−−−⇀↽−−−
τ

Fs

′
−−−⇀↽−−−′

F−s
τ̇−−−⇀↽−−−

τ̇−1

⊕

|ṡ|=s

Fṡ

|λ, s〉 ←→ |λ, s〉 ←→ |λ′,−s〉 ←→ |λ̇, ṡ〉

Like τ , the bijection τ̇ induces a U ′
p(
̂sl�)-module isomorphism, and Fs has a

U ′
p(
̂sl�)-crystal, given by the same rule as the U ′

q(̂sle)-crystal by swapping the roles
of e and � and replacing q by p.

Theorem A.4 Via level-rank duality,

(1) the U ′
q(̂sle)-action and the U ′

p(
̂sl�)-action on Fs commute, and

(2) the U ′
q(̂sle)-crystal and the U ′

p(
̂sl�)-crystal of Fs commute.

Proof The first point is essentially due to Uglov [27, Proposition 4.6], where he uses
the non-twisted version of level-rank duality, see [9, Theorem 3.9] for the justification
in the twisted case. The second point is [9, Theorem 4.8]. ��
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26. Tingley, P.: Three combinatorial models for ŝn crystals, with applications to cylindric plane partitions.

Int. Math. Res. Not. 143, 1–40 (2008)
27. Uglov,D.:Canonical bases of higher-levelq-deformedFock spaces andKazhdan–Lusztig polynomials.

Prog. Math. 191, 249–299 (1999)
28. Yvonne, X.: Bases canoniques d’espaces de Fock de niveau supérieur. Ph.D. thesis, Université de Caen

(2005)

123

http://arxiv.org/abs/1509.03269
https://doi.org/10.1016/j.aim.2018.02.030
https://doi.org/10.1016/j.aim.2018.02.030
http://arxiv.org/abs/1509.00526

	Heisenberg algebra, wedges and crystals
	Abstract
	1 Introduction
	2 Higher level Fock spaces
	2.1 Charged multipartitions and wedges
	2.1.1 Charged multipartitions
	2.1.2 Abaci representation
	2.1.3 Wedges

	2.2 Fock space as mathcalU'q (mathfraksle"0362mathfraksle)-module
	2.2.1 The JMMO Fock space
	2.2.2 Uglov's wedge space


	3 The Heisenberg action
	3.1 The action of the bosons
	3.2 Some notations and definitions
	3.3 The Heisenberg crystal

	4 Canonical bases and Schur functions
	4.1 The Boson–Fermion correspondence
	4.2 Action of the Schur functions
	4.2.1 Canonical bases of the Fock space
	4.2.2 Schur functions in the asymptotic case


	5 Explicit description of the Heisenberg crystal
	5.1 Level ell vertical strips
	5.2 Action of the Heisenberg crystal operators tildebσ
	5.3 Proof of Theorem 5.11
	5.4 Impact of conventions and relations with other results
	5.5 Examples of computations

	Acknowledgements
	Appendix A: Crystal level-rank duality
	References




